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Note on this transitional year

For many years this has been a 1B course of 12 lectures held in
Lent.
In this academic year it has been transformed into a new
Michaelmas course for 1A students (75-percent option) or (in the
future) for 1B students (50-percent option).
The new course is comprised of eight lectures and three practicals
(“ticks”).
Only in this transitional year is the course presented in both terms.
Practicals and ticks do not fit well into the current 1B pipeline!
Lent’s 1B presentation will include repeats of the eight lectures
from Michaelmas as well as 3 additional lectures covering the
practical materials.
One lecture (8 March, day of group project presentations) is
canceled.
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Outline

date topics
1 17/2 What is a Database Management System (DBMS)?
2 20/2 Entity-Relationship (ER) diagrams
3 22/2 Relational Databases ...
4 24/2 ... and SQL
5 27/2 HyperSQL Practical Lecture
6 1/3 Some limitations of SQL ...
7 3/3 ... that can be solved with Graph Database
8 6/3 Neo4j Practical Lecture
9 8/3 No Lecture!
10 17/2 Document-oriented Database
11 17/2 DoctorWho Practical Lecture
12 17/2 Cloud computing and distributed databases
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Lecture 1

What is a Database Management System (DBMS)?
CRUD and ACID
Three data models covered

I Relational
I Graph-oriented
I Document-oriented

Trade-offs in application design
Trade-offs in DBMS design
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Abstractions, interfaces, and implementations

An interface liberates application
writers from low level details.
An interface represents an
abstraction of resources/services
used by applications.
In a perfect world, implementations
can change without requiring
changes to applications.
Performance concerns often present
a serious challenge to this idealised
picture!
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This is found everywhere, not just in computing ...
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Evolution worked it out long long ago!
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What is a Database Management System (DBMS)?

This course will stress data models
and query languages. We will not
cover programming APIs or network
APIs.
A query engine knows about
low-level details hidden by the
interface(s). It uses this knowledge
to optimize query evaluation.
Primary service: persistent storage.
Other services typically
implemented:

I CRUD operations,
I ACID transactions.
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CRUD operations

Create: Insert new data items into the database.
Read: Query the database.

Update: Modify objects in the database.
Delete: Remove data from the database.
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ACID transactions

Atomicity: Either all actions of a transaction are carried out, or none
are (even if the system crashes in the middle of a
transaction).

Consistency: Every transaction applied to a consistent database leave
it in a consistent state.

Isolation: Transactions are isolated, or protected, from the effects of
other concurrently executed transactions.

Durability: If a transactions completes successfully, then its effects
persist.

Implementing ACID transactions is one topic covered in Concurrent
and Distributed Systems (1B).
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This course looks at 3 data models

3 models
Relational Model: Data is stored in tables. SQL is the main query

language.
Graph-oriented Model: Data is stored as a graph (nodes and edges).

Query languages tend to have “path-oriented”
capabilities.

Aggregate-oriented Model: Also called document-oriented database.
Optimised for read-oriented databases.

The relational model has been the industry mainstay for the last 35
years. The other two models are representatives of an ongoing
revolution in database systems often described under the (misleading)
“NoSQL” banner.
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This course uses 3 database systems

HyperSQL A Java-based relational DBMS. Query
language is SQL.

Neo4j A Java-based graph-oriented DBMS. Query
language is Cypher (named after a character
in The Matrix).

DoctorWho A bespoke document-oriented DBMS. Stores
JSON objects. Query language is Java.
(Under the hood and hidden from you:
DoctorWho is implemented with Berkeley DB,
a Key-value store.)
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IMDb : Our data source

We have processed raw data available from IMDb (plain text data
files at http://www.imdb.com/interfaces)
Small instance: 100 movies and 7771 people (actors, directors,
etc)
Large instance: 887,747 movies and 3,424,147 people
For each of our three database systems we have generated a
small and large database instance.
Practical work should be done on the small instances. Large
instances are for your entertainment and enlightenment.
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Neo4j: Example of path-oriented query in Cypher (on
small database)

match path=allshortestpaths(
(m:Person {name : ’Lawrence, Jennifer (III)’} )

[:ACTS_IN*]-
(n:Person {name : ’Damon, Matt’}))

return path
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Big thanks to Martin Kleppmann

Martin is software engineer, entrepreneur,
author and speaker.
He co-founded Rapportive (acquired by
LinkedIn in 2012) and Go Test It (acquired
by Red Gate Software in 2009)
Martin provided invaluable assistance with
the preparation of this course and with the
design and implementation of the
infrastructure for the practicals
https://martin.kleppmann.com
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Why are there so many DBMS options?

We will see that there is no one system that nicely solves all data
problems.
There are several fundamental trade-offs faced by application
designers and system designers.
A database engine might be optimised for a particular class of
queries.

One important trade-off involves redundant data.

Redundant data
Informally, data in a database is redundant if it can be deleted and
then reconstructed from the data remaining in the database.
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A common trade-off: Query response vs. update throughput

Data redundancy is problematic for some applications
If a database supports many concurrent updates, then data
redundancy leads to many problems, discussed in Lecture 4. If a
database has little redundancy, then update throughput is typically
better since transactions need only lock a few data items. This has
been the traditional approach in the relational database world.

Data redundancy is highly desirable for some applications
In a low redundancy database, evaluation of complex queries can be
very slow and require large amounts of computing power.
Precomputing answers to common queries (either fully or partially) can
greatly speed up query response time. This introduces redundancy,
but it may be appropriate for databases supporting applications that
are read-intensive, with few or no data modifications. This is an
approach common in aggregate-oriented databases.

tgg22 (cl.cam.ac.uk) 1B Databases 1B DB 2017 17 / 146



Trade-offs often change as technology changes

Expect more dramatic changes in the coming decades ...

