
1

Compiler Construction

Lent Term 2017

Timothy G. Griffin
tgg22@cam.ac.uk

Computer Laboratory
University of Cambridge

2

Why Study Compilers?

•  Although many of the basic ideas were
developed over 50 years ago, compiler
construction is still an evolving and active
area of research and development.

•  Compilers are intimately related to
programming language design and evolution.

•  Compilers are a Computer Science success
story illustrating the hallmarks of our field ---
higher-level abstractions implemented with
lower-level abstractions.

•  Every Computer Scientist should have a basic
understanding of how compilers work.

Compilation is a special kind of translation

Source
Program
Text

The compiler
program for
target
“machine”

Just text – no way to
run program!

We have a “machine”
to run this!

3

•  be correct in the sense that meaning is preserved
•  produce usable error messages
•  generate efficient code
•  itself be efficient
•  be well-structured and maintainable

A good compiler should …

This course!

OptComp, Part II Pick any 2?

Just 1?

4

Mind The Gap

•  “Machine” independent
•  Complex syntax
•  Complex type system
•  Variables
•  Nested scope
•  Procedures, functions
•  Objects
•  Modules
•  …

•  “Machine” specific
•  Simple syntax
•  Simple types
•  memory, registers, words
•  Single flat scope

High Level Language Typical Target Language

Help!!! Where do we begin???

5

The Gap, illustrated
public class Fibonacci {

 public Fibonacci();

 Code:

 0: aload_0

 1: invokespecial #1

 4: return

 public static long fib(int);

 Code:

 0: iload_0

 1: ifne 6

 4: lconst_1

 5: lreturn

 6: iload_0

 7: iconst_1

 8: if_icmpne 13

 11: lconst_1

 12: lreturn

 13: iload_0

 14: iconst_1

 15: isub

 16: invokestatic #2

 19: iload_0

 20: iconst_2

 21: isub

 22: invokestatic #2

 25: ladd

 26: lreturn

 public static void

 main(java.lang.String[]);

 Code:

 0: aload_0

 1: iconst_0

 2: aaload

 3: invokestatic #3

 6: istore_1

 7: getstatic #4

 10: new #5

 13: dup

 14: invokespecial #6

 17: iload_1

 18: invokestatic #2

 21: invokevirtual #7

 24: ldc #8

 26: invokevirtual #9

 29: invokevirtual #10

 32: invokevirtual #11

 35: return

}

public class Fibonacci {

 public static long fib(int m) {

 if (m == 0) return 1;

 else if (m == 1) return 1;

 else return

 fib(m - 1) + fib(m - 2);

 }

 public static void

 main(String[] args) {

 int m =

 Integer.parseInt(args[0]);

 System.out.println(

 fib(m) + "\n");

 }

}

javac Fibonacci.java

javap –c Fibonacci.class

JVM bytecodes

6

The Gap, illustrated

(* fib : int -> int *)

let rec fib m =

 if m = 0

 then 1

 else if m = 1

 then 1

 else fib(m - 1) + fib (m - 2)

ocamlc –dinstr fib.ml

branch L2

L1:
acc 0

push

const 0

eqint

branchifnot L4

const 1

return 1

L4:
acc 0

push

const 1

eqint

branchifnot L3

const 1

return 1

L3:
acc 0

offsetint -2

push

offsetclosure 0

apply 1

push

acc 1

offsetint -1

push

offsetclosure 0

apply 1

addint

return 1

L2:
closurerec 1, 0

acc 0

makeblock 1, 0

pop 1

setglobal Fib!

OCaml VM bytecodes

fib.ml

7

The Gap, illustrated

#include<stdio.h>

int Fibonacci(int);

int main()

{

 int n;

 scanf("%d",&n);

 printf("%d\n", Fibonacci(n));

 return 0;

}

int Fibonacci(int n)

{

 if (n == 0) return 0;

 else if (n == 1) return 1;

 else return (Fibonacci(n-1) + Fibonacci(n-2));

}

gcc –S fib.c

fib.c

8

The Gap, illustrated

.section
__TEXT,__text,regular,pure_instructions

.globl
_main

.align
4, 0x90

_main: ## @main

.cfi_startproc

BB#0:

pushq
%rbp

Ltmp2:

.cfi_def_cfa_offset 16

Ltmp3:

.cfi_offset %rbp, -16

movq
%rsp, %rbp

Ltmp4:

.cfi_def_cfa_register %rbp

subq
$16, %rsp

leaq
L_.str(%rip), %rdi

leaq
-8(%rbp), %rsi

movl
$0, -4(%rbp)

movb
$0, %al

callq
_scanf

movl
-8(%rbp), %edi

movl
%eax, -12(%rbp) ## 4-byte Spill

callq
_Fibonacci

leaq
L_.str1(%rip), %rdi

movl
%eax, %esi

movb
$0, %al

callq
_printf

movl
$0, %esi

movl
%eax, -16(%rbp) ## 4-byte Spill

movl
%esi, %eax

addq
$16, %rsp

popq
%rbp

ret

.cfi_endproc

.globl
_Fibonacci

.align
4, 0x90

_Fibonacci: ## @Fibonacci

.cfi_startproc

BB#0:

pushq
%rbp

Ltmp7:

.cfi_def_cfa_offset 16

Ltmp8:

.cfi_offset %rbp, -16

movq
%rsp, %rbp

Ltmp9:

x86/Mac OS

.cfi_def_cfa_register %rbp

subq
$16, %rsp

movl
%edi, -8(%rbp)

cmpl
$0, -8(%rbp)

jne
LBB1_2

BB#1:

movl
$0, -4(%rbp)

jmp
LBB1_5

LBB1_2:

cmpl
$1, -8(%rbp)

jne
LBB1_4

BB#3:

movl
$1, -4(%rbp)

jmp
LBB1_5

LBB1_4:

movl
-8(%rbp), %eax

subl
$1, %eax

movl
%eax, %edi

callq
_Fibonacci

movl
-8(%rbp), %edi

subl
$2, %edi

movl
%eax, -12(%rbp) ## 4-byte Spill

callq
_Fibonacci

movl
-12(%rbp), %edi ## 4-byte Reload

addl
%eax, %edi

movl
%edi, -4(%rbp)

LBB1_5:

movl
-4(%rbp), %eax

addq
$16, %rsp

popq
%rbp

ret

.cfi_endproc

.section
__TEXT,__cstring,cstring_literals

L_.str: ## @.str

.asciz
"%d"

L_.str1: ## @.str1

.asciz
"%d\n"

.subsections_via_symbols

9

Conceptual view of a typical compiler

Front End Back End

 ISA/OS
targeted code

(x86/unix, …)

Source
Program
Text

The compiler

Operating System (OS)

 Virtual Machine (VM)
examples: JVM, Dalvik, .NET CLR

ISA/OS
independent
 “byte code”

 errors,
warnings

 ISA = Instruction Set Architecture

Middle
 End

Key to bridging
The Gap : divide and
conquer. The Big Leap
is broken into small
steps. Each step broken
into yet smaller steps …

10

The shape of a typical “front end”

Source
Program
Text

Lexical
analysis lexical

tokens

Parsing

Lexical theory
based on finite
automaton
and regular
expressions

Parsing Theory
based on
push-down
automaton and
context-free
grammars

AST +
other
info

 AST
= Abstract
 Syntax Tree

Semantic
analysis

Enforce
“static sematics”
of language:
type checking,
def/use rules,
and so on (SPL!)

report
errors

report
errors

report
errors

The AST output from the front-end should represent a legal program in the source language.
(“Legal” of course does not mean “bug-free”!)

SPL = Semantics of Programming Languages, Part 1B

11

Our view of the middle- and back-ends :
a sequence of small transformations

•  Each IL has its own semantics (perhaps informal)
•  Each transformation () preserves semantics (SPL!)
•  Each transformation eliminates only a few aspects of the gap
•  Each transformation is fairly easy to understand
•  Some transformations can be described as “optimizations”
•  We will associate each IL with its own interpreter/VM. (Again,

not something typically done in “industrial-strength” compilers.)

 Intermediate Languages

IL-1

Of course
industrial-strength
compilers may
collapse
many small-steps …

IL-2 IL-k . . .

Compilers must be compiled

Source
Program
Text

The compiler

A program in
language A

12

A program in
language B

Something to ponder:
A compiler is just a program.
But how did it get compiled?
The OCaml compiler is written in
OCaml.

How was the compiler compiled?

A program in
language C

13

Approach Taken

•  We will develop a compiler for a fragment of L3 introduced
in Semantics of Programming Languages, Part 1B.

•  We will pay special attention to the correctness.
•  We will compile only to Virtual Machines (VMs) of various

kinds. See Part II optimising compilers for generating
lower-level code.

•  Our toy compiler is available on the course web site.
•  We will be using the OCaml dialect of ML.

•  Install from https://ocaml.org.
•  See OCaml Labs :

http://www.cl.cam.ac.uk/projects/ocamllabs.
•  A side-by-side comparison of SML and OCaml Syntax:

http://www.mpi-sws.org/~rossberg/sml-vs-ocaml.html

14

SML Syntax vs. OCaml Syntax

type 'a tree =
 Leaf of 'a
 | Node of 'a * ('a tree) * ('a tree)

let rec map_tree f = function
 | Leaf a -> Leaf (f a)
 | Node (a, left, right) ->
 Node(f a, map_tree f left, map_tree f right)

let l =
 map_tree (fun a -> [a]) [Leaf 17; Leaf 21]
in
 List.rev l

datatype 'a tree =
 Leaf of 'a
 | Node of 'a * ('a tree) * ('a tree)

fun map_tree f (Leaf a) = Leaf (f a)
 | map_tree f (Node (a, left, right)) =
 Node(f a, map_tree f left, map_tree f right)

let val l =
 map_tree (fn a => [a]) [Leaf 17, Leaf 21]
in
 List.rev l
end

The Shape of this Course
1.  Overview
2.  Slang Front-end, Slang demo. Code tour.
3.  Lexical analysis : application of Theory of Regular Languages and

Finite Automata
4.  Generating Recursive descent parsers
5.  Beyond Recursive Descent Parsing I
6.  Beyond Recursive Descent Parsing II
7.  High-level “definitional” interpreter (interpreter 0). Make the stack

explicit and derive interpreter 2
8.  Flatten code into linear array, derive interpreter 3
9.  Move complex data from stack into the heap, derive the Jargon Virtual

Machine (interpreter 4)
10.  More on Jargon VM. Environment management. Static links on stack.

Closures.
11.  A few program transformations. Tail Recursion Elimination (TRE),

Continuation Passing Style (CPS). Defunctionalisation (DFC)
12.  CPS+TRE+DFC provides a formal way of understanding how we went

from interpreter 0 to interpreter 2. We fill the gap with interpreter 1
13.  Assorted topics : compilation units, linking. From Jargon to x86
14.  Assorted topics : simple optimisations, OOP object representation
15.  Run-time environments, automated memory management (“garbage

collection”)
16.  Bootstrapping a compiler

16

 LECTURE 2
Slang Front End

•  Slang (= Simple LANGuage)
–  A subset of L3 from Semantics …
–  … with very ugly concrete syntax
–  You are invited to experiment with improvements to this

concrete syntax.
•  Slang : concrete syntax, types
•  Abstract Syntax Trees (ASTs)
•  The Front End
•  A short in-lecture demo of slang and a brief tour

of the code …

Clunky Slang Syntax (informal)
uop := - | ~

bop ::= + | - | * | < | = | && | ||

t ::= bool | int | unit | (t) | t * t | t + t | t -> t | t ref

e ::= () | n | true | false | x | (e) | ? |
 e bop e | uop e |
 if e then else e end |
 e e | fun (x : t) -> e end |
 let x : t = e in e end |
 let f(x : t) : t = e in e end |
 !e | ref e | e := e | while e do e end |
 begin e; e; … e end |
 (e, e) | snd e | fst e |
 inl t e | inr t e |
 case e of inl(x : t) -> e | inr(x:t) -> e end

(~ is boolean negation)

(? requests an integer
 input from terminal)

(notice type annotation
 on inl and inr constructs)

18

From slang/examples

let fib(m : int) : int =

 if m = 0

 then 1

 else if m = 1

 then 1

 else fib (m - 1) +

 fib (m -2)

 end

 end

in

 fib(?)

end

let gcd(p : int * int) : int =

 let m : int = fst p

 in let n : int = snd p

 in if m = n

 then m

 else if m < n

 then gcd(m, n - m)

 else gcd(m - n, n)

 end

 end

 end

 end

in gcd(?, ?) end

The ? requests an integer input from the terminal

Slang Front End

Input file foo.slang

Remove “syntactic sugar”, file location information,
and most type information

Parsed AST (Past.expr)

Static analysis : check types, and context-
sensitive rules, resolve overloaded operators

Parse (we use Ocaml versions of LEX and YACC,
covered in Lectures 3 --- 6)

Intermediate AST (Ast.expr)

Parsed AST (Past.expr)

Parsed AST
(past.ml)

type var = string

type loc = Lexing.position

type type_expr =

 | TEint

 | TEbool

 | TEunit

 | TEref of type_expr

 | TEarrow of type_expr * type_expr

 | TEproduct of type_expr * type_expr

 | TEunion of type_expr * type_expr

type oper = ADD | MUL | SUB | LT |

 AND | OR | EQ | EQB | EQI

type unary_oper = NEG | NOT

type expr =

 | Unit of loc

 | What of loc

 | Var of loc * var

 | Integer of loc * int

 | Boolean of loc * bool

 | UnaryOp of loc * unary_oper * expr

 | Op of loc * expr * oper * expr

 | If of loc * expr * expr * expr

 | Pair of loc * expr * expr

 | Fst of loc * expr

 | Snd of loc * expr

 | Inl of loc * type_expr * expr

 | Inr of loc * type_expr * expr

 | Case of loc * expr * lambda * lambda

 | While of loc * expr * expr

 | Seq of loc * (expr list)

 | Ref of loc * expr

 | Deref of loc * expr

 | Assign of loc * expr * expr

 | Lambda of loc * lambda

 | App of loc * expr * expr

 | Let of loc * var * type_expr * expr * expr

 | LetFun of loc * var * lambda

 * type_expr * expr

 | LetRecFun of loc * var * lambda

 * type_expr * expr

Locations (loc) are used in
generating error messages.

21

static.mli, static.ml

val infer : (Past.var * Past.type_expr) list -> (Past.expr * Past.type_expr)

val check : Past.expr -> Past.expr (* infer on empty environment *)

•  Check type correctness
•  Rewrite expressions to resolve EQ to EQI (for integers)

or EQB (for bools).
•  Only LetFun is returned by parser. Rewrite to

LetRecFun when function is actually recursive.

Lesson : while enforcing “context-sensitive rules” we can resolve
ambiguities that cannot be specified in context-free grammars.

22

Internal AST
(ast.ml)

type var = string

type oper = ADD | MUL | SUB | LT |

 AND | OR | EQB | EQI

type unary_oper = NEG | NOT | READ

type expr =

 | Unit

 | Var of var

 | Integer of int

 | Boolean of bool

 | UnaryOp of unary_oper * expr

 | Op of expr * oper * expr

 | If of expr * expr * expr

 | Pair of expr * expr

 | Fst of expr

 | Snd of expr

 | Inl of expr

 | Inr of expr

 | Case of expr * lambda * lambda

 | While of expr * expr

 | Seq of (expr list)

 | Ref of expr

 | Deref of expr

 | Assign of expr * expr

 | Lambda of lambda

 | App of expr * expr

 | LetFun of var * lambda * expr

 | LetRecFun of var * lambda * expr

and lambda = var * expr

No locations, types.
No Let, EQ.

Is getting rid of types
a bad idea? Perhaps
a full answer would be
language-dependent…

23

past_to_ast.ml

let x : t = e1 in e2 end

(fun (x: t) -> e2 end) e1

This is done to simplify some of our code.
Is it a good idea? Perhaps not.

val translate_expr : Past.expr -> Ast.expr

Lecture 3, 4, 5, 6
Lexical Analysis and Parsing

1.  Theory of Regular Languages and Finite
Automata applied to lexical analysis.

2.  Context-free grammars
3.  The ambiguity problem
4.  Generating Recursive descent parsers
5.  Beyond Recursive Descent Parsing I
6.  Beyond Recursive Descent Parsing II

What problem are we solving?

if m = 0 then 1 else if m = 1 then 1 else fib (m - 1) + fib (m -2)

Translate a sequence of characters

into a sequence of tokens

type token =

 | INT of int| IDENT of string | LPAREN | RPAREN

 | ADD | SUB | EQUAL | IF | THEN | ELSE

 | …

IF, IDENT “m”, EQUAL, INT 0, THEN, INT 1, ELSE, IF,

IDENT “m”, EQUAL, INT 1, THEN, INT 1, ELSE, IDENT “fib”,
LPAREN, IDENT “m”, SUB, INT 1, RPAREN, ADD,

IDENT “fib”, LPAREN, IDENT “m”, SUB, INT 2, RPAREN

implemented with some data type

Recall from Discrete Mathematics (Part 1A)

Recall from Discrete Mathematics (Part 1A)

Recall from Discrete Mathematics (Part 1A)

29

Traditional Regular Language Problem

Given a regular expression,

and an input string , determine if

.

e
w)(eLw∈

Construct a DFA M from e and test if it accepts w.

Recall construction : regular expression à NFA à DFA

30

Something closer to the “lexing problem”

Given an ordered list of regular expressions,

and an input string , find a list of pairs

such that

.

1e 2e ke…

nwwww ...)1 21=

w

)()2
jij eLw ∈

)(...),,(),,(,2211 nn wiwiwi

rule)(priority)()3 sieLw jsj ≤→∈

match)(longest)(: sj eLuws ∉∀→
ε≠∈∀∀ ++ uwwwuj njj :)(prefix:)4 21 !

Why ordered? Is “if” a
variable or a keyword?
Need priority to resolve
ambiguity.

Why longest match?
Is “ifif” a variable or two
“if” keywords?

