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Why Study Compilers? 

•  Although many of the basic ideas were 
developed over 50 years ago, compiler 
construction is still an evolving and active 
area of research and development. 

•  Compilers are intimately related to 
programming language design and evolution.  

•  Compilers are a Computer Science success 
story illustrating  the hallmarks of our field --- 
higher-level abstractions implemented with 
lower-level abstractions.  

•  Every Computer Scientist should have a basic 
understanding of how compilers work.  

 
 



Compilation is a special kind of translation 

Source  
Program 
Text 

The compiler  
program for  
target  
“machine” 

Just text – no way to  
run program!  

We have a “machine” 
to run this!  
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•  be correct in the sense that meaning is preserved 
•  produce usable error messages 
•  generate efficient code 
•  itself be efficient 
•  be well-structured and maintainable  

A good compiler should … 

This course! 

OptComp, Part II Pick any 2? 
 
Just 1? 
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Mind The Gap 

•  “Machine” independent 
•  Complex syntax 
•  Complex type system 
•  Variables 
•  Nested scope 
•  Procedures, functions 
•  Objects  
•  Modules 
•  … 

 

•  “Machine” specific 
•  Simple syntax 
•  Simple types  
•  memory, registers, words 
•  Single flat scope  

High Level Language Typical Target Language 

Help!!! Where do we begin??? 
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The Gap, illustrated 
public class Fibonacci {

  public Fibonacci();

    Code:

       0: aload_0       

       1: invokespecial #1                  

       4: return        

  public static long fib(int);

    Code:

       0: iload_0       

       1: ifne          6

       4: lconst_1      

       5: lreturn       

       6: iload_0       

       7: iconst_1      

       8: if_icmpne     13

      11: lconst_1      

      12: lreturn       

      13: iload_0       

      14: iconst_1      

      15: isub          

      16: invokestatic  #2                  

      19: iload_0       

      20: iconst_2      

      21: isub          

      22: invokestatic  #2                  

      25: ladd          

      26: lreturn     


   public static void 

      main(java.lang.String[]);

    Code:

       0: aload_0       

       1: iconst_0      

       2: aaload        

       3: invokestatic  #3            

       6: istore_1      

       7: getstatic     #4                  

      10: new           #5 

      13: dup           

      14: invokespecial #6

      17: iload_1       

      18: invokestatic  #2 

      21: invokevirtual #7                  

      24: ldc           #8                  

      26: invokevirtual #9                  

      29: invokevirtual #10                 

      32: invokevirtual #11                 

      35: return        

}


public class Fibonacci {

    public static long fib(int m) {

        if (m == 0) return 1; 

        else if (m == 1) return 1; 

             else return 

                       fib(m - 1) + fib(m - 2);

    }

    public static void 

        main(String[] args) {

        int m = 

              Integer.parseInt(args[0]);

        System.out.println(

            fib(m) + "\n");

    }

}


javac Fibonacci.java

javap –c Fibonacci.class 


JVM bytecodes  
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The Gap, illustrated 

(* fib : int -> int *) 

let rec fib m =

    if m = 0 

    then 1 

    else if m = 1 

             then 1 

             else fib(m - 1) + fib (m - 2) 


ocamlc –dinstr fib.ml 



branch L2

L1: 
acc 0



push


const 0


eqint


branchifnot L4


const 1


return 1


L4: 
acc 0


push


const 1


eqint


branchifnot L3


const 1


return 1


L3: 
acc 0


offsetint -2


push


offsetclosure 0


apply 1


push


acc 1


offsetint -1


push


offsetclosure 0


apply 1


addint


return 1


L2: 
closurerec 1, 0


acc 0


makeblock 1, 0


pop 1


setglobal Fib!





OCaml VM bytecodes  

fib.ml 
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The Gap, illustrated 

#include<stdio.h>

 

int Fibonacci(int);

int main()

{

   int n;

   scanf("%d",&n);

   printf("%d\n", Fibonacci(n));

   return 0;

}

 

int Fibonacci(int n)

{

   if ( n == 0 ) return 0;

   else if ( n == 1 ) return 1;

   else return ( Fibonacci(n-1) + Fibonacci(n-2) );

} 


gcc –S fib.c 


fib.c 
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The Gap, illustrated 

.section 
__TEXT,__text,regular,pure_instructions


.globl 
_main


.align 
4, 0x90


_main:                                  ## @main


.cfi_startproc


## BB#0:


pushq 
%rbp


Ltmp2:


.cfi_def_cfa_offset 16


Ltmp3:


.cfi_offset %rbp, -16


movq 
%rsp, %rbp


Ltmp4:


.cfi_def_cfa_register %rbp


subq 
$16, %rsp


leaq 
L_.str(%rip), %rdi


leaq 
-8(%rbp), %rsi


movl 
$0, -4(%rbp)


movb 
$0, %al


callq 
_scanf


movl 
-8(%rbp), %edi


movl 
%eax, -12(%rbp)         ## 4-byte Spill


callq 
_Fibonacci


leaq 
L_.str1(%rip), %rdi


movl 
%eax, %esi


movb 
$0, %al


callq 
_printf


movl 
$0, %esi


movl 
%eax, -16(%rbp)         ## 4-byte Spill


movl 
%esi, %eax


addq 
$16, %rsp


popq 
%rbp


ret


.cfi_endproc





.globl 
_Fibonacci


.align 
4, 0x90


_Fibonacci:                             ## @Fibonacci


.cfi_startproc


## BB#0:


pushq 
%rbp


Ltmp7:


.cfi_def_cfa_offset 16


Ltmp8:


.cfi_offset %rbp, -16


movq 
%rsp, %rbp


Ltmp9:





x86/Mac OS  


.cfi_def_cfa_register %rbp


subq 
$16, %rsp


movl 
%edi, -8(%rbp)


cmpl 
$0, -8(%rbp)


jne 
LBB1_2


## BB#1:


movl 
$0, -4(%rbp)


jmp 
LBB1_5


LBB1_2:


cmpl 
$1, -8(%rbp)


jne 
LBB1_4


## BB#3:


movl 
$1, -4(%rbp)


jmp 
LBB1_5


LBB1_4:


movl 
-8(%rbp), %eax


subl 
$1, %eax


movl 
%eax, %edi


callq 
_Fibonacci


movl 
-8(%rbp), %edi


subl 
$2, %edi


movl 
%eax, -12(%rbp)         ## 4-byte Spill


callq 
_Fibonacci


movl 
-12(%rbp), %edi         ## 4-byte Reload


addl 
%eax, %edi


movl 
%edi, -4(%rbp)


