
An Event-Triggered Programmable Prefetcher
for Irregular Workloads

Sam Ainsworth
University of Cambridge, UK
sam.ainsworth@cl.cam.ac.uk

Timothy M. Jones
University of Cambridge, UK
timothy.jones@cl.cam.ac.uk

Abstract
Many modern workloads compute on large amounts of data,
often with irregular memory accesses. Current architectures
perform poorly for these workloads, as existing prefetch-
ing techniques cannot capture the memory access patterns;
these applications end up heavily memory-bound as a re-
sult. Although a number of techniques exist to explicitly
con�gure a prefetcher with traversal patterns, gaining sig-
ni�cant speedups, they do not generalise beyond their target
data structures. Instead, we propose an event-triggered pro-
grammable prefetcher combining the �exibility of a general-
purpose computational unit with an event-based program-
mingmodel, alongwith compiler techniques to automatically
generate events from the original source code with anno-
tations. This allows more complex fetching decisions to be
made, without needing to stall when intermediate results
are required. Using our programmable prefetching system,
combined with small prefetch kernels extracted from appli-
cations, we achieve an average 3.0× speedup in simulation
for a variety of graph, database and HPC workloads.

CCS Concepts • Computer systems organization →
Architectures; • Software and its engineering → Compil-
ers;

Keywords Prefetching

ACM Reference Format:
Sam Ainsworth and Timothy M. Jones. 2018. An Event-Triggered
Programmable Prefetcher for Irregular Workloads. In Proceedings
of 2018 Architectural Support for Programming Languages and Op-
erating Systems (ASPLOS’18). ACM, New York, NY, USA, 15 pages.
h�ps://doi.org/10.1145/3173162.3173189

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for pro�t or commercial advantage and that copies bear
this notice and the full citation on the �rst page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior speci�c permission and/or a fee. Request
permissions from permissions@acm.org.
ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-4911-6/18/03. . . $15.00
h�ps://doi.org/10.1145/3173162.3173189

1 Introduction
Many modern and emerging workloads execute on large
volumes of data, which cannot �t in current systems’ caches.
Often these accesses are irregular and di�cult to predict in
advance, resulting in heavily memory-bound execution with
frequent stalls from high DRAM latency [31, 34, 49].
There are several techniques available to address these

challenges. One option is to utilise thread-level parallelism
within an application, to cope with latency using aggressive
multi-threading [38], e�ectively parallelising loads by having
many threads stalled at once. This is typical of workloads
running on graphics cards, for instance [42]. However, this
technique only works if the application exhibits a great deal
of thread-level parallelism. This is often not the case in big
data workloads, due to complex and unpredictable reads and
writes to the same data [41], and the di�culty of creating
e�ective partitions for the parallel cores to work on.
Another option is prefetching, either through hardware

prefetch units or software instructions. However, traditional
address-based (stride) prefetchers [14, 29, 52, 54] only work
for very regular computations, typically involving either
dense matrices or entirely sequential memory accesses. His-
tory-based prefetchers [25, 26] only work for highly repeated
computation. Neither of these apply to many big-data appli-
cations, such as database, graph and many high performance
computing (HPC) workloads, which exhibit much more com-
plicated, irregular traversals of data, involving pointer chas-
ing and indirect array lookups [38]. Techniques have been
proposed speci�cally for irregular accesses, such as pointer
fetching prefetchers [17], which fetch plausible pointers from
observed memory loads. However, these lack the ability to
look ahead in arrays, cannot fetch commonly-used index-
based data structures (as the loaded memory doesn’t include
pointers), and su�er from severe over-fetching from mem-
ory, due to a lack of ability to have �ne-grained control over
prefetches. Software prefetching [2, 12, 40], on the other
hand, �lls the main CPU’s pipeline with many extra instruc-
tions, and is unable to deal with accesses involving multiple
loads without stalling.
Nevertheless, despite the lack of success for traditional,

implicit prefetching techniques on these workloads, it is
still possible to mitigate the cost of latency associated with

https://doi.org/10.1145/3173162.3173189
https://doi.org/10.1145/3173162.3173189

memory accesses. Techniques to extract memory-level par-
allelism for a variety of memory-bound applications ex-
ist [1, 30, 31, 34, 49] through explicit con�guration of traver-
sal patterns, gaining signi�cant performance improvements
for the targeted workloads. However, currently such archi-
tectural techniques are highly specialised to the target com-
putation, so adding them to general-purpose systems may be
infeasible due to the lack of wide applicability. Further, they
are unable to deal with the rapid evolution of algorithms
within the �eld due to their �xed-function nature.

To this end, we have designed an event-based program-
mable prefetching system for general-purpose workloads in
a variety of domains that feature sparse memory accesses
[8] including graphs, databases and HPC. We couple a con-
ventional high-performance out-of-order computation core
with a specialised prefetching structure for the L1 cache, at-
tached to several in-order programmable prefetch units. The
event-based programming model allows each pre-fetch unit
to issue and react to multiple loads at once without stalling.
This enables the system to prefetch based on the results of
earlier prefetches, in addition to prefetching from multiple
data structures concurrently.

We further provide compiler techniques to generate event
programs for these cores based on the original source code
and thus alleviate manual e�ort for simpler access patterns,
using annotations to specify what needs to be prefetched.

On a wide set of memory-bound benchmarks, we achieve
a 3.0× average speedup, with high utilisation of prefetches
brought into the cache, and negligible additional memory
accesses for most workloads.

2 Existing Work
There is an abundance of work in the literature concern-
ing prefetching, and we describe the most relevant works
here, highlighting the elements that are bene�cial for work-
loads with irregular memory accesses. Summaries include
the works of Mittal [43] and Falsa� and Wenisch [19].

Fetcher Units Much of the research into e�cient execu-
tion of irregular workloads has focused on highly specialised
fetcher units. These take control of memory accesses for a
particular access pattern, extracting performance through
parallel loads of data, often with large performance improve-
ments. SQRL [34] and DASX [35] are fetcher systems de-
signed for iterative accesses of B-tree, vector and hash table
structures. Similarly, Kocberber et al. [30, 31] focus on the
optimisation of database inner joins by parallel hash table
walking. In a later paper, they emulate a similar technique in
software [32]. Ho et al. [24] generalise the concept of fetcher
units to cover more accesses by encoding memory accesses
as a set of rules, to allow loads and stores to be mapped
to a data�ow architecture. Fetcher units can realise energy
savings through removal of the original load instructions.

1 for(x = 0; x < in.size; x++) {
2 SWPF(htab[hash(in.key[x+dist])]);//Software prefetch
3 Key k = in.key[x];
4 Hash h = hash(k);
5 Bucket b = htab[h];
6 ListElement l = b.listStart;
7 while(l != NULL) {
8 if(l->key == k) {
9 wait_til_oldest(); //Multithreading
10 out.match[out.size] = k;
11 out.size++;
12 }
13 l = l->next;
14 }
15 signal_iter_done(x); //Multithreading
16 }

Figure 1.Hash join kernel with two latency-hidingmethods.

However, the original application has to be modi�ed, yield-
ing code incompatible with devices not featuring fetcher
units, and stores to the fetched data are typically disallowed.

Con�gurable Prefetchers This paper develops a con�g-
urable prefetcher exposed at the architectural level, and ideas
showing the bene�ts of this have been proposed in the past.
Al-Sukhni et al. [3] use explicit Harbinger instructions at the
program level to control linked-list pointer fetching. Yang
and Lebeck [57] develop a programmable prefetching scheme
for linked data structures. The programmable fetchers are
allowed to stall, and so cannot deal with patterns which
require overlapping of memory accesses to achieve high per-
formance. Ainsworth and Jones [1] design a con�gurable
prefetcher speci�cally for graph workloads, gaining large
speedups, but only targeting speci�c traversals for a particu-
lar graph format. Kohout et al. [15, 33] design a con�gurable
prefetcher to fetch lists of lists.

Implicit Irregular Prefetchers Many attempts have been
made at prefetching irregular structures using more tradi-
tional, implicit schemes without con�guration. This is de-
sirable, as it reduces manual e�ort, and does not require
recompilation. However, though progress has been made,
none have been implemented in commercial systems [19].