31

Define Tokens with Regular Expressions (Finite
Automata)

Keyword: if

1 i 2 f 3

1 i 2 f 3

0

Σ-{f}
Σ-{i} Σ

This FA is really shorthand for:

Σ “dead state”

32

Define Tokens with Regular Expressions (Finite
Automata)

Keyword:
if

1 i 2 f 3 KEY(IF)

Keyword:
then

1 t 2 h 3
KEY(then)

5

e
n

4

Regular Expression Finite Automata Token

Identifier:
[a-zA-Z][a-zA-Z0-9]*

1 2 [a-zA-Z]

[a-zA-Z0-9]

ID(s)

33

Define Tokens with Regular Expressions (Finite
Automata)

Regular Expression Finite Automata Token

number:
[0-9][0-9]*

1 2 [0-9]

[0-9]

NUM(n)

real:
([0-9]+ ‘.’ [0-9]*)
 | ([0-9]* ‘.’ [0-9]+)

1

3

[0-9] NUM(n) 2
[0-9]

[0-9]
.

4

.

[0-9] 5 [0-9]

34

No Tokens for “White-Space”

White-space:
(‘ ‘ | ‘\n’ | ‘\t’)+
| ‘%’ [A-Za-z0-9’ ‘]+’\n’

1

3

% 2
[A-za-z0-9’ ‘]

4

‘ ‘

\n

\t
\n

35

Constructing a Lexer

1e
2e

ke

…

 INPUT:
an ordered
list of regular
expressions

1NFA
2NFA

kNFA

…

Construct all
corresponding
finite automata

use priority NFA DFA

Construct a single
non-deterministic
finite automata

Construct a single
deterministic
finite automata

(1) Keyword : then

(2) Ident : [a-z][a-z]*

(2) White-space: ‘ ‘

1 t
2:ID

h 3:ID

5:THEN

e

n

4:ID

7:W

‘ ‘

6:ID [a-mo-z]

[a-z]

[a-su-z]

36

What about longest match?

1 t
2:ID

h 3:ID

5:THEN

e

n

4:ID

7:W

‘ ‘

6:ID [a-mo-z]

[a-z]

[a-su-z]

|then thenx$ 1 0
t|hen thenx$ 2 2
th|en thenx$ 3 3
the|n thenx$ 4 4
then| thenx$ 5 5
then |thenx$ 0 5 EMIT KEY(THEN)
then| thenx$ 1 0 RESET
then |thenx$ 7 7
then t|henx$ 0 7 EMIT WHITE(‘ ‘)
then |thenx$ 1 0 RESET
then t|henx$ 2 2
then th|enx$ 3 3
then the|nx$ 4 4
then then|x$ 5 5
then thenx|$ 6 6
then thenx$| 0 6 EMIT ID(thenx)

Start in initial state,
Repeat:
 (1) read input until dead state is
 reached. Emit token associated
 with last accepting state.
 (2) reset state to start state

| = current position, $ = EOF

Input
current state

last accepting state

37

Concrete vs. Abstract Syntax Trees

S
S + E
E

(S)
5

S + E
S + E (S)

S + E E

E 1
2

3
4

+
5 +

+ +

3 4 1 2

parse tree =
derivation tree =
concrete syntax
tree Abstract Syntax Tree (AST)

An AST contains only the
information needed to generate an
intermediate representation

Normally a compiler constructs the concrete syntax tree only implicitly
(in the parsing process) and explicitly constructs an AST.

38

On to Context Free Grammars (CFGs)

E ::= ID

E ::= NUM

E ::= E * E

E ::= E / E

E ::= E + E

E ::= E – E

E ::= (E)

E ::= ID | NUM | E * E | E / E | E + E | E – E | (E)

Usually will write this way

E is a non-terminal symbol

ID and NUM are lexical classes

*, (,), +, and – are terminal symbols.

E ::= E + E is called a production rule.

39

CFG Derivations
(G1) E ::= ID | NUM | ID | E * E | E / E | E + E | E – E | (E)

E à E * E
 à (E) * E
 à (E + E) * E
 à (17 + E) * E
 à (17 + 4) * E
 à (17 + 4) * (E)
 à (17 + 4) * (E – E)
 à (17 + 4) * (2 – E)
 à (17 + 4) * (2 – 10)

E

E E

E

*
()

17 4 2 10

E ()

E E E E + -

E à E * E
 à E * (E)
 à E * (E – E)
 à E * (E – 10)
 à E * (2 – 10)
 à (E) * (2 – 10)
 à (E + E) * (2 – 10)
 à (E + 4) * (2 – E)
 à (17 + 4) * (2 – 10)

The Derivation Tree for
 (17 + 4) * (2 – 10)

 Rightmost
derivation

 Leftmost
derivation

40

More formally, …

•  A CFG is a quadruple G = (N, T, R, S) where
–  N is the set of non-terminal symbols
–  T is the set of terminal symbols (N and T disjoint)
–  S ∈N is the start symbol
–  R ⊆ N×(N∪T)* is a set of rules

•  Example: The grammar of nested parentheses
G = (N, T, R, S) where
–  N = {S}
–  T ={ (,) }
–  R ={ (S, (S)) , (S, SS), (S,) }

S ::= (S) | SS | We will normally write R as

41

Derivations, more formally…

•  Start from start symbol (S)
•  Productions are used to derive a sequence of tokens from the

start symbol
•  For arbitrary strings α, β and γ comprised of both terminal and

non-terminal symbols,
and a production A → β,
a single step of derivation is
 αAγ ⇒ αβγ
–  i.e., substitute β for an occurrence of A

•  α ⇒* β means that b can be derived from a in 0 or more single
steps

•  α ⇒+ β means that b can be derived from a in 1 or more single
steps

42

L(G) = The Language Generated by Grammar G

}|*{)(wSTwGL +⇒∈=

The language generated by G is the set of all terminal strings
derivable from the start symbol S:

For any subset W of T*, if there exists a CFG G such
that L(G) = W, then W is called a Context-Free
Language (CFL) over T.

43

Ambiguity

E

E E *

1 2

E E + 3

E

E +
1

E

2 3

E E *

Both derivation trees correspond to the string

 1 + 2 * 3

This type of ambiguity will cause problems when we try to
go from strings to derivation trees!

(G1) E ::= ID | NUM | ID | E * E | E / E | E + E | E – E | (E)

44

Problem: Generation vs. Parsing

•  Context-Free Grammars (CFGs)
describe how to to generate

•  Parsing is the inverse of generation,
–  Given an input string, is it in the language

generated by a CFG?
–  If so, construct a derivation tree (normally

called a parse tree).
–  Ambiguity is a big problem

Note : recent work on Parsing Expression Grammars (PEGs) represents an
attempt to develop a formalism that describes parsing directly. This is beyond
the scope of these lectures …

45

We can often modify the grammar
in order to eliminate ambiguity

(G2)
 S :: = E$

 E ::= E + T
 | E – T
 | T

T ::= T * F
 | T / F
 | F

F ::= NUM
 | ID
 | (E)

E

E +
1

T

2

3

T F *
F

This is the unique derivation
tree for the string

 1 + 2 * 3$ Note: L(G1) = L(G2).

Can you prove it?

(expressions)

(terms)

(factors)

(start, $ = EOF)

S

46

Famously Ambiguous

(G3) S ::= if E then S else S | if E then S | blah-blah

What does

 if e1 then if e2 then s1 else s3

mean?

S

if then E S

if then E S else S

S

if then E S else S

if then E S

OR

47

Rewrite?

(G4)
S ::= WE | NE
WE ::= if E then WE else WE | blah-blah
NE ::= if E then S
 | if E then WE else NE

if then E

if then E S else S

S

NE

S

WE

Now,

 if e1 then if e2 then s1 else s3

has a unique derivation.

Note: L(G3) = L(G4).
Can you prove it?

48

Fun Fun Facts

{ } { }1,1|1,1| ≥≥≥≥= nmnmL dcbadcba nmmnmmnn ∪

See Hopcroft and Ullman, “Introduction to Automata
Theory, Languages, and Computation”

(1) Some context free languages are inherently ambiguous --- every
context-free grammar will be ambiguous. For example:

(2) Checking for ambiguity in an arbitrary context-free
 grammar is not decidable! Ouch!

(3) Given two grammars G1 and G2, checking L(G1) = L(G2) is
 not decidable! Ouch!

49

Generating Lexical Analyzers

Lexical
Analyzer

Source
Program tokens

Scanner
Generator
“LEX”

Lexical specification

DFA Transitions

Parser

The idea : use regular expressions as the basis of a
lexical specification. The core of the lexical analyzer is
then a deterministic finite automata (DFA)

50

Predictive (Recursive Descent) Parsing
Can we automate this?

(G5)

S :: = if E then S else S
 | begin S L
 | print E

E ::= NUM = NUM

L ::= end
 | ; S L

int tok = getToken();

void advance() {tok = getToken();}
void eat (int t) {if (tok == t) advance(); else error();}

void S() {switch(tok) {
 case IF: eat(IF); E(); eat(THEN);
 S(); eat(ELSE); S(); break;
 case BEGIN: eat(BEGIN); S(); L(); break;
 case PRINT: eat(PRINT); E(); break;
 default: error();
 }}

void L() {switch(tok) {
 case END: eat(END); break;
 case SEMI: eat(SEMI); S(); L(); break;
 default: error();
 }}

void E() {eat(NUM) ; eat(EQ); eat(NUM); }

From Andrew Appel, “Modern Compiler Implementation in Java” page 46

Parse corresponds to a left-most derivation
constructed in a “top-down” manner

51

 Eliminate Left-Recursion

A ::= Aα1 | Aα2 | . . . | Aαk |
 β1 | β2 | . . . | βn

Immediate left-recursion

A ::= β1 A’ | β2 A’ | . . . | βn A’

A’ ::= α1 A’ | α2 A’| . . . | αk A’ | ε

For eliminating left-recursion in general, see Aho and Ullman.

A

A

A

β

α

α

A

A’
β
α

α

A’

A’

ε

53

FIRST and FOLLOW

 FIRST[X] = the set of terminal symbols that
 can begin strings derived from X

FOLLOW[X] = the set of terminal symbols that
 can immediately follow X in some
 derivation

 nullable[X] = true of X can derive the empty string,
 false otherwise

For each non-terminal X we need to compute

nullable[Z] = false, for Z in T

nullable[Y1 Y2 … Yk] = nullable[Y1] and … nullable[Yk], for Y(i) in N union T.

FIRST[Z] = {Z}, for Z in T

FIRST[X Y1 Y2 … Yk] = FIRST[X] if not nullable[X]

FIRST[X Y1 Y2 … Yk] =FIRST[X] union FIRST[Y1 … Yk] otherwise

54

Computing First, Follow, and nullable

For each terminal symbol Z
 FIRST[Z] := {Z};
 nullable[Z] := false;

For each non-terminal symbol X
 FIRST[X] := FOLLOW[X] := {};
 nullable[X] := false;

repeat
 for each production X à Y1 Y2 … Yk
 if Y1, … Yk are all nullable, or k = 0
 then nullable[X] := true
 for each i from 1 to k, each j from i + I to k
 if Y1 … Y(i-1) are all nullable or i = 1
 then FIRST[X] := FIRST[X] union FIRST[Y(i)]
 if Y(i+1) … Yk are all nullable or if i = k
 then FOLLOW[Y(i)] := FOLLOW[Y(i)] union FOLLOW[X]
 if Y(i+1) … Y(j-1) are all nullable or i+1 = j
 then FOLLOW[Y(i)] := FOLLOW[Y(i)] union FIRST[Y(j)]
until there is no change

59

But wait! What if there are conflicts in
the predictive parsing table?

(G7)

 S :: = d | X Y S

Y ::= c |

X ::= Y | a

S

Y

X

Nullable FIRST FOLLOW

false

true

true

{ c,d ,a}

{ c }

{ c,a }

{ }

{ c,d,a }

{ c, a,d }

S

Y

X

a c d

{ S ::= X Y S }

{ Y ::= }

{ X ::= a, X ::= Y }

{ S ::= X Y S }

{ Y ::= , Y ::= c}

{ X ::= Y }

{ S ::= X Y S, S ::= d }

{ Y ::= }

{ X ::= Y }

The resulting “predictive” table is not so predictive….

60

LL(1), LL(k), LR(0), LR(1), …

•  LL(k) : (L)eft-to-right parse, (L)eft-most
derivation, k-symbol lookahead. Based on
looking at the next k tokens, an LL(k) parser
must predict the next production. We have been
looking at LL(1).

•  LR(k) : (L)eft-to-right parse, (R)ight-most
derivation, k-symbol lookahead. Postpone
production selection until the entire right-hand-
side has been seen (and as many as k symbols
beyond).

•  LALR(1) : A special subclass of LR(1).

61

Example

(G8)

 S :: = S ; S | ID = E | print (L)

E ::= ID | NUM | E + E | (S, E)

L ::= E | L, E

(G8)

 S :: = S SEMI S | ID EQUAL E | PRINT LPAREN L RPAREN

E ::= ID | NUM | E PLUS E | LPAREN S COMMA E RPAREN

L ::= E | L COMMA E

To be consistent, I should write the following, but I won’t…

62

A right-most derivation …

(G8)

S ::= S ; S
 | ID = E
 | print (L)

E ::= ID
 | NUM
 | E + E
 | (S, E)

L ::= E
 | L, E

 S
 à S ; S
 à S ; ID = E
 à S ; ID = E + E
 à S ; ID = E + (S, E)
 à S ; ID = E + (S, ID)
 à S ; ID = E + (S, d)
 à S ; ID = E + (ID = E, d)
 à S ; ID = E + (ID = E + E, d)
 à S ; ID = E + (ID = E + NUM, d)
 à S ; ID = E + (ID = E + 6, d)
 à S ; ID = E + (ID = NUM + 6, d)
 à S ; ID = E + (ID = 5 + 6, d)
 à S ; ID = E + (d = 5 + 6, d)
 à S ; ID = ID + (d = 5 + 6, d)
 à S ; ID = c + (d = 5 + 6, d)
 à S ; b = c + (d = 5 + 6, d)
 à ID = E ; b = c + (d = 5 + 6, d)
 à ID = NUM ; b = c + (d = 5 + 6, d)
 à ID = 7 ; b = c + (d = 5 + 6, d)
 à a = 7 ; b = c + (d = 5 + 6, d)

63

Now, turn it upside down …
à  a = 7 ; b = c + (d = 5 + 6, d)
à  ID = 7 ; b = c + (d = 5 + 6, d)
à  ID = NUM; b = c + (d = 5 + 6, d)
à ID = E ; b = c + (d = 5 + 6, d)
à S ; b = c + (d = 5 + 6, d)
à  S ; ID = c + (d = 5 + 6, d)
à  S ; ID = ID + (d = 5 + 6, d)
à S ; ID = E + (d = 5 + 6, d)
à  S ; ID = E + (ID = 5 + 6, d)
à  S ; ID = E + (ID = NUM + 6, d)
à  S ; ID = E + (ID = E + 6, d)
à  S ; ID = E + (ID = E + NUM, d)
à S ; ID = E + (ID = E + E, d)
à S ; ID = E + (ID = E, d)
à S ; ID = E + (S, d)
à S ; ID = E + (S, ID)
à S ; ID = E + (S, E)
à S ; ID = E + E
à S ; ID = E
à S ; S
 S

64

Now, slice it down the middle…

ID
ID = NUM
ID = E
S
S ; ID
S ; ID = ID
S ; ID = E
S ; ID = E + (ID
S ; ID = E + (ID = NUM
S ; ID = E + (ID = E
S ; ID = E + (ID = E + NUM
S ; ID = E + (ID = E + E
S ; ID = E + (ID = E
S ; ID = E + (S
S ; ID = E + (S, ID
S ; ID = E + (S, E)
S ; ID = E + E
S ; ID = E
S ; S
S

a = 7 ; b = c + (d = 5 + 6, d)
 = 7 ; b = c + (d = 5 + 6, d)
 ; b = c + (d = 5 + 6, d)
 ; b = c + (d = 5 + 6, d)
 ; b = c + (d = 5 + 6, d)
 = c + (d = 5 + 6, d)
 + (d = 5 + 6, d)
 + (d = 5 + 6, d)
 = 5 + 6, d)
 + 6, d)
 + 6, d)
 , d)
 , d)
 , d)
 , d)
)

A stack of terminals and
non-terminals

The rest of the input string

65

Now, add some actions. s = SHIFT, r = REDUCE

ID
ID = NUM
ID = E
S
S ; ID
S ; ID = ID
S ; ID = E
S ; ID = E + (ID
S ; ID = E + (ID = NUM
S ; ID = E + (ID = E
S ; ID = E + (ID = E + NUM
S ; ID = E + (ID = E + E
S ; ID = E + (ID = E
S ; ID = E + (S
S ; ID = E + (S, ID
S ; ID = E + (S, E)
S ; ID = E + E
S ; ID = E
S ; S
S

a = 7 ; b = c + (d = 5 + 6, d)
 = 7 ; b = c + (d = 5 + 6, d)
 ; b = c + (d = 5 + 6, d)
 ; b = c + (d = 5 + 6, d)
 ; b = c + (d = 5 + 6, d)
 = c + (d = 5 + 6, d)
 + (d = 5 + 6, d)
 + (d = 5 + 6, d)
 = 5 + 6, d)
 + 6, d)
 + 6, d)
 , d)
 , d)
 , d)
)
)

s
s, s
r E ::= NUM
r S ::= ID = E
s, s
s, s
r E ::= ID
s, s, s
s, s
r E ::= NUM
s, s
r E ::= NUM
r E ::= E+E, s, s
r S ::= ID = E
R E::= ID
s, r E ::= (S, E)
r E ::= E + E
r S ::= ID = E
r S ::= S ; S

ACTIONS
SHIFT = LEX + move token to stack

66

LL(k) vs. LR(k) reductions

)',)((' *** TwNTwA ∈∪∈⇒→ ββ

)(kLL)(kLR

'w
k token look ahead

Stack

A β (left-most
symbol at
top)

'w
k token look
ahead

Stack

Aβ(right-most
symbol at
top)

A

The language of this
Stack IS REGULAR!

67

Q: How do we know when to shift and
when to reduce? A: Build a FSA from

LR(0) Items!
(G10)

S ::= A $

A ::= (A)
 | ()

 S ::= • A $
S ::= A • $
A ::= • (A)
A ::= (• A)
A ::= (A •)
A ::= (A) •
A ::= • ()
A ::= (•)
A ::= () •

LR(0) items indicate what is on the stack
(to the left of the •) and what is still in
the input stream (to the right of the •)

If

 X ::= αβ

is a production, then

 X ::= α • β

is an LR(0) item.