LBB1_5:


movl 
-4(%rbp), %eax


addq 
$16, %rsp


popq 
%rbp


ret


.cfi_endproc





.section 
__TEXT,__cstring,cstring_literals


L_.str:                                 ## @.str


.asciz 
"%d"




L_.str1:                                ## @.str1



.asciz 
"%d\n"





.subsections_via_symbols
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Conceptual view of a typical compiler 

Front End Back End 

    ISA/OS 
targeted code 
 
(x86/unix, …)  

Source  
Program 
Text 

The compiler  

Operating System (OS) 

        Virtual Machine (VM)   
examples: JVM, Dalvik, .NET CLR 

ISA/OS  
independent  
 “byte code”  

  errors,  
warnings  

                ISA = Instruction Set Architecture  

Middle 
  End 

Key to bridging 
The Gap : divide and 
conquer.  The Big Leap  
is broken into small  
steps. Each step broken 
into yet smaller steps …  
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The shape of a typical “front end” 

Source 
Program 
Text 

Lexical  
analysis lexical  

tokens 

Parsing 

Lexical theory  
based on finite  
automaton 
and regular 
expressions 

Parsing Theory  
based on  
push-down  
automaton and  
context-free  
grammars 

AST +  
other 
info   

      AST 
= Abstract  
  Syntax Tree 

Semantic  
analysis 

Enforce  
“static sematics” 
of language: 
type checking, 
def/use rules, 
and so on (SPL!)  

report  
errors 

report  
errors 

report  
errors 

The AST output from the front-end should represent a legal program in the source language. 
(“Legal” of course does not mean “bug-free”!)  

SPL = Semantics of Programming Languages, Part 1B 
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Our view of the middle- and back-ends : 
a sequence of small transformations  

•  Each IL has its own semantics (perhaps informal)  
•  Each transformation (      ) preserves semantics (SPL!)  
•  Each transformation eliminates only a few aspects of the gap 
•  Each transformation is fairly easy to understand 
•  Some transformations can be described as “optimizations” 
•  We will associate each IL with its own interpreter/VM.  (Again, 

not something typically done in “industrial-strength” compilers.)   

 Intermediate  Languages 

IL-1  

Of course  
industrial-strength  
compilers may  
collapse  
many small-steps … 
   

IL-2  IL-k  . . . 



Compilers must be compiled 

Source  
Program 
Text 

The compiler  

A program in  
language A 
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A program in  
language B 

Something to ponder: 
A compiler is just a program. 
But how did it get compiled? 
The OCaml compiler is written in 
OCaml.  
 
How was the compiler compiled?  

A program in  
language C 
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Approach Taken 

•  We will develop a compiler for a fragment of L3 introduced 
in Semantics of Programming Languages, Part 1B.  

•  We will pay special attention to the correctness.  
•  We will compile only to Virtual Machines (VMs) of various 

kinds. See Part II optimising compilers for generating 
lower-level code. 

•  Our toy compiler is available on the course web site.  
•  We will be using the OCaml dialect of ML.  

•  Install from https://ocaml.org.  
•  See OCaml Labs : 

http://www.cl.cam.ac.uk/projects/ocamllabs. 
•  A side-by-side comparison of SML and OCaml Syntax: 

http://www.mpi-sws.org/~rossberg/sml-vs-ocaml.html 
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SML Syntax          vs.       OCaml Syntax 

type 'a tree =  
   Leaf of 'a  
  | Node of 'a * ('a tree) * ('a tree)  
 
let rec map_tree f = function  
  | Leaf a -> Leaf (f a)  
  | Node (a, left, right)  ->  
     Node(f a, map_tree f left, map_tree f right) 
 
let l =  
    map_tree (fun a -> [a]) [Leaf 17; Leaf 21]  
in  
    List.rev l 

datatype 'a tree =  
   Leaf of 'a  
  | Node of 'a * ('a tree) * ('a tree)  
 
fun map_tree f (Leaf a) = Leaf (f a)  
    | map_tree f (Node (a, left, right)) =  
       Node(f a, map_tree f left, map_tree f right) 
 
 
let val l =  
     map_tree (fn a => [a]) [Leaf 17, Leaf 21]  
in  
     List.rev l  
end  



The Shape of this Course  
1.  Overview 
2.  Slang Front-end,  Slang demo.  Code tour.  
3.  Lexical analysis : application of Theory of Regular Languages and 

Finite Automata  
4.  Generating Recursive descent parsers 
5.  Beyond Recursive Descent Parsing I 
6.  Beyond Recursive Descent Parsing II 
7.  High-level “definitional” interpreter (interpreter 0).  Make the stack 

explicit and derive interpreter 2  
8.  Flatten code into linear array, derive interpreter 3 
9.  Move complex data from stack into the heap, derive the Jargon Virtual 

Machine (interpreter 4)  
10.  More on Jargon VM. Environment management. Static links on stack. 

Closures.  
11.  A few program transformations. Tail Recursion Elimination (TRE),  

Continuation Passing Style (CPS). Defunctionalisation (DFC)   
12.  CPS+TRE+DFC provides a formal way of understanding how we went 

from interpreter 0 to interpreter 2.  We fill the gap with interpreter 1 
13.  Assorted topics : compilation units, linking. From Jargon to x86 
14.  Assorted topics : simple optimisations,  OOP object representation 
15.  Run-time environments, automated memory management (“garbage 

collection”)   
16.  Bootstrapping  a compiler   
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 LECTURE 2 
Slang Front End  

•  Slang (= Simple LANGuage)  
–  A subset of L3 from Semantics … 
–  … with very ugly concrete syntax  
–  You are invited to experiment with improvements to this 

concrete syntax.  
•  Slang : concrete syntax, types 
•  Abstract Syntax Trees (ASTs)  
•  The Front End 
•  A short in-lecture demo of slang and a brief tour 

of the code …  



Clunky Slang Syntax (informal) 
uop := - | ~  
 
bop ::= + | - | * | < | = | && | ||  
 
t ::= bool | int | unit | (t) | t * t | t + t | t -> t | t ref  
 
e ::= () | n | true | false | x | (e) | ? |  
       e bop e |  uop e |  
       if e then else e end |  
       e e | fun (x : t) -> e end |  
       let x : t = e in e end | 
       let f(x : t) : t = e in e end |  
       !e | ref e | e := e | while e do e end | 
       begin e; e; … e end | 
       (e, e) | snd e | fst e |  
       inl t e | inr t e |  
       case e of inl(x : t) -> e | inr(x:t) -> e end  
         