Pointer-fetching prefetchers [17], which fetch all plausible
virtual addresses from cache lines read by a core, have been
proposed in several schemes. The main downside to these
approaches is the large over-fetch rate. In addition, these
schemes are unable to deal with the array-indirect patterns
seen in many workloads.
Attempts to extract dependence-graph streams at run-

time, by detecting dependent loads, have been made [6, 44,
51]. These run dynamically detected load streams on pro-
grammable units on identi�cation of the start of a set of loads,
to prefetch the data. These require a large amount of analysis
hardware to be added to the commit stage of the pipeline,
and a large amount of processing power to run the detected
streams. Mutlu et al. propose a runahead scheme [47], which
utilises idle chip resources on a cache miss to dynamically

(a) Original (b) Software (c)Multithreaded (d) Helper thread (e) Desired

Figure 2. Execution of hash join codes. Software prefetch can only reduce stalls to the hash table buckets. Multithreading
overlaps parallel sections, but must synchronise on dependences. Ideally we would prefetch hash table buckets and list items
separately from the main computation and allow the prefetcher to issue further prefetches based on values of earlier prefetches.

prefetch loads. These are limited by being tightly bound to
the instruction stream, thus are unable to exploit signi�cant
lookahead, or prefetch from other prefetched loads. Hashemi
et al. extend this [23] by using runtime analysis hardware
with access to all microarchitectural state to generate code
fragments of critical instructions. These fragments still stall
on dependent loads, but are o�oaded to simpler hardware
to fetch data, and remove some redundant execution.

Yu et al. [58] pick up stride-indirect patterns using runtime
analysis of executed code to �nd the base array and size of
each data element. This achieves prefetching of this single
pattern, at the expense of complicated analysis hardware in
the cache, which may a�ect the critical path of execution.

Helper Threads One solution for prefetching irregular ap-
plications has been to use separate CPU threads to prefetch
data in software. Kim and Yeung [27] automatically gener-
ate “pre-execution threads” from compiler analysis. These
have the desirable property that no extra hardware is re-
quired. However, they use an additional thread on a high-
performance core, which could consume signi�cant amounts
of energy. They are further unable to deal with prefetches
based on prefetches without stalling [28]. Further, the lack of
a hardware event queue makes synchronisation on loads dif-
�cult and expensive. Lau et al. [37] propose a similar scheme,
but with architectural support: a single small helper core is
attached to a main core to assist with processing tasks. This
tight coupling somewhat helps alleviate the synchronisation
problem, but still exhibits the same stalls as above. Given
this, a single core is rarely able to meet the processing needs

of complex access patterns. Ham et al. [22] provide a scheme
where a core is split based on separate access and execute
threads, which run di�erent code. This again provides closer
synchronisation, and as each thread is specialised it can be
run on more e�cient hardware, but requires high perfor-
mance from both the load and compute units, and is unable
to deal with complicated address generation without stalling
on intermediate loads.
Ganusov and Burtscher [20] use helper threading to em-

ulate common Markov [26] and stride prefetching schemes
in software, by adding in hardware support to forward ob-
served loads to newly spawned threads. We forward similar
data in hardware, but create fully programmable prefetch
events which can react to other prefetches, allowing real
data structure traversal, and exploit e�cient parallelism by
using many specialised units with closer coupling and a light
abstraction for running custom prefetch code.

Summary While there are elements of techniques from the
literature that can help with e�cient and timely prefetch of
data into the cache for irregular workloads, there is currently
no complete solution. We next consider how several existing
schemes perform on a complex benchmark kernel, motivat-
ing the need for event-based and decoupled programmable
prefetching hardware, developed in section 4.

3 Motivation
Figure 1 gives an example of a typical hash join kernel, as
used in databases. We have an indirect access to a hash

table array via a hash on a sequential access to a key array,
followed by linked-list traversals.
There are several challenges here for existing prefetch-

ers. First, as a result of the hash function, accesses to the
hash table array are unpredictable and scattered throughout
memory, with no spatial or temporal locality among them.
Without knowing the hash function, there is no chance of be-
ing able to accurately prefetch entries. Second, the linked-list
traversal does not perform a signi�cant amount of work on
each element. Although pointer prefetchers could identify
l->next as the address for the next element to process,
the lack of work performed on each iteration of the while
loop means that a prefetcher cannot hide the memory access
latency of bringing in the next list item.
Figure 2(a) shows how this unmodi�ed code would exe-

cute.1 Light green boxes denote the calculation of the hash
and load of the hash-table bucket. Darker green boxes show
a load of a linked-list item. Diagonal lines in the boxes show
a stall, waiting for the data to arrive from a lower level cache
or main memory. As can be seen, each load causes a stall due
to the lack of temporal and spatial locality in the code.

So�ware Prefetching In this example, software prefetch-
ing [12] can be more bene�cial than using a hardware pre-
fetcher, since we can encode the hash function inside the
prefetch. Figure 1 shows this instruction and its position
within the code. We prefetch at a �xed number of for-loop it-
erations into the future (dist) to bring hash-table elements
into the cache in advance of them being used. However, we
cannot help with the linked-list traversal because the soft-
ware does not get noti�ed about the results of this hash-table
item prefetch. We are restricted to prefetching the linked
list for the current hash-table item, which su�ers the same
memory latency hiding challenges as in hardware.
Figure 2(b) shows how the software prefetch improves

performance. Yellow boxes denote the calculation of the pre-
fetch address and corresponding prefetch instruction. We
assume a prefetch distance of 1 iteration in this example,
meaning the �rst iteration prefetches the hash-table bucket
for the second iteration, and so on. As can be seen, for the
second and subsequent iterations, there is no stall for loading
the bucket (although the prefetch instruction itself incurs an
overhead). After four iterations, execution �nishes slightly
earlier than in the original code, but the inability to prefetch
the linked-list items limits the performance increase.

Multithreading A third option is to exploit thread-level
parallelism. Each of the for-loop iterations can be executed
as a separate thread to hide the memory latencies. However,
the algorithm is not embarrassingly parallel, and the order

1The nature of this code, where the linked list is dependent on the hash-table
bucket load, means that an out-of-order core would not be able to exploit
memory-level parallelism through multiple outstanding loads.

of the output keys could change by executing iterations out
of order, so synchronisation is required to prevent this.

Code for this option is shown in �gure 1, and its execution
on two threads is shown in �gure 2(c). When a matching key
is found, the thread waits until it is executing the oldest itera-
tion before writing to the output array, to preserve ordering.
This is performed by calling wait_til_oldest(); the
companion signal_iter_done() signals at the end of
each iteration to keep track of the oldest currently executing.

In the example (�gure 2(c)), there is a match on the key in
the �rst list item in the second iteration. However, since the
�rst iteration on core 0 is still running, this second iteration
must wait until that is �nished before writing to the output
array. Despite this idle time, the multithreaded version in this
example completes faster than with software prefetching by
overlapping execution and stalls where possible.

Helper Thread A fourth type of prefetching is to duplicate
the memory accessing part of the loop into a separate, helper
thread. This thread can run in a di�erent context on the
same core as the main thread, if simultaneous multithread-
ing support is available, to prefetch into the main L1 cache.
Execution for this technique is shown in �gure 2(d). The fun-
damental limitation of this approach is that the helper thread
cannot load data in fast enough to stay ahead of the main
thread. The helper thread cannot use prefetches but must
stall on each load to be able to use results from it. Though
it is possible to use multiple helper threads to alleviate this
problem to an extent, this requires a very large amount of
system resource, as we need enough helper threads to hide
all memory stalls.

Desired Behaviour However, in the ideal case we would
have no stalls at all. The workload actually contains a sig-
ni�cant amount of memory-level parallelism that existing
techniques are unable to exploit: we can parallelise over the
array in.key, allowing us to prefetch multiple linked lists
at once, by overlapping the sequential linked-list fetches.
If we could decouple the calculation of prefetch addresses
from the main execution in a way that prevents stalling on
each load, we would be able to take advantage of this paral-
lelism and bring data into the cache shortly before it is used.
This would lead to an execution similar to that in �gure 2(e)
where, after a warm-up period, computation can proceed
without stalls, since data is immediately available in the �rst
level cache. To realise this we must allow the prefetcher to
react to data coming back from its own prefetches, and give
it knowledge of the computation being performed, so that
it can calculate the next set of prefetches based on the data
structures being traversed.

4 Programmable Prefetcher
We develop a novel prefetching scheme, along with com-
piler and hardware support, based on the abstraction of

Figure 3. Structure of the programmable prefetcher.

an event. As with common stride prefetchers [14, 54], new
prefetches are triggered by read events within the cache, and
also by prefetched data reaching the cache. What makes our
scheme suitable for more diverse and irregular applications
is that these events have programmable behaviour, triggered
by con�gured address ranges, which cause small, fully pro-
grammable event code sequences to be run that can generate
new prefetches. As each event is separate from the previous
one, these are extremely parallel, enabling highly e�cient
and performant execution on a number of tiny programmable
units. The ability to react to previous prefetches, which can-
not be achieved by other schemes with programmability,
such as software prefetching [12] or helper threads [27],
allows irregular patterns, which typically feature multiple
dependent accesses, to be prefetched without stalling.