68

LR(k) states (non-deterministic)

),(21 kaaaA !βα •→

'w Stack: α

'*
21 waaa k ⇒!β

(right-most
symbol at
top)

The state

should represent this situation:

Input:

with

69

Key idea behind LR(0) items

•  If the “current state” contains the item
A ::= α • c β and the current symbol in the input buffer is c
–  the state prompts parser to perform a shift action
–  next state will contain A ::= α c • β

•  If the “state” contains the item A ::= α •
–  the state prompts parser to perform a reduce action

•  If the “state” contains the item S ::= α • $
and the input buffer is empty
–  the state prompts parser to accept

•  But How about A ::= α • X β where X is a nonterminal?

70

The NFA for LR(0) items

•  The transition of LR(0) items can be represented
by an NFA, in which
–  1. each LR(0) item is a state,
–  2. there is a transition from item A ::= α • c β
 to item A ::= αc • β with label c, where c is a terminal

symbol
–  3. there is an ε-transition from item A ::= α • X β to

X ::= • γ, where X is a non-terminal
–  4. S ::= • A $ is the start state
–  5. A ::= α • is a final state.

71

Example NFA for Items

 S ::= • A $ S ::= A • $ A ::= • (A)
A ::= (• A) A ::= (A •) A ::= (A) •
A ::= • () A ::= (•) A ::= () •

A ::= (A •)

A ::= (•)

A ::= (A) • S ::= A • $ S ::= • A $

A ::= • () A ::= () •

A ::= (• A) A ::= • (A)

A

A (

(
)

)
ε

ε

ε

72

The DFA from LR(0) items

•  After the NFA for LR(0) is constructed, the resulting DFA
for LR(0) parsing can be obtained by the usual
NFA2DFA construction.

•  we thus require
–  ε-closure (I)
–  move(S, a)

Fixed Point Algorithm for Closure(I)
–  Every item in I is also an item in Closure(I)
–  If A ::= α • B β is in Closure(I) and B ::= • γ is an item,

then add B ::= • γ to Closure(I)
–  Repeat until no more new items can be added to

Closure(I)

73

Examples of Closure

Closure({A ::= (• A)}) =
A ::= (• A)
A ::= • (A)
A ::= • ()

S ::= • A $
A ::= • (A)
A ::= • ()

•  closure({S ::= • A $})

 S ::= • A $
S ::= A • $
A ::= • (A)
A ::= (• A)
A ::= (A •)
A ::= (A) •
A ::= • ()
A ::= (•)
A ::= () •

74

Goto() of a set of items

•  Goto finds the new state after consuming a
grammar symbol while in the current state

•  Algorithm for Goto(I, X)
where I is a set of items
and X is a non-terminal

Goto(I, X) = Closure({ A ::= α X • β | A ::= α • X β in I })

•  goto is the new set obtained by
“moving the dot” over X

75

Examples of Goto

•  Goto ({A ::= •(A)}, ()

A ::= (• A)
A ::= • (A)
A ::= • ()

 •  Goto ({A ::= (• A)}, A)

A ::= (A •)

 S ::= • A $
S ::= A • $
A ::= • (A)
A ::= (• A)
A ::= (A •)
A ::= (A) •
A ::= • ()
A ::= (•)
A ::= () •

76

•  Essentially the usual NFA2DFA construction!!
•  Let A be the start symbol and S a new start

symbol.
•  Create a new rule S ::= A $
•  Create the first state to be Closure({ S ::= • A $})
•  Pick a state I

–  for each item A ::= α • X β in I
•  find Goto(I, X)
•  if Goto(I, X) is not already a state, make one
•  Add an edge X from state I to Goto(I, X) state

•  Repeat until no more additions possible

Building the DFA states

77

DFA Example

S ::= • A$
A ::= • (A)
A ::= • ()

s0 S ::= A • $
s1 A

A ::= (• A)
A ::= (•)
A ::= • (A)
A ::= • ()

s2

(

A ::= (A •)

A

s3
(

A ::= () •

)
s5
A ::= (A) •

)

s4

78

Building Parse Table Example

S ::= • A$
A ::= • (A)
A ::= • ()

s0 S ::= A • $
s1 A

A ::= (• A)
A ::= (•)
A ::= • (A)
A ::= • ()

s2

(

A ::= (A •)

A

s3
(

A ::= () •

)
s5
A ::= (A) •

)

s4

Creating the Parse Table(s)

State () $ A
s0 shift to s2 goto s1
s1 accept
s2 shift to s2 shift to s5 goto s3
s3 shift to s4
s4 reduce (2) reduce (2) reduce (2)
s5 reduce (3) reduce (3) reduce (3)

(G10)
(1)   S ::= A$
(2)   A ::= (A)
(3)   A ::= ()

79

Parsing with an LR Table

Use table and top-of-stack and input symbol to get action:

If action is
 shift sn : advance input one token,
 push sn on stack
 reduce X ::= α : pop stack 2* |α| times (grammar symbols
 are paired with states). In the state
 now on top of stack,
 use goto table to get next
 state sn,
 push it on top of stack
 accept : stop and accept
 error : weep (actually, produce a good error
 message)

80

Building Parse Table Example Parsing, again…
ACTION Goto

State () $ A
s0 shift to s2 goto s1
s1 accept
s2 shift to s2 shift to s5 goto s3
s3 shift to s4
s4 reduce (2) reduce (2) reduce (2)
s5 reduce (3) reduce (3) reduce (3)

s0 (())$ shift s2
s0 (s2 ())$ shift s2
s0 (s2 (s2))$ shift s5
s0 (s2 (s2) s5)$ reduce A ::= ()
s0 (s2 A)$ goto s3
s0 (s2 A s3)$ shift s4
s0 (s2 A s3) s4 $ reduce A::= (A)
s0 A $ goto s1
s0 A s1 $ ACCEPT!

(G10)
(1)   S ::= A$
(2)   A ::= (A)
(3)   A ::= ()

81

LR Parsing Algorithm

sm
Ym
sm-1

Ym-1
 .
 .
s1

Y1
s0

a1 ... ai ... an $

Action Table
 terminals and $
s
t four different
a actions
t
e
s

Goto Table
 non-terminal
s
t each item is
a a state
t number
e
s

LR Parsing
Algorithm

Stack of
states and
grammar symbols

input

output

82

Problem With LR(0) Parsing

• No lookahead
• Vulnerable to unnecessary

conflicts
– Shift/Reduce Conflicts (may reduce

too soon in some cases)
– Reduce/Reduce Conflicts

• Solutions:
– LR(1) parsing - systematic lookahead

83

LR(1) Items

•  An LR(1) item is a pair:
 (X ::= α . β, a)
–  X ::= αβ is a production
–  a is a terminal (the lookahead terminal)
–  LR(1) means 1 lookahead terminal

•  [X ::= α . β, a] describes a context of the parser
–  We are trying to find an X followed by an a, and
–  We have (at least) α already on top of the stack
–  Thus we need to see next a prefix derived from βa

84

The Closure Operation

•  Need to modify closure operation:.

Closure(Items) =
 repeat
 for each [X ::= α . Yβ, a] in Items
 for each production Y ::= γ
 for each b in First(βa)
 add [Y ::= .γ, b] to Items
 until Items is unchanged

85

Constructing the Parsing DFA (2)

•  A DFA state is a closed set of LR(1) items

•  The start state contains (S’ ::= .S$, dummy)

•  A state that contains [X ::= α., b] is labeled
with “reduce with X ::= α on lookahead b”

•  And now the transitions …

86

The DFA Transitions

•  A state s that contains [X ::= α.Yβ, b] has
a transition labeled y to the state obtained
from Transition(s, Y)
– Y can be a terminal or a non-terminal

Transition(s, Y)
 Items = {}
 for each [X ::= α.Yβ, b] in s
 add [X ! αY.β, b] to Items
 return Closure(Items)

87

LR(1)-the parse table

•  Shift and goto as before
•  Reduce

– state I with item (A→α., z) gives a reduce
A→α if z is the next character in the input.

•  LR(1)-parse tables are very big

88

LR(1)-DFA

From Andrew Appel, “Modern Compiler Implementation in Java” page 65

(G11)

S’ ::= S$

S ::= V = E
 | E

E ::= V

V ::= x
 | *E

89

LR(1)-parse table

x * = $ S E V x * = $ S E V

1 s8 s6 g2 g5 g3 8 r4 r4

2 acc 9 r1

3 s4 r3 10 r5 r5

4 s11 s13 g9 g7 11 r4

5 r2 12 r3 r3

6 s8 s6 g10 g12 13 s11 s13 g14 g7

7 r3 14 r5

90

LALR States

•  Consider for example the LR(1) states
 {[X ::= α. , a], [Y ::= β. , c]}
 {[X ::= α. , b], [Y ::= β. , d]}
•  They have the same core and can be

merged to the state
 {[X ::= α. , a/b], [Y ::= β. , c/d]}
•  These are called LALR(1) states

– Stands for LookAhead LR
– Typically 10 times fewer LALR(1) states than

LR(1)

91

For LALR(1), Collapse States ...

Combine states 6 and 13, 7 and 12, 8 and 11, 10 and 14.

92

LALR(1)-parse-table

x * = $ S E V
1 s8 s6 g2 g5 g3
2 acc
3 s4 r3
4 s8 s6 g9 g7
5
6 s8 s6 g10 g7
7 r3 r3
8 r4 r4
9 r1
10 r5 r5

93

LALR vs. LR Parsing

•  LALR languages are not “natural”
–  They are an efficiency hack on LR languages

•  You may see claims that any reasonable programming
language has a LALR(1) grammar, {Arguably this is
done by defining languages without an LALR(1)
grammar as unreasonable J }.

•  In any case, LALR(1) has become a standard for
programming languages and for parser generators, in
spite of its apparent complexity.

94

Compiler Construction
Lent Term 2017

Part II : Lectures 7 – 12 (of 16)

Timothy G. Griffin
tgg22@cam.ac.uk

Computer Laboratory
University of Cambridge

95

Roadmap

Interpreter 0

Interpreter 1

Interpreter 2

Interpreter 3

Jargon VM

Lectures 7

Lecture 8

Lectures 9, 10

Starting from a direct implementation of Slang/L3 semantics,
we will DERIVE a Virtual Machine in a step-by-step manner.
The correctness of each step is (more or less) easy to check.

Lectures 11, 12

Lecture 7:
We make this
leap using
intuition.

Later we will
understand
it more
formally…

96

 LECTURE 7
Interpreter 0, Interpreter 2

1.  Interpreter 0 : The high-level “definitional”
interpreter

1.  Slang/L3 values represented directly as OCaml values
2.  Recursive interpreter implements a denotational

semantics
3.  The interpreter implicitly uses OCaml’s runtime stack

2.  Interpreter 2: A high-level stack-oriented
machine

1.  Makes the Ocaml runtime stack explicit
2.  Complex values pushed onto stacks
3.  One stack for values and environments
4.  One stack for instructions
5.  Heap used only for references
6.  Instructions have tree-like structure

97

Approaches to Mathematical Semantics

•  Axiomatic: Meaning defined through logical
specifications of behaviour.

•  Hoare Logic (Part II)
•  Separation Logic

•  Operational: Meaning defined in terms of transition
relations on states in an abstract machine.

•  Semantics (Part 1B)
•  Denotational: Meaning is defined in terms of

mathematical objects such as functions.
•  Denotational Semantics (Part II)

98

A denotational semantics for L3?
A = set of addresses

S = set of stores = A à V

V = set of value
 ≈ A
 + N
 + B
 + { () }
 + V × V
 + (V + V)
 + (V × S) à (V × S)

N = set of integers B = set of booleans
I = set of identifiers
E = set of environments = I à V

Set of values V solves this
“domain equation” (here +
means disjoint union).

Solving such equations is
where some difficult maths
is required …

M = the meaning function
M : (Expr × E × S) à (V × S)

Expr = set of L3 expressions

Not examinable!!

99

Our shabby OCaml approximation
A = set of addresses
S = set of stores = A à V

V = set of value
 ≈ A
 + N
 + B
 + { () }
 + V × V
 + (V + V)
 + (V × S) à (V × S)
 E = set of environments = A à V
M = the meaning function
M : (Expr × E × S) à (V × S)

type address

type store = address -> value

and value =

 | REF of address

 | INT of int

 | BOOL of bool

 | UNIT

 | PAIR of value * value

 | INL of value

 | INR of value

 | FUN of ((value * store)

 -> (value * store))

type env = Ast.var -> value

val interpret :

 Ast.expr * env * store

 -> (value * store)

100

Most of the code is obvious!
let rec interpret (e, env, store) =

 match e with

 | If(e1, e2, e3) ->

 let (v, store') = interpret(e1, env, store) in

 (match v with

 | BOOL true -> interpret(e2, env, store')

 | BOOL false -> interpret(e3, env, store')

 | v -> complain "runtime error. Expecting a boolean!”)

 | Pair(e1, e2) ->

 let (v1, store1) = interpret(e1, env, store) in

 let (v2, store2) = interpret(e2, env, store1) in (PAIR(v1, v2), store2)

 | Fst e ->

 (match interpret(e, env, store) with

 | (PAIR (v1, _), store') -> (v1, store')

 | (v, _) -> complain "runtime error. Expecting a pair!”)

 | Snd e ->

 (match interpret(e, env, store) with

 | (PAIR (_, v2), store') -> (v2, store')

 | (v, _) -> complain "runtime error. Expecting a pair!”)

 | Inl e -> let (v, store') = interpret(e, env, store) in (INL v, store')

 | Inr e -> let (v, store') = interpret(e, env, store) in (INR v, store')

 :

 :

101

Tricky bits : Slang functions mapped to OCaml functions!

let rec interpret (e, env, store) =
 match e with
 :
 :
 | Lambda(x, e) -> (FUN (fun (v, s) -> interpret(e, update(env, (x, v)), s)), store)
 | App(e1, e2) -> (* I chose to evaluate argument first! *)
 let (v2, store1) = interpret(e2, env, store) in
 let (v1, store2) = interpret(e1, env, store1) in
 (match v1 with
 | FUN f -> f (v2, store2)
 | v -> complain "runtime error. Expecting a function!”)
 | LetFun(f, (x, body), e) ->
 let new_env =
 update(env, (f, FUN (fun (v, s) -> interpret(body, update(env, (x, v)), s))))
 in interpret(e, new_env, store)
 | LetRecFun(f, (x, body), e) ->
 let rec new_env g = (* a recursive environment!!! *)
 if g = f then FUN (fun (v, s) -> interpret(body, update(new_env, (x, v)), s))
 else env g
 in interpret(e, new_env, store)

update : env * (var * value) -> env

102

Typical implementation of function calls

!
let fun f (x) = x + 1 !
 fun g(y) = f(y+2)+2 !
 fun h(w) = g(w+1)+3 !
in !
 h(h(17)) !
end !

h ! h !
g !

h !
g !

f !

h !

g !

h ! h ! h !
g !

h !
g !

f !

h !

g !

h !

Execution

The run-time data structure is
the call stack containing an
activation record for each function
invocation.

interpret is implicitly using Ocaml’s runtime stack

let rec interpret (e, env, store) =

 match e with

 | Integer n -> (INT n, store)

 | Op(e1, op, e2) ->

 let (v1, store1) = interpret(e1, env, store) in

 let (v2, store2) = interpret(e2, env, store1) in

 (do_oper(op, v1, v2), store2)

 :

 :

•  Every invocation of interpret is
building an activation record on
Ocaml’s runtime stack.

•  We will now define interpreter 2
which makes this stack explicit

104

Inpterp_2 data types

type address = int

type value =

 | REF of address

 | INT of int

 | BOOL of bool

 | UNIT

 | PAIR of value * value

 | INL of value

 | INR of value

 | CLOSURE of bool *

 closure

and closure = code * env

and instruction =

 | PUSH of value

 | LOOKUP of var

 | UNARY of unary_oper

 | OPER of oper

 | ASSIGN

 | SWAP

 | POP

 | BIND of var

 | FST

 | SND

 | DEREF

 | APPLY

 | MK_PAIR

 | MK_INL

 | MK_INR

 | MK_REF

 | MK_CLOSURE of code

 | MK_REC of var * code

 | TEST of code * code

 | CASE of code * code

 | WHILE of code * code

type address

type store = address -> value

and value =

 | REF of address

 | INT of int

 | BOOL of bool

 | UNIT

 | PAIR of value * value

 | INL of value

 | INR of value

 | FUN of ((value * store)

 -> (value * store))

type env = Ast.var -> value

Interp_0 Interp_2

105

and code = instruction list

and binding = var * value

and env = binding list

type env_or_value = EV of env | V of value

type env_value_stack = env_or_value list

type state = code * env_value_stack

val step : state -> state

val driver : state -> value

val compile : expr -> code

val interpret : expr -> value

Interp_2.ml : The Abstract Machine

The state is actually
comprised of a
heap --- a global array
of values --- a pair
of the form

 (code, evn_value_stack)

106

Interpreter 2: The Abstract Machine

type state = code * env_value_stack

val step : state -> state

The state transition function.

107

The driver. Correctness

(* val driver : state -> value *)

let rec driver state =

 match state with

 | ([], [V v]) -> v

 | _ -> driver (step state)

val compile : expr -> code

The idea: if e passes the frond-end and
 Interp_0.interpret e = v

then
 driver (compile e, []) = v’

where v’ (somehow) represents v.

In other words,
evaluating
 compile e

should leave the
value of e on top
of the stack

108

Implement inter_0 in interp_2

let step = function
 | (MK_PAIR :: ds, (V v2) :: (V v1) :: evs) -> (ds, V(PAIR(v1, v2)) :: evs)
 | (FST :: ds, V(PAIR (v, _)) :: evs) -> (ds, (V v) :: evs)
 :

let rec compile = function
 | Pair(e1, e2) -> (compile e1) @ (compile e2) @ [MK_PAIR]
 | Fst e -> (compile e) @ [FST]
 :

let rec interpret (e, env, store) =

 match e with

| Pair(e1, e2) ->

 let (v1, store1) = interpret(e1, env, store) in

 let (v2, store2) = interpret(e2, env, store1) in (PAIR(v1, v2), store2)

 | Fst e ->

 (match interpret(e, env, store) with

 | (PAIR (v1, _), store') -> (v1, store')

 | (v, _) -> complain "runtime error. Expecting a pair!”)