1956: A 5 megabyte hard drive A modern server
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Lecture 2

Conceptual modeling with Entity-Relationship (ER) diagrams
Entities, attributes, and relationships
Weak entities
Cardinality of a relationship
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Conceptual modeling with Entity-Relationship (ER)
diagrams

Peter Chen

It is very useful to have a
implementation independent
technique to describe the data that
we store in a database.
There are many formalisms for this,
and we will use a popular one —
Entity-Relationship (ER), due to
Peter Chen (1976).
The ER technique grew up around
relational databases systems but it
can help document and clarify
design issues for any data model.

tgg22 (cl.cam.ac.uk) 1B Databases 1B DB 2017 20 / 146



Entities capture things of interest

Movie

title
year

id Person

gender
name

id

Entities (squares) represent the nouns of our model
Attributes (ovals) represent properties
A key is an attribute whose value uniquely identifies an entity
instance (here underlined)
The scope of the model is limited — among the vast number of
possible attributes that could be associated with a person, we are
implicitly declaring that our model is concerned with only three.
Very abstract, independent of implementation
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Entity Sets (instances)
Instances of the Movie entity

title: Gravity, year : 2013, id : 2945287
title : The Bourne Ultimatum, year : 2007, id : 3527294

Instances of the Person entity
name: Jennifer Lawrence, gender: female, id : 3018535
name: Matt Damon, gender: male, id : 473946

Where do keys come from?
They are often automatically generated to be unique. Or they might be
formed from some algorithm, like your CRSID. Q: Might some domains
have natural keys (National Insurance ID)? A: Beware of using keys
that are out of your control. The only safe thing to use as a key is
something that is automatically generated in the database and only
has meaning within that database.
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Relationships

Movie

title
year

id Directs Person

gender
name

id

Relationships (diamonds) represent the verbs of our domain.
Relationships are between entities.
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Relationship instances

Instances of the Directs relationship (ignoring entity attributes)
Kathryn Bigelow directs The Hurt Locker
Paul Greengrass directs The Bourne Ultimatum
Steve McQueen directs 12 Years a Slave
Karen Harley directs Waste Land
Lucy Walker directs Waste Land
João Jardim directs Waste Land
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Relationships can have attributes

Movie

title
year

id ActsIn

character position

Person

gender
name

id

Attribute character indicates the role played by a person
Attribute position indicates the order listed in movie credits
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Relationship instances

Instances of the ActsIn relationship (ignoring entity attributes)
Ben Affleck plays Tony Mendez in Argo, billing position 1
Julie Deply plays Celine in Before Midnight, billing position 2
Bradley Cooper plays Pat in Silver Linings Playbook, billing
position 1
Jennifer Lawrence plays Tiffany in Silver Linings Playbook, billing
position 2
Tim Allan plays Buzz Lightyear in Toy Story 3, billing position 2
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Could ActsIn be modeled as a Ternary Relationship?

Movie

Title
Year

id ActsIn Person

FirstName
LastName

PersonID

Role

Description

This might be a good model if our movies where in a restricted domain
where roles have an independent existence. For example, suppose we
are building a database of Shakespearean movies.
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Can a ternary relationship be modeled with multiple
binary relationships?

MovieHasCastingCastingActsInPerson

RequiresRole

Role

Is the Casting entity too artificial?
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Attribute or entity with new relationship?

Movie

title
id

year Released MovieRelease

country
date

year

month

day

Should release date be an attribute or an entity?
The answer may depend on the scope of your data model.
If all movies within your scope have at most one release date,
then an attribute will work well.
However, if you scope is global, then a movie can have different
release dates in different countries.
Is there something strange about the MovieRelease?
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Weak entities

Movie

Title
id

Year Released MovieRelease

Country
Date

Year

Month

Day

MovieRelease is an example of a weak entity
The existence of a weak entity depends on the existence of
another entity. In this case, a release date exists only for a given
movie.
Released is called an identifying relationship
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Cardinality of a relationship

S R T

The relation R is
one-to-many: Every member of T is related to at most one member of

S.
many-to-one: Every member of S is related to at most one member of

T .
one-to-one: R is both many-to-one and one-to-many.
many-to-many: No constraint.
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Diagrams can be annotated with cardinalities in many
strange and wonderful ways ...

Various diagrammatic notations used to indicate a one-to-many
relationship
https://en.wikipedia.org/wiki/Entity-relationship_model).
Note: We will not bother with these notations, but the concept of
a relationship’s cardinality is an important one.
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Lectures 3 and 4

The relational Model
The Relational Algebra (RA)
SQL
Implementing an ER model in the relational model
Update anomalies
Avoiding redundancy
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Still the dominant approach : Relational DBMSs

In the 1970s you could not write a
database application without knowing a
great deal about the data’s low-level
representation.
Codd’s radical idea : give users a model of
data and a language for manipulating that
data which is completely independent of
the details of its
representation/implementation. That
model is based on mathematical
relations.
This decouples development of the DBMS
from the development of database
applications.
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Let’s start with mathematical relations

Suppose that S and T are sets. The Cartesian product, S × T , is the
set

S × T = {(s, t) | s ∈ S, t ∈ T}

A (binary) relation over S × T is any set R with

R ⊆ S × T .

Database parlance
S and T are referred to as domains.
We are interested in finite relations R that can be stored!
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n-ary relations
If we have n sets (domains),

S1, S2, . . . ,Sn,

then an n-ary relation R is a set

R ⊆ S1 × S2 × · · · × Sn = {(s1, s2, . . . , sn) | si ∈ Si}

Tabular presentation

1 2 · · · n
x y · · · w
u v · · · s
...

...
...

n m · · · k

All data in a relational database is stored in tables. However, referring
to columns by number can quickly become tedious!
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Mathematical vs. database relations

Use named columns
Associate a name, Ai (called an attribute name) with each domain
Si .
Instead of tuples, use records — sets of pairs each associating an
attribute name Ai with a value in domain Si .

Column order does not matter
A database relation R is a finite set

R ⊆ {{(A1, s1), (A2, s2), . . . , (An, sn)} | si ∈ Si}

We specify R’s schema as R(A1 : S1, A2 : S2, · · · An : Sn).
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Example
A relational schema
Students(name: string, sid: string, age : integer)

A relational instance of this schema
Students = {

{(name, Fatima), (sid, fm21), (age, 20)},
{(name, Eva), (sid, ev77), (age, 18)},
{(name, James), (sid, jj25), (age, 19)}
}

Two equivalent tabular presentations

name sid age
Fatima fm21 20
Eva ev77 18
James jj25 19

sid name age
fm21 Fatima 20
ev77 Eva 18
jj25 James 19
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What is a (relational) database query language?

Input : a collection of Output : a single
relation instances relation instance

R1, R2, · · · , Rk =⇒ Q(R1, R2, · · · , Rk )

How can we express Q?
In order to meet Codd’s goals we want a query language that is
high-level and independent of physical data representation.

There are many possibilities ...
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The Relational Algebra (RA)

Q ::= R base relation
| σp(Q) selection
| πX(Q) projection
| Q ×Q product
| Q −Q difference
| Q ∪Q union
| Q ∩Q intersection
| ρM(Q) renaming

p is a simple boolean predicate over attributes values.
X = {A1, A2, . . . , Ak} is a set of attributes.
M = {A1 7→ B1, A2 7→ B2, . . . , Ak 7→ Bk} is a renaming map.
A query Q must be well-formed: all column names of result are
distinct. So in Q1 ×Q2, the two sub-queries cannot share any
column names while in in Q1 ∪Q2, the two sub-queries must
share all column names.
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SQL : a vast and evolving language
Origins at IBM in early 1970’s.
SQL has grown and grown through many rounds of
standardization :

I ANSI: SQL-86
I ANSI and ISO : SQL-89, SQL-92, SQL:1999, SQL:2003,

SQL:2006, SQL:2008, SQL:2008
SQL is made up of many sub-languages, including

I Query Language
I Data Definition Language
I System Administration Language

SQL will inevitably absorb many “NoSQL” features ...