4.1 Overview
Figure 3 shows the overall architecture of our design. We add
programmable units and supporting hardware to generate
prefetches based on a program’s current and future working
set. The prefetcher is event-based to avoid stalls while still
enabling further fetches from the results of earlier prefetches.
All snooped reads from the main core, and prefetched

data reaching the L1 cache, initially go into an address �lter
(section 4.2). Data which has been �ltered to be of interest
moves into the observation queue, to be removed by the
scheduler (section 4.3) when it detects a free programmable
prefetch unit (PPU, section 4.4). These programmable units
are low frequency, in-order cores that execute a small, cus-
tom computation for each address received from the sched-
uler, and generate zero or more prefetches as a result. They
use data from load events, along with con�gured state in
global registers, and lookahead distances calculated by the
EWMA calculators (section 4.5), to generate new prefetches,
which are placed into a FIFO prefetch request queue (sec-
tion 4.6). When the L1 cache has available MSHRs, it removes
a prefetch request and issues it to the L2 cache. In cases where
the prefetcher is unused, it can be powered o� to avoid im-
pacting performance. The following subsections describe
each structure in more detail.

4.2 Address Filter
The address �lter snoops all loads coming from the main
core, and prefetched data brought into the L1 cache from the
L2. This �lter holds multiple address ranges that we wish
to monitor and use to create new prefetches, for example
the hash table (htab) in the kernel from �gure 1. The ad-
dress �lter is con�gured through explicit address bounds
con�guration instructions running on the main core. These
instructions are generated by the compiler or programmer
when creating the code that executes on the PPUs.

The con�guration is stored in the �lter table. It stores vir-
tual address ranges for each important data structure, along
with two function pointers to small computation kernels:
Load Ptr, to be run when a load is observed in that range, and
PF Ptr, to be run when a prefetch to that range is completed.
Some are also used for scheduling purposes (section 4.5), and
these are marked in the table.

Filtered addresses (observations) are placed in the observa-
tion queue along with their function pointers and, in the case
of a prefetch observation, the prefetched cache line. Address
ranges can overlap; an address in multiple ranges stores an
entry for each in the queue.

4.3 Observation Queue and Scheduler
Filtered addresses are placed in a small observation queue
before being assigned to a core. The queue is simply a FIFO
bu�er to hold observations until a PPU becomes free. As
prefetches are only performance enhancements, in the event
of this queue �lling up, old observations can be safely dropped
with no impact on correctness of the main program.

Once a PPU becomes free, the scheduler writes the cache
line and virtual address of the data into the PPU’s regis-
ters, then sets the PPU’s program counter to the registered
prefetch kernel for that observation, starting the core. The
scheduler’s job is simply to monitor the PPUs and assign
them work from the FIFO observation queue when required.

4.4 Programmable Prefetch Units (PPUs)
The PPUs are a set of in-order, low power, programmable
RISC cores attached to the scheduler of the prefetcher, and

are responsible for generating new prefetch requests. The
PPUs operate on the same word size as the main core so that
they can perform address arithmetic in one instruction.

Prefetcher units are paused by default. When there is data
in the observation queue, and a free PPU, the scheduler sends
the oldest observation to that PPU for execution. The PPU
runs until completion of the kernel, which is typically only a
few lines of code. During execution it generates a number of
prefetches, which are placed in the prefetch request queue,
then sleeps until being reawakened by the scheduler.

Attached to the PPUs is a single, shared, multi-ported in-
struction cache. PPUs share an instruction cache between
themselves, but not with the main core; PPU code is distinct
from the main application, but any observation can be run
on any PPU. The amount of programmable prefetch code
required for most applications is minuscule, so instruction
cache size requirements are minor: in the benchmarks de-
scribed in section 7 a maximum of 1KB is fetched from main
memory by the PPUs for the entirety of each application.

The PPUs have no load or store units, and therefore have
no need for a data cache. They are limited to reading indi-
vidual cache lines that have been forwarded to them, local
register storage, and global prefetcher registers. Removing
the ability to access any other memory reduces both the com-
plexity of the PPUs and the need for them to stall. Although
this limits the data that can be used in prefetch calculations,
we have not found a scenario where any additional data is
required. Typically the prefetch code will simply take some
data from the cache line, perform simple arithmetic oper-
ations, then combine it with global prefetcher state, such
as the base address of an array, to create a new prefetch
address. Having no additional memory also means that each
PPU has no stack space for intermediate values, but regis-
ters are available and provide ample storage for temporary
values. In practice we have not found this to be an issue.

4.5 Moving Average (EWMA) Calculators
For some applications, the lookahead distance for prefetches
cannot be set using a �xed value. It may be input dependent,
and may vary based on the timing statistics of the particular
system. In some workloads, notably breadth-�rst searches
on graphs, the prefetch distance may vary within the com-
putation as phases access di�erently-sized elements [1].

Prior research has dealt with this challenge by considering
the ratio between computation and memory access times.
For example, Mowry et al. [45] divide the prefetch latency
by the number of instructions in the shortest path through a
loop to determine the number of iterations ahead to prefetch.
We generalise this idea and perform the calculation dy-

namically in hardware using exponentially weighted moving
average (EWMA) calculators to generate times for a variety
of observed events. EWMAs can be implemented very e�-
ciently in hardware with minor amounts of state [18], and
mean that PPUs do not need to perform timing calculations.

We dynamically work out the ratio between time to �nish a
chain of prefetches, and the time each loop iteration takes,
and use that to decide how far ahead to look in the base array.
This means we attempt to prefetch the element which will
be accessed immediately after the prefetch is complete.
When an observed read occurs to a particular data struc-

ture, the time between this event and the previous event on
the same address bound is recorded. This can give us, for
example, the time between FIFO accesses for breadth-�rst
search. To time how long loads take, we signify the start of
a timed prefetch EWMA, and attach the current time to the
event generated. We propagate this to resulting prefetches
until we reach an address range with a �ag set, then use the
time between the events as input into a load time EWMA.

4.6 Prefetch Request Queue
The prefetch request queue is a FIFO queue containing the
virtual addresses that have been calculated by the PPUs for
prefetching, that have not yet been processed. Once the L1
data cache has a free MSHR, it takes the oldest item out of
this queue, translates it to a physical address using the shared
TLB, then issues the prefetch to this address. As with the
observation queue, old requests can be dropped if the queue
becomes full, without impacting application correctness.

4.7 Memory Request Tags
While array ranges, which can be captured by virtual address
bounds, can be identi�ed easily by the con�guration steps
discussed in section 4.2, these aren’t the only structures a
prefetcher needs to react to. Linked structures (e.g. trees,
graphs, lists) can be allocated element-by-element in non-
contiguous memory regions and require identi�cation when
their prefetched data arrives into the cache. To deal with
these we store a single tag in the MSHR that identi�es the
data structure that the prefetch targets, such as a hash-table
bucket’s linked list. When a prefetch request returns data,
and has a registered tag, the cache line is sent to a PPU loaded
with the function pointer for that structure.

4.8 Hardware Requirements
Though the prefetcher features many programmable units,
each one of these is a very small, microcontroller sized
unit, such as the ARM Cortex M0+, which contains fewer
than 12,000 gates [7] (approximately 50,000 transistors). Us-
ing public data [4, 5], on comparable silicon processes we
should expect the hardware impact of the twelve cores to
be approximately 1.3% of the area of a Cortex A57 without
shared caches. In practical implementation terms, it may be
desirable to support 64-bit operations on these cores, and
thus we could expect area to double to 2.6%. When we add
8.5KiB memory [56] for the instruction cache, global regis-
ters, prefetch request queue and observation queue, the total
overall area overhead is still only 3%. This is comparable in
size to an L1 data cache.

1 int64_t acc = 0;
2 for(x=0; x<N; x++) {
3 acc += C[B[A[x]]];
4 }
5 return acc;

(a) Main program

1 void on_A_load() {
2 Addr a = get_vaddr();
3 a += 128;
4 prefetch(a);
5 }

1 void on_A_prefetch() {
2 int64_t dat = get_data();
3 Addr fetch = get_base(1)
4 + dat * 8;
5 prefetch(fetch);
6 }

1 void on_B_prefetch() {
2 int64_t dat = get_data();
3 Addr fetch = get_base(2)
4 + dat * 8;
5 prefetch(fetch);
6 }

(b) PPU code

Figure 4. A loop with irregular memory accesses to arrays B & C, but signi�cant memory-level parallelism for accesses to A.
Also shown are the macros executed by the PPUs to exploit this MLP.