 :

interp_0.ml

interp_2.ml

109

Implement inter_0 in interp_2

let step = function
 | ((TEST(c1, c2)) :: ds, V(BOOL true) :: evs) -> (c1 @ ds, evs)
 | ((TEST(c1, c2)) :: ds, V(BOOL false) :: evs) -> (c2 @ ds, evs)
 :

let rec compile = function
 | If(e1, e2, e3) -> (compile e1) @ [TEST(compile e2, compile e3)]
 :

let rec interpret (e, env, store) =

 match e with

 | If(e1, e2, e3) ->

 let (v, store') = interpret(e1, env, store) in

 (match v with

 | BOOL true -> interpret(e2, env, store')

 | BOOL false -> interpret(e3, env, store')

 | v -> complain "runtime error. Expecting a boolean!”)

 :

interp_0.ml

interp_2.ml

110

Tricky bits again!

let rec interpret (e, env, store) =
 match e with
 | Lambda(x, e) -> (FUN (fun (v, s) -> interpret(e, update(env, (x, v)), s)), store)
 | App(e1, e2) -> (* I chose to evaluate argument first! *)
 let (v2, store1) = interpret(e2, env, store) in
 let (v1, store2) = interpret(e1, env, store1) in
 (match v1 with
 | FUN f -> f (v2, store2)
 | v -> complain "runtime error. Expecting a function!”)
 :

let step = function
 | (POP :: ds, s :: evs) -> (ds, evs)
 | (SWAP :: ds, s1 :: s2 :: evs) -> (ds, s2 :: s1 :: evs)
 | ((BIND x) :: ds, (V v) :: evs) -> (ds, EV([(x, v)]) :: evs)
 | ((MK_CLOSURE c) :: ds, evs) -> (ds, V(mk_fun(c, evs_to_env evs)) :: evs)
 | (APPLY :: ds, V(CLOSURE (_, (c, env))) :: (V v) :: evs)
 -> (c @ ds, (V v) :: (EV env) :: evs)
let rec compile = function
 | Lambda(x, e) -> [MK_CLOSURE((BIND x) :: (compile e) @ [SWAP; POP])]
 | App(e1, e2) -> (compile e2) @ (compile e1) @ [APPLY; SWAP; POP]
 :

interp_0.ml

interp_2.ml

111

Example : Compiled code for rev_pair.slang

let rev_pair (p : int * int) : int * int = (snd p, fst p)

in

 rev_pair (21, 17)

end

MK_CLOSURE([BIND p; LOOKUP p; SND; LOOKUP p; FST; MK_PAIR; SWAP; POP]);
 BIND rev_pair;
 PUSH 21;
 PUSH 17;
 MK_PAIR;
 LOOKUP rev_pair;
 APPLY;
 SWAP;
 POP;
 SWAP;
 POP

DEMO TIME!!!

112

 LECTURE 8
Derive Interpreter 3

1.  “Flatten” code into linear array
2.  Add “code pointer” (cp) to machine state
3.  New instructions : LABEL, GOTO, RETURN
4.  “Compile away” conditionals and while loops

113

Linearise code

Interpreter 2 copies code
on the code stack.
We want to introduce one
global array of instructions
indexed by a code pointer (cp).
At runtime the cp points at the
next instruction to be executed.

cp next
instruction

: :
: :

: :
: :

 This will require two new instructions:

 LABEL L : Associate label L with this location in the code array

 GOTO L : Set the cp to the code address associated with L

114

Compile conditionals, loops

If(e1, e2, e3)

code for e1

TEST k

code for e2

GOTO m

k: code for e3

m:

m: code for e1

 TEST k

code for e2

GOTO m

k:

While(e1, e2)

115

If ? = 0 Then 17 else 21 end

PUSH UNIT;

UNARY READ;

PUSH 0;

OPER EQI;

TEST(

 [PUSH 17],

 [PUSH 21]

)

 PUSH UNIT;
 UNARY READ;
 PUSH 0;
 OPER EQI;
 TEST L0;
 PUSH 17;
 GOTO L1;
 LABEL L0;
 PUSH 21;
 LABEL L1;
 HALT

0: PUSH UNIT;

1: UNARY READ;

2: PUSH 0;

3: OPER EQI;

4: TEST L0 = 7;

5: PUSH 17;

6: GOTO L1 = 9;

7: LABEL L0;

8: PUSH 21;

9: LABEL L1;

10: HALT

interp_2 interp_3 interp_3 (loaded)

Symbolic code
locations

Numeric code
locations

116

Implement inter_2 in interp_3

let step = function
 | ((TEST(c1, c2)) :: ds, V(BOOL true) :: evs) -> (c1 @ ds, evs)
 | ((TEST(c1, c2)) :: ds, V(BOOL false) :: evs) -> (c2 @ ds, evs)
 :
 interp_2.ml
let step (cp, evs) =

 match (get_instruction cp, evs) with

 | (TEST (_, Some _), V(BOOL true) :: evs) -> (cp + 1, evs)

 | (TEST (_, Some i), V(BOOL false) :: evs) -> (i, evs)

 | (LABEL l, evs) -> (cp + 1, evs)

 | (GOTO (_, Some i), evs) -> (i, evs)

 :

Code locations are represented as

 (“L”, None) : not yet loaded (assigned numeric address)

 (“L”, Some i) : label “L” has been assigned numeric address i

Interp_3.ml

117

Tricky bits again!

let step = function
 | (POP :: ds, s :: evs) -> (ds, evs)
 | (SWAP :: ds, s1 :: s2 :: evs) -> (ds, s2 :: s1 :: evs)
 | ((BIND x) :: ds, (V v) :: evs) -> (ds, EV([(x, v)]) :: evs)
 | ((MK_CLOSURE c) :: ds, evs) -> (ds, V(mk_fun(c, evs_to_env evs)) :: evs)
 | (APPLY :: ds, V(CLOSURE (_, (c, env))) :: (V v) :: evs)
 -> (c @ ds, (V v) :: (EV env) :: evs)

interp_2.ml

let step (cp, evs) =

 match (get_instruction cp, evs) with

 | (POP, s :: evs) -> (cp + 1, evs)

 | (SWAP, s1 :: s2 :: evs) -> (cp + 1, s2 :: s1 :: evs)

 | (BIND x, (V v) :: evs) -> (cp + 1, EV([(x, v)]) :: evs)

 | (MK_CLOSURE loc, evs) -> (cp + 1,

 V(CLOSURE(loc, evs_to_env evs)) :: evs)

 | (RETURN, (V v) :: _ :: (RA i) :: evs) -> (i, (V v) :: evs)

 | (APPLY, V(CLOSURE ((_, Some i), env)) :: (V v) :: evs)

 -> (i, (V v) :: (EV env) :: (RA (cp + 1)) :: evs)

interp_3.ml

Note that in interp_2 the body of a closure is consumed from
the code stack. But in interp_3 we need to save the return
address on the stack (here i is the location of the closure’s code).

118

Tricky bits again!

let rec compile = function
 | Lambda(x, e) -> [MK_CLOSURE((BIND x) :: (compile e) @ [SWAP; POP])]
 | App(e1, e2) -> (compile e2) @ (compile e1) @ [APPLY; SWAP; POP]
 :

interp_2.ml

let rec comp = function

 | App(e1, e2) ->

 let (defs1, c1) = comp e1 in

 let (defs2, c2) = comp e2 in

 (defs1 @ defs2, c2 @ c1 @ [APPLY])

 | Lambda(x, e) ->

 let (defs, c) = comp e in

 let f = new_label () in

 let def = [LABEL f ; BIND x] @ c @ [SWAP; POP; RETURN] in

 (def @ defs, [MK_CLOSURE((f, None))])

Interp_3.ml

let compile e =

 let (defs, c) = comp e in

 c (* body of program *)

 @ [HALT] (* stop the interpreter *)

 @ defs (* function definitions *)

Interp_3.ml

119

Interpreter 3
(very similar to interpreter 2)

120

Some observations

•  A very clean machine!
•  But it still has a very inefficient treatment of

environments.
•  Also, pushing complex values on the stack is

not what most virtual machines do. In fact, we
are still using OCaml’s runtime memory
management to manipulate complex values.

121

Example : Compiled code for rev_pair.slang

let rev_pair (p : int * int) : int * int = (snd p, fst p)

in

 rev_pair (21, 17)

end

MK_CLOSURE(

 [BIND p; LOOKUP p; SND;

 LOOKUP p; FST; MK_PAIR;

 SWAP; POP]);

 BIND rev_pair;

 PUSH 21;

 PUSH 17;

 MK_PAIR;

 LOOKUP rev_pair;

 APPLY;

 SWAP;

 POP;

 SWAP;

 POP
 DEMO TIME!!! Interp_2

MK_CLOSURE(rev_pair)

 BIND rev_pair

 PUSH 21

 PUSH 17

 MK_PAIR

 LOOKUP rev_pair

 APPLY

 SWAP

 POP

 HALT

LABEL rev_pair

 BIND p

 LOOKUP p

 SND

 LOOKUP p

 FST

 MK_PAIR

 SWAP

 POP

 RETURN
Interp_3

122

 LECTURES 9, 10
Deriving The Jargon VM

(interpreter 4)
1.  First change: Introduce an addressable stack.
2.  Replace variable lookup by a (relative) location on the stack

or heap determined at compile time.
3.  Relative to what? A frame pointer (fp) pointing into the

stack is needed to keep track of the current activation
record.

4.  Second change: Optimise the representation of closures so
that they contain only the values associated with the free
variables of the closure and a pointer to code.

5.  Third change: Restrict values on stack to be simple (ints,
bools, heap addresses, etc). Complex data is moved to the
heap, leaving pointers into the heap on the stack.

6.  How might things look different in a language without first-
class functions? In a language with multiple arguments to
function calls?

123

Jargon Virtual Machine

frame 0

 Stack
(really array)

frame 1

stack sp
pointer

frame fp
Pointer

Frame 2

grows

shrinks

 Code
(array of instructions)

 heap
(array of heap values)

heap[0]

heap[heal_limit]

cp
 Code
 pointer Need for

fp to be
explained
soon …

The stack in interpreter 3

(1, (2, 17))
Inl(inr(99))

: :
: :

 A stack
in interpreter 3

Stack elements in interpreter 3
are not of fixed size.

Virtual machines (JVM, etc)
typically restrict stack elements
to be of a fixed size

We need to shift data from the
high-level stack of interpreter 3
to a lower-level stack with
fixed size elements.

Solution : put the data in the heap.
Place pointers to the heap on
the stack.

“All problems in computer
science can be solved by
another level of indirection,
except of course for the
problem of too many
indirections.”
 --- David Wheeler

125

The
Jargon VM

stack

c : Header 3, PAIR
 1 c+1 :
 d c+2 :

d : Header 3, PAIR
 2 d+1 :
 17 d+2 :

b : Header 2, INL
 a b+1 :

a : Header 2, INR
 99 a+1 :

: :

: :

: :

: :

Heap

Some stack elements
represent pointers
into the heap

Stack

c
 b

: :
: :

 c

126

type instruction =

 | PUSH of value

 | LOOKUP of Ast.var

 | UNARY of Ast.unary_oper

 | OPER of Ast.oper

 | ASSIGN

 | SWAP

 | POP

 | BIND of Ast.var

 | FST

 | SND

 | DEREF

 | APPLY

 | RETURN

 | MK_PAIR

 | MK_INL

 | MK_INR

 | MK_REF

 | MK_CLOSURE of location

 | TEST of location

 | CASE of location

 | GOTO of location

 | LABEL of label

 | HALT

type instruction =
 | PUSH of stack_item (* modified *)
 | LOOKUP of value_path (* modified *)
 | UNARY of Ast.unary_oper
 | OPER of Ast.oper
 | ASSIGN
 | SWAP
 | POP
 (* | BIND of var not needed *)
 | FST
 | SND
 | DEREF
 | APPLY
 | RETURN
 | MK_PAIR
 | MK_INL
 | MK_INR
 | MK_REF
 | MK_CLOSURE of location * int (* modified *)
 | TEST of location
 | CASE of location
 | GOTO of location
 | LABEL of label
 | HALT

interp_3.mli jargon.mli Small change to
instructions

127

type value = | REF of address | INT of int | BOOL of bool | UNIT

 | PAIR of value * value | INL of value | INR of value | CLOSURE of location * env

type env_or_value = | EV of env | V of value | RA of address

type env_value_stack = env_or_value list

type stack_item =

 | STACK_INT of int

 | STACK_BOOL of bool

 | STACK_UNIT

 | STACK_HI of heap_index (* Heap Index *)

 | STACK_RA of code_index (* Return Address *)

 | STACK_FP of stack_index (* (saved) Frame Pointer *)

A word about implementation

type heap_item =

 | HEAP_INT of int

 | HEAP_BOOL of bool

 | HEAP_UNIT

 | HEAP_HI of heap_index (* Heap Index *)

 | HEAP_CI of code_index (* Code pointer for closures *)

 | HEAP_HEADER of int * heap_type (* int is number items in heap block *)

type heap_type =

 | HT_PAIR

 | HT_INL

 | HT_INR

 | HT_CLOSURE

Interpreter 3

Jargon VM

The headers will be
essential for
garbage collection!

128

MK_INR (MK_INL is similar)

 (MK_INR, (V v) :: evs) -> (cp + 1, V(INR(v)) :: evs)

c

 v
: :
: :

 MK_INR

c

 a
: :
: :

a : Header 2, INR
 v a+1 :

 Newly allocated
 locations in
 the heap

The stack
 before

The stack
 after

Jargon VM

In interpreter 3

Note: The header types are not really required. We could
instead add an extra field here (for example, 0 or 1).
However, header types aid in understanding the code and
traces of runtime execution.

129

CASE (TEST is similar)

(CASE (_, Some _), V(INL v)::evs) -> (cp + 1, (V v) :: evs)

(CASE (_, Some i), V(INR v)::evs) -> (i, (V v) :: evs)

CASE i

c

 a
: :
: :

a : INR
 v a+1 :

cp = t

c

 v
: :
: :

cp = i

CASE i

c

 a
: :
: :

a : INL
 v a+1 :

cp = t

c

 v
: :
: :

cp = t + 1

130

MK_PAIR

 (MK_PAIR, (V v2) :: (V v1) :: evs) -> (cp + 1, V(PAIR(v1, v2)) :: evs)

c
 v1

: :
: :

 v2
 MK_PAIR

c

 a
: :
: :

a : Header 3, PAIR
 v1 a+1 :

a+2 : v2

Newly allocated
 locations in
 the heap

The stack
 before

The stack
 after

In Jargon VM:

In interpreter 3:

131

FST (similar for SND)

 (FST, V (PAIR(v1, v2)) :: evs) -> (cp + 1, v1 :: evs)

c

 v1
: :
: :

FST
c

 a
: :
: :

a : Header 3, PAIR
 v1 a+1 :

a+2 : v2

Somewhere
 in the heap

The stack
 after

The stack
 before

In Jargon VM:

In interpreter 3:

Note that v1 could be a simple value (int or bool), or aother heap address.

These require more care …

let step (cp, evs) =

 match (get_instruction cp, evs) with

| (MK_CLOSURE loc, evs)

 -> (cp + 1, V(CLOSURE(loc, evs_to_env evs)) :: evs)

| (APPLY, V(CLOSURE ((_, Some i), env)) :: (V v) :: evs)

 -> (i, (V v) :: (EV env) :: (RA (cp + 1)) :: evs)

| (RETURN, (V v) :: _ :: (RA i) :: evs)

 -> (i, (V v) :: evs)

In interpreter 3:

�
MK_CLOSURE(c, n)�

c
:

 v2
 MK_CLOSURE(c, n)

a : closure header
 c a+1 :

a+2 : v1

Newly allocated
 locations in
 the heap

The stack
 before The stack

 after

c = code location of start of instructions for closure,
n = number of free variables in the body of closure.

Put values associated with free variables on stack,
then construct the closure on the heap

 v1

 vn

:
:

c

 a

:
: a+n+1 : vn

c

: :

134

A stack frame

c

 a

: :
: :

 v

 r
 fp’ fp

: :
: :

Return address
Saved frame pointer
Pointer to closure

Argument value

Stack frame.
(Boundary
May vary in the
literature.)

Currently executing code for the closure at heap address “a”
after it was applied to argument v.

APPLY

(APPLY, V(CLOSURE ((_, Some i), env)) :: (V v) :: evs)

 -> (i, (V v) :: (EV env) :: (RA (cp + 1)) :: evs)

APPLY

c

 a

: :
: :

a : Header n+2,
CLOSURE

 v1

a+n+1 :

a+1 :

 vn

AFTER
Jargon VM:

 v
 i

: :

a+2 :

BEFORE

c

 a

: :
: :

 v

 k+1
 j

cp = k
fp = j

cp = i
fp = m

m : fp

Interpreter 3:

RETURN

(RETURN, (V v) :: _ :: (RA i) :: evs) -> (i, (V v) :: evs)

RETURN

AFTER Jargon VM:

Interpreter 3:

BEFORE

c a

: :
: :

 v1

 t
 j

cp = i

fp

 v2

c : :
: :

cp = t
 (return address)

fp = j

 v2

Replace stack frame
with return value

Finding a variable’s value at runtime

c a

: :
: :

a : Header n+2,
CLOSURE

 v1
a+1 :

 vn

 v
 code location i

: :

a+2 :

 k+1
 j

fp

: :
: :

sp

Suppose we are
executing code
associated with this
closure. Then every
free variable in the
body of the closure
can be found from
the frame pointer fp:
•  Formal parameter: at stack location fp-2
•  Other free variables :

•  Follow heap pointer found at fp -1
•  Each free variable can be associated

with a fixed offset from this heap
address

LOOKUP (HEAP_OFFSET k)

 (LOOKUP x, evs) -> (cp + 1, V(search(evs, x)) :: evs)

LOOKUP

(HEAP_OFFET k)

AFTER Jargon VM:

Interpreter 3:

BEFORE

c
 a

: :
: :

 v

 k+1
 j

: :
FREE sp

fp
c

 a

: :
: :

 v

 k+1
 j

: :

FREE sp

fp

 vk

a : Header

 v1

 vk

 i

: :

: :

LOOKUP (STACK_OFFSET -2)

 (LOOKUP x, evs) -> (cp + 1, V(search(evs, x)) :: evs)

LOOKUP

(STACK_OFFET -2)

AFTER Jargon VM:

Interpreter 3:

BEFORE

c
 a

: :
: :

 v

 k+1
 j

: :
FREE sp

fp
c

 a

: :
: :

 v

 k+1
 j

: :

FREE sp

fp

 v

push argument
value onto the
stack

140

Oh, one problem

Solution in Jargon VM

interpreter 3 let rec comp = function

 :

 | LetFun(f, (x, e1), e2) ->

 let (defs1, c1) = comp e1 in

 let (defs2, c2) = comp e2 in

 let def = [LABEL f; BIND x] @ c1 @ [SWAP; POP; RETURN] in

 (def @ defs1 @ defs2,

 [MK_CLOSURE((f, None)); BIND f] @ c2 @ [SWAP; POP])

 :

Problem: Code c2 can be anything --- how are we going to
find the closure for f when we need it? It has to be a fixed offset
from a frame pointer --- we no longer scan the stack for bindings!

let rec comp vmap = function

 :

| LetFun(f, (x, e1), e2) -> comp vmap (App(Lambda(f, e2), Lambda(x, e1)))

:

Similar trick for LetRecFun

LOOKUP (STACK_OFFSET -1)

AFTER Jargon VM:
BEFORE

c
 a

: :
: :

 v

 k+1
 j

: :
FREE sp

fp
c

 a

: :
: :

 v

 k+1
 j

: :

FREE sp

fp

 a

For recursive function calls,
push current closure on to the stack.