Why talk about the Relational Algebra?
Due to the RA’s simple syntax and semantics, it can often help us
better understand complex queries
Tradition
The RA lends itself to endlessly amusing tripos questions ...
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Selection

R

A B C D
20 10 0 55
11 10 0 7
4 99 17 2

77 25 4 0

=⇒

Q(R)

A B C D
20 10 0 55
77 25 4 0

Q
RA σA>12(R)

SQL SELECT DISTINCT * FROM R WHERE R.A > 12

tgg22 (cl.cam.ac.uk) 1B Databases 1B DB 2017 42 / 146



Projection

R

A B C D
20 10 0 55
11 10 0 7
4 99 17 2
77 25 4 0

=⇒

Q(R)

B C
10 0
99 17
25 4

Q
RA πB,C(R)

SQL SELECT DISTINCT B, C FROM R

tgg22 (cl.cam.ac.uk) 1B Databases 1B DB 2017 43 / 146



Renaming

R

A B C D
20 10 0 55
11 10 0 7
4 99 17 2

77 25 4 0

=⇒

Q(R)

A E C F
20 10 0 55
11 10 0 7
4 99 17 2
77 25 4 0

Q
RA ρ{B 7→E , D 7→F}(R)

SQL SELECT A, B AS E, C, D AS F FROM R
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Union

R

A B
20 10
11 10
4 99

S

A B
20 10
77 1000

=⇒

Q(R, S)

A B
20 10
11 10
4 99
77 1000

Q
RA R ∪ S

SQL (SELECT * FROM R) UNION (SELECT * FROM S)
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Intersection

R

A B
20 10
11 10
4 99

S

A B
20 10
77 1000

=⇒

Q(R)

A B
20 10

Q
RA R ∩ S

SQL (SELECT * FROM R) INTERSECT (SELECT * FROM S)
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Difference

R

A B
20 10
11 10
4 99

S

A B
20 10
77 1000

=⇒

Q(R)

A B
11 10
4 99

Q
RA R − S

SQL (SELECT * FROM R) EXCEPT (SELECT * FROM S)
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Product

R
A B
20 10
11 10
4 99

S
C D
14 99
77 100 =⇒

Q(R, S)
A B C D
20 10 14 99
20 10 77 100
11 10 14 99
11 10 77 100
4 99 14 99
4 99 77 100

Q
RA R × S

SQL SELECT A, B, C, D FROM R CROSS JOIN S

SQL SELECT A, B, C, D FROM R, S

Note that the RA product is not exactly the Cartesian product
suggested by this notation!
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Natural Join
First, a bit of notation

We will often ignore domain types and write a relational schema
as R(A), where A = {A1, A2, · · · , An} is a set of attribute names.
When we write R(A, B) we mean R(A ∪ B) and implicitly assume
that A ∩ B = φ.
u.[A] = v .[A] abbreviates u.A1 = v .A1 ∧ · · · ∧ u.An = v .An.

Natural Join
Given R(A, B) and S(B, C), we define the natural join, denoted
R on S, as a relation over attributes A,B,C defined as

R on S ≡ {t | ∃u ∈ R, v ∈ S, u.[B] = v .[B] ∧ t = u.[A] ∪ u.[B] ∪ v .[C]}

In the Relational Algebra:

R on S = πA,B,C(σB=B′(R × ρ~B 7→ ~B′(S)))
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Join example

Students
name sid cid
Fatima fm21 cl
Eva ev77 k
James jj25 cl

Colleges
cid cname
k King’s
cl Clare
q Queens’

=⇒

Students on Colleges
name sid cid cname
Fatima fm21 cl Clare
Eva ev77 k King’s
James jj25 cl Clare

(We will look at joins in SQL very soon ...)
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How can we implement an ER model relationally?

Movie

title
year

id Directs Person

gender
name

id

The ER model does not dictate implementation
There are many options
We will discuss some of the trade-offs involved
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How about one table?

DirectsComplete
mid title year pid name gender
2544956 12 Years a Slave (2013) 2013 1390487 McQueen, Steve (III) male
2552840 4 luni, 3 saptamâni si 2 zile (2007) 2007 1486556 Mungiu, Cristian male
2589088 Afghan Star (2009) 2009 3097222 Marking, Havana female
2607939 American Hustle (2013) 2013 1835629 Russell, David O. male
2611256 An Education (2009) 2009 3404232 Scherfig, Lone female
2622261 Anvil: The Story of Anvil (2008) 2008 751015 Gervasi, Sacha male
2626541 Argo (2012) 2012 16507 Affleck, Ben male
2629853 Aruitemo aruitemo (2008) 2008 1133907 Koreeda, Hirokazu male
. . . . . . . . . . . . . . . . . .

This works, but ....
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Anomalies caused by data redundancy
Insertion anomalies: How can we tell if a newly inserted record is

consistent all other records records? We may want to
insert a person without knowing if they are a director. We
might want to insert a movie without knowing its
director(s).

Deletion anomalies: We will wipe out information about people when
last record is deleted from this table.

Update anomalies: What if an director’s name is mis-spelled? We may
update it correctly for one movie but not for another.

A transaction implementing a conceptually simple update but
containing checks to guarantee correctness may end up locking
the entire table.
Lesson: In a database supporting many concurrent updates we
see that data redundancy can lead to complex transactions and
low write throughput.
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A better idea : break tables down in order to reduce
redundancy

Movies
id title year
2544956 12 Years a Slave (2013) 2013
2552840 4 luni, 3 saptamâni si 2 zile (2007) 2007
2589088 Afghan Star (2009) 2009
2607939 American Hustle (2013) 2013
2611256 An Education (2009) 2009
2622261 Anvil: The Story of Anvil (2008) 2008
2626541 Argo (2012) 2012
2629853 Aruitemo aruitemo (2008) 2008
. . . . . . . . .

People
id name gender
1390487 McQueen, Steve (III) male
1486556 Mungiu, Cristian male
3097222 Marking, Havana female
1835629 Russell, David O. male
3404232 Scherfig, Lone female
751015 Gervasi, Sacha male
16507 Affleck, Ben male
1133907 Koreeda, Hirokazu male
. . . . . . . . .
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What about the relationship?