       

(~ is boolean negation) 

 
(? requests an integer  
    input from terminal)  

(notice type annotation 
  on inl and inr constructs) 
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From slang/examples 

let fib( m : int) : int = 

    if m = 0

    then 1 

    else if m = 1 

            then 1 

             else fib (m - 1) + 

                     fib (m -2) 

              end 

     end

in 

    fib(?) 

end 


let gcd( p : int * int) : int =

    let m : int = fst p 

    in let  n : int = snd p 

    in  if m = n 

          then m 

          else if m < n 

                  then gcd(m, n - m)

                  else  gcd(m - n, n)

                  end

           end 

         end  

     end 

in gcd(?, ?) end 


The ? requests an integer input from the terminal  



Slang Front End  

Input file foo.slang  

Remove “syntactic sugar”, file location information,  
and most type information  

Parsed AST (Past.expr) 

Static analysis : check types, and context- 
sensitive rules, resolve overloaded operators 

  

Parse (we use Ocaml versions of LEX and YACC, 
covered in Lectures 3 --- 6) 

Intermediate AST (Ast.expr)  

Parsed AST (Past.expr) 



Parsed AST 
(past.ml) 

type var = string 



type loc = Lexing.position 



type type_expr = 

   | TEint

   | TEbool 

   | TEunit 

   | TEref of type_expr 

   | TEarrow of type_expr * type_expr

   | TEproduct of type_expr * type_expr

   | TEunion of type_expr * type_expr



type oper = ADD | MUL | SUB | LT | 

                   AND | OR | EQ | EQB | EQI



type unary_oper = NEG | NOT 




type expr = 

       | Unit of loc  

       | What of loc 

       | Var of loc * var

       | Integer of loc * int

       | Boolean of loc * bool

       | UnaryOp of loc * unary_oper * expr

       | Op of loc * expr * oper * expr

       | If of loc * expr * expr * expr

       | Pair of loc * expr * expr

       | Fst of loc * expr 

       | Snd of loc * expr 

       | Inl of loc * type_expr * expr 

       | Inr of loc * type_expr * expr 

       | Case of loc * expr * lambda * lambda 

       | While of loc * expr * expr 

       | Seq of loc * (expr list)

       | Ref of loc * expr 

       | Deref of loc * expr 

       | Assign of loc * expr * expr

       | Lambda of loc * lambda 

       | App of loc * expr * expr

       | Let of loc * var * type_expr * expr * expr

       | LetFun of loc * var * lambda 

                              * type_expr * expr

       | LetRecFun of loc * var * lambda 

                                * type_expr * expr


Locations (loc) are used in  
generating error messages.   
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static.mli, static.ml 

val infer : (Past.var * Past.type_expr) list -> (Past.expr * Past.type_expr) 



val check : Past.expr -> Past.expr   (* infer on empty environment *) 




•  Check type correctness  
•  Rewrite expressions to resolve EQ to EQI (for integers) 

or EQB (for bools).  
•  Only LetFun is returned by parser.  Rewrite to 

LetRecFun when function is actually recursive.   

Lesson : while enforcing “context-sensitive rules” we can resolve  
ambiguities that cannot be specified in context-free grammars.  
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Internal AST 
(ast.ml) 

type var = string 



type oper = ADD | MUL | SUB | LT | 

                     AND | OR | EQB | EQI



type unary_oper = NEG | NOT | READ 






type expr = 

       | Unit  

       | Var of var

       | Integer of int

       | Boolean of bool

       | UnaryOp of unary_oper * expr

       | Op of expr * oper * expr

       | If of expr * expr * expr

       | Pair of expr * expr

       | Fst of expr 

       | Snd of expr 

       | Inl of expr 

       | Inr of expr 

       | Case of expr * lambda * lambda 

       | While of expr * expr 

       | Seq of (expr list)

       | Ref of expr 

       | Deref of expr 

       | Assign of expr * expr 

       | Lambda of lambda 

       | App of expr * expr

       | LetFun of var * lambda * expr

       | LetRecFun of var * lambda * expr



and lambda = var * expr 




No locations, types. 
No Let,  EQ.                          

Is getting rid of types  
a bad idea? Perhaps 
a full answer would be  
language-dependent…  
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past_to_ast.ml 

let x : t  = e1 in e2 end  


(fun (x: t) -> e2 end) e1


This is done to simplify some of our code.   
Is it a good idea?   Perhaps not.  

val translate_expr : Past.expr -> Ast.expr 




Lecture 3, 4, 5, 6  
Lexical Analysis and Parsing  

1.  Theory of Regular Languages and Finite 
Automata applied to lexical analysis.  

2.  Context-free grammars 
3.  The ambiguity problem 
4.  Generating Recursive descent parsers  
5.  Beyond Recursive Descent Parsing I 
6.  Beyond Recursive Descent Parsing II 



What problem are we solving? 

if m = 0 then 1 else if m = 1 then 1 else fib (m - 1) +  fib (m -2) 


Translate a sequence of characters  

into a sequence of tokens  

type token = 

     | INT of int| IDENT of string | LPAREN | RPAREN 

     | ADD | SUB | EQUAL | IF | THEN | ELSE 

     | … 

  


IF, IDENT “m”, EQUAL, INT 0, THEN, INT 1, ELSE, IF, 

IDENT “m”, EQUAL, INT 1, THEN, INT 1, ELSE, IDENT “fib”, 
LPAREN, IDENT “m”, SUB, INT 1, RPAREN, ADD, 

IDENT “fib”, LPAREN, IDENT “m”, SUB, INT 2, RPAREN


implemented with some data type  



Recall from Discrete Mathematics (Part 1A)  



Recall from Discrete Mathematics (Part 1A)  



Recall from Discrete Mathematics (Part 1A)  
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Traditional Regular Language Problem 

Given a regular expression,  
 
 
 
and an input string    ,  determine if   
 
.  

e
w )(eLw∈

Construct a DFA M from e and test if it accepts w. 