LOOKUP

(STACK_OFFET -1)

closure closure

142

Example : Compiled code for rev_pair.slang

let rev_pair (p : int * int) : int * int = (snd p, fst p)

in

 rev_pair (21, 17)

end

After the front-end, compile treats this as follows.

App(

 Lambda(

 ”rev_pair”,

 App(Var ”rev_pair”, Pair (Integer 21, Integer 17))),

 Lambda(”p”, Pair(Snd (Var ”p”), Fst (Var ”p”))))

143

Example : Compiled code for rev_pair.slang

 MK_CLOSURE(L1, 0)
 MK_CLOSURE(L0, 0)
 APPLY
 HALT

L0 : PUSH STACK_INT 21
 PUSH STACK_INT 17
 MK_PAIR
 LOOKUP STACK_LOCATION -2
 APPLY
 RETURN

L1 : LOOKUP STACK_LOCATION -2
 SND
 LOOKUP STACK_LOCATION -2
 FST
 MK_PAIR
 RETURN

App(

 Lambda(”rev_pair”,

 App(Var ”rev_pair”, Pair (Integer 21, Integer 17))),

 Lambda(”p”, Pair(Snd (Var ”p”), Fst (Var ”p”))))

-- Make closure for second lambda
-- Make closure for first lambda
-- do application
-- the end!
-- code for first lambda, push 21
-- push 17
-- make the pair on the heap
-- push closure for second lambda on stack
-- apply first lambda
-- return from first lambda
-- code for second lambda, push arg on stack
-- extract second part of pair
-- push arg on stack again
-- extract first part of pair
-- construct a new pair
-- return from second lambda

“first lambda”

“second lambda”

Example : trace of rev_pair.slang execution

Installed Code =

0: MK_CLOSURE(L1 = 11, 0)

1: MK_CLOSURE(L0 = 4, 0)

2: APPLY

3: HALT

4: LABEL L0

5: PUSH STACK_INT 21

6: PUSH STACK_INT 17

7: MK_PAIR

8: LOOKUP STACK_LOCATION-2

9: APPLY

10: RETURN

11: LABEL L1

12: LOOKUP STACK_LOCATION-2

13: SND

14: LOOKUP STACK_LOCATION-2

15: FST

16: MK_PAIR

17: RETURN

========== state 1 ==========

cp = 0 -> MK_CLOSURE(L1 = 11, 0)

fp = 0

Stack =

1: STACK_RA 0

0: STACK_FP 0

========== state 2 ==========

cp = 1 -> MK_CLOSURE(L0 = 4, 0)

fp = 0

Stack =

2: STACK_HI 0

1: STACK_RA 0

0: STACK_FP 0

Heap =

0 -> HEAP_HEADER(2, HT_CLOSURE)

1 -> HEAP_CI 11

……

Example : trace of rev_pair.slang execution

========== state 15 ==========

cp = 16 -> MK_PAIR

fp = 8

Stack =

11: STACK_INT 21

10: STACK_INT 17

9: STACK_RA 10

8: STACK_FP 4

7: STACK_HI 0

6: STACK_HI 4

5: STACK_RA 3

4: STACK_FP 0

3: STACK_HI 2

2: STACK_HI 0

1: STACK_RA 0

0: STACK_FP 0

Heap =

0 -> HEAP_HEADER(2, HT_CLOSURE)

1 -> HEAP_CI 11

2 -> HEAP_HEADER(2, HT_CLOSURE)

3 -> HEAP_CI 4

4 -> HEAP_HEADER(3, HT_PAIR)

5 -> HEAP_INT 21

6 -> HEAP_INT 17

========== state 19 ==========

cp = 3 -> HALT

fp = 0

Stack =

2: STACK_HI 7

1: STACK_RA 0

0: STACK_FP 0

Heap =

0 -> HEAP_HEADER(2, HT_CLOSURE)

1 -> HEAP_CI 11

2 -> HEAP_HEADER(2, HT_CLOSURE)

3 -> HEAP_CI 4

4 -> HEAP_HEADER(3, HT_PAIR)

5 -> HEAP_INT 21

6 -> HEAP_INT 17

7 -> HEAP_HEADER(3, HT_PAIR)

8 -> HEAP_INT 17

9 -> HEAP_INT 21

Jargon VM :

output> (17, 21)

146

Example : closure_add.slang

let f(y : int) : int -> int = let g(x :int) : int = y + x in g end

in let add21 : int -> int = f(21)

 in let add17 : int -> int = f(17)

 in add17(3) + add21(10)

 end

 end

end

App(Lambda(f, App(Lambda(add21,

 App(Lambda(add17,

 Op(App(Var(add17), Integer(3)),

 ADD,

 App(Var(add21), Integer(10)))),

 App(Var(f), Integer(17))),

 App(Var(f), Integer(21))))),

 Lambda(y, App(Lambda(g, Var(g)), Lambda(x, Op(Var(y), ADD, Var(x))))))

After the front-end, this becomes represented as follows.

Note : we really do need
closures on the heap here —
the values 21 and 17
do not exist on the stack
at this point in the execution.

147

Can we make sense of this?

MK_CLOSURE(L3, 0)

MK_CLOSURE(L0, 0)

APPLY

HALT

L0 : PUSH STACK_INT 21

LOOKUP STACK_LOCATION -2

APPLY

LOOKUP STACK_LOCATION -2

MK_CLOSURE(L1, 1)

APPLY

RETURN

L1 : PUSH STACK_INT 17

LOOKUP HEAP_LOCATION 1

APPLY

LOOKUP STACK_LOCATION -2

MK_CLOSURE(L2, 1)

APPLY

RETURN

L2 : PUSH STACK_INT 3

LOOKUP STACK_LOCATION -2

APPLY

PUSH STACK_INT 10

LOOKUP HEAP_LOCATION 1

APPLY

OPER ADD

RETURN

L3 : LOOKUP STACK_LOCATION -2

MK_CLOSURE(L5, 1)

MK_CLOSURE(L4, 0)

APPLY

RETURN

L4 : LOOKUP STACK_LOCATION -2

RETURN

L5 : LOOKUP HEAP_LOCATION 1

LOOKUP STACK_LOCATION -2

OPER ADD

RETURN

148

The Gap, illustrated

let fib (m :int) : int =

 if m = 0

 then 1

 else if m = 1

 then 1

 else fib(m - 1) + fib (m - 2)

 end

 end

in fib (?) end

slang.byte –c –i4 fib.slang

 Jargon VM code

fib.slang
 MK_CLOSURE(fib, 0)
 MK_CLOSURE(L0, 0)
 APPLY
 HALT

L0 : PUSH STACK_UNIT
 UNARY READ
 LOOKUP STACK_LOCATION -2
 APPLY
 RETURN

fib : LOOKUP STACK_LOCATION -2
 PUSH STACK_INT 0
 OPER EQI
 TEST L1
 PUSH STACK_INT 1
 GOTO L2

L1 : LOOKUP STACK_LOCATION -2
 PUSH STACK_INT 1
 OPER EQI
 TEST L3
 PUSH STACK_INT 1
 GOTO L4

L3 : LOOKUP STACK_LOCATION -2
 PUSH STACK_INT 1
 OPER SUB
 LOOKUP STACK_LOCATION -1
 APPLY
 LOOKUP STACK_LOCATION -2
 PUSH STACK_INT 2
 OPER SUB
 LOOKUP STACK_LOCATION -1
 APPLY
 OPER ADD

L4 :
L2 : RETURN

149

Remarks

1. The semantic GAP between a Slang/L3 program
and a low-level translation (say x86/Unix) has been
significantly reduced.

2.  Implementing the Jargon VM at a lower-level of
abstraction (in C?, JVM bytecodes? X86/Unix? …)
looks like a relatively easy programming problem.

3. However, using a lower-level implementation (say
x86, exploiting fast registers) to generate very
efficient code is not so easy. See Part II Optimising
Compilers.

Verification of compilers is an active area of research.
See CompCert, CakeML, and DeepSpec.

What about languages other than Slang/L3?

•  Many textbooks on compilers treat only languages with
first-order functions --- that is, functions cannot be passes
as an argument or returned as a result. In this case, we
can avoid allocating environments on the heap since all
values associated with free variables will be somewhere
on the stack!

•  But how do we find these values? We optimise stack
search by following a chain of static links. Static links are
added to every stack frame and the point to the stack
frame of the last invocation of the defining function.

•  One other thing: most languages take multiple arguments
for a function/procedure call.

Terminology: Caller and Callee

!
fun f (x, y) = e1 !
!
… !
!
fun g(w, v) = !
 w + f(v, v) !
!

For this invocation of
the function f, we say
that g is the caller
while f is the callee

Recursive functions can play
both roles at the same time …

152

Nesting depth

fun b(z) = e

 fun g(x1) =

 fun h(x2) =

 fun f(x3) = e3(x1, x2, x3, b, g h, f)

 in

 e2(x1, x2, b, g, h, f)

 end

 in

 e1(x1, b, g, h)

 end

…

b(g(17))

…

Pseudo-code

153

Nesting depth

fun b(z) = e

 fun g(x1) =
 fun h(x2) =
 fun f(x3) = e3(x1, x2, x3, b, g h, f)
 in
 e2(x1, x2, b, g, h, f)
 end
 in
 e1(x1, b, g, h)
 end
…
b(g(17))
…

code in big box is at nesting depth k

 nesting depth k + 1

 nesting depth k + 1

 nesting depth k + 2

 nesting depth k + 3

Function g is the definer of h. Functions g and b must
share a definer defined at depth k-1

154

Stack with static links and variable number of
arguments

 sp

 FP-saved
 RA

stack frame for
callee defined
at nesting
depth i <= k + 1

stack frame for caller
defined at nesting depth
k used to evaluate code
at depth k + 1.

 args
 for
callee

fp

 SL{i – 1} The static link points
down to the closest
frame of definer
at nesting
depth i - 1

 SL{k - 1}

155

 caller and callee at same nesting depth k

call f 0

cp

Code

FREE sp

fp

j : call f

f : …….. cp
Code

sp

fp

j : call f

f : ……..

FREE

j+1

caller’s
 frame

 SL{k – 1}

 SL{k – 1}

 SL{k – 1}

156

 caller at depth k and callee at depth i < k

call f (k - i)

cp

Code

FREE sp

fp

j : call f

f : …….. cp
Code

sp

fp

j : call f

f : ……..

FREE

j+1

 SL{k - 1}

 SL{i - 1}

 SL{k - 1}

p := !(fp + 2);
for c = 1 to k – i
{
 p := !(p + 2);
}
SL{i-1} := p;

157

 caller at depth k and callee at depth k + 1

call f (-1)

cp

Code

FREE sp

fp

j : call f

f : …….. cp

Code

sp

fp

j : call f

f : ……..

FREE

j+1

 SL{k - 1} SL{k - 1}

 FP-saved

FP-saved

Access to argument values at static
distance 0

arg 0 j sp

fp

FREE

 ra

sp

fp

FREE

 ra

V

V fp - j

 SL SL

Access to argument values at static
distance d, 0 < d

arg d j sp

fp

FREE

 ra

sp

fp

FREE

 ra

V

 SL SL

p := !(fp + 2);
for c = 1 to d
{
 p := !(p + 2);
}
v := !(p – j);

160

 LECTUREs 11, 12
What about Interpreter 1?

•  Evaluation using a stack
•  Recursion using a stack
•  Tail recursion elimination: from recursion to iteration
•  Continuation Passing Style (CPS) : transform any

recursive function to a tail-recursive function
•  “Defunctionalisation” (DFC) : replace higher-order

functions with a data structure
•  Putting it all together:

–  Derive the Fibonacci Machine
–  Derive the Expression Machine, and “compiler”!

•  This provides a roadmap for the interp_0 à interp_1 à
interp_2 derivations.

161

Example of tail-recursion : gcd

(* gcd : int * int -> int *)

let rec gcd(m, n) =

 if m = n

 then m

 else if m < n

 then gcd(m, n - m)

 else gcd(m - n, n)

gcd(3,5)
 gcd(3,5)

gcd(3,2)

gcd(3,5)

gcd(3,2)

gcd(1,2)

gcd(3,5)

gcd(3,2)

gcd(1,2)

gcd(1,1)

gcd(3,5)

gcd(3,2)

gcd(1,2)

___ 1 ___

gcd(3,5)

gcd(3,2)

___ 1 ___

gcd(3,5)

___ 1 ___

___ 1 ___

Compared to fib, this function uses
recursion in a different way. It is
tail-recursive. If implemented with
a stack, then the “call stack” (at least
with respect to gcd) will
simply grow and then shrink.
No “ups and downs” in between.

Tail-recursive code can be replaced by iterative code
that does not require a “call stack” (constant space)

gcd_iter : gcd without recursion!

(* gcd : int * int -> int *)

let rec gcd(m, n) =

 if m = n

 then m

 else if m < n

 then gcd(m, n - m)

 else gcd(m - n, n)

(* gcd_iter : int * int -> int *)

let gcd_iter (m, n) =

 let rm = ref m

 in let rn = ref n

 in let result = ref 0

 in let not_done = ref true

 in let _ =

 while !not_done

 do

 if !rm = !rn

 then (not_done := false;

 result := !rm)

 else if !rm < !rn

 then rn := !rn - !rm

 else rm := !rm - !rn

 done

 in !result

Here we have illustrated
tail-recursion elimination
as a source-to-source
transformation. However, the
OCaml compiler will do something
similar to a lower-level intermediate
representation. Upshot : we will
consider all tail-recursive OCaml
functions as representing iterative
programs.

163

Familiar examples : fold_left,
fold_right

(* fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a

 fold_left f a [b1; ...; bn]] = f (... (f (f a b1) b2) ...) bn

*)

let rec fold_left f a l =

 match l with

 | [] -> a

 | b :: rest -> fold_left f (f a b) rest

(* fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b

 fold_right f [a1; ...; an] b = f a1 (f a2 (... (f an b) ...))

 *)

let rec fold_right f l b =

 match l with

 | [] -> b

 | a::rest -> f a (fold_right f rest b)

From ocaml-4.01.0/stdlib/list.ml :

This is tail
recursive

This is NOT
tail
recursive

164

Question: can we transform any
recursive function into a tail

recursive function?

The answer is YES!

•  We add an extra argument, called a continuation,
that represents “the rest of the computation”

•  This is called the Continuation Passing Style
(CPS) transformation.

•  We will then “defunctionalize” (DFC) these
continuations and represent them with a stack.

•  Finally, we obtain a tail recursive function that
carries its own stack as an extra argument!

We will apply this kind of
transformation to the code of interpreter 0 as
the first steps towards deriving interpreter 1.

165

(CPS) transformation of fib
(* fib : int -> int *)

let rec fib m =

 if m = 0

 then 1

 else if m = 1

 then 1

 else fib(m - 1) + fib (m - 2)

(* fib_cps : int * (int -> int) -> int *)

 let rec fib_cps (m, cnt) =

 if m = 0

 then cnt 1

 else if m = 1

 then cnt 1

 else fib_cps(m -1, fun a -> fib_cps(m - 2 , fun b -> cnt (a + b)))

166

A closer look

let rec fib_cps (m, cnt) =

 if m = 0

 then cnt 1

 else if m = 1

 then cnt 1

 else fib_cps(m -1, fun a -> fib_cps(m - 2 , fun b -> cnt (a + b)))

The rest of the computation after computing “fib(m)”. That is, cnt is a
function expecting the result of “fib(m)” as its argument.

The computation waiting
for the result of “fib(m-2)”

The computation waiting
for the result of “fib(m-1)”

This makes explicit the order of
evaluation that is implicit in the
original “fib(m-1) + fib(m-2)” :
-- first compute fib(m-1)
-- then compute fib(m-1)
-- then add results together
-- then return

167

Expressed with “let” rather than “fun”

(* fib_cps_v2 : (int -> int) * int -> int *)

let rec fib_cps_v2 (m, cnt) =

 if m = 0

 then cnt 1

 else if m = 1

 then cnt 1

 else let cnt2 a b = cnt (a + b)

 in let cnt1 a = fib_cps_v2(m - 2, cnt2 a)

 in fib_cps_v2(m - 1, cnt1)

Some prefer writing CPS forms without explicit funs ….

168

Use the identity continuation …

(* fib_cps : int * (int -> int) -> int *)

 let rec fib_cps (m, cnt) =

 if m = 0

 then cnt 1

 else if m = 1

 then cnt 1

 else fib_cps(m -1, fun a -> fib_cps(m - 2 , fun b -> cnt (a + b)))

let id (x : int) = x

let fib_1 x = fib_cps(x, id)

List.map fib_1 [0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10];;

 = [1; 1; 2; 3; 5; 8; 13; 21; 34; 55; 89]

169

Correctness?
 For all c : int -> int, for all m, 0 <= m,
 we have, c(fib m) = fib_cps(m, c).

Proof: assume c : int -> int. By Induction
on m. Base case : m = 0:
 fib_cps(0, c) = c(1) = c(fib(0).

Induction step: Assume for all n < m, c(fib n) = fib_cps(n, c).
(That is, we need course-of-values induction!)
 fib_cps(m + 1, c)
 = if m + 1 = 1
 then c 1
 else fib_cps((m+1) -1, fun a -> fib_cps((m+1) -2, fun b -> c (a + b)))
 = if m + 1 = 1
 then c 1
 else fib_cps(m, fun a -> fib_cps(m-1, fun b -> c (a + b)))
 = (by induction)
 if m + 1 = 1
 then c 1
 else (fun a -> fib_cps(m -1, fun b -> c (a + b))) (fib m)

NB: This proof pretends that we can
treat OCaml functions as ideal
mathematical functions, which of course
we cannot. OCaml functions might raise
exceptions like "stack overflow” or
"you burned my toast", and so on. But
this is a convenient fiction as long as
we remember to be careful.