Directs
movie_id person_id
2544956 1390487
2552840 1486556
2589088 3097222
2607939 1835629
2611256 3404232
2622261 751015
2626541 16507
2629853 1133907
. . . . . .

(No, this relation does not actually exist in our IMDb databases —
more on that later ...)
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We can recover DirectsComplete using a relational
query
The SQL query

select movies.id as mid, title, year,
people.id as pid, name, gender

from movies
join directs on movie_id = movies.id
join people on people.id = person_id

might return something like

MID TITLE YEAR PID NAME GENDER
------- ------------------------------------ ---- ------- --------------------------- ------
2544956 12 Years a Slave (2013) 2013 1390487 McQueen, Steve (III) male
2552840 4 luni, 3 saptamâni si 2 zile (2007) 2007 1486556 Mungiu, Cristian male
2589088 Afghan Star (2009) 2009 3097222 Marking, Havana female
2607939 American Hustle (2013) 2013 1835629 Russell, David O. male
2611256 An Education (2009) 2009 3404232 Scherfig, Lone female
2622261 Anvil: The Story of Anvil (2008) 2008 751015 Gervasi, Sacha male
2626541 Argo (2012) 2012 16507 Affleck, Ben male
2629853 Aruitemo aruitemo (2008) 2008 1133907 Koreeda, Hirokazu male

... ... ... ... ... ...
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In a similar way with the ActsIn relationship

Movie

title
year

id ActsIn

character position

Person

gender
name

id

The ActsIn Relationship requires attributes
movie_id person_id character position
2544956 146271 Judge Turner 4
2544956 2460265 Mistress Ford 32
2544956 173652 Mr. Moon 9
2544956 477824 Tibeats 35
2544956 256114 Edward 42
2544956 2826281 Tea Seller NULL
. . . . . . . . . . . .

More on NULL soon ...
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We can recover all information for the ActsIn relation

The SQL query

select movies.id as mid, title, year,
people.id as pid, name, character, position

from movies
join actsin on movie_id = movies.id
join people on people.id = person_id

might return something like

MID TITLE YEAR PID NAME CHARACTER POSITION
------- ----------------------- ---- ------- ------------------ ------------ ---------
2544956 12 Years a Slave (2013) 2013 146271 Batt, Bryan Judge Turner 4
2544956 12 Years a Slave (2013) 2013 2460265 Bennett, Liza J. Mistress Ford 32
2544956 12 Years a Slave (2013) 2013 173652 Bentley, Tony (I) Mr. Moon 9
2544956 12 Years a Slave (2013) 2013 477824 Dano, Paul Tibeats 35
2544956 12 Years a Slave (2013) 2013 256114 Bright, Gregory Edward 42
2544956 12 Years a Slave (2013) 2013 2826281 Haley, Emily D. Tea Seller NULL
... ... ... ... ... ... ...

tgg22 (cl.cam.ac.uk) 1B Databases 1B DB 2017 58 / 146



Observations

Both ER entities and ER relationships are implemented as tables.
We call them tables rather than relations to avoid confusion!
Good: We avoid many update anomalies by breaking tables into
smaller tables.
Bad: We have to work hard to combine information in tables
(joins) to produce interesting results.

What about consistency/integrity of our relational
implementation?
How can we ensure that the table representing an ER relation really
implements a relationship? Answer : we use keys and foreign keys.
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Key Concepts

Relational Key
Suppose R(X) is a relational schema with Z ⊆ X. If for any records u
and v in any instance of R we have

u.[Z] = v .[Z] =⇒ u.[X] = v .[X],

then Z is a superkey for R. If no proper subset of Z is a superkey, then
Z is a key for R. We write R(Z, Y) to indicate that Z is a key for
R(Z ∪ Y).

Note that this is a semantic assertion, and that a relation can have
multiple keys.

tgg22 (cl.cam.ac.uk) 1B Databases 1B DB 2017 60 / 146



Foreign Keys and Referential Integrity

Foreign Key
Suppose we have R(Z, Y). Furthermore, let S(W) be a relational
schema with Z ⊆W. We say that Z represents a Foreign Key in S for R
if for any instance we have πZ(S) ⊆ πZ(R). Think of these as (logical)
pointers!

Referential integrity
A database is said to have referential integrity when all foreign key
constraints are satisfied.
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A relational representation

A relational schema

ActsIn(movie_id ,person_id)

With referential integrity constraints

πmovie_id(ActsIn) ⊆ πid(Movies)

πperson_id(ActsIn) ⊆ πid(People)
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Foreign Keys in SQL

create table ActsIn (
movie_id int not NULL,
person_id int not NULL,
character varchar(255),
position integer,

primary key (movie_id, person_id),
constraint actsin_movie

foreign key (movie_id)
references Movies(id),

constraint actsin_person
foreign key (person_id)
references People(id))
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Relationships to Tables (the “clean” approach)

T X

Y

R

U

SZ

W

Relation R is Schema

many to many (M : N) R(X , Z , U)

one to many (1 : M) R(X , Z , U)

many to one (M : 1) R(X , Z , U)

one to one (1 : 1) R(X , Z , U) and/or R(X , Z , U)
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Implementation can differ from the “clean” approach

T X

Y

R

U

SZ

W

Suppose R is one to many
Rather than implementing a new table R(X , Z , U) we could expand
table T (X , Y ) to T (X , Y , Z , U) and allow the Z and U columns to be
NULL for those rows in T not participating in the relationship.

Pros and cons?
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Implementing weak entities

T X

Y

R

U

SZ

W

This is always a one to many relationship!
Notice that all rows of T must participate in the relationship.
The expanded T (X , Y , Z , U) is even more compelling.
We might drop the keys X from T resulting in T (Y , Z , U).
This is exactly what we have done in our movies database with
these tables: release_dates, certificates, color_info, genres,
keywords, languages, locations, running_times.
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Implementing multiple relationships into a single table?

Suppose we have two many-to-many relationships:

T X

Y

SZ

W R

U

Q

V
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Implementing multiple relationships into a single table?
Rather than using two tables

R(X , Z , U)

Q(X , Z , V )

we might squash them into a single table

RQ(X , Z , type, U, V )

using a tag domain(type) = {r,q} (for some constant values r and q).

represent an R-record (x , z,u) as an RQ-record (x , z, r,u,NULL)
represent an Q-record (x , z, v) as an RQ-record (x , z,q,NULL, v)

Redundancy alert!
If we now the value of the type column, we can compute the value of
either the U column or the V column!
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We have stuffed 9 relationships into the credits
table!