4.9 Summary
We have developed a programmable prefetcher that responds
to �ltered load and prefetch observation events. These feed
into a set of programmable units, which run kernels based
on the events to issue prefetches into the cache. We omit
coverage of prefetching for multicores here for brevity, but
the implementation and expected results are similar [1, 2].
The following sections describe how these are programmed.

5 OS and Application Support
To target the prefetcher, custom code must be generated
for each application. This section describes the event-based
programming model used for this, that is suited for latency
tolerant fetches on multiple PPUs. It also considers the inter-
action with the operating system and context switches. In
this section we assume prefetch code is written by hand. We
then go on to consider compiler assistance in section 6.

5.1 Event Programming Model
The PPU programming model is event-based, which �ts nat-
urally with the characteristics of prefetch instructions that
have variable latency before returning data. Events generate
prefetches rather than loads, which can then be reacted to
by new events when they arrive in the core. These are issued
to the memory hierarchy when resources become available,
as described in section 4. This is naturally latency-tolerant,
avoiding PPU stalls while waiting for prefetched data.

Events run on the PPUs are determined from the addresses
loaded or prefetched into the cache. If and when prefetches
return data, the scheduler can select any PPU to execute the
corresponding event, rather than being constrained to the
originating unit. This makes the architecture suitable for
prefetches requiring loads for intermediate values, which
would otherwise stall the prefetcher. A bene�t of this style
of programming is that the PPUs do not need to keep state
between computations on each event.

The code for each event resembles a standard C procedure
for a more traditional processor, with some limitations. There
are no data loads from main memory, stores or stack storage,
because PPUs do not have the ability to access memory
(apart from issuing prefetches). The only data available to
the PPUs is the address that triggered the event, any cache
line which has been observed (stored in local registers), and

global prefetcher state (stored in global registers, such as
address bounds or con�gured values such as hash masks).
We add special prefetch instructions to the PPUs, which

are di�erent from software prefetches because they trigger
subsequent events for the PPUs to handle once they return
with data. Function calls cannot be made, since there is no
stack, and system calls are unsupported.
The prefetch events can be terminated at any time, since

they are not required for correct execution of the application
running on the main core. This happens, for example, on a
context switch when the current application is taken o� the
main core. At this time, all PPUs are paused and their prefetch
events aborted. In addition, any operation that would usually
cause a trap or exception (e.g., divide by zero) immediately
causes termination of the prefetch event.

5.2 Example
Consider the program in �gure 4(a). Its data accesses are
highly irregular, featuring indirect accesses to arrays B and
C. However, the sequential access of array A means there is
a large amount of memory level parallelism we can exploit
to load in each iteration over x in parallel.

This can be prefetched by loading the PPUs with the code
in �gure 4(b). We assume that A, B and C are all arrays of
8-byte values. The address bounds of arrays A, B and C are
con�gured with the prefetcher as address bounds 0, 1 and
2 respectively, by placing instructions in the original code.
Similarly, the addresses of the kernels in �gure 4(b) are taken,
and con�gured to the relevant load events for the prefetcher.
On observation of a main program read to A, a prefetch
event is triggered which fetches the address two cache lines
ahead of the current read. On prefetch of this, the fetched
data is used as an index into B (get_base(1)), then into
C (get_base(2)).
Note that the prefetcher code is a transformation from a

set of blocking loads to a set of non-blocking prefetch events.
The core code for the main program remains sequential and
unchanged save for the con�guration instructions, but the
majority of cache misses should be avoided from the PPUs
issuing load requests in advance of the core program.

The prefetcher functions (get_vaddr(),get_base()
and get_fetched_data()) are compiler intrinsics that
get converted into register reads, or loads from the attached
small, shared, prefetcher-state memory, as appropriate.

1 int64_t acc = 0;
2 for(x=0; x<N; x++) {
3 swpf(&C[B[A[x+n]]]);
4 acc += C[B[A[x]]];
5 }
6 return acc;

(a) Software prefetch

1 int64_t acc = 0;
2 #pragma prefetch
3 for(x=0; x<N; x++) {
4 acc += C[B[A[x]]];
5 }
6 return acc;

(b) Pragma

Figure 5. Source for auto-generation of PPU code.

5.3 Operating System Visibility
Although they have many capabilities of regular cores, PPUs
are not visible to the operating system as separate cores,
and so the OS cannot schedule processes onto them. Instead,
the OS can only see the state necessary to be saved across
context switches. Although there may be situations where it
is useful for the OS to see the PPUs as full cores, avoiding
interactions with the OS simpli�es their design (for example,
it does not require privileged instructions). Therefore, while
the prefetcher initiates page table walks, it cannot handle
page faults, so in this case we discard the prefetch.

The prefetch units are used only to improve performance
and cannot a�ect the correctness of themain program. There-
fore, the amount of state that needs to be preserved over
context switches is small. For example, we do not need to
preserve internal PPU registers, but simply discard them on
a context switch. For the same reason, we can also throw
away all events in the observation queue and addresses in the
fetch queue. Provided context switches are infrequent, this
will result in little performance drop. EWMA values aren’t
necessary over context switches, as they can be recalculated.
As a result, all that is required to be saved on a context

switch is the prefetcher con�guration: the global registers
and the address table.

6 Compiler Assistance
Hand-coding events requires considerable manual e�ort. A
way of generating these events from the original code within
the compiler is more desirable for an end-user.

Software prefetching[2, 12] is a commonly supported tech-
nique whereby a processor can load into the cache system
without waiting for the result. These present a high level
abstraction for the end user, but have many disadvantages
when executed directly, as discussed in section 3. However,
we can use the address generation code for these to generate
hardware events by working backwards through the loop
in which they appear to generate programmable prefetcher
code. This allows us to perform the prefetching without
slowing down the main computation thread.
We provide compiler passes, implemented in LLVM [36],

to both convert software prefetches to programmable events,
and also to generate events from scratch, simply by adding a
pragma to loops where the programmer requires prefetching,
giving a spectrum of techniques trading o� manual e�ort
for performance. Pseudocode is given in algorithm 1.

1 // Collect initial software prefetches and their
2 // address generation instructions.
3 prefetches = {}
4 foreach (p: software prefetches within a loop):
5 // Search backwards from a prefetch, to find an
6 // induction variable.
7 if (((indvar, set) = DFS(p)) != null):
8 prefetches ∪= {(p, indvar, set)}
9
10 // Function calls allowed if side-effect free.
11 remove(prefetches, contains function calls)
12 // Non-induction variable phi nodes allowed if pass
13 // can cope with complex control flow.
14 remove(prefetches, contains non-induction phi nodes)
15
16 all_events = {}
17 // Emit prefetches and address generation code.
18 foreach ((pf, iv, set): prefetches):
19 // Find loop invariant loads, for removal and
20 // configuration
21 loop_invars = get_loop_invariant_loads(set)
22 // Attempt to replace invariant loads in events.
23 set.replace(loop invariant loads, global reg)
24
25 // Split into single events with only single load
26 // references inside.
27 events = split_on_loads(set)
28 if(!events) continue
29
30 // Find address bounds, replace induction variable.
31 addrbounds = infer_bounds(iv)
32 events.replace(iv, (addrbounds.max - addr) / size)
33 events.replace(final load, prefetch)
34 events.replace(first load, prefetch read)
35
36 if(loads still appear in any event) continue
37
38 // Configure prefetcher in original program.
39 add_address_bounds_config(addrbounds)
40 add_global_register_config(loop_invars)
41 all_events ∪= events
42
43 // Remove unnecessary software prefetch in
44 // original program.
45 remove(pf)
46 dead_code(events, original code)
47
48 add_to_event_list(all_events)

Algorithm 1. The software prefetch conversion algorithm,
assuming the intermediate representation is in SSA form.

�����������	�
���
�����������	�
���
�����������	�
���
�������������	���
�����������	���
�����������	��
������������

 ����!���������	��	���
"����##��������	���	����
�������#�������	���$�%
�����
!�&'�����	���	���
�������#�������	���$�%
�����
!�&'�����	���	���
�����(&'�!���$�%
�������
�����##��������	���	���
���������������	��
� ���)����������"��('*()����

������� �������������		
��� ���������

Figure 6. An overview of our software prefetch conversion
algorithm on the control �ow graph from code in �gure 5.