170

Correctness?
 = if m + 1 = 1
 then c 1
 else fib_cps(m-1, fun b -> c ((fib m) + b))
 = (by induction)
 if m + 1 = 1
 then c 1
 else (fun b -> c ((fib m) + b)) (fib (m-1))
 = if m + 1 = 1
 then c 1
 else c ((fib m) + (fib (m-1)))
 = c (if m + 1 = 1
 then 1
 else ((fib m) + (fib (m-1))))
 = c(if m +1 = 1
 then 1
 else fib((m + 1) - 1) + fib ((m + 1) - 2))
 = c (fib(m + 1))

 QED.

171

Can with express fib_cps without a
functional argument ?

(* fib_cps_v2 : (int -> int) * int -> int *)

let rec fib_cps_v2 (m, cnt) =

 if m = 0

 then cnt 1

 else if m = 1

 then cnt 1

 else let cnt2 a b = cnt (a + b)

 in let cnt1 a = fib_cps_v2(m - 2, cnt2 a)

 in fib_cps_v2(m - 1, cnt1)

Idea of “defunctonalisation” (DFC): replace id, cnt1 and cnt2 with
instances of a new data type:

type cnt = ID | CNT1 of int * cnt | CNT2 of int * cnt

Now we need an “apply” function of type cnt * int -> int

172

“Defunctionalised” version of fib_cps
(* datatype to represent continuations *)

type cnt = ID | CNT1 of int * cnt | CNT2 of int * cnt

(* apply_cnt : cnt * int -> int *)

let rec apply_cnt = function

 | (ID, a) -> a

 | (CNT1 (m, cnt), a) -> fib_cps_dfc(m - 2, CNT2 (a, cnt))

 | (CNT2 (a, cnt), b) -> apply_cnt (cnt, a + b)

(* fib_cps_dfc : (cnt * int) -> int *)

and fib_cps_dfc (m, cnt) =

 if m = 0

 then apply_cnt(cnt, 1)

 else if m = 1

 then apply_cnt(cnt, 1)

 else fib_cps_dfc(m -1, CNT1(m, cnt))

(* fib_2 : int -> int *)

let fib_2 m = fib_cps_dfc(m, ID)

173

Correctness?

Let < c > be of type cnt representing
a continuation c : int -> int constructed by fib_cps.

Then
 apply_cnt(< c >, m) = c(m)

and
 fib_cps(n, c) = fib_cps_dfc(n, < c >).

fun b -> cnt (a + b) CNT2(a, < cnt >)

fun a -> fib_cps(m - 2 , fun b -> cnt (a + b)) CNT1(m, < cnt >)

Proof left
as an
exercise!

fun x -> x ID

Functional continuation c Representation < c >

174

Eureka! Continuations are just lists
(used like a stack)

type tag = SUB2 of int | PLUS of int

type tag_list_cnt = tag list

type cnt = ID | CNT1 of int * cnt | CNT2 of int * cnt

Replace the above continuations with lists! (I’ve selected
more suggestive names for the constructors.)

Think
nil

Think
cons
type1

type int_list = NIL | CONS of int * int_list

Think
cons
type2

175

The continuation lists are used like a stack!

type tag = SUB2 of int | PLUS of int

type tag_list_cnt = tag list

(* apply_tag_list_cnt : tag_list_cnt * int -> int *)

let rec apply_tag_list_cnt = function

 | ([], a) -> a

 | ((SUB2 m) :: cnt, a) -> fib_cps_dfc_tags(m - 2, (PLUS a):: cnt)

 | ((PLUS a) :: cnt, b) -> apply_tag_list_cnt (cnt, a + b)

(* fib_cps_dfc_tags : (tag_list_cnt * int) -> int *)

and fib_cps_dfc_tags (m, cnt) =

 if m = 0

 then apply_tag_list_cnt(cnt, 1)

 else if m = 1

 then apply_tag_list_cnt(cnt, 1)

 else fib_cps_dfc_tags(m - 1, (SUB2 m) :: cnt)

(* fib_3 : int -> int *)

let fib_3 m = fib_cps_dfc_tags(m, [])

176

Combine Mutually tail-recursive
functions into a single function

type state_type =
 | SUB1 (* for right-hand-sides starting with fib_ *)
 | APPL (* for right-hand-sides starting with apply_ *)

type state = (state_type * int * tag_list_cnt) -> int

(* eval : state -> int A two-state transition function*)
let rec eval = function
 | (SUB1, 0, cnt) -> eval (APPL, 1, cnt)
 | (SUB1, 1, cnt) -> eval (APPL, 1, cnt)
 | (SUB1, m, cnt) -> eval (SUB1, (m-1), (SUB2 m) :: cnt)
 | (APPL, a, (SUB2 m) :: cnt) -> eval (SUB1, (m-2), (PLUS a) :: cnt)
 | (APPL, b, (PLUS a) :: cnt) -> eval (APPL, (a+b), cnt)
 | (APPL, a, []) -> a

(* fib_4 : int -> int *)
let fib_4 m = eval (SUB1, m, [])

177

Eliminate tail recursion to obtain The Fibonacci Machine!

(* step : state -> state *)
let step = function
 | (SUB1, 0, cnt) -> (APPL, 1, cnt)
 | (SUB1, 1, cnt) -> (APPL, 1, cnt)
 | (SUB1, m, cnt) -> (SUB1, (m-1), (SUB2 m) :: cnt)
 | (APPL, a, (SUB2 m) :: cnt) -> (SUB1, (m-2), (PLUS a) :: cnt)
 | (APPL, b, (PLUS a) :: cnt) -> (APPL, (a+b), cnt)
 | _ -> failwith "step : runtime error!”

(* clearly TAIL RECURSIVE! *)
let rec driver state = function
 | (APPL, a, []) -> a
 | state -> driver (step state)

(* fib_5 : int -> int *)
let fib_5 m = driver (SUB1, m, [])

In this version we have
simply made the
tail-recursive
structure very explicit.

178

Here is a trace of fib_5 6.
 1 SUB1 || 6 || []

 2 SUB1 || 5 || [SUB2 6]

 3 SUB1 || 4 || [SUB2 6, SUB2 5]

 4 SUB1 || 3 || [SUB2 6, SUB2 5, SUB2 4]

 5 SUB1 || 2 || [SUB2 6, SUB2 5, SUB2 4, SUB2 3]

 6 SUB1 || 1 || [SUB2 6, SUB2 5, SUB2 4, SUB2 3, SUB2 2]

 7 APPL || 1 || [SUB2 6, SUB2 5, SUB2 4, SUB2 3, SUB2 2]

 8 SUB1 || 0 || [SUB2 6, SUB2 5, SUB2 4, SUB2 3, PLUS 1]

 9 APPL || 1 || [SUB2 6, SUB2 5, SUB2 4, SUB2 3, PLUS 1]

10 APPL || 2 || [SUB2 6, SUB2 5, SUB2 4, SUB2 3]

11 SUB1 || 1 || [SUB2 6, SUB2 5, SUB2 4, PLUS 2]

12 APPL || 1 || [SUB2 6, SUB2 5, SUB2 4, PLUS 2]

13 APPL || 3 || [SUB2 6, SUB2 5, SUB2 4]

14 SUB1 || 2 || [SUB2 6, SUB2 5, PLUS 3]

15 SUB1 || 1 || [SUB2 6, SUB2 5, PLUS 3, SUB2 2]

16 APPL || 1 || [SUB2 6, SUB2 5, PLUS 3, SUB2 2]

17 SUB1 || 0 || [SUB2 6, SUB2 5, PLUS 3, PLUS 1]

18 APPL || 1 || [SUB2 6, SUB2 5, PLUS 3, PLUS 1]

19 APPL || 2 || [SUB2 6, SUB2 5, PLUS 3]

20 APPL || 5 || [SUB2 6, SUB2 5]

21 SUB1 || 3 || [SUB2 6, PLUS 5]

22 SUB1 || 2 || [SUB2 6, PLUS 5, SUB2 3]

23 SUB1 || 1 || [SUB2 6, PLUS 5, SUB2 3, SUB2 2]

24 APPL || 1 || [SUB2 6, PLUS 5, SUB2 3, SUB2 2]

25 SUB1 || 0 || [SUB2 6, PLUS 5, SUB2 3, PLUS 1]

26 APPL || 1 || [SUB2 6, PLUS 5, SUB2 3, PLUS 1]

27 APPL || 2 || [SUB2 6, PLUS 5, SUB2 3]

28 SUB1 || 1 || [SUB2 6, PLUS 5, PLUS 2]

29 APPL || 1 || [SUB2 6, PLUS 5, PLUS 2]

30 APPL || 3 || [SUB2 6, PLUS 5]

31 APPL || 8 || [SUB2 6]

32 SUB1 || 4 || [PLUS 8]

33 SUB1 || 3 || [PLUS 8, SUB2 4]

34 SUB1 || 2 || [PLUS 8, SUB2 4, SUB2 3]

35 SUB1 || 1 || [PLUS 8, SUB2 4, SUB2 3, SUB2 2]

36 APPL || 1 || [PLUS 8, SUB2 4, SUB2 3, SUB2 2]

37 SUB1 || 0 || [PLUS 8, SUB2 4, SUB2 3, PLUS 1]

38 APPL || 1 || [PLUS 8, SUB2 4, SUB2 3, PLUS 1]

39 APPL || 2 || [PLUS 8, SUB2 4, SUB2 3]

40 SUB1 || 1 || [PLUS 8, SUB2 4, PLUS 2]

41 APPL || 1 || [PLUS 8, SUB2 4, PLUS 2]

42 APPL || 3 || [PLUS 8, SUB2 4]

43 SUB1 || 2 || [PLUS 8, PLUS 3]

44 SUB1 || 1 || [PLUS 8, PLUS 3, SUB2 2]

45 APPL || 1 || [PLUS 8, PLUS 3, SUB2 2]

46 SUB1 || 0 || [PLUS 8, PLUS 3, PLUS 1]

47 APPL || 1 || [PLUS 8, PLUS 3, PLUS 1]

48 APPL || 2 || [PLUS 8, PLUS 3]

49 APPL || 5 || [PLUS 8]

50 APPL ||13|| []

The OCaml file in basic_transformations/fibonacci_machine.ml
contains some code for pretty printing such traces….

179

Pause to reflect

•  What have we accomplished?
•  We have taken a recursive function and turned it

into an iterative function that does not require
“stack space” for its evaluation (in OCaml)

•  However, this function now carries its own
evaluation stack as an extra argument!

•  We have derived this iterative function in a step-
by-step manner where each tiny step is easily
proved correct.

•  Wow!

180

That was fun! Let’s do it again!

type expr =
 | INT of int
 | PLUS of expr * expr
 | SUBT of expr * expr
 | MULT of expr * expr

(* eval : expr -> int
 a simple recusive evaluator for expressions *)
let rec eval = function
 | INT a -> a
 | PLUS(e1, e2) -> (eval e1) + (eval e2)
 | SUBT(e1, e2) -> (eval e1) - (eval e2)
 | MULT(e1, e2) -> (eval e1) * (eval e2)

This time we will derive a
stack-machine AND
a “compiler” that translates
expressions into a list of
instructions for the machine.

181

Here we go again : CPS
type cnt_2 = int -> int

type state_2 = expr * cnt_2

(* eval_aux_2 : state_2 -> int *)

let rec eval_aux_2 (e, cnt) =

 match e with

 | INT a -> cnt a

 | PLUS(e1, e2) ->

 eval_aux_2(e1, fun v1 -> eval_aux_2(e2, fun v2 -> cnt(v1 + v2)))

 | SUBT(e1, e2) ->

 eval_aux_2(e1, fun v1 -> eval_aux_2(e2, fun v2 -> cnt(v1 - v2)))

 | MULT(e1, e2) ->

 eval_aux_2(e1, fun v1 -> eval_aux_2(e2, fun v2 -> cnt(v1 * v2)))

 (* id_cnt : cnt_2 *)

let id_cnt (x : int) = x

(* eval_2 : expr -> int *)

let eval_2 e = eval_aux_2(e, id_cnt)

182

Defunctionalise!
type cnt_3 =

 | ID

 | OUTER_PLUS of expr * cnt_3

 | OUTER_SUBT of expr * cnt_3

 | OUTER_MULT of expr * cnt_3

 | INNER_PLUS of int * cnt_3

 | INNER_SUBT of int * cnt_3

 | INNER_MULT of int * cnt_3

type state_3 = expr * cnt_3

(* apply_3 : cnt_3 * int -> int *)

let rec apply_3 = function

 | (ID, v) -> v

 | (OUTER_PLUS(e2, cnt), v1) -> eval_aux_3(e2, INNER_PLUS(v1, cnt))

 | (OUTER_SUBT(e2, cnt), v1) -> eval_aux_3(e2, INNER_SUBT(v1, cnt))

 | (OUTER_MULT(e2, cnt), v1) -> eval_aux_3(e2, INNER_MULT(v1, cnt))

 | (INNER_PLUS(v1, cnt), v2) -> apply_3(cnt, v1 + v2)

 | (INNER_SUBT(v1, cnt), v2) -> apply_3(cnt, v1 - v2)

 | (INNER_MULT(v1, cnt), v2) -> apply_3(cnt, v1 * v2)

183

Defunctionalise!

(* eval_aux_2 : state_3 -> int *)

and eval_aux_3 (e, cnt) =

 match e with

 | INT a -> apply_3(cnt, a)

 | PLUS(e1, e2) -> eval_aux_3(e1, OUTER_PLUS(e2, cnt))

 | SUBT(e1, e2) -> eval_aux_3(e1, OUTER_SUBT(e2, cnt))

 | MULT(e1, e2) -> eval_aux_3(e1, OUTER_MULT(e2, cnt))

(* eval_3 : expr -> int *)

let eval_3 e = eval_aux_3(e, ID)

184

Eureka! Again we have a stack!
type tag =

 | O_PLUS of expr

 | I_PLUS of int

 | O_SUBT of expr

 | I_SUBT of int

 | O_MULT of expr

 | I_MULT of int

type cnt_4 = tag list

type state_4 = expr * cnt_4

(* apply_4 : cnt_4 * int -> int *)

let rec apply_4 = function

 | ([], v) -> v

 | ((O_PLUS e2) :: cnt, v1) -> eval_aux_4(e2, (I_PLUS v1) :: cnt)

 | ((O_SUBT e2) :: cnt, v1) -> eval_aux_4(e2, (I_SUBT v1) :: cnt)

 | ((O_MULT e2) :: cnt, v1) -> eval_aux_4(e2, (I_MULT v1) :: cnt)

 | ((I_PLUS v1) :: cnt, v2) -> apply_4(cnt, v1 + v2)

 | ((I_SUBT v1) :: cnt, v2) -> apply_4(cnt, v1 - v2)

 | ((I_MULT v1) :: cnt, v2) -> apply_4(cnt, v1 * v2)

185

Eureka! Again we have a stack!

(* eval_aux_4 : state_4 -> int *)

and eval_aux_4 (e, cnt) =

 match e with

 | INT a -> apply_4(cnt, a)

 | PLUS(e1, e2) -> eval_aux_4(e1, O_PLUS(e2) :: cnt)

 | SUBT(e1, e2) -> eval_aux_4(e1, O_SUBT(e2) :: cnt)

 | MULT(e1, e2) -> eval_aux_4(e1, O_MULT(e2) :: cnt)

(* eval_4 : expr -> int *)

let eval_4 e = eval_aux_4(e, [])

186

Eureka! Can combine apply_4 and
eval_aux_4

type acc =

 | A_INT of int

 | A_EXP of expr

type cnt_5 = cnt_4

type state_5 = cnt_5 * acc

val : step : state_5 -> state_5

val driver : state_5 -> int

val eval_5 : expr -> int

Type of an “accumulator” that
contains either an int
or an expression.

The driver will be
clearly tail-recursive …

187

Rewrite to use driver, accumulator

let step_5 = function

 | (cnt, A_EXP (INT a)) -> (cnt, A_INT a)

 | (cnt, A_EXP (PLUS(e1, e2))) -> (O_PLUS(e2) :: cnt, A_EXP e1)

 | (cnt, A_EXP (SUBT(e1, e2))) -> (O_SUBT(e2) :: cnt, A_EXP e1)

 | (cnt, A_EXP (MULT(e1, e2))) -> (O_MULT(e2) :: cnt, A_EXP e1)

 | ((O_PLUS e2) :: cnt, A_INT v1) -> ((I_PLUS v1) :: cnt, A_EXP e2)

 | ((O_SUBT e2) :: cnt, A_INT v1) -> ((I_SUBT v1) :: cnt, A_EXP e2)

 | ((O_MULT e2) :: cnt, A_INT v1) -> ((I_MULT v1) :: cnt, A_EXP e2)

 | ((I_PLUS v1) :: cnt, A_INT v2) -> (cnt, A_INT (v1 + v2))

 | ((I_SUBT v1) :: cnt, A_INT v2) -> (cnt, A_INT (v1 - v2))

 | ((I_MULT v1) :: cnt, A_INT v2) -> (cnt, A_INT (v1 * v2))

 | ([], A_INT v) -> ([], A_INT v)

let rec driver_5 = function

 | ([], A_INT v) -> v

 | state -> driver_5 (step_5 state)

let eval_5 e = driver_5([], A_EXP e)

188

Eureka! There are really two
independent stacks here --- one for
“expressions” and one for values

type directive =

 | E of expr

 | DO_PLUS

 | DO_SUBT

 | DO_MULT

type directive_stack = directive list

type value_stack = int list

type state_6 = directive_stack * value_stack

val step_6 : state_6 -> state_6

val driver_6 : state_6 -> int

val exp_6 : expr -> int

The state is now
two stacks!