SELECT type, count(*) AS total
FROM credits
GROUP BY type
ORDER BY total DESC;

This query produces the output (on the small database):
TYPE TOTAL
------------------- -----
actor 6913
producer 905
writer 212
editor 134
director 113
cinematographer 108
composer 101
production_designer 83
costume_designer 72

Was this a good idea?
Discuss!
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CONTEST!!!

Explore the (small or large) relational database using SQL and
discover surprising/amusing/strange/wonderful things in the data!

Send findings (queries and results) to tgg22@cam.ac.uk.

PRIZES!!!
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Lecture 5 : HyperSQL Practical Lecture

Before lecture, please attempt Getting
started with HyperSQL and HyperSQL ex-
ercises found on the course web page.

tgg22 (cl.cam.ac.uk) 1B Databases 1B DB 2017 71 / 146



Lectures 6 and 7

What is a database index?
Two complications for SQL semantics

I Multi-sets (bags)
I NULL values

Kevin Bacon!
Transitive closure of a relation
Problems computing a transitive closure in
relational databases
Graph-oriented databases: optimised for
computing transitive closure
Neo4j
Bacon number with Neo4j
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Complexity of a JOIN?

Given tables R(A, B) and S(B, C), how much work is required to
compute the join R on S?

// Brute force appaoch:
// scan R
for each (a, b) in R {

// scan S
for each (b’, c) in S {

if b = b’ then create (a, b, c) ...
}

}

Worst case: requires on the order of | R | × | S | steps. But note that
on each iteration over R, there may be only a very small number of
matching records in S — only one if R has a foreign key into S.
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What is a database index?

An index is a data structure — created and maintained within a
database system — that can greatly reduce the time needed to locate
records.

// scan R
for each (a, b) in R {

// don’t scan S, use an index
for each s in S-INDEX-ON-B(b) {

create (a, b, s.c) ...
}

}

In 1A Algorithms you will see a few of the data structures used to
implement database indices (search trees, hash tables, and so on).
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Remarks
Typical SQL commands for creating and deleting an index:

CREATE INDEX index_name on S(B)

DROP INDEX index_name

There are many types of database indices and the commands for
creating them can be complex.
Index creation is not defined in the SQL standards.
While an index can speed up reads, it will slow down
updates. This is one more illustration of a fundamental
database tradeoff.
The tuning of database performance using indices is a fine art.
In some cases it is better to store read-oriented data in a separate
database optimised for that purpose.
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Why the distinct in the SQL?

The SQL query

select B, C from R

will produce a bag (multiset)!

R

A B C D
20 10 0 55
11 10 0 7
4 99 17 2

77 25 4 0

=⇒

Q(R)

B C
10 0 ? ? ?
10 0 ? ? ?
99 17
25 4

SQL is actually based on multisets, not sets.
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Why Multisets?
Duplicates are important for aggregate functions (min, max, ave, count,
and so on). These are typically used with the GROUP BY construct.

sid course mark
ev77 databases 92
ev77 spelling 99
tgg22 spelling 3
tgg22 databases 100
fm21 databases 92
fm21 spelling 100
jj25 databases 88
jj25 spelling 92

group by
=⇒

course mark
spelling 99
spelling 3
spelling 100
spelling 92

course mark
databases 92
databases 100
databases 92
databases 88

tgg22 (cl.cam.ac.uk) 1B Databases 1B DB 2017 77 / 146



Visualizing the aggregate function min

course mark
spelling 99
spelling 3
spelling 100
spelling 92

course mark
databases 92
databases 100
databases 92
databases 88

min(mark)
=⇒

course min(mark)
spelling 3

databases 88
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In SQL

select course,
min(mark),
max(mark),
avg(mark)

from marks
group by course;

+-----------+-----------+-----------+-----------+
| course | min(mark) | max(mark) | avg(mark) |
+-----------+-----------+-----------+-----------+
| databases | 88 | 100 | 93.0000 |
| spelling | 3 | 100 | 73.5000 |
+-----------+-----------+-----------+-----------+
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What is NULL?

NULL is a place-holder, not a value!
NULL is not a member of any domain (type),
This means we need three-valued logic.

Let ⊥ represent we don’t know!

∧ T F ⊥
T T F ⊥
F F F F
⊥ ⊥ F ⊥

∨ T F ⊥
T T T T
F T F ⊥
⊥ T ⊥ ⊥

v ¬v
T F
F T
⊥ ⊥
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NULL can lead to unexpected results
select * from students;
+------+--------+------+
| sid | name | age |
+------+--------+------+
| ev77 | Eva | 18 |
| fm21 | Fatima | 20 |
| jj25 | James | 19 |
| ks87 | Kim | NULL |
+------+--------+------+

select * from students where age <> 19;
+------+--------+------+
| sid | name | age |
+------+--------+------+
| ev77 | Eva | 18 |
| fm21 | Fatima | 20 |
+------+--------+------+

select ... where P

The select statement only returns those records where the where
predicate evaluates to true.
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The ambiguity of NULL

Possible interpretations of NULL
There is a value, but we don’t know what it is.
No value is applicable.
The value is known, but you are not allowed to see it.
...

A great deal of semantic muddle is created by conflating all of these
interpretations into one non-value.

On the other hand, introducing distinct NULLs for each possible
interpretation leads to very complex logics ...
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SQL’s NULL has generated endless controversy

C. J. Date [D2004], Chapter 19
“Before we go any further, we should make it very clear that in our
opinion (and in that of many other writers too, we hasten to add),
NULLs and 3VL are and always were a serious mistake and have no
place in the relational model.”

In defense of Nulls, by Fesperman
“[...] nulls have an important role in relational databases. To remove
them from the currently flawed SQL implementations would be
throwing out the baby with the bath water. On the other hand, the
flaws in SQL should be repaired immediately.” (See
http://www.firstsql.com/idefend.htm.)
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Flaws? One example of SQL’s inconsistency

With our small database, the query

SELECT note FROM credits WHERE note IS NULL;

returns 4232 records of NULL.

The expression note IS NULL is either true or false — true when
note is the NULL value, false otherwise.
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Flaws? One example of SQL’s inconsistency (cont.)

Furthermore, the query

SELECT note, count(*) AS total
FROM credits
WHERE note IS NULL GROUP BY note;

returns a single record

note total
---- -----
NULL 4232

This seems to mean that NULL is equal to NULL. But recall that
NULL = NULL returns NULL!
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Bacon Number

Kevin Bacon has Bacon number 0.
Anyone acting in a movie with Kevin Bacon has Bacon number 1.
For any other actor, their bacon number is calculated as follows.
Look at all of the movies the actor acts in. Among all of the
associated co-actors, find the smallest Bacon number k . Then the
actor has Bacon number k + 1.