6.1 Analysis
Our analysis pass over the compiler’s IR starts from a soft-
ware prefetch instruction and works backwards using a

depth-�rst analysis of the data-dependence graph. We ter-
minate upon reaching a constant, loop-invariant value, non-
loop-invariant load, or phi node. The goal is to split prefetch
address generation into sequences of nodes ending in a single
load, to be turned into PPU events in a later pass.
To attain an appropriate level of look-ahead for the PPU

code, the software prefetch instruction must be in a loop
with an identi�able induction variable. We also need a data
structure which is accessed using the induction variable, so
that we can infer its value from loads observed in the cache.

Phi nodes identify either the loop’s induction variable, or
another control-�ow dependent value. In the former case,
provided no loads have been found in this iteration of the
depth-�rst search, we can replace the induction variable with
code to infer it from an address, and use the set of found
instructions as the �rst event for a set of prefetches. The
latter case requires more complex analysis, and in practice
is rare, so we do not discuss it further.

If multiple di�erent non-loop-invariant loads are found in
a search, then more than one loaded value is used to create
an address and the event cannot be triggered by the arrival of
a single data value. In this case the conversion fails. However,
if only one load is found, we package the instructions into an
event, and repeat the analysis again starting from the load.
Figure 6 shows the control-�ow graph for the code in

�gure 5(a). Analysis starts from the prefetch instruction (line
14), performing a depth-�rst search on its input, v5, and
terminating upon reaching the load at line 12. Since this is a
non-loop-invariant load, the three instructions are packaged
together into an event, and analysis restarted with the load.
This terminates on with the load at line 10, and again an
event is created. Finally, the third analysis pass terminates
with the phi node, which is for the loop induction variable,
so a new event is created and no further analysis is required.

6.2 Array Bounds Detection
The prefetcher requires the address bounds for each array
accessed through an induction variable, storing them in its
address �lter so as to trigger the correct event when snooping
a load or prefetch. For example, in �gure 6 code for event
A must be executed when observing a load to array A by
the main core. Returned prefetches are handled using the
memory request tags, described in section 4.7.
The start of each array is trivially obtained from address

generation instructions and, in the case of a typed array,
the end address is also simple because the size of the ar-
ray is stated explicitly. However, in languages such as C,
where arrays can be represented as pointers, this becomes
more challenging. One option is to pattern match for com-
mon cases, for example, searching backwards for allocation
instructions. Another is to identify the loop termination con-
dition, provided that it is loop invariant.

6.3 Code Generation
The tasks of the code generation pass are to insert prefetcher
con�guration instructions, generate PPU code and remove
the original software prefetch instructions. Using the anal-
ysis described in section 6.2, array bounds are known and
so con�guration instructions for each array are placed im-
mediately before the loop. Con�guration instructions are
also added for any loop invariant values required by the PPU
code, assigning them to unique prefetcher global registers.
To generate prefetcher code, we take sets of instructions

identi�ed using the analysis in section 6.1, and turn them
into event functions. In the �rst event, we replace the induc-
tion variable phi node with the current address observation
(accessible from PPU registers) subtracted from the base ar-
ray address and divided by the size of the array’s elements
(which is typically converted to a shift). We replace the �-
nal instruction in each event, which will either be a load
or software prefetch, with a hardware prefetch instruction.
For loads, we add a callback so that the next event in the
sequence is called once this prefetch returns. We replace
all loop invariants with global register accesses to values
con�gured in the main code. The only remaining load must
be to the data observed from the current prefetch or load
event, so it can be converted into a register access.

Finally, we remove the now-unnecessary software prefetch
instructions. Dead-code elimination is then used to remove
any code that was only used for a software prefetch, leaving
common subexpressions for still-required instructions.

6.4 Pragma Prefetching
While software prefetches are a relatively descriptive mech-
anism for converting to hardware events, this still involves
some manual e�ort. One option is to let the compiler deal
with generating the initial software prefetches [2], which can
be converted into events. However, a simple and more direct
option is to simply indicate the loop that requires prefetching
within it and let the compiler generate the prefetch events
from scratch. We support this through a custom prefetch
pragma (as in �gure 5(b)) using a similar depth-�rst search
approach as in section 6.1. We start the analysis with loads
that feature indirection (so are likely to miss), and that have
look-ahead based on a discovered induction variable.
Generating code in this manner means we have less in-

formation to work on than with the software prefetch pass,
which can encode runtime information on what data will
miss and be accessed that a simple pragma over a loop can
miss (e.g., an array access stride pattern). Further, it isn’t pos-
sible to decide at compile time, without more information,
which loads are likely to access data that is already in the L1
cache, and thus prefetches to that data structure are unneces-
sary (though these could be disabled at runtime with analysis
hardware). However, for simple patterns, this descriptor is
equally powerful as software prefetch conversion.

Main Core

Core 3-Wide, out-of-order, 3.2GHz
Pipeline 40-Entry ROB, 32-entry IQ, 16-entry LQ, 32-

entry SQ, 128 Int / 128 FP registers, 3 Int
ALUs, 2 FP ALUs, 1 Mult/Div ALU

Tournament 2048-entry local, 8192-entry global, 2048-
Branch Pred. entry chooser, 2048-entry BTB, 16-entry RAS
Memory Dep. Store set predictor [16]

Memory & OS

L1 Cache 32KB, 2-way, 2-cycle hit lat, 12 MSHRs
L2 Cache 1MB, 16-way, 12-cycle hit lat, 16 MSHRs
L1 TLB 64-Entry, fully associative
L2 TLB 4096-Entry, 8-way assoc, 8-cycle hit lat
Table Walker 3 Active walks
Memory DDR3-1600 11-11-11-28 800MHz
OS Ubuntu 14.04 LTS

Prefetcher

Prefetcher 40-Entry observation queue, 200-entry
prefetch queue, 12 PPUs

PPUs In-order, 4 stage pipeline, 1GHz, shared 4KiB
instruction cache (2 ports)

Stride Prefetcher Reference Prediction Table [13], degree 8
GHB Prefetcher Markov GHBG/AC Prefetcher [48], depth 16,

width 6, index/GHB sizes 2048/2048 (regular)
and 67108864/67108864 (large)

Table 1. Core and memory experimental setup.

7 Evaluation
To evaluate our prefetcher we modeled a high performance
system using the gem5 simulator [10] in full system mode
running Linux with the ARMv8 64-bit instruction set and
con�guration given in table 1, similar to that validated in pre-
vious work[21]. We implemented the compiler techniques
presented in section 6 as LLVM passes [36], and compiled
our benchmarks using Clang with the O3 setting. We chose
a variety of memory-bound benchmarks to demonstrate our
scheme, representing a wide range of workloads from di�er-
ent �elds: graphs, databases and HPC, described in table 2.
We skipped initialisation, then ran each benchmark to com-
pletion using detailed, cycle-accurate simulation. In addition,
we compare against a Markov global history bu�er [48] with
regular settings, designed to be realistic for implementing
in SRAM, and a version with a large amount of history data
(1GiB), to evaluate the maximum potential improvement
from more modern history prefetchers [25, 55] which keep
state in main memory. To isolate the improvements from
this technique, we provide unlimited bandwidth and zero
latency accesses to the Markov baseline’s state.

7.1 Performance
Figure 7 shows that our programmable prefetcher achieves
speedups of up to 4.3× with manual programming, com-
pared to no prefetching, for the memory-bound workloads

Benchmark Source Pattern Input
G500-CSR Graph500 [46] BFS (arrays) -s 21 -e 10
G500-List Graph500 [46] BFS (lists) -s 16 -e 10
PageRank BGL [53] Stride-indirect web-Google
HJ-2 Hash Join [11] Stride-hash-

indirect
-r 12800000 -s
12800000

HJ-8 Hash Join [11] Stride-hash-
indirect, linked
list walks

-r 12800000 -s
12800000

RandAcc HPCC [39] Stride-hash-
indirect

100000000

IntSort NAS [9] Stride-indirect B
ConjGrad NAS [9] Stride-indirect B

Table 2. Summary of the benchmarks evaluated.

described in section 7, whereas stride and software prefetch-
ers speed up by no more than 1.4× and 2.2× respectively.
The Markov global history bu�er [48] gains no speedup

with regular settings, since the applications we evaluate ac-
cess far too much data to be predicted with such a small
amount of state. When we increase the amount of state
(large) to 1GiB of data, we still only gain performance for
benchmarks which access a small amount of data (G500-
List,ConjGrad). Other applications either access too much
data, even for a very large history bu�er, or don’t repeat
memory accesses, so gain no bene�t from the technique.