189

Split into two stacks

let step_6 = function

 | (E(INT v) :: ds, vs) -> (ds, v :: vs)

 | (E(PLUS(e1, e2)) :: ds, vs) -> ((E e1) :: (E e2) :: DO_PLUS :: ds, vs)

 | (E(SUBT(e1, e2)) :: ds, vs) -> ((E e1) :: (E e2) :: DO_SUBT :: ds, vs)

 | (E(MULT(e1, e2)) :: ds, vs) -> ((E e1) :: (E e2) :: DO_MULT :: ds, vs)

 | (DO_PLUS :: ds, v2 :: v1 :: vs) -> (ds, (v1 + v2) :: vs)

 | (DO_SUBT :: ds, v2 :: v1 :: vs) -> (ds, (v1 - v2) :: vs)

 | (DO_MULT :: ds, v2 :: v1 :: vs) -> (ds, (v1 * v2) :: vs)

 | _ -> failwith "eval : runtime error!"

let rec driver_6 = function

 | ([], [v]) -> v

 | state -> driver_6 (step_6 state)

let eval_6 e = driver_6 ([E e], [])

190

An eval_6 trace
e = PLUS(MULT(INT 89, INT 2), SUBT(INT 10, INT 4))

Top of each
stack is on
the right

state 1 DS = [E(PLUS(MULT(INT(89), INT(2)), SUBT(INT(10), INT(4))))]
 VS = []
state 2 DS = [DO_PLUS; E(SUBT(INT(10), INT(4))); E(MULT(INT(89), INT(2)))]
 VS = []
state 3 DS = [DO_PLUS; E(SUBT(INT(10), INT(4))); DO_MULT; E(INT(2)); E(INT(89))]
 VS = []
state 4 DS = [DO_PLUS; E(SUBT(INT(10), INT(4))); DO_MULT; E(INT(2))]
 VS = [89]
state 5 DS = [DO_PLUS; E(SUBT(INT(10), INT(4))); DO_MULT]
 VS = [89; 2]
state 6 DS = [DO_PLUS; E(SUBT(INT(10), INT(4)))]
 VS = [178]
state 7 DS = [DO_PLUS; DO_SUBT; E(INT(4)); E(INT(10))]
 VS = [178]
state 8 DS = [DO_PLUS; DO_SUBT; E(INT(4))]
 VS = [178; 10]
state 9 DS = [DO_PLUS; DO_SUBT]
 VS = [178; 10; 4]
state 10DS = [DO_PLUS]
 VS = [178; 6]
state 11DS = []
 VS = [184]

in
sp

ec
t

in
sp

ec
t

co
m

pu
te

co

m
pu

te

191

Key insight

This evaluator is interleaving two distinct computations:

 (1) decomposition of the input expression into sub-expressions
 (2) the computation of +, -, and *.

Idea: why not do the decomposition BEFORE the computation?

Key insight: An interpreter can (usually) be refactored into a
translation (compilation!) followed by a lower-level interpreter.

Interpret_higher (e) = interpret_lower(compile(e))

Note : this can occur at many levels of abstraction: think of machine code
being interpreted in micro-code …

192

Refactor --- compile!

(* low-level instructions *)

type instr =

 | Ipush of int

 | Iplus

 | Isubt

 | Imult

type code = instr list

type state_7 = code * value_stack

(* compile : expr -> code *)

let rec compile = function

 | INT a -> [Ipush a]

 | PLUS(e1, e2) -> (compile e1) @ (compile e2) @ [Iplus]

 | SUBT(e1, e2) -> (compile e1) @ (compile e2) @ [Isubt]

 | MULT(e1, e2) -> (compile e1) @ (compile e2) @ [Imult]

Never put off till run-time what
you can do at compile-time.
 -- David Gries

193

Evaluate compiled code.

(* step_7 : state_7 -> state_7 *)

let step_7 = function

 | (Ipush v :: is, vs) -> (is, v :: vs)

 | (Iplus :: is, v2::v1::vs) -> (is, (v1 + v2) :: vs)

 | (Isubt :: is, v2::v1::vs) -> (is, (v1 - v2) :: vs)

 | (Imult :: is, v2::v1::vs) -> (is, (v1 * v2) :: vs)

 | _ -> failwith "eval : runtime error!"

let rec driver_7 = function

 | ([], [v]) -> v

 | _ -> driver_7 (step_7 state)

let eval_7 e = driver_7 (compile e, []) l

194

An eval_7 trace
compile (PLUS(MULT(INT 89, INT 2), SUBT(INT 10, INT 4)))

 = [push 89; push 2; mult; push 10; push 4; subt; plus]

Top of each
stack is on
the right

state 1 IS = [add; sub; push 4; push 10; mul; push 2; push 89]
 VS = []
state 2 IS = [add; sub; push 4; push 10; mul; push 2]
 VS = [89]
state 3 IS = [add; sub; push 4; push 10; mul]
 VS = [89; 2]
state 4 IS = [add; sub; push 4; push 10]
 VS = [178]
state 5 IS = [add; sub; push 4]
 VS = [178; 10]
state 6 IS = [add; sub]
 VS = [178; 10; 4]
state 7 IS = [add]
 VS = [178; 6]
state 8 IS = []
 VS = [184]

co
m

pu
te

in

sp
ec

t

195

Interp_0.ml à interp_1.ml à interp_2.ml

The derivation from eval to compile+eval_7 can be used
as a guide to a derivation from Interpreter 0 to interpreter 2.

1. Apply CPS to the code of Interpreter 0
2. Defunctionalise
3. Arrive at interpreter 1, which has a single

continuation stack containing expressions,
values and environments

4. Spit this stack into two stacks : one for
instructions and the other for values and
environments

5. Refactor into compiler + lower-level interpreter
6. Arrive at interpreter 2.

196

Taking stock

Interpreter 0

Interpreter 1

Interpreter 2

Interpreter 3

Jargon VM

Split stack into two, refactor

Linearise code

Low-level addressable stack

Starting from a direct implementation of Slang/L3 semantics,
we have DERIVED a Virtual Machine in a step-by-step manner.
The correctness of aach step is (more or less) easy to check.

Explicit stack via CPS+DFS

197

Compiler Construction
Lent Term 2017

Part III : Lectures 13 – 16

Timothy G. Griffin
tgg22@cam.ac.uk

Computer Laboratory
University of Cambridge

•  13 : Compilers in their OS context
•  14 : Assorted Topics
•  15 : Runtime memory management
•  16 : Bootstrapping a compiler

198

Lecture 13

•  Code generation for multiple platforms.
•  Assembly code
•  Linking and loading
•  The Application Binary Interface (ABI)
•  Object file format (only ELF covered)
•  A crash course in x86 architecture and instruction set
•  Naïve generation of x86 code from Jargon VM instructions

199

We could implement a Jargon byte code interpreter …

...

...

void vsm_execute_instruction(vsm_state *state, bytecode instruction)

{

 opcode code = instruction.code;

 argument arg1 = instruction.arg1;

 switch (code) {

 case PUSH: { state->stack[state->sp++] = arg1; state->pc++; break; }

 case POP : { state->sp--; state->pc++; break; }

 case GOTO: { state->pc = arg1; break; }

 case STACK_LOOKUP: {

 state->stack[state->sp++] =

 state->stack[state->fp + arg1];

 state->pc++; break; }

 ...

 ...

 }

}

...

...

•  Generate compact byte code for
each Jargon instruction.

•  Compiler writes byte codes to a file.
•  Implement an interpreter in C or C++

for these byte codes.
•  Execution is much faster than our

jargon.ml implementation.
•  Or, we could generate assembly

code from Jargon instructions ….

200

Backend could target multiple platforms

Intermediate
code

 x86/Linux code gen

ARM/Android code gen

…

…

…

Target?

Back end

x86/windows

x86/linux

ARM/android

Assembly code

 x86/Windows code gen

One of the great benefits of Virtual Machines is their
portability. However, for more efficient code we may want to
compile to assembler. Lost portability can be regained
through the extra effort of implementing code generation for
every desired target platform.

201

Assembly, Linking, Loading

assembly
code file

assembler

assembly
code file

assembler

assembly
code file

assembler

…

…
…

 linker

 object
code file

 object
code file

 object
code file

single executable object code file

Operating System

RUN!

 loader

Object code
libraries

From symbolic
names and
addresses to
numeric codes
and numeric
addresses

Name
resolution,
creation of
single address
space

Address
relocation,
memory
allocation,
dynamic
linking

(main tasks)

Link errors

202

The gcc manual (810 pages)
 https://gcc.gnu.org/onlinedocs/gcc-5.3.0/gcc.pdf

203

Applications Binary Interface (ABI)

•  C calling conventions used for systems calls
or calls to compiled C code.

•  Register usage and stack frame layout
•  How parameters are passed, results

returned
•  Caller/callee responsibilities for placement

and cleanup
•  Byte-level layout and semantics of object files.

•  Executable and Linkable Format (ELF).
Formerly known as Extensible Linking
Format.

•  Linking, loading, and name mangling

We will use x86/Unix as our running example.
Specifies many things, including the following.

Note: the conventions
are required for
portable interaction
with compiled C.
Your compiled
language does not
have to follow the
same conventions!

Object files

Must contain at least

•  Program instructions
•  Symbols being exported
•  Symbols being imported
•  Constants used in the program (such as strings)

Executable and Linkable Format (ELF) is a common
format for both linker input and output.

ELF details (1)

ELF details (2)

The Linker

What does a linker do?
• takes some object files as input, notes all undefined symbols.
• recursively searches libraries adding ELF files which
 define such symbols until all names defined (“library search”).
• whinges if any symbol is undefined or multiply defined.

Then what?
• concatenates all code segments (forming the output
 code segment).
• concatenates all data segments.
• performs relocations (updates code/data segments
 at specified offsets.

Recently there had been renewed interest in optimization at this stage.

Dynamic vs. Static Loading

There are two approaches to linking:
Static linking (described on previous slide).
 Problem: a simple “hello world” program may give a 10MB
 executable if it refers to a big graphics or other library.
Dynamic linking
 Don’t incorporate big libraries as part of the executable,
 but load them into memory on demand. Such libraries are
 held as “.DLL” (Windows) or ”.so” (Linux) files.

Pros and Cons of dynamic linking:
(+) Executables are smaller
(+) Bug fixes to a library don’t require re-linking as the new version
 is automatically demand-loaded every time the program is run.
(-) Non-compatible changes to a library wreck previously working
 programs “DLL hell”.

209

A “runtime system”

A library implementing functionality needed to run compiled
code on a given operating system. Normally tailored to the
language being compiled.

•  Implements interface between OS and language.
•  May implement memory management.
•  May implement “foreign function” interface (say we want

to call compiled C code from Slang code, or vice versa).
•  May include efficient implementations of primitive

operations defined in the compiled language.
•  For some languages, the runtime system may perform

runtime type checking, method lookup, security checks,
and so on.

•  …

210

Runtime system

Virtual Machine

Implementation
Includes runtime

system

Generated
 code Generated

 code
Run-time system

Linker

Executable

Targeting a VM Targeting a platform

In either case, implementers of the compiler and
the runtime system must agree on many low-level details of
memory layout and data representation.

211

Typical (Low-Level) Memory Layout (UNIX)

Rough schematic of traditional
layout in (virtual) memory.

high
memory

low
memory

program instructions

Global vars and constants

Stack

Heap

The heap is used for
dynamically allocating
memory. Typically either
for very large objects or
for those objects that are
returned by functions/procedures
and must outlive
the associated activation record.

In languages like Java and ML,
the heap is managed
automatically (“garbage collection”)

Dealing with Virtual Machines
allows us to ignore some of
the low-level details….

212

A Crash Course in x86 assembler
•  A CISC architecture
•  There are 16, 32 and 64 bit versions
•  32 bit version :

•  General purpose registers : EAX EBX ECX EDX
•  Special purpose registers : ESI EDI EBP EIP ESP

•  EBP : normally used as the frame pointer
•  ESP : normally used as the stack pointer
•  EDI : often used to pass (first) argument
•  EIP : the code pointer

•  Segment and flag registers that we will ignore …
•  64 bit version:

•  Rename 32-bit registers with “R” (RAX, RBX, RCX, …)
•  More general registers: R8 R9 R10 R11 R12 R13 R14 R15

Register
names can
indicate “width”
of a value.

rax : 64 bit version
eax : 32 bit version (or lower 32 bits of rax)
 ax : 16 bit version (or lower 16 bits of eax)
 al : lower 8 bits of ax
 ah : upper 8 bits of ax

See https://en.wikibooks.org/wiki/X86_Assembly

movl $4, %eax // GAS (aka AT&T) notation

mov eax, 4 // Intel notation

The syntax of x86 assembler comes in several flavours.
Here are two examples of “put integer 4 into register eax”:

I will (mostly) use the GAS syntax, where a suffix is used
to indicate width of arguments:

•  b (byte) = 8 bits
•  w (word) = 16 bits
•  l (long) = 32 bits
•  q (quad) = 64 bits

For example, we have movb, movw movl, and movq.

214

Examples (in GAS notation)

movl $4, %eax # put 32 bit integer 4 in register eax

movw $4, %eax # put 16 bit integer 4 in lower 16 bits of eax

movb $4, %eax # put 4 bit integer 4 in lowest 4 bits of eax

movl
%esp, %ebp # put the contents of esp into ebp

movl
(%esp), %ebp # interpret contents of esp as a memory

 # address. Copy the value at that address

 # into register ebp

movl
%esp, (%ebp) # interpret contents of ebp as a memory

 # address. Copy the value in esp to

 # that address.

movl
%esp, 4(%ebp) # interpret contents of ebp as a memory

 # address. Add 4 to that address. Copy

 # the value in esp to this new address.

215

A few more examples

call label # push return address on stack and jump to label

ret # pop return address off stack and jump there

 # NOTE: managing other bits of the stack frame

 # such as stack and frame pointer must be done

 # explicitly

subl $4, %esp # subtract 4 from esp. That is, adjust the

 # stack pointer to make room for one 32-bit

 # (4 byte) value. (stack grows downward!)

Assume that we have implemented a procedure in C called
allocate that will manage heap memory. We will compile and
link this in with code generated by the slang compiler. At the x86
level, allocate will expect a header in edi and return a heap
pointer in eax.

Some Jargon VM instructions are “easy” to translate

GOTO loc jmp loc

POP addl $4, %esp // move stack pointer 1 word = 4 bytes

PUSH v subl $4, %esp // make room on top of stack

 movl $i, (%esp) // where i is an integer representing v

FST movl 4(%esp), %edx // 4 bytes, 1 word, after header

 movl %edx, (%esp) // replace “a” with “v1” at top of stack

SND movl 8(%esp), %edx // 8 bytes, 2 words, after header

 movl %edx, (%esp) // replace “a” with “v2” at top of stack

c

 v1
: :
: :

FST
c

 a
: :
: :

a : header
 v1 a+1 :

a+2 : v2

sp sp

Remember: X86 is CISC, so RISC architectures may require more instructions …

217

… while others require more work

c
 v1

: :
: :

 v2
 MK_PAIR

c

 a
: :
: :

a : Header 3, PAIR
 v1 a+1 :

a+2 : v2

movl $3, %edi // construct header in edi

shr $16, %edi, // … put size in upper 16 bits (shift right)

movw $PAIR, %di // … put type in lower 16 bits of edi

call allocate // input: header in ebi, output: “a” in eax

movl (%esp), %edx // move “v2” to the heap,

movl %edx, 8(%eax) // … using temporary register edx

addl $4, %esp // adjust stack pointer (pop “v2”)

movl (%esp), %edx // move “v1” to the heap

movl %edx, 4(%eax) // … using temporary register edx

movl %eax, (%esp) // copy value “a” to top of stack

One possible x86 (32 bit) implementation of MK_PAIR:

218

 LOOKUP APPLY RETURN CASE TEST ASSIGN REF

Left as exercises for you :

Here’s a hint. For things you don’t understand, just experiment!
OK, you need to pull an address out of a closure and call it. Hmm,
how does something similar get compiled from C?

 _func:

pushq
%rbp # save frame pointer

movq
%rsp, %rbp # set frame pointer to stack pointer

subq
$16, %rsp # make some room on stack

movl
$17, %eax # put 17 in argument register eax

movq
%rdi, -8(%rbp) # rdi contains the argument f

movl
%eax, %edi # put 17 in register edi, so f will get it

callq
*-8(%rbp) # WOW, a computed address for function call!

addq
$16, %rsp # restore stack pointer

popq
%rbp # restore old frame pointer

ret # restore stack

int func (int (*f)(int)) { return (*f)(17); } /* pass a function pointer and apply it /*

X86,
64 bit

without
–O2

What about arithmetic?

Houston, we have a problem….

•  It may not be obvious now, but if we want to have
automated memory management we need to be
able to distinguish between values (say integers)
and pointers at runtime.

•  Have you ever noticed that integers in SML or
Ocaml are either 31 (or 63) bits rather than the
native 32 (or 64) bits?

•  That is because these compilers use a the
least significant bit to distinguish integers (bit =
1) from pointers (bit = 0).

•  OK, this works. But it may complicate every
arithmetic operation!

•  This is another exercise left for you to ponder
…

220

Lecture 14
Assorted Topics

1.  Stacks are slow, registers are fast

1.  Stack frames still needed …
2.  … but try to shift work into registers
3.  Caller/callee save/restore policies
4.  Register spilling

2.  Simple optimisations
1.  Peep hole (sliding window)
2.  Constant propagation
3.  Inlining

3.  Representing objects (as in OOP)
1.  At first glance objects look like a closure containing

multiple function (methods) …
2.  … but complications arise with method dispatch

4.  Implementing exception handling on the stack

221

Stack vs regsisters

V1
add

V2
V1 + V2

r7 : …
add r8 r3 r7

r3 : V2

r8 : V1

…
r7 : V1 + V2

r3 : V2

r8 : V1

…

Stack-oriented:
(+) argument locations is
 implicit, so instructions
 are smaller.
(---) Execution is slower

Register-oriented:
(+++) Execution MUCH faster
(-) argument location is
 explicit, so instructions
 are larger

222

Main dilemma : registers are fast, but are fixed in
number. And that number is rather small.

•  Manipulating the stack involves RAM access, which can be
orders of magnitude slower than register access (the “von
Neumann Bottleneck”)

•  Fast registers are (today) a scarce resource, shared by many
code fragments

•  How can registers be used most effectively?
•  Requires a careful examination of a program’s structure
•  Analysis phase: building data structures (typically directed

graphs) that capture definition/use relationships
•  Transformation phase : using this information to rewrite

code, attempting to most efficiently utilise registers
•  Problem is NP-complete
•  One of the central topics of Part II Optimising Compilers.