Let’s try to calculate Bacon numbers using SQL!
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Mathematical relations, again

Given two binary relations

R ⊆ S × T
Q ⊆ T × U

we can define their composition Q ◦ R ⊆ S × U as

Q ◦ R ≡ {(s, u) | ∃t ∈ T , (s, t) ∈ R ∧ (t , u) ∈ Q}
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Partial functions as relations

A (partial) function f ∈ S → T can be thought of as a binary
relations where (s, t) ∈ f if and only if t = f (s).
Suppose R is a relation where if (s, t1) ∈ R and (s, t2) ∈ R, then
it follows that t1 = t2. In this case R represents a (partial) function.
Given (partial) functions f ∈ S → T and g ∈ T → U their
composition g ◦ f ∈ S → U is defined by (g ◦ f )(s) = g(f (s)).
Note that the definition of ◦ for relations and functions is
equivalent for relations representing functions.

Since we could write Q ◦ R as R on2=1 Q we can see that joins are a
generalisation of function composition!
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Directed Graphs

G = (V , A) is a directed graph, where
V a finite set of vertices (also called nodes).
A is a binary relation over V . That is A ⊆ V × V .
If (u, v) ∈ A, then we have an arc from u to v .
The arc (u, v) ∈ A is also called a directed edge, or a
relationship of u to v .
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Drawing directed graphs

A directed graph
V = {A,B,C,D}
A = {(A, B), (A, D), (B, C), (C, C)}

BA C D
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Composition example

A ◦ A = {(A, C), (B, C), (C, C)}

BA C D

Elements of A ◦ A represent paths of length 2
(A, C) ∈ A ◦ A by the path A→ B → C
(B, C) ∈ A ◦ A by the path B → C → C
(C, C) ∈ A ◦ A by the path C → C → C
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Iterated composition, and paths

Suppose R is a binary relation over S, R ⊆ S × S. Define iterated
compostion as

R1 ≡ R
Rn+1 ≡ R ◦ Rn

Let G = (V , A) be a directed graph. Suppose v1, v2, · · · vk+1 is a
sequence of vertices. Then this sequence represents a path in G of
length k when (vi , vi+1) ∈ A, for i ∈ {1,2, · · · k}. We will often write
this as

v1 → v2 → · · · vk

Observation
If G = (V , A) is a directed graph, and (u, v) ∈ Ak , then there is at least
one path in G from u to v of length k . Such paths may contain loops.
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Shortest path

Definition of R-distance (hop count)
Suppose s0 ∈ π1(R) (that is there is a pair (s0, s1) ∈ R).

The distance from s0 to s0 is 0.
If (s0, s1) ∈ R, then the distance from s0 to s1 is 1.
For any other s′ ∈ π2(R), the distance from s0 to s′ is the least n
such that (s0, s′) ∈ Rn.

We will think of the Bacon number as an R-distance where s0 is Kevin
Bacon. But what is R?
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Let R be the co-actor relation

On our small database the co-actor relation contains 748,420 rows.
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SQL : Bacon number 1

Compute names of all actors with Bacon number 1. Small database:
101 rows. (Kevin Bacon’s id is 107303.)
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SQL : Bacon number 2

Compute names of all actors with Bacon number 2. Small database:
1387 rows.
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SQL : Bacon number 3

Compute names of all actors
with Bacon number 3. Small
database: 3186 rows.
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SQL : Bacon number 3, simplified

That last query was of the form

A EXCEPT ((B EXCEPT C) UNION C)

so we can simplify to

A EXCEPT B
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A very unscientific experiment

Time (in seconds) to compute Bacon number n ∈ {2, 3, 4} on my
shabby laptop (includes database start-up time).

2 3 4
HyperSQL 3 9 OOM
OOM = Out Of Memory.

This probably says more about HyperSQL than it does about
Relational databases in general!

tgg22 (cl.cam.ac.uk) 1B Databases 1B DB 2017 99 / 146



Transitive closure
Suppose R is a binary relation over S, R ⊆ S × S. The transitive
closure of R, denoted R+, is the smallest binary relation on S such
that R ⊆ R+ and R+ is transitive:

(x , y) ∈ R+ ∧ (y , z) ∈ R+ → (x , z) ∈ R+.

Then
R+ =

⋃
n∈{1, 2, ··· }

Rn.

Happily, all of our relations are finite, so there must be some k
with

R+ = R ∪ R2 ∪ · · · ∪ Rk .

Sadly, k will depend on the contents of R!
Conclude: we cannot compute transitive closure in the Relational
Algebra (or SQL without recursion).
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ANOTHER CONTEST!!!
The challenge
HyperSQL implements SQL’s notoriously complicated recursive
query constructs. Write a recursive query that takes n as a parameter
and computes all actors with Bacon number n. How large an n can
your machine handle? On the small database? On the large
database?

Send solutions to tgg22@cam.ac.uk.

PRIZES!!!
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Observations

We could continue, but the queries to compute higher and higher
bacon numbers will grow in size and complexity.
Performance will degrade rapidly.

BIG IDEA
Is it possible to design and implement a database system that is
optimised for transitive closure and related path-oriented
queries?

Yes: This is one of the motivations behind graph-oriented databases.
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We will be using Neo4j
A Neo4j database contains nodes and binary relationships
between nodes.
Nodes and relationships can have attributes (called properties).
Neo4j has a query language called Cypher that contains
path-oriented constructs. It is designed to explore very large
graphs.
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Let’s compute all Bacon numbers
MATCH (p:Person)
where p.name <> "Bacon, Kevin (I)"
with p
match paths=allshortestpaths(

(m:Person {name : "Bacon, Kevin (I)"} )
-[:ACTS_IN*]- (n:Person {name : p.name}))

return distinct p.name,
length(paths)/2 as bacon_number

order by bacon_number desc;

On the small database this returns 5574 rows (out of 6458 actors).
+-------------------------------------------------+
| p.name | bacon_number |
+-------------------------------------------------+
| "Alberson, Sarah" | 5 |
| "Allee, Virginia (I)" | 5 |
| "Allen, Brian Keith" | 5 |
| "Allen, Tess" | 5 |
| "Arbogast, Jeremiah" | 5 |

.... ...