Our compiler-assisted software prefetch conversion pass
(converted) achieves similar speedups to manually written
events for benchmarks except for on the Graph500 work-
loads, and our automatic event generation technique based
on pragmas (pragma generated) is able to speed up simpler
access patterns as much as manual, but isn’t able to achieve
full potential for four of our eight benchmarks.

Speedups Three benchmarks gain signi�cant improvement
from software prefetching. These are RandAcc, IntSort and
HJ-2, all highly amenable to software prefetching due to their
access pattern, which involves an array indirect based on
a single strided load. The spatial locality means that they
don’t incur large numbers of pipeline stalls for the prefetch
address calculation. However, in the extreme (IntSort), soft-
ware prefetching causes a 113% dynamic instruction increase
(with 83% extra for RandAcc and 56% for HJ-2).

In contrast, moving the prefetch address calculations to
PPUs in our scheme results in larger speedups: from 2.0×
with software prefetch up to 2.8×with PPUs for IntSort, from
2.2× to 3.0× for RandAcc and from 1.4× to 3.9× for HJ-2. In
other workloads, where stride and software prefetch provide
few bene�ts, our prefetcher is able to unlock more memory-
level parallelism and realise substantial speedups. For exam-
ple, in HJ-8 stride and software prefetching speedups are
negligible, yet our PPUs attain 3.8×.

The only signi�cant outlier is G500-List, which, although
achieving 1.7×, is the lowest speedup attained by our pre-
fetcher. The reason for this is that there is no �ne-grained

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

G500-C
SR

G500-List
HJ-2

HJ-8

PageRank

RandAcc

IntSort

ConjG
rad

No direct memory
address access so
software prefetch
not possible

S
p

e
e

d
u

p

Stride
GHB (regular)

GHB(large)
Software

Pragma
Converted

Manual

Figure 7. The programmable prefetcher realises speedups of up to 4.4×. Stride, GHB and software prefetchers cannot e�ectively
prefetch highly irregular memory accesses.

 0

 0.2

 0.4

 0.6

 0.8

 1

G500-C
SR

G500-List
HJ-2

HJ-8

PageRank

RandAcc

IntSort

ConjG
rad

L
1

 U
ti
lis

a
ti
o

n
 R

a
te

Data prefetched
too early, but next
opportunity would
make it too late

(a) Proportion of prefetches utilised before eviction from L1

 0

 0.2

 0.4

 0.6

 0.8

 1

G500-C
SR

G500-List
HJ-2

HJ-8

PageRank

RandAcc

IntSort

ConjG
radL

1
 C

a
c
h

e
 R

e
a

d
 H

it
 R

a
te

No PF Programmable PF

Most loads
miss in L1 but
L2 hit rate
increases from
0.20 to 0.58

(b) L1 read hit rate

Figure 8.While most applications see high prefetch utilisation and L1 hit rates, G500-List has to prefetch data too early to
attain memory-level parallelism, so bene�ts are obtained from having the data in the L2 cache.

parallelism available within the application, since each ver-
tex in the graph contains a linked list of out-going edges.
Therefore, when prefetching a vertex, each edge can only be
identi�ed through a pointer from the previous, essentially se-
quentialising the processing of edges. By comparison, Peled
et al. [50] achieve no improvement on the same benchmark.
There is no bar for software prefetching or conversion

for PageRank in �gure 7; the Boost Graph Library code uses
templated iterators which only give access to edge pairs,
meaning it isn’t possible to get the addresses of individual
elements to issue software prefetches to them.

Compiler assistance from both pragmas and software pre-
fetch conversion, works well for IntSort, ConjGrad and HJ-
2. While PageRank’s code doesn’t allow software prefetch
insertion due to working on high level iterators, this is not
a problem for the pragma pass, which works on LLVM IR,
and thus can discover the access pattern and generate events
automatically. IntSort, ConjGrad and PageRank have slightly
reduced performance from pragma generated prefetching,
as a result of useless prefetches being generated, as opposed
to the patterns not being discoverable.

RandAcc gains less performance from pragma conversion
than from manual software prefetching. This is because the
benchmark repeatedly iterates over a small 128-entry ar-
ray, and thus we can encode wrap-around prefetches in a
software prefetch. As this is a property of multiple control

�ow loops, it is di�cult to discover in an automated pass,
and thus our scheme leaves the �rst few entries of the array
unprefetched. Still, our pragma scheme requires less e�ort
from the programmer than a software prefetch, in that they
only need to identify target loops, rather than come up with
speci�c prefetches and look-ahead distances.
HJ-8 gains signi�cant performance improvement from

software prefetch conversion, because we can specify to
prefetch the �rst N hash buckets. This di�ers from software
prefetching, where we cannot do this in a latency tolerant
manner, as it requires reads of prefetched data, and also from
pragma generation, as N cannot easily be discovered from the
code.More generally, we can say that hash tables tend to have
few elements per hash bucket, so even for the case where
there are varying numbers of elements, a conservative "�rst
N" approach should workwell. Still, withmanual prefetching,
we can introduce control �ow loops, to walk every bucket
until we try to prefetch a null pointer.
G500-CSR gains progressively more performance with

increasing programmer e�ort expended in prefetching. As
neither of the compiler passes deal with control �ow (as
software prefetches fundamentally can’t express loops), it
isn’t possible to prefetch a data-dependent range of edges,
and thus wemust instead fetch the �rst N for �xed N. Further,
we can’t use the knowledge that the start and end value for
each vertex in an edge list will be in the same cacheline

in our compiler passes, as they assume access to only one
loaded value at a time. The pragma pass is unable to identify
the need to fetch edge or visited values from vertex data,
due to the complicated control �ow involved, so instead
only achieves two stride-indirect patterns from FIFO queue
to vertices, and edges to visited information, limiting the
prefetching achievable. Still, even this is signi�cantly higher
than other recent work [50], which achieves less than 10%
on the same benchmark.

As G500-List relies heavily on walking long edge lists in a
linked list, it requires loop control �ow to prefetch e�ectively.
Therefore, we cannot express it as a software prefetch, and
our compiler passes have limited impact.

Impact on L1 Cache Figure 8 explores this in more de-
tail. Figure 8(a) shows that while L1 cache utilisation is high
for most benchmarks when using our prefetcher, it is com-
paratively low for G500-List. In this application, for larger
vertices, the linked list of edges may be larger than the L1
cache. Traversing this list may result in prefetched data be-
ing evicted from the cache before being used due to capacity
misses from either a) later prefetches to the same edge list,
or b) prefetches or loads to other data. The underlying issue
is that the prefetches occur too early, however there is no
mechanism to delay them. Instead of starting the edge-list
prefetches after a vertex has been prefetched, the only other
point that the list prefetches can start is when the actual
application thread starts processing the vertex. By this point
it is too late because the main thread will need to follow the
edges, and so prefetches will execute in lock-step with the
main application’s loads (much like �gure 2(d)).

The L1 cache read hit rate does increase for G500-List, as
shown in �gure 8(b), but only up to 0.42 from 0.34. However,
despite this, the application does gain some bene�t from
the early edge-list prefetches by virtue of these edges being
placed in the L2 cache. In this case, the L2 cache hit rate
increases from 0.20 to 0.57.

7.2 Analysis
Our existing programmable prefetcher con�guration con-
tains 12 PPUs, each running at 1GHz, compared to 3.2GHz
for the main core. We now show that this realises most of the
bene�ts and that scaling continues with increasing numbers
of PPUs and their frequencies, since the prefetch kernels are
embarrassingly parallel.

Clock Speed Figure 9 shows how PPU clock speed a�ects
each benchmark and the impact of reducing the number of
PPUs. Figure 9(a) demonstrates that approximately half the
workloads gain little bene�t from increasing the frequency
of the PPUs. On the other hand, HJ-2 requires a 500MHz fre-
quency to realise its maximum speedup whereas ConjGrad
and G500-CSR achieve speedups that continue scaling with
the PPU frequency. Overall, the majority of the bene�ts are

obtained at 1GHz where the geometric mean of speedups is
3×, increasing to 3.1× at 2GHz.

Number of PPUs We explore the relationship between
PPU frequency and the number of PPUs in �gure 9(b) for
G500-CSR, chosen as an example of an application that con-
tinues scaling with frequency increases. We show PPU fre-
quencies up to 4GHz as a study only, to assess this relation-
ship; we do not expect PPUs to be clocked at this frequency.
The �gure shows that speedups are maintained by dou-

bling the number of PPUs and halving the frequency. Using
3 PPUs at 2GHz, 6 PPUs at 1GHz or 12 PPUs at 500MHz all
achieve 1.9×. The prefetch kernels running on the PPUs are
embarrassingly parallel, since each invocation is indepen-
dent of all others, meaning that scaling can be achieved by
increasing the number of PPUs or their frequencies. It also
shows that performance for this workload saturates with 12
PPUs at 2GHz: no more is gained by increasing frequency.