Recall construction : regular expression à NFA à DFA 
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Something closer to the “lexing problem” 

Given an ordered list of regular expressions,  
 
 
 
and an input string    , find a list of pairs  
 
  
 
such that  
  
 
 
 
 
.  

1e 2e ke… 

nwwww ...)1 21=

w

)()2
jij eLw ∈

)(...),,(),,( ,2211 nn wiwiwi

rule)(priority )()3 sieLw jsj ≤→∈

match)(longest )(: sj eLuws ∉∀→
ε≠∈∀∀ ++ uwwwuj njj :)(prefix:)4 21 !

Why ordered?  Is “if” a  
variable or a keyword?  
Need priority to resolve 
ambiguity.  

Why longest match?   
Is “ifif” a variable or two  
“if” keywords?  
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Define Tokens with Regular Expressions (Finite 
Automata) 

Keyword: if 

1 i 2 f 3 

1 i 2 f 3 

0 

Σ-{f} 
Σ-{i} Σ 

This FA is really shorthand for:  

Σ “dead state” 
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Define Tokens with Regular Expressions (Finite 
Automata) 

Keyword:  
if 

1 i 2 f 3 KEY(IF)  

Keyword:  
then 

1 t 2 h 3 
KEY(then)  

5 

e 
n 

4 

Regular Expression Finite Automata Token 

Identifier:   
[a-zA-Z][a-zA-Z0-9]* 

1 2 [a-zA-Z] 

[a-zA-Z0-9] 

ID(s)  
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Define Tokens with Regular Expressions (Finite 
Automata) 

Regular Expression Finite Automata Token 

number:   
[0-9][0-9]* 

1 2 [0-9] 

[0-9] 

NUM(n)  

real:   
([0-9]+ ‘.’ [0-9]*) 
  | ([0-9]* ‘.’ [0-9]+) 

1 

3 

[0-9] NUM(n)  2 
[0-9] 

[0-9] 
. 

4 

. 

[0-9] 5 [0-9] 
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No Tokens for “White-Space”  

White-space:   
(‘ ‘ | ‘\n’ | ‘\t’)+ 
| ‘%’ [A-Za-z0-9’ ‘]+’\n’ 

1 

3 

% 2 
[A-za-z0-9’ ‘] 

4 

‘ ‘ 

\n 

\t 
\n 
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Constructing a Lexer 

1e
2e

ke

…
 

   INPUT:  
an ordered  
list of regular 
expressions 

1NFA
2NFA

kNFA

…
 

Construct all  
corresponding 
finite automata 

use priority NFA DFA

Construct a single  
non-deterministic 
finite automata 

Construct a single  
deterministic 
finite automata 

(1) Keyword : then 
 
(2) Ident : [a-z][a-z]* 
 
(2) White-space: ‘ ‘  

1 t 
2:ID 

h 3:ID 

5:THEN 

e 

n 

4:ID 

7:W 

‘ ‘ 

6:ID [a-mo-z] 

[a-z] 

[a-su-z] 



36 

What about longest match? 

1 t 
2:ID 

h 3:ID 

5:THEN 

e 

n 

4:ID 

7:W 

‘ ‘ 

6:ID [a-mo-z] 

[a-z] 

[a-su-z] 

|then thenx$   1   0  
t|hen thenx$   2   2 
th|en thenx$   3   3  
the|n thenx$   4   4 
then| thenx$   5   5 
then |thenx$   0   5 EMIT KEY(THEN) 
then| thenx$   1   0 RESET 
then |thenx$   7   7 
then t|henx$   0   7 EMIT WHITE(‘ ‘) 
then |thenx$   1   0 RESET  
then t|henx$   2   2  
then th|enx$   3   3  
then the|nx$   4   4  
then then|x$   5   5  
then thenx|$   6   6  
then thenx$|   0   6 EMIT ID(thenx) 

Start in initial state,  
Repeat: 
   (1) read input until dead state is  
   reached.  Emit token associated 
   with last accepting state.  
   (2) reset state to start state 
 

| = current position,      $ = EOF 

Input         
current state 

last accepting state 
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Concrete vs. Abstract Syntax Trees 

S 
S  +  E 
E 

(  S  ) 
5 

S  +  E 
S + E ( S ) 

S + E E 

E 1 
2 

3 
4 

+ 
5 + 

+ + 

3 4 1 2 

parse tree =  
derivation tree =  
concrete syntax 
tree Abstract Syntax Tree (AST) 

An AST contains only the 
information needed to generate an 
intermediate representation 

Normally a compiler constructs the concrete syntax tree only implicitly 
(in the parsing process) and explicitly constructs an AST. 
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On to Context Free Grammars (CFGs) 

E ::= ID  
 
E ::= NUM 
  
E ::= E * E  
 
E ::= E / E   
 
E ::= E + E  
  
E ::= E – E   
  
E ::= ( E )  

E ::= ID |  NUM |  E * E |  E / E  |  E + E  |  E – E |  ( E )  

Usually will write this way 

E is a non-terminal symbol  
 
ID and NUM are lexical classes 
 
*, (, ), +, and – are terminal symbols.  
 
E ::= E + E is called a production rule.  
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CFG Derivations 
(G1)   E ::= ID |  NUM |  ID | E * E |  E / E  |  E + E  |  E – E |  ( E )  

E  à E * E  
    à ( E ) * E  
    à ( E + E ) * E 
    à ( 17 + E ) * E 
    à ( 17 + 4 ) * E 
    à ( 17 + 4 ) * ( E )  
    à ( 17 + 4 ) * ( E – E )  
    à ( 17 + 4 ) * ( 2 – E )  
    à ( 17 + 4 ) * ( 2 – 10 ) 
 

E 

E E 

E 

* 
( ) 

17 4 2 10 

E ( ) 

E E E E + - 

E  à E * E  
    à E * ( E )  
    à E * ( E – E ) 
    à E * ( E – 10 )  
    à E * ( 2 – 10 ) 
    à ( E ) * ( 2 – 10 ) 
    à ( E + E ) * (2 – 10 ) 
    à ( E + 4 ) * ( 2 – E )  
    à ( 17 + 4 ) * ( 2 – 10 ) 
 

The Derivation Tree for  
  ( 17 + 4 ) * (2 – 10 ) 

 Rightmost  
derivation 

 Leftmost  
derivation 
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More formally, … 

•  A CFG is a quadruple G = (N, T, R, S) where  
–  N is the set of non-terminal symbols 
–  T  is the set of terminal symbols (N and T disjoint) 
–  S ∈N  is the start symbol 
–  R ⊆ N×(N∪T)*  is a set of rules 