•  Here we focus only on general issues : calling conventions and
register spilling

223

Caller/callee conventions
•  Caller and callee code may use overlapping sets of registers
•  An agreement is needed concerning use of registers

•  Are some arguments passed in specific registers?
•  Is the result returned in a specific register?
•  If the caller and callee are both using a set of registers for

“scratch space” then caller or callee must save and restore
these registers so that the caller’s registers are not
obliterated by the callee.

•  Standard calling conventions identify specific subsets of
registers as “caller saved” or “callee saved”

•  Caller saved: if caller cares about the value in a register,
then must save it before making any call

•  Callee saved: The caller can be assured that the callee
will leave the register intact (perhaps by saving and
restoring it)

224

Another C example.
X86, 64 bit, with gcc

int

callee(int, int,int,

 int,int,int,int);

int caller(void)

{

 int ret;

 ret = callee(1,2,3,4,5,6,7);

 ret += 5;

 return ret;

}

 _caller:

pushq
%rbp # save frame pointer

movq
%rsp, %rbp # set new frame pointer

subq
$16, %rsp # make room on stack

movl
$7, (%rsp) # put 7th arg on stack

movl
$1, %edi # put 1st arg on in edi

movl
$2, %esi # put 2nd arg on in esi

movl
$3, %edx # put 3rd arg on in edx

movl
$4, %ecx # put 4th arg on in ecx

movl
$5, %r8d # put 5th arg on in r8d

movl
$6, %r9d # put 6th arg on in r9d

callq
_callee #will put resut in eax

addl
$5, %eax # add 5

addq
$16, %rsp # adjust stack

popq
%rbp # restore frame pointer

ret # pop return address, go there

225

Regsiter spilling

•  What happens when all registers are in use?
•  Could use the stack for scratch space …
•  … or (1) move some register values to the stack, (2)

use the registers for computation, (3) restore the
registers to their original value

•  This is called register spilling

226

Simple optimisations.
Inline expansion

fun f(x) = x + 1
fun g(x) = x – 1
…
…
fun h(x) = f(x) + g(x)

fun f(x) = x + 1
fun g(x) = x – 1
…
…
fun h(x) = (x+1) + (x-1)

inline f and g

(+) Avoid building activation
 records at runtime
(+) May allow further
 optimisations

(-) May lead to “code bloat”
 (apply only to functions
 with “small” bodies?)

Question: if we inline all
occurrences of a function,
can we delete its definition from
the code?
What if it is needed at link time?

 Be careful with variable scope

!
let val x = 1 !
 fun g(y) = x + y !
 fun h(x) = g(x) + 1 !
in !
 h(17) !
end !

!
let val x = 1 !
 fun g(y) = x + y !
 fun h(x) = x + y + 1 !
in !
 h(17) !
end !

Inline g in h

!
let val x = 1 !
 fun g(y) = x + y !
 fun h(z) = x + z + 1 !
in !
 h(17) !
end !

NO

YES

What kind of care might be needed will
depend on the representation level of the
Intermediate code involved.

228

 (b) Constant propagation, constant folding

David Gries :
“Never put off till
run-time what you can do
at compile-time.”

How about this?

Replace

 x * 0

with

 0

OOPS, not if x has type
float!

 NAN*0 = NAN,

But be careful

Note : opportunities
 are often exposed
by inline expansion!

let x = 2
let y = x – 1
let z = y * 17

let x = 2
let y = 2 – 1
let z = y * 17

let x = 2
let y = 1
let z = y * 17

let x = 2
let y = 1
let z = 1 * 17

let x = 2
let y = 1
let z = 17

Propagate
constants and
evaluate simple
expressions at
compile-time

229

(c) peephole optimisation

Communications of the ACM,
July 1965

Eliminate!

Results for syntax-directed code generation.

230

peephole optimisation

… code sequence …

Sweep a window over the code
sequence looking for instances of simple code
patterns that can be rewritten to better code …
(might be combined with constant folding, etc,
and employ multiple passes)

Examples
-- eliminate useless combinations (push 0; pop)
-- introduce machine-specific instructions
-- improve control flow. For example: rewrite
 “GOTO L1 … L1: GOTO L2”
 to
 “GOTO L2 … L1 : GOTO L2”)

gcc example.
-O<m> turns on optimisation to level m

int h(int n) { return (0 < n) ? n : 101 ; }

int g(int n) { return 12 * h(n + 17); }

g.c

gcc –O2 –S –c g.c
_g:

.cfi_startproc

pushq
%rbp

movq
%rsp, %rbp

addl
$17, %edi

imull
$12, %edi, %ecx

testl
%edi, %edi

movl
$1212, %eax

cmovgl
%ecx, %eax

popq
%rbp

ret

.cfi_endproc

g.s (fragment)

Wait. What happened to
the call to h???

 GNU AS (GAS) Syntax
 x86, 64 bit

gcc example (-O<m> turns on optimisation)

int h(int n) { return (0 < n) ? n : 101 ; }

int g(int n) { return 12 * h(n + 17); }

g.c

The compiler must have done something similar to this:

int g(int n) { return 12 * h(n + 17); }

è

 int g(int n) { int t := n+ 17; return 12 * h(t); }

è

int g(int n) { int t := n+ 17; return 12 *((0 < t) ? t : 101); }

è

int g(int n) { int t := n+ 17; return (0 < t) ? 12 * t : 1212 ; }

è …

233

New Topic:
OOP Objects (single inheritance)

let start := 10

 class Vehicle extends Object {
 var position := start
 method move(int x) = {position := position + x}
 }
 class Car extends Vehicle {
 var passengers := 0
 method await(v : Vehicle) =
 if (v.position < position)
 then v.move(position – v.position)
 else self.move(10)
 }
 class Truck extends Vehicle {
 method move(int x) =
 if x <= 55 then position := position +x
 }
 var t := new Truck
 var c := new Car
 var v : Vehicle := c
in
 c.passengers := 2;
 c.move(60);
 v.move(70);
 c.await(t)
end

method override

subtyping allows a
Truck or Car to be viewed and
used as a Vehicle

234

Object Implementation?

–  how do we access object fields?

•  both inherited fields and fields for the current
object?

–  how do we access method code?
•  if the current class does not define a particular

method, where do we go to get the inherited
method code?

•  how do we handle method override?
–  How do we implement subtyping (“object

polymorphism”)?
•  If B is derived from A, then need to be able to

treat a pointer to a B-object as if it were an A-
object.

235

Another OO Feature

•  Protection mechanisms
–  to encapsulate local state within an object,

Java has “private” “protected” and “public”
qualifiers

•  private methods/fields can’t be called/used outside
of the class in which they are defined

– This is really a scope/visibility issue! Front-
end during semantic analysis (type checking
and so on), the compiler maintains this
information in the symbol table for each class
and enforces visibility rules.

236

Object representation

class A {
public:
 int a1, a2;

 void m1(int i) {
 a1 = i;
 }
 void m2(int i) {
 a2 = a1 + i;
 }
}

C++

object data
a1

a2

m1_A

m2_A
method table

An A object

NB: a compiler typically generates methods with an extra argument
representing the object (self) and used to access object data.

237

Inheritance (“pointer polymorphism”)

object data

m1_A

m2_A

method table
(code entry

points =
memory locations)

a1

a2

b1

m3_B

class B : public A {
public:
 int b1;

 void m3(void) {
 b1 = a1 + a2;
 }
}

a B object

Note that a pointer to a B object can
be treated as if it were a pointer to an A object!

238

Method overriding

object data

m1_A_A

m2_A_C

method table

a1

a2

c1

m3_C_C

class C : public A {
public:
 int c1;

 void m3(void) {
 b1 = a1 + a2;
 }
 void m2(int i) {
 a2 = c1 + i;
 }
}

declared defined

a C object

239

Static vs. Dynamic

•  which method to invoke on overloaded
polymorphic types?

class C *c = ...;
class A *a = c;

a->m2(3);

???

m2_A_A(a, 3); static

m2_A_C(a, 3); dynamic

240

Dynamic dispatch

•  implementation: dispatch tables

ptr to C
Is also a ptr to A

a1

a2

b1

m1_A_A

m2_A_C

m3_C_C

*(a->dispatch_table[1])(a, 3);

class C *c = ...;
class A *a = c;

a->m2(3);

241

This implicitly uses some form of pointer
subtyping

void m2_A_C(class_A *this_A, int i) {
 class_C *this = convert_ptrA_to_ptrC(this_A);

 this->a2 = this->c1 + i;
}

void m2(int i) {
 a2 = c1 + i;
}

Topic 1 : Exceptions (informal description)

e handle f ! raise e !

If expression e evaluates
“normally” to value v,
then v is the result of the
entire expression.

Otherwise, an exceptional
value v’ is “raised” in the
evaluation of e, then
result is (f v’)

Evaluate expression e to
value v, and then raise v
as an exceptional value,
which can only be
“handled”.

Implementation of exceptions
may require a lot of language-specific
consideration and care. Exceptions
can interact in powerful and unexpected
ways with other language features.
Think of C++ and class destructors,
for example.

Viewed from the call stack

Call stack just
before evaluating
code for

e handle f !

handle
frame

Push a special
frame for the
handle

. . .

. . .

handle
frame

current
frame

. . .

. . .

“raise v” is
encountered
while evaluating
a function body
associated with
top-most frame

frame
for f
 v

“Unwind” call stack.
Depending on language,
this may involve some
“clean up” to free resources.

Possible pseudo-code implementation

e handle f !
let fun _h27 () = !
 build special “handle frame” !
 save address of f in frame; !
 … code for e … !
 return value of e !
in _h27 () end !

raise e ! … code for e … !
save v, the value of e; !
unwind stack until first !
fp found pointing at a handle frame; !
Replace handle frame with frame !
for call to (extracted) f using !
v as argument. !
!

245

Lecture 15
Automating run-time memory

management

•  Managing the heap
•  Garbage collection

–  Reference counting
–  Mark and sweep
–  Copy collection
–  Generational collection

 Read Chapter 12 of
Basics of Compiler Design
 (T. Mogensen)

246

Explicit (manual) memory management

•  User library manages memory; programmer
decides when and where to allocate and de-
allocate
–  void* malloc(long n)
–  void free(void *addr)
–  Library calls OS for more pages when necessary
–  Advantage: Gives programmer a lot of control.
–  Disadvantage: people too clever and make mistakes.

Getting it right can be costly. And don’t we want to
automate-away tedium?

–  Advantage: With these procedures we can implement
memory management for “higher level” languages ;-)

247

Memory Management

•  Many programming languages allow programmers to
(implicitly) allocate new storage dynamically, with no
need to worry about reclaiming space no longer used.
–  New records, arrays, tuples, objects, closures, etc.
–  Java, SML, OCaml, Python, JavaScript, Python,

Ruby, Go, Swift, SmallTalk, …
•  Memory could easily be exhausted without some method

of reclaiming and recycling the storage that will no longer
be used.
–  Often called “garbage collection”
–  Is really “automated memory management” since it

deals with allocation, de-allocation, compaction, and
memory-related interactions with the OS.

248

Automation is based on an approximation : if data can be
reached from a root set, then it is not “garbage”

r1

stack
and

registers

r2

ROOT SET
-------------------- HEAP --

Type information required (pointer or not),
some kind of “tagging” needed.

249

… Identify Cells Reachable From Root Set…

r1

stack

r2
registers

250

… reclaim unreachable cells

r1

stack

r2
registers

251

But How? Two basic techniques,
and many variations

•  Reference counting : Keep a reference count
with each object that represents the number of
pointers to it. Is garbage when count is 0.

•  Tracing : find all objects reachable from root set.
Basically transitive close of pointer graph.

For a very interesting (non-examinable) treatment of this subject see

 A Unified Theory of Garbage Collection.
 David F. Bacon, Perry Cheng, V.T. Rajan.
 OOPSLA 2004.

In that paper reference counting and tracing are presented as “dual”
approaches, and other techniques are hybrids of the two.

252

Reference Counting, basic idea:

•  Keep track of the number of pointers to each object (the
reference count).

•  When Object is created, set count to 1.
•  Every time a new pointer to the object is created,

increment the count.
•  Every time an existing pointer to an object is destroyed,

decrement the count
•  When the reference count goes to 0, the object is

unreachable garbage

253

Reference counting can’t detect cycles!

r1

stack
r2

•  Cons
•  Space/time overhead to maintain count.
•  Memory leakage when have cycles in data.

•  Pros
•  Incremental (no long pauses to collect…)

254

Mark and Sweep

•  A two-phase algorithm
– Mark phase: Depth first traversal of object

graph from the roots to mark live data
– Sweep phase: iterate over entire heap,

adding the unmarked data back onto the free
list

255

Copying Collection

•  Basic idea: use 2 heaps
–  One used by program
–  The other unused until GC time

•  GC:
–  Start at the roots & traverse the reachable data
–  Copy reachable data from the active heap (from-

space) to the other heap (to-space)
–  Dead objects are left behind in from space
–  Heaps switch roles

256

Copying Collection

to-space from-space

roots

257

Copying GC

•  Pros
–  Simple & collects cycles
–  Run-time proportional to # live objects
–  Automatic compaction eliminates fragmentation

•  Cons
–  Twice as much memory used as program requires

•  Usually, we anticipate live data will only be a small fragment
of store

•  Allocate until 70% full
•  From-space = 70% heap; to-space = 30%

–  Long GC pauses = bad for interactive, real-time apps

258

OBSERVATION: for a copying garbage
collector

•  80% to 98% new objects die very quickly.
•  An object that has survived several collections has a bigger

chance to become a long-lived one.
•  It’s a inefficient that long-lived objects be copied over and over.

Diagram from Andrew Appel’s Modern Compiler Implementation

259

IDEA: Generational garbage collection

Segregate objects into multiple areas by age, and collect areas
containing older objects less often than the younger ones.

Diagram from Andrew Appel’s Modern Compiler Implementation

260

Other issues…

–  When do we promote objects from young generation to old

generation
•  Usually after an object survives a collection, it will be

promoted
–  Need to keep track of older objects pointing to newer ones!
–  How big should the generations be?

•  When do we collect the old generation?
•  After several minor collections, we do a major collection

–  Sometimes different GC algorithms are used for the new and
older generations.

•  Why? Because the have different characteristics
•  Copying collection for the new

–  Less than 10% of the new data is usually live
– Copying collection cost is proportional to the live data

•  Mark-sweep for the old

261

 LECTURE 16
Bootstrapping a compiler

•  Compilers compiling themselves!
•  Read Chapter 13 Of

•  Basics of Compiler Design
•  by Torben Mogensen

http://www.diku.dk/hjemmesider/ansatte/torbenm/Basics/

http://mythologian.net/ouroboros-symbol-of-infinity/

Bootstrapping. We need some notation . . .

 app

 A

 A

mch

 A
 inter
 B

An application
called app written
in language A

An interpreter or
VM for language A
Written in language B

A machine called
mch running
language
A natively.

hello

 x86
 x86

 M1

 JBC
 jvm
 x86

hello

 JBC

 x86

 M1

Simple Examples

Tombstones

 C

 trans
A B

This is an application called trans
that translates programs in language
A into programs in language B, and it is
written in language C.

Ahead-of-time compilation

 JBC
 jvm
 x86

Java JBC

JBC

 javac
Hello

Java

 x86

 M1

Hello

 JBC JBC x86

JBC

 aot

 JBC
 jvm
 x86
 x86

 M1

Hello

x86
 x86

 M1

 jvm

 C++ C++ x86

 x86

 gcc

 x86

 M1

Thanks to David Greaves
for the example.

Of course translators can be translated

 C

 trans
A B B

 foo_2
D E

 A

 foo_1
D E

Translator foo_2 is produced
as output from trans when
given foo_1 as input.

Our seemingly impossible task

 L

 comp.L
L B

We have just invented a really great
new language L (in fact we claim that
“L is far superior to C++”). To prove how
great L is we write a compiler
for L in L (of course!). This
compiler produces machine code B
for a widely used instruction set
(say B = x86).

There are many many ways we could go about this task.
The following slides simply sketch out one plausible route
to fame and fortune.

 B

 comp.B
L B

Furthermore, we want to compile our
compiler so that it can run
on a machine running B.
Our compiler is written in L!
How can we compiler our compiler?

?

Step 1
Write a small interpreter (VM) for
a small language of byte codes

 MBC
 zoom
 B
 B

 M1

C++ B

 B

 gcc

 B

 M1

 MBC
 zoom
 C++

MBC = My Byte Codes

The zoom machine!

Step 2
Pick a small subset S of L and

write a translator from S to MBC

 B

 gcc
C++ B C++

comp_1.cpp
S MBC

Write comp_1.cpp by hand. (It sure would be nice if we
could hide the fact that this is written is C++.)

Compiler comp_1.B is produced
as output from gcc when comp_1.cpp is given as input.

 B

 comp_1.B
S MBC

Step 3
Write a compiler for L in S

 S

comp_2.S
L B

Write a compiler comp_2.S for the full language L, but written only
in the sub-language S.

Compile comp_2.S using comp_1.B to produce comp_2.mbc

 B

comp_1.B
S MBC MBC

 comp_2.mbc
L B

Step 4
Write a compiler for L in L, and then compile it!

 L

comp.L
L B

Rewrite/extend compiler
comp_2.S to produce
comp.L using the full
power of language L.

 MBC

comp_2.mbc
L B B

comp.B
L B

 MBC
 zoom
 B
 B

 M1

We have achieved
 our goal!

 C++

S MBC comp_1.cpp

 B

C++ B gcc

 S

L B comp_2.S

 B

S MBC comp_2.mbc MBC

L B yippee B

L B yippeeee

 L

L B comp.L

Putting it all together

We wrote these compilers
and the MBC VM.

 MBC
 zoom
 B

 B

 M1

 B

 M1

 B

 M1

1

2

3

4

5

6

Step 5 : Cover our tracks and leave the world
mystified and amazed!

 L

 comp.L
L B

 MBC

 comp_2.mbc
L B

1. Use gcc to compile the zoom interpreter
2. Use zoom to run voodoo with input comp.L to output the

compiler comp.B. MAGIC!

 MBC
 zoom
 C++

Our L compiler download site contains only three components:

Our instructions:

Shhhh! Don’t tell
anyone that
we wrote the first
compiler in C++

comp_2.mbc is a just file of bytes.
We give it the mysterious and
intimidating name : voodoo

Another example (Mogensen, Page 285)

 Solving a different problem.
You have:
 (1) An ML compiler on ARM. Who knows where it came from.
 (2) An ML compiler written in ML, generating x86 code.
You want:
 An ML compiler generating x86 and running on an x86 platform.