PPU Activity Figure 10 further explores the amount of
work performed by the 12 PPUs at 1GHz. This �gure shows
the proportions of time that each PPU is awake during com-
putation. Our scheduling policy is to pick the PPU with the
lowest ID from those available when assigning prefetch work.
This means that the low-ID PPUs are active more of the time
than the high-ID PPUs. Other scheduling policies (such as
round-robin) would spread the work out more evenly, but
would not change the overall performance and would not
allow us to perform this analysis.
When the workload is prefetch-compute bound, adding

more PPUs or increasing clock speed would improve per-
formance (as in G500-CSR); work is evenly split between
PPUs and all are kept busy. In contrast, benchmarks such
as PageRank, RandAcc and IntSort cannot fully utilise all
PPUs: all of these workloads contain at least one PPU that
is never awoken. This is mainly due to them requiring only
simple calculations to identify future prefetch targets. These
applications would achieve similar performance with slower
PPUs (as shown in �gure 9(a)) or fewer of them.
ConjGrad is an outlier in that some PPUs do little work,

yet it scales with increasing frequency (�gure 9(a)). The rea-
son for this behaviour is that at 1GHz there is not enough
work available for all PPUs to need to be active, but the
prefetches are slightly latency-bound. Therefore minor ad-
ditional bene�ts are gained when the clock speed increases
and the prefetch calculations �nish earlier. This is in contrast
to G500-CSR, which also scales with the clock speed, where
boosting frequency increases the number of prefetches that
can be carried out, resulting in higher performance.
No applications have PPUs that run continuously: the

maximum activity factor is 0.82. This re�ects the fact that
PPUs only react to events from the main core, and so are not
required during phases where no data needs to be prefetched.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

250MHz 500MHz 1GHz 2GHz

S
p

e
e

d
u

p

PPU Clock Speed

ConjGrad
HJ-8

HJ-2
PageRank

RandAcc
G500-CSR

IntSort
G500-List

(a) Clock frequency impact

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

125MHz 250MHz 500MHz 1GHz 2GHz 4GHz

S
p

e
e

d
u

p

PPU Clock Speed

3 PPUs 6 PPUs 12 PPUs

Doubling the number of PPUs
and halving the frequency
results in the same speedup

(b) E�ect of number of cores on G500-CSR

Figure 9. Some applications see little performance loss with slower PPUs, whereas others continue gaining as clock speeds
increase. Doubling the number of PPUs is the same as doubling their frequency.

 0

 0.2

 0.4

 0.6

 0.8

 1

G500-C
SR

G500-List
HJ-2

HJ-8

PageRank

RandAcc

IntSort

ConjG
rad

A
c
ti
v
it
y
 F

a
c
to

r

Little prefetch computation
and not bursty so the first
PPU takes the lion’s share

At least one PPU
unused

PPUs all perform a
similar amount of work

Figure 10. Range, quartiles and median for the fraction of
time each PPU is awake and calculating prefetches at 1GHz.

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5

G500-C
SR

G500-List
HJ-2

HJ-8

PageRank

RandAcc

IntSort

ConjG
rad

S
p

e
e

d
u

p

Blocked Events

Figure 11. Performance with and without blocking on in-
termediate loads, with 12 fetcher units.

Extra Memory Accesses For e�cient execution, it is de-
sirable to minimise the total extra tra�c we add onto the
memory bus. In general, a programmable solution should
prefetch very e�ciently, only targeting addresses that will be
required by the computation. For all but the two Graph500
benchmarks, the value is negligible: prefetches are very ac-
curate and timely, and therefore do not fetch unused data.
G500-List adds 40% extra accesses due to the lack of �ne-
grained parallelism available. This is down to a fundamental
constraint on the linked list that limits timely prefetching, as
discussed in section 7.1. G500-CSR, with 16% extra memory
accesses, has variable work per vertex, meaning prefetch
distance must be overestimated relative to the EWMAs.

Event Triggering To examine how much of the perfor-
mance we attain is through the latency-tolerant event-based
programming model, we extended the system to support
blocking on loads for data used in a further calculation: if a
prefetch is the last in a chain, then the core is made avail-
able for scheduling, but otherwise must stall, as is necessary
without event triggering. The results are shown in �gure 11.
Where the pattern is a simple stride-indirect, performance
is relatively close: we only have to stall on the stride access,
and can mitigate the overhead of stalling by prefetching an
entire cache line on a single thread, causing a stall for every
8 accesses. This means the memory-level parallelism is still
high. However, when this is not the case, performance drops
dramatically. In complicated access patterns, stalling limits or
even entirely removes the performance gain from prefetch-
ing, and latency-tolerant events are necessary for the system
to work, even with the large amount of parallelism available
from twelve cores.

8 Conclusion
We have presented a programmable prefetcher, which uses
an event-based programming model capable of extracting
memory-level parallelism and improving performance for a
variety of irregular memory-intensive workloads. On a selec-
tion of graph, database and HPC workloads, our prefetcher
achieves an average 3.0× speedup without signi�cantly in-
creasing the number of memory accesses. We have further
provided compiler techniques to reduce the amount of man-
ual e�ort for the programmer to utilise the performance
bene�ts of our scheme, with average 1.9× and 2.5× speedup
for the two schemes we present.

Acknowledgements
This work was supported by the Engineering and Physical
Sciences Research Council (EPSRC), through grant refer-
ences EP/K026399/1 and EP/M506485/1, and ARM Ltd. Addi-
tional data related to this publication is available in the data
repository at h�ps://doi.org/10.17863/CAM.17392.

https://doi.org/10.17863/CAM.17392

References
[1] S. Ainsworth and T. M. Jones. Graph prefetching using data structure

knowledge. In ICS, 2016.
[2] S. Ainsworth and T. M. Jones. Software prefetching for indirect mem-

ory accesses. In CGO, 2017.
[3] H. Al-Sukhni, I. Bratt, and D. A. Connors. Compiler-directed content-

aware prefetching for dynamic data structures. In PACT, 2003.
[4] AnandTech. h�p://www.anandtech.com/show/8718/the-samsung-

galaxy-note-4-exynos-review/6, .
[5] AnandTech. h�p://www.anandtech.com/show/8542/cortexm7-

launches-embedded-iot-and-wearables/2, .
[6] M. Annavaram, J. M. Patel, and E. S. Davidson. Data prefetching by

dependence graph precomputation. In ISCA, 2001.
[7] ARM. h�p://www.arm.com/products/processors/cortex-m/cortex-

m0plus.php.
[8] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubiatow-

icz, N. Morgan, D. Patterson, K. Sen, J. Wawrzynek, D. Wessel, and
K. Yelick. A view of the parallel computing landscape. Commun. ACM,
52(10), Oct. 2009.

[9] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.
Schreiber, H. D. Simon, V. Venkatakrishnan, and S. K. Weeratunga.
The NAS Parallel benchmarks – summary and preliminary results. In
Supercomputing, 1991.

[10] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood. The gem5 simulator.
SIGARCH Comput. Archit. News, 39(2), Aug. 2011.

[11] S. Blanas, Y. Li, and J. M. Patel. Design and evaluation of main memory
hash join algorithms for multi-core cpus. In SIGMOD, 2011.

[12] D. Callahan, K. Kennedy, and A. Porter�eld. Software prefetching. In
ASPLOS, 1991.

[13] T. Chen and J. Baer. E�ective hardware-based data prefetching for
high-performance processors. IEEE Transactions on Computers, 44(5),
May 1995.

[14] T.-F. Chen and J.-L. Baer. Reducing memory latency via non-blocking
and prefetching caches. In ASPLOS, 1992.

[15] S. Choi, N. Kohout, S. Pamnani, D. Kim, and D. Yeung. A general
framework for prefetch scheduling in linked data structures and its
application to multi-chain prefetching. ACM Trans. Comput. Syst., 22
(2), May 2004.

[16] G. Z. Chrysos and J. S. Emer. Memory dependence prediction using
store sets. In ISCA, 1998.

[17] R. Cooksey, S. Jourdan, and D. Grunwald. A stateless, content-directed
data prefetching mechanism. In ASPLOS, 2002.

[18] P. Demosthenous, N. Nicolaou, and J. Georgiou. A hardware-e�cient
lowpass �lter design for biomedical applications. In BioCAS, Nov 2010.