•  Example: The grammar of nested parentheses 
G = (N, T, R, S) where  
–  N = {S} 
–  T ={ (, ) } 
–  R ={ (S, (S)) , (S, SS), (S, ) }  

S ::= (S) | SS |  We will normally write R as 
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Derivations, more formally… 

•  Start from start symbol (S) 
•  Productions are used to derive a sequence of tokens from the 

start symbol 
•  For arbitrary strings α, β and γ comprised of both terminal and 

non-terminal symbols,  
and a production A → β,  
a single step of derivation is  
 αAγ ⇒ αβγ 
–  i.e., substitute β for an occurrence of A 

•  α ⇒* β means that b can be derived from a in 0 or more single 
steps 

•  α ⇒+ β means that b can be derived from a in 1 or more single 
steps 
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L(G) = The Language Generated by Grammar G 

}|*{)( wSTwGL +⇒∈=

The language generated by G is the set of all terminal strings  
derivable from the start symbol S:  

For any subset W of T*, if there exists a CFG G such  
that L(G) = W, then W is called a Context-Free  
Language (CFL) over T. 
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Ambiguity 

E 

E E * 

1 2 

E E + 3 

E 

E + 
1 

E 

2 3 

E E * 

Both derivation trees correspond to the string  
 
                          1 + 2 * 3 

This type of ambiguity will cause problems when we try to  
go from strings to derivation trees! 

(G1)   E ::= ID |  NUM |  ID | E * E |  E / E  |  E + E  |  E – E |  ( E )  
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Problem: Generation vs. Parsing 

•  Context-Free Grammars (CFGs) 
describe how to to generate  

•  Parsing is the inverse of generation,  
–  Given an input string, is it in the language 

generated by a CFG? 
–  If so, construct a derivation tree (normally 

called a parse tree).  
–  Ambiguity is a big problem   
 

Note : recent work on Parsing Expression Grammars (PEGs) represents an  
attempt to develop a formalism that describes parsing directly.  This is beyond  
the scope of these lectures …   
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We can often modify the grammar 
in order to eliminate ambiguity 

(G2)  
 S :: = E$ 
 
 E ::= E + T 
      |  E – T 
      |  T 
 
T ::= T * F 
      |  T / F 
      |  F  
 
F ::= NUM 
      | ID  
      | ( E )  

E 

E + 
1 

T 

2 

3 

T F * 
F 

This is the unique derivation  
tree for the string  
 
             1 + 2 * 3$ Note: L(G1) = L(G2).  

Can you prove it?  

(expressions) 

(terms) 

(factors) 

(start, $ = EOF) 

S 
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Famously Ambiguous 

(G3)  S ::= if E then S else S  |   if E then S |  blah-blah  

What does  
 
          if e1 then if e2 then s1 else s3  
 
mean?  

S 

if  then E S 

if  then E S else S 

S 

if  then E S else S 

if  then E S 

OR 
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Rewrite?  

(G4) 
S ::= WE | NE 
WE ::=  if E then WE else WE | blah-blah  
NE  ::=  if E then S  
          |  if E then WE else NE 

if  then E 

if  then E S else S 

S 

NE 

S 

WE 

Now,   
 
  if e1 then if e2 then s1 else s3  
 
has a unique derivation.  

Note: L(G3) = L(G4).  
Can you prove it?  
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Fun Fun Facts 

{ } { }1,1|1,1| ≥≥≥≥= nmnmL dcbadcba nmmnmmnn ∪

See Hopcroft and Ullman, “Introduction to Automata  
Theory, Languages, and Computation” 

(1) Some context free languages are inherently ambiguous --- every  
context-free grammar will be ambiguous.  For example:  

(2) Checking for ambiguity in an arbitrary context-free 
     grammar is not decidable!  Ouch!  

(3) Given two grammars G1 and G2, checking L(G1) = L(G2) is 
      not decidable!  Ouch!  



49 

Generating Lexical Analyzers  

Lexical  
Analyzer 

Source 
Program tokens 

Scanner  
Generator 
“LEX” 

Lexical specification 

DFA Transitions 

Parser      

The idea : use regular expressions as the basis of a  
lexical specification.  The core of the lexical analyzer is  
then a deterministic finite automata (DFA)   
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Predictive (Recursive Descent) Parsing 
Can we automate this?  

(G5)  
  
S :: = if E then S else S 
        | begin S L 
        | print E 
 
E ::= NUM = NUM  
 
L ::= end 
      |  ; S L  

int tok = getToken(); 
 
void advance() {tok = getToken();}  
void eat (int t) {if (tok == t) advance(); else error();} 
 
void S() {switch(tok) { 
      case IF:    eat(IF); E(); eat(THEN);  
                  S(); eat(ELSE); S(); break;  
      case BEGIN: eat(BEGIN); S(); L(); break;  
      case PRINT: eat(PRINT); E(); break;  
      default: error(); 
     }} 
 
void L() {switch(tok) { 
      case END:  eat(END); break; 
      case SEMI: eat(SEMI); S(); L(); break;  
      default: error();  
     }} 
 
void E() {eat(NUM) ; eat(EQ); eat(NUM); } 
 

From Andrew Appel, “Modern Compiler Implementation in Java” page 46 

Parse corresponds to a left-most derivation 
constructed in a “top-down” manner 
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 Eliminate Left-Recursion 

A ::= Aα1 | Aα2 | . . . | Aαk | 
        β1 | β2 | . . . | βn  

Immediate left-recursion  

A ::= β1 A’ | β2 A’ | . . . | βn A’   

A’ ::= α1 A’ | α2 A’| . . . | αk A’ | ε 

For eliminating left-recursion in general, see Aho and Ullman. 

A 

A 

A

β 

α 

α 

A 

A’ 
β 
α 

α 

A’ 

A’ 

ε 





53 

FIRST and FOLLOW  

    FIRST[X] = the set of terminal symbols that  
                      can begin strings derived from X 
 
FOLLOW[X] = the set of terminal symbols that  
                        can immediately follow X in some  
                        derivation 
 
   nullable[X] = true of X can derive the empty string,  
                        false otherwise 
                     

For each non-terminal X we need to compute 

nullable[Z] = false, for Z in T 
  
nullable[Y1 Y2 … Yk] = nullable[Y1] and … nullable[Yk], for Y(i) in N union T.  