This was computed in 10 seconds on my shabby laptop!
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Let’s compute count Bacon numbers
MATCH (p:Person)
where p.name <> "Bacon, Kevin (I)"
with p
match paths=allshortestpaths(

(m:Person {name : "Bacon, Kevin (I)"} )
-[:ACTS_IN*]- (n:Person {name : p.name}))

return count(distinct p.name) as total,
length(paths)/2 as bacon_number

order by bacon_number desc;

+----------------------+
| total | bacon_number |
+----------------------+
| 232 | 5 |
| 668 | 4 |
| 3186 | 3 |
| 1387 | 2 |
| 101 | 1 |
+----------------------+
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Lecture 8 : Neo4j Practical Lecture

Before lecture, please attempt Getting
started with Neo4j and Neo4j exercises
found on the course web page.
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Lecture 10

Optimise for reading data?
Document-oriented databases
Semi-structured data
Our bespoke database: DoctorWho
Using Java as a query language
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Optimise for reading

A fundamental tradeoff
Introducing data redundancy can speed up read-oriented transactions
at the expense of slowing down write-oriented transactions.

Situations where we might want a read-oriented database
Your data is seldom updated, but very often read.
Your reads can afford to be mildly out-of-synch with the
write-oriented database. Then consider periodically extracting
read-oriented snapshots and storing them in a database system
optimised for reading. The following two slides illustrate examples
of this situation.
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Example : Hinxton Bio-informatics
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Example : Embedded databases

FIDO = Fetch Intensive Data Organization
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Semi-structured data : JSON

{"menu": {
"id": "file",
"value": "File",
"popup": {
"menuitem": [
{"value": "New", "onclick": "CreateNewDoc()"},
{"value": "Open", "onclick": "OpenDoc()"},
{"value": "Close", "onclick": "CloseDoc()"}

]
}

}}

From http://json.org/example.html.
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Semi-structured data : XML

<menu id="file" value="File">
<popup>
<menuitem value="New" onclick="CreateNewDoc()" />
<menuitem value="Open" onclick="OpenDoc()" />
<menuitem value="Close" onclick="CloseDoc()" />

</popup>
</menu>

From http://json.org/example.html.
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Document-oriented database systems

Our working definition
A document-oriented databases stores data in the form of
semi-structured objects. Such database systems are also called
aggregate-oriented databases.

Why Semi-structured data?
Let’s do a thought experiment.
In the next few slides imagine that we intend to use a relational
database to store read-optimised tables generated from a a set of
write-optimised tables (that is, having little redundancy).
We will encounter some problems that can be solved by
representing our data as semi-structured objects.
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Start with a simple relationship ...

T B

Z

R

Y

SA

X

A database instance
S R T

A X
a1 x1
a2 x2
a3 x3

A B Y
a1 b1 y1
a1 b2 y2
a1 b3 y3
a2 b1 y4
a2 b3 y5

B Z
b1 z1
b2 z2
b3 z3
b4 z4

Imagine that our read-oriented applications can’t afford to do joins!
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Implement the relationship as one big table?

BigTableOne: An outer join of S, R, and T

A X B Z Y
a1 x1 b1 z1 y1
a1 x1 b2 z2 y2
a1 x1 b3 z3 y3
a2 x2 b1 z1 y4
a2 x2 b3 z3 y5
a3 x3

b4 z4

Since we don’t update this date we will not encounter the problems
associated with redundancy.
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However, we might have many more relationships ...

T B

Z

Q

W

SA

X

A database instance
S Q T

A X
a1 x1
a2 x2
a3 x3

A B W
a1 b4 w1
a3 b2 w2
a3 b3 w3

B Z
b1 z1
b2 z2
b3 z3
b4 z4
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Implement with another big table?

BigTableTwo: An outer join of S, Q, and T

A X B Z W
a1 x1 b4 z4 w1
a3 x3 b2 z2 w2
a3 x3 b3 z3 w3
a2 x2

b1 z1

Having two tables makes reading a bit more difficult!
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Combine into one big table?

BigTable: Derived from S, R, Q, and T

A X B Z Y W
a1 x1 b1 z1 y1
a1 x1 b2 z2 y2
a1 x1 b3 z3 y3
a2 x2 b1 z1 y4
a2 x2 b3 z3 y5
a1 x1 b4 z4 w1
a3 x3 b2 z2 w2
a3 x3 b3 z3 w3
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Problems with BigTable

We could store BigTable and speed up some queries.
But suppose that our applications typically access data using
either S’s key or T ’s key.
Creating indices on the A and B columns could speed things up,
but our applications may still be forced to gather information from
many rows in order to collect all information related to a given key
of S or a given key of T .
It would be better to access all data associated with a given key of
S or a given key of T using only a single database lookup.

Potential Solution
Represent the data using semi-structured objects.
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Use (S-oriented) documents ("A" value is unique id)

{ "A": a1, "X": x1,
"R": [{"B": b1, "Z": z1, "Y": y1},

{"B": b2, "Z": z2, "Y": y2},
{"B": b3, "Z": z3, "Y": y3}],

"Q": [{"B": b4, "Z": z4, "W": w1}]
}

{ "A": a2, "X": x2,
"R": [{"B": b1, "Z": z1, "Y": y4},

{"B": b3, "Z": z3, "Y": y5}],
"Q": []

}

{ "A": a3, "X": x3,
"R": [],
"Q": [{"B": b2, "Z": z2, "W": w2},

{"B": b3, "Z": z3, "W": w3}]
}
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Use (T -oriented) documents ("B" value is id)

{ "B": b1, "Z": z1,
"R": [{"A": a1, "X": x1, "Y": y2},

{"A": a2, "X": x2, "Y": y4}],
"Q": [] }

{ "B": b2, "Z": z2,
"R": [{"A": a1, "X": x1, "Y": y2}],
"Q": [{"A": a3, "X": x3, "Y": w2}] }

{ "B": b3, "Z": z3,
"R": [{"A": a1, "X": x1, "Y": y3},

{"A": a2, "X": x2, "Y": y5}],
"Q": [{"A": a3, "X": x3, "Y": w3}]}

{ "B": b4, "Z": z4, "R": [],
"Q": [{"A": a1, "X": x1, "Y": w1}] }
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IMDb Person example

{ "id": 402542, "name": "Coen, Joel", "gender": "male",
"director_in": [

{ "movie_id": 3256273, "title": "No Country for Old Men (2007)"},
{ "movie_id": 3667358, "title": "True Grit (2010)" },
{ "movie_id": 3026002, "title": "Inside Llewyn Davis (2013)"}],

"editor_in": [
{ "movie_id": 3256273, "title": "No Country for Old Men (2007)"},
{ "movie_id": 3667358, "title": "True Grit (2010)" },
{ "movie_id": 3026002, "title": "Inside Llewyn Davis (2013)"}],

"producer_in": [
{ "movie_id": 3256273, "title": "No Country for Old Men (2007)"},
{ "movie_id": 3667358, "title": "True Grit (2010)"},
{ "movie_id": 3026002, "title": "Inside Llewyn Davis (2013)"}],