[19] B. Falsa� and T. F. Wenisch. A primer on hardware prefetching. Syn-
thesis Lectures on Computer Architecture, 9(1), 2014.

[20] I. Ganusov and M. Burtscher. E�cient emulation of hardware prefetch-
ers via event-driven helper threading. In PACT, 2006.

[21] A. Gutierrez, J. Pusdesris, R. G. Dreslinski, T. Mudge, C. Sudanthi, C. D.
Emmons, M. Hayenga, and N. Paver. Sources of error in full-system
simulation. In ISPASS, 2014.

[22] T. J. Ham, J. L. Aragón, and M. Martonosi. DeSC: Decoupled supply-
compute communication management for heterogeneous architec-
tures. In MICRO, 2015.

[23] M. Hashemi, O. Mutlu, and Y. N. Patt. Continuous runahead: Trans-
parent hardware acceleration for memory intensive workloads. In
MICRO, 2016.

[24] C.-H. Ho, S. J. Kim, and K. Sankaralingam. E�cient execution of
memory access phases using data�ow specialization. In ISCA, 2015.

[25] A. Jain and C. Lin. Linearizing irregular memory accesses for improved
correlated prefetching. In MICRO, 2013.

[26] D. Joseph and D. Grunwald. Prefetching using markov predictors. In
ISCA, 1997.

[27] D. Kim and D. Yeung. Design and evaluation of compiler algorithms
for pre-execution. In ASPLOS, 2002.

[28] D. Kim and D. Yeung. A study of source-level compiler algorithms for
automatic construction of pre-execution code. ACM Trans. Comput.
Syst., 22(3), Aug. 2004.

[29] J. Kim, S. H. Pugsley, P. V. Gratz, A. L. N. Reddy, C. Wilkerson, and
Z. Chishti. Path con�dence based lookahead prefetching. In MICRO,
2016.

[30] O. Kocberber, B. Falsa�, K. Lim, P. Ranganathan, and S. Harizopoulos.
Dark silicon accelerators for database indexing. In 1st Dark Silicon
Workshop (DaSi), 2012.

[31] O. Kocberber, B. Grot, J. Picorel, B. Falsa�, K. Lim, and P. Ran-
ganathan. Meet the walkers: Accelerating index traversals for in-
memory databases. In MICRO, 2013.

[32] O. Kocberber, B. Falsa�, and B. Grot. Asynchronous memory access
chaining. In VLDB, 2015.

[33] N. Kohout, S. Choi, D. Kim, and D. Yeung. Multi-chain prefetching:
E�ective exploitation of inter-chain memory parallelism for pointer-
chasing codes. In PACT, 2001.

[34] S. Kumar, A. Shriraman, V. Srinivasan, D. Lin, and J. Phillips. Sqrl:
Hardware accelerator for collecting software data structures. In PACT,
2014.

[35] S. Kumar, N. Vedula, A. Shriraman, and V. Srinivasan. Dasx: Hardware
accelerator for software data structures. In ICS, 2015.

[36] C. Lattner and V. Adve. Llvm: A compilation framework for lifelong
program analysis & transformation. In CGO, 2004.

[37] E. Lau, J. E. Miller, I. Choi, D. Yeung, S. Amarasinghe, and A. Agarwal.
Multicore performance optimization using partner cores. In HotPar,
2011.

[38] A. Lumsdaine, D. Gregor, B. Hendrickson, and J. Berry. Challenges in
parallel graph processing. Parallel Processing Letters, 17(01), 2007.

[39] P. R. Luszczek, D. H. Bailey, J. J. Dongarra, J. Kepner, R. F. Lucas,
R. Rabenseifner, and D. Takahashi. The hpc challenge (hpcc) bench-
mark suite. In SC, 2006.

[40] V. Malhotra and C. Kozyrakis. Library-based prefetching for pointer-
intensive applications. Technical report, Online, 2006.

[41] F. McSherry, M. Isard, and D. G. Murray. Scalability! but at what cost?
In HotOS, 2015.

[42] D. Merrill, M. Garland, and A. Grimshaw. Scalable gpu graph traversal.
In PPoPP, 2012.

[43] S. Mittal. A survey of recent prefetching techniques for processor
caches. ACM Comput. Surv., 49(2), Aug. 2016.

[44] A. Moshovos, D. N. Pnevmatikatos, and A. Baniasadi. Slice-processors:
An implementation of operation-based prediction. In ICS, 2001.

[45] T. C. Mowry, M. S. Lam, and A. Gupta. Design and evaluation of a
compiler algorithm for prefetching. In ASPLOS, 1992.

[46] R. C. Murphy, K. B. Wheeler, B. W. Barrett, and J. A. Ang. Introducing
the graph 500. Cray User’s Group (CUG), May 5, 2010.

[47] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt. Runahead execution:
An alternative to very large instruction windows for out-of-order
processors. In HPCA, 2003.

[48] K. J. Nesbit and J. E. Smith. Data cache prefetching using a global
history bu�er. In HPCA, 2004.

[49] K. Nilakant, V. Dalibard, A. Roy, and E. Yoneki. Prefedge: Ssd prefetcher
for large-scale graph traversal. In SYSTOR, 2014.

[50] L. Peled, S. Mannor, U. Weiser, and Y. Etsion. Semantic locality and
context-based prefetching using reinforcement learning. In ISCA, 2015.

[51] A. Roth, A. Moshovos, and G. S. Sohi. Dependence based prefetching
for linked data structures. In ASPLOS, 1998.

[52] M. Shevgoor, S. Koladiya, R. Balasubramonian, C. Wilkerson, S. H.
Pugsley, and Z. Chishti. E�ciently prefetching complex address pat-
terns. In MICRO, 2015.

http://www.anandtech.com/show/8718/the-samsung-galaxy-note-4-exynos-review/6
http://www.anandtech.com/show/8718/the-samsung-galaxy-note-4-exynos-review/6
http://www.anandtech.com/show/8542/cortexm7-launches-embedded-iot-and-wearables/2
http://www.anandtech.com/show/8542/cortexm7-launches-embedded-iot-and-wearables/2
http://www.arm.com/products/processors/cortex-m/cortex-m0plus.php
http://www.arm.com/products/processors/cortex-m/cortex-m0plus.php

[53] J. Siek, L.-Q. Lee, and A. Lumsdaine. The Boost Graph Library: User
Guide and Reference Manual. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2002. ISBN 0-201-72914-8.

[54] V. Viswanathan. Disclosure of h/w prefetcher control on some intel
processors. h�ps://so�ware.intel.com/en-us/articles/disclosure-of-hw-
prefetcher-control-on-some-intel-processors, Sept. 2014.

[55] T. F. Wenisch, S. Somogyi, N. Hardavellas, J. Kim, A. Ailamaki, and
B. Falsa�. Temporal streaming of shared memory. In ISCA ’05, 2005.

[56] M. Yabuuchi, Y. Tsukamoto, M. Morimoto, M. Tanaka, and K. Nii. 20nm
high-density single-port and dual-port srams with wordline-voltage-
adjustment system for read/write assists. In ISSCC, 2014.

[57] C.-L. Yang and A. Lebeck. A programmable memory hierarchy for
prefetching linked data structures. In H. Zima, K. Joe, M. Sato, Y. Seo,
and M. Shimasaki, editors, High Performance Computing, volume 2327
of Lecture Notes in Computer Science. 2002. ISBN 978-3-540-43674-4.

[58] X. Yu, C. J. Hughes, N. Satish, and S. Devadas. IMP: Indirect memory
prefetcher. In MICRO, 2015.

https://software.intel.com/en-us/articles/disclosure-of-hw-prefetcher-control-on-some-intel-processors
https://software.intel.com/en-us/articles/disclosure-of-hw-prefetcher-control-on-some-intel-processors

	Abstract
	1 Introduction
	2 Existing Work
	3 Motivation
	4 Programmable Prefetcher
	4.1 Overview
	4.2 Address Filter
	4.3 Observation Queue and Scheduler
	4.4 Programmable Prefetch Units (PPUs)
	4.5 Moving Average (EWMA) Calculators
	4.6 Prefetch Request Queue
	4.7 Memory Request Tags
	4.8 Hardware Requirements
	4.9 Summary

	5 OS and Application Support
	5.1 Event Programming Model
	5.2 Example
	5.3 Operating System Visibility

	6 Compiler Assistance
	6.1 Analysis
	6.2 Array Bounds Detection
	6.3 Code Generation
	6.4 Pragma Prefetching

	7 Evaluation
	7.1 Performance
	7.2 Analysis

	8 Conclusion
	References