FIRST[Z] = {Z}, for Z in T 
  
FIRST[ X Y1 Y2 … Yk] = FIRST[X] if not nullable[X] 
 
FIRST[ X Y1 Y2 … Yk] =FIRST[X] union FIRST[Y1 … Yk] otherwise 
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Computing First, Follow, and nullable 

For each terminal symbol Z 
   FIRST[Z] := {Z};  
   nullable[Z] := false;  
 
For each non-terminal symbol X 
  FIRST[X] := FOLLOW[X] := {};  
  nullable[X] := false;  
 
repeat 
   for each production X à Y1 Y2 … Yk 
      if Y1, … Yk are all nullable, or k = 0 
         then nullable[X] := true  
      for each i from 1 to k, each j from i + I to k 
         if Y1 … Y(i-1) are all nullable or i = 1 
            then  FIRST[X] := FIRST[X] union FIRST[Y(i)] 
         if Y(i+1) … Yk are all nullable or if i = k 
            then FOLLOW[Y(i)] := FOLLOW[Y(i)] union FOLLOW[X] 
         if Y(i+1) … Y(j-1) are all nullable or i+1 = j 
            then FOLLOW[Y(i)] := FOLLOW[Y(i)] union FIRST[Y(j)]  
until there is no change 
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But wait! What if there are conflicts in 
the predictive parsing table?  

(G7)  
 
 S :: = d | X Y S 
 
Y ::= c |  
 
X ::= Y | a 
  

S 
 
Y  
 
X 

Nullable          FIRST          FOLLOW 

false 
 
true  
 
true 

{ c,d ,a} 
 
{ c }  
 
{ c,a }  

{  } 
 
{ c,d,a }  
 
{ c, a,d }  

S 
 
Y  
 
X 

a                            c                                    d 

{ S ::= X Y S } 
 
{ Y ::=  }  
 
{ X ::= a,  X ::= Y }  

{ S ::= X Y S } 
 
{ Y ::=  , Y ::= c}  
 
{ X ::= Y }  

{ S ::= X Y S, S ::= d } 
 
{ Y ::=  }  
 
{ X ::= Y }  

The resulting “predictive” table is not so predictive…. 
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LL(1), LL(k), LR(0), LR(1), …  

•  LL(k) : (L)eft-to-right parse, (L)eft-most 
derivation, k-symbol lookahead.  Based on 
looking at the next k tokens, an LL(k) parser 
must predict the next production. We have been 
looking at LL(1).  

•  LR(k) : (L)eft-to-right parse, (R)ight-most 
derivation, k-symbol lookahead. Postpone 
production selection until the entire right-hand-
side has been seen (and as many as k symbols 
beyond).   

•  LALR(1) : A special subclass of LR(1).  
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Example  

(G8)  
 
 S :: = S ; S | ID = E | print (L) 
 
E ::= ID | NUM | E + E | (S, E)  
 
L ::= E | L, E 

(G8)  
 
 S :: = S SEMI S | ID EQUAL E | PRINT LPAREN L RPAREN 
 
E ::= ID | NUM | E PLUS E | LPAREN S COMMA E RPAREN 
 
L ::= E | L COMMA E 

To be consistent, I should write the following, but I won’t… 
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A right-most derivation …  

(G8)  
 
S ::= S ; S  
      | ID = E  
      | print (L) 
 
E ::= ID  
      | NUM  
      | E + E  
      | (S, E)  
 
L ::= E  
      | L, E 

        S 
    à S ; S  
    à S ; ID = E 
    à S ; ID = E + E 
    à S ; ID = E + ( S, E ) 
    à S ; ID = E + ( S, ID ) 
    à S ; ID = E + ( S, d ) 
    à S ; ID = E + ( ID = E, d )  
    à S ; ID = E + ( ID = E + E, d ) 
    à S ; ID = E + ( ID = E + NUM, d ) 
    à S ; ID = E + ( ID = E + 6, d ) 
    à S ; ID = E + ( ID = NUM + 6, d ) 
    à S ; ID = E + ( ID = 5 + 6, d ) 
    à S ; ID = E + ( d = 5 + 6, d ) 
    à S ; ID = ID + (d = 5 + 6, d ) 
    à S ; ID = c + ( d = 5 + 6, d )  
    à S ; b = c + ( d = 5 + 6, d ) 
    à ID = E ; b = c + ( d = 5 + 6, d ) 
    à ID = NUM ; b = c + ( d = 5 + 6, d) 
    à ID = 7 ; b = c + ( d = 5 + 6, d ) 
    à a = 7 ; b = c + ( d = 5 + 6, d ) 
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Now, turn it upside down …  
à  a = 7 ; b = c + ( d = 5 + 6, d ) 
à  ID = 7 ; b = c + ( d = 5 + 6, d ) 
à  ID = NUM; b = c + ( d = 5 + 6, d ) 
à ID = E ; b = c + ( d = 5 + 6, d ) 
à S ; b = c + ( d = 5 + 6, d ) 
à  S ; ID = c + ( d = 5 + 6, d )  
à  S ; ID = ID + ( d = 5 + 6, d) 
à S ; ID = E + ( d = 5 + 6, d ) 
à  S ; ID = E + ( ID = 5 + 6, d ) 
à  S ; ID = E + ( ID = NUM + 6, d ) 
à  S ; ID = E + ( ID = E + 6, d )  
à  S ; ID = E + ( ID = E + NUM, d ) 
à S ; ID = E + ( ID = E + E, d ) 
à S ; ID = E + ( ID = E, d )  
à S ; ID = E + ( S, d ) 
à S ; ID = E + ( S, ID ) 
à S ; ID = E + ( S, E ) 
à S ; ID = E + E 
à S ; ID = E 
à S ; S  
    S 
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Now, slice it down the middle…  
 