"writer_in": [
{ "line_order": 1, "group_order": 1, "subgroup_order": 1,
"movie_id": 3256273, "title": "No Country for Old Men (2007)",
"note": "(screenplay)" },

{ "line_order": 1, "group_order": 1, "subgroup_order": 1,
"movie_id": 3667358, "title": "True Grit (2010)",
"note": "(screenplay)"

},
{ "line_order": 1, "group_order": 1, "subgroup_order": 1,

"movie_id": 3026002, "title": "Inside Llewyn Davis (2013)",
"note": "(written by)"

}]
}
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IMDb Movie example (greatly simplified)

{
"title": "Mad Max: Fury Road (2015)",
"year": 2015,
"actors": [

{
"character": "Max Rockatansky",
"name": "Hardy, Tom (I)"

},
{

"character": "Imperator Furiosa",
"name": "Theron, Charlize"

}
],
"directors": [
{ "name": "Miller, George (II)" }

]
}
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Key-value stores

One of the simplest types of database systems is the key-value
store that simply maps a key to a block of bytes.
The retrieved block of bytes is typically opaque to the databases
system.
Interpretation of such data is left to applications.

This describes what might be called a pure key-value store. Some
key-value stores extend this architecture with some limited capabilities
to inspect blocks of data and extract meta-data such as indices. This is
the case with Berkeley DB used to implement our bespoke data store
DoctorWho.
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How do we query DoctorWho?
We write code!

import uk.ac.cam.cl.databases.moviedb.MovieDB;
import uk.ac.cam.cl.databases.moviedb.model.*;

public class GetMovieById {
public static void main(String[] args) {

try (MovieDB database = MovieDB.open(args[0])) {
int id = Integer.parseInt(args[1]);
Movie movie = database.getMovieById(id);
System.out.println(movie);

}
}

}

This code takes two command-line arguments: the directory containing
the database and a movie id. It prints the associated JSON object.
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Lecture 11 : DoctorWho Practical Lecture

Before lecture, please attempt Getting
started with DoctorWho and DoctorWho
exercises found on the course web page.
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Lecture 12

Sarah Mei’s blog
OnLine Analytical Processing (OLAP)
OnLine Transaction Processing (OLTP)
Cloud computing and distributed databases
Column-oriented databases
Consistency, Availability, Partition tolerance (CAP)
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MongoDB is a popular document-oriented DBMS

Blog posted 11 November, 2013.
http://www.sarahmei.com/blog/2013/11/11/why-you-should-never-use-mongodb
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Quotes from Sarah Mei’s blog

For quite a few years now, the received wisdom has been that
social data is not relational, and that if you store it in a relational
database, you’re doing it wrong.
Diaspora chose MongoDB for their social data in this zeitgeist. It
was not an unreasonable choice at the time, given the information
they had.
You can see why this is attractive: all the data you need is already
located where you need it.

Note
The blog describes implementation decisions made in 2010 for the
development of a social networking platform called Diaspora. This was
before mature graph-oriented databases were available.
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Quotes from Sarah Mei’s blog (2)

You can also see why this is dangerous. Updating a user’s data
means walking through all the activity streams that they appear in
to change the data in all those different places. This is very
error-prone, and often leads to inconsistent data and mysterious
errors, particularly when dealing with deletions.
If your data looks like that, you’ve got documents.
Congratulations! It’s a good use case for Mongo. But if there’s
value in the links between documents, then you don’t actually
have documents. MongoDB is not the right solution for you. It’s
certainly not the right solution for social data, where links between
documents are actually the most critical data in the system.

The project eventually migrated to a relational database (using about
50 tables). See https://github.com/diaspora/diaspora.
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Yet another class of read-oriented databases

OLAP vs. OLTP
OLTP Online Transaction Processing
OLAP Online Analytical Processing

Commonly associated with terms like Decision
Support, Data Warehousing, etc.

OLAP OLTP
Supports analysis day-to-day operations

Data is historical current
Transactions mostly reads updates

optimized for reads updates
data redundancy high low

database size humongous large
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Example : Data Warehouse (Decision support)

business analysis queries

Extract 

fast updates

Operational Database Data Warehouse
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Limits of SQL aggregation

Flat tables are great for processing, but hard for people to read
and understand.
Pivot tables and cross tabulations (spreadsheet terminology) are
very useful for presenting data in ways that people can
understand.
Note that some table values become column or row names!
Standard SQL does not handle pivot tables and cross tabulations
well.
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A very influential paper [G+1997]
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From aggregates to data cubes
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The Data Cube

Data modeled as an n-dimensional (hyper-) cube
Each dimension is associated with a hierarchy
Each “point” records facts
Aggregation and cross-tabulation possible along all dimensions
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Hierarchy for Location Dimension
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Cube Operations
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The Star Schema as a design tool

In practice fact tables can be very large with hundreds of columns.

Row-oriented table stores can be very inefficient since a typical query is
concerned with only a few columns.
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Column-oriented implementations

From VLDB 2009 Tutorial: Column-Oriented Database Systems, by Stavros Harizopoulos, Daniel Abadi, Peter Boncz.
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Distributed databases

Why distribute data?
Scalability. The data set or the workload can be too large for a
single machine.
Fault tolerance. The service can survive the failure of some
machines.
Lower Latency. Data can be located closer to widely distributed
users.

Distributed databases are an important technology supporting cloud
computing.
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How do we distribute the data?

Note: partitions themselves are often replicated.

tgg22 (cl.cam.ac.uk) 1B Databases 1B DB 2017 142 / 146



Distributed databases pose difficult challenges

CAP concepts
Consistency. All reads return data that is up-to-date.
Availability. All clients can find some replica of the data.
Partition tolerance. The system continues to operate despite
arbitrary message loss or failure of part of the system.

It is very hard to achieve all three in a highly distributed database.
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CAP principle

In a highly distributed system:
Assume that network partitions and other connectivity problems
will occur.
Implementing transactional semantics is very difficult and slow.
You are left engineering a trade-off between availability and
consistency.

This gives rise to the notion of eventual consistency: if update activity
ceases, then the system will eventually reach a consistent state.
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What have we learned?

Having a conceptual model of data is very useful, no matter which
implementation technology is employed.
There is a trade-off between fast reads and fast writes.
There is no databases system that satisfies all possible
requirements!
It is best to understand pros and cons of each approach and
develop integrated solutions where each component database is
dedicated to doing what it does best.
The future will see enormous churn and creative activity in the
database field!
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The End

(http://xkcd.com/327)

tgg22 (cl.cam.ac.uk) 1B Databases 1B DB 2017 146 / 146