ID  
ID = NUM 
ID = E  
S 
S ; ID  
S ; ID = ID 
S ; ID = E 
S ; ID = E + ( ID  
S ; ID = E + ( ID = NUM 
S ; ID = E + ( ID = E 
S ; ID = E + ( ID = E + NUM 
S ; ID = E + ( ID = E + E 
S ; ID = E + ( ID = E 
S ; ID = E + ( S 
S ; ID = E + ( S, ID  
S ; ID = E + ( S, E ) 
S ; ID = E + E 
S ; ID = E 
S ; S  
S 
 

a = 7 ; b = c + ( d = 5 + 6, d ) 
  = 7 ; b = c + ( d = 5 + 6, d )           
      ; b = c + ( d = 5 + 6, d ) 
      ; b = c + ( d = 5 + 6, d ) 
      ; b = c + ( d = 5 + 6, d ) 
          = c + ( d = 5 + 6, d )  
              + ( d = 5 + 6, d ) 
              + ( d = 5 + 6, d ) 
                    = 5 + 6, d ) 
                        + 6, d ) 
                        + 6, d )  
                           , d ) 
                           , d ) 
                           , d )  
                           , d ) 
                               )                                             
 
 
 
 

A stack of terminals and  
non-terminals 

The rest of the input string  
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Now, add some actions. s = SHIFT, r = REDUCE 

 
ID  
ID = NUM 
ID = E  
S 
S ; ID  
S ; ID = ID 
S ; ID = E 
S ; ID = E + ( ID  
S ; ID = E + ( ID = NUM 
S ; ID = E + ( ID = E 
S ; ID = E + ( ID = E + NUM 
S ; ID = E + ( ID = E + E 
S ; ID = E + ( ID = E 
S ; ID = E + ( S 
S ; ID = E + ( S, ID  
S ; ID = E + ( S, E ) 
S ; ID = E + E 
S ; ID = E 
S ; S  
S 
 
 
 
 

a = 7 ; b = c + ( d = 5 + 6, d ) 
   = 7 ; b = c + ( d = 5 + 6, d ) 
         ; b = c + ( d = 5 + 6, d ) 
         ; b = c + ( d = 5 + 6, d ) 
         ; b = c + ( d = 5 + 6, d ) 
              = c + ( d = 5 + 6, d )  
                    + ( d = 5 + 6, d ) 
                    + ( d = 5 + 6, d ) 
                            = 5 + 6, d ) 
                                  + 6, d ) 
                                  + 6, d )  
                                       , d ) 
                                       , d ) 
                                       , d )  
                                            ) 
                                            ) 
 
 
 
 
 
 

s 
s, s 
r E ::= NUM 
r S ::= ID = E 
s, s 
s, s 
r E ::= ID 
s, s, s 
s, s 
r E ::= NUM 
s, s 
r E ::= NUM 
r E ::= E+E, s, s 
r S ::= ID = E 
R E::= ID 
s, r E ::= (S, E) 
r E ::= E + E 
r S ::= ID = E 
r S ::= S ; S  
 
 
 
 
 
 
 

ACTIONS 
SHIFT = LEX + move token to stack 
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LL(k) vs. LR(k) reductions  

)',)((' *** TwNTwA ∈∪∈⇒→ ββ

)(kLL )(kLR

'w
k token look ahead 

Stack 

A β (left-most  
symbol at 
top) 

'w
k token look  
ahead 

Stack 

Aβ(right-most  
symbol at 
top) 

A

The language of this 
Stack IS REGULAR! 
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Q: How do we know when to shift and 
when to reduce? A: Build a FSA from 

LR(0) Items! 
(G10) 
 

S  ::= A $   
 
A ::=  (A )   
      |  (   ) 

    S  ::=  • A $ 
S ::= A •  $ 
A ::=  •  (A) 
A ::= ( • A ) 
A ::= ( A • ) 
A ::= ( A  )  • 
A ::=  •  (   ) 
A ::= (  •  ) 
A ::= (      )  • 

LR(0) items indicate what is on the stack 
(to the left of the • ) and what is still in  
the input stream (to the right of the • ) 

If  
 
   X ::= αβ

is a production, then 
 
   X ::= α • β
 
is an LR(0) item. 
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LR(k) states (non-deterministic)  

),( 21 kaaaA !βα •→

'w Stack: α

'*
21 waaa k ⇒!β

(right-most  
symbol at 
top) 

The state 

should represent this situation:  

Input: 

with 
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Key idea behind LR(0) items 

•  If the “current state” contains the item  
A ::=  α • c β  and the current symbol in the input buffer is c  
–  the state prompts parser to perform a shift action 
–  next state will contain A ::=  α c • β  

•  If the “state” contains the item A ::=  α • 
–  the state prompts parser to perform a reduce action 

•  If the “state” contains the item S ::= α • $  
and the input buffer is empty 
–  the state prompts parser to accept 

•  But How about  A ::=  α • X β  where X is a nonterminal? 
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The NFA for LR(0) items 

•  The transition of LR(0) items can be represented 
by an NFA, in which 
–  1. each LR(0) item is a state, 
–  2. there is a transition from item A ::= α • c β  
   to item A ::= αc • β with label c, where c is a terminal 

symbol 
–  3. there is an ε-transition from item A ::= α • X β  to 

X ::= • γ,  where X is a non-terminal 
–  4. S ::= • A $ is the start state 
–  5. A ::= α • is a final state.
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Example NFA for Items 

     S ::= • A $  S ::= A • $   A ::= • (A) 
A ::= ( • A )  A ::= (A • )   A ::= (A) • 
A ::= • ( )   A ::= (•)   A ::= ( ) • 

A ::= ( A • ) 

A ::= ( • ) 

A ::= (A) • S ::= A • $ S ::= • A $ 

A ::= • ( )  A ::= (  ) • 

A ::= ( • A ) A ::= • (A ) 

A 

A (


(
 )


)
ε

ε

ε
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The DFA from LR(0) items 

•  After the NFA for LR(0) is constructed, the resulting DFA 
for LR(0) parsing can be obtained by the usual 
NFA2DFA construction. 

•  we thus require  
–   ε-closure (I)   
–   move(S, a)  

Fixed Point Algorithm for Closure(I) 
–  Every item in I is also an item in Closure(I) 
–  If A ::=  α • B β  is in Closure(I) and B ::= • γ is an item,  

then add B ::= • γ to Closure(I) 
–  Repeat until no more new items can be added to 

Closure(I) 
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Examples of Closure 

Closure({A ::= ( • A )}) =  
A ::=      (  • A)  
A  ::=   •  (A) 
A  ::=  •  (   ) 

 

S ::=    • A $  
A ::=   •  (A) 
A ::=  •  (   ) 

 

•  closure({S  ::=  • A $}) 

    S  ::=  • A $ 
S ::= A •  $ 
A ::=  •  (A) 
A ::= ( • A ) 
A ::= ( A • ) 
A ::= ( A  )  • 
A ::=  •  (   ) 
A ::= (  •  ) 
A ::= (      )  • 
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Goto() of a set of items 

•  Goto finds the new state after consuming a 
grammar symbol while in the current state 

•  Algorithm for Goto(I, X) 
where I is a set of items  
and X is a non-terminal  

Goto(I, X) = Closure( { A ::=  α X • β | A ::=  α • X β in I })  

•  goto is the new set obtained by 
“moving the dot” over X 
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Examples of Goto 

•  Goto ({A ::= •(A)}, () 





A ::=      (   • A)  
A ::=   •  (A) 
A ::=  •  (   ) 

 •  Goto ({A ::= ( • A)}, A) 

A ::= (A •   ) 
 

 

    S  ::=  • A $ 
S ::= A •  $ 
A ::=  •  (A) 
A ::= ( • A ) 
A ::= ( A • ) 
A ::= ( A  )  • 
A ::=  •  (   ) 
A ::= (  •  ) 
A ::= (      )  • 
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•  Essentially the usual NFA2DFA construction!! 
•  Let A be the start symbol and S a new start 

symbol.  
•  Create a new rule S ::= A $ 
•  Create the first state to be Closure({ S ::= • A $}) 
•  Pick a state I 

–  for each item A ::= α • X β  in I 
•  find Goto(I, X) 
•  if Goto(I, X) is not already a state, make one 
•  Add an edge X from state I to Goto(I, X) state 

•  Repeat until no more additions possible 

Building the DFA states 



77 

DFA Example 

S ::= • A$ 
A  ::= • (A) 
A ::= • ( ) 

s0 S ::= A • $ 
s1 A 

A ::= ( • A) 
A ::=  ( • ) 
A ::= • (A) 
A  ::= • ( ) 

s2 

(

A ::= (A • ) 

A 

s3 
(


A ::=  ( ) • 

)
s5 
A ::= (A) • 

)

s4 
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Building Parse Table Example 

S ::= • A$ 
A  ::= • (A) 
A ::= • ( ) 

s0 S ::= A • $ 
s1 A 

A ::= ( • A) 
A ::=  ( • ) 
A ::= • (A) 
A  ::= • ( ) 

s2 

(

A ::= (A • ) 

A 

s3 
(


A ::=  ( ) • 

)
s5 
A ::= (A) • 

)

s4 

Creating the Parse Table(s) 

State ( ) $ A
s0 shift to s2 goto s1
s1 accept  
s2 shift to s2 shift to s5  goto s3
s3 shift to s4  
s4 reduce (2) reduce (2) reduce (2)  
s5 reduce (3) reduce (3) reduce (3)  

(G10) 
(1)   S  ::= A$  
(2)   A ::=  (A ) 
(3)   A ::=  (   ) 
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Parsing with an LR Table 

Use table and top-of-stack and input symbol to get action: 
 
If action is  
            shift sn  : advance input one token,  
                            push sn on stack 
  reduce X ::= α : pop stack 2* |α| times (grammar symbols  
                            are paired with states).  In the state  
                            now on top of stack,  
                            use goto table to get next  
                            state sn,  
                            push it on top of stack 
              accept : stop and accept 
                 error : weep (actually, produce a good error 
                                        message)  
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Building Parse Table Example Parsing, again… 
ACTION Goto

State ( ) $ A
s0 shift to s2 goto s1
s1 accept  
s2 shift to s2 shift to s5  goto s3
s3 shift to s4  
s4 reduce (2) reduce (2) reduce (2)  
s5 reduce (3) reduce (3) reduce (3)  

s0                                   (())$                           shift s2 
s0 ( s2                             ())$                           shift s2 
s0 ( s2 ( s2                        ))$                          shift s5 
s0 ( s2 ( s2 ) s5                  )$                           reduce A ::= () 
s0 ( s2 A                            )$                            goto s3 
s0 ( s2 A s3                       )$                            shift s4 
s0 ( s2 A s3 ) s4                 $                            reduce A::= (A) 
s0 A                                    $                            goto s1 
s0 A s1                               $                            ACCEPT! 
                    

(G10) 
(1)   S  ::= A$  
(2)   A ::=  (A ) 
(3)   A ::=  (   ) 
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LR Parsing Algorithm 

sm 
Ym 
sm-1 

Ym-1 
   . 
   . 
s1 

Y1 
s0 

a1  ... ai  ... an $ 

Action Table 
      terminals and $ 
s 
t         four different  
a         actions 
t 
e 
s 

Goto Table 
       non-terminal 
s 
t            each item is 
a           a state  
t           number 
e 
s 

 
LR Parsing 
Algorithm 

Stack of  
states and  
grammar symbols 

input 

output 
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Problem With LR(0) Parsing 

• No lookahead 
• Vulnerable to unnecessary 

conflicts 
– Shift/Reduce Conflicts (may reduce 

too soon in some cases) 
– Reduce/Reduce Conflicts 

• Solutions: 
– LR(1) parsing - systematic lookahead 
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LR(1) Items 

•  An LR(1) item is a pair: 
             (X ::= α . β,  a) 
–  X ::= αβ is a production 
–  a is a terminal (the lookahead terminal) 
–  LR(1) means 1 lookahead terminal 

 

•  [X ::= α . β, a] describes a context of the parser   
–  We are trying to find an X followed by an a, and  
–  We have  (at least) α already on top of the stack 
–  Thus we need to see next a prefix derived from βa 
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The Closure Operation 

•  Need to modify closure operation:. 

Closure(Items) = 
   repeat 
      for each [X ::= α . Yβ, a] in Items 
          for each production Y ::= γ  
               for each b in First(βa) 
                    add [Y ::= .γ, b] to Items 
   until Items is unchanged 
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Constructing the Parsing DFA (2) 

•  A DFA state is a closed set of LR(1) items 

•  The start state contains (S’ ::= .S$, dummy)  

•  A state that contains [X ::= α., b] is labeled 
with “reduce with X ::= α on lookahead b” 

•  And now the transitions … 
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The DFA Transitions 

•  A state s that contains [X ::= α.Yβ, b] has 
a transition labeled y to the state obtained 
from Transition(s, Y) 
– Y can be a terminal or a non-terminal 

 
Transition(s, Y)  
   Items = {} 
   for each [X ::= α.Yβ, b] in s 
        add [X ! αY.β, b] to Items 
   return Closure(Items) 
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LR(1)-the parse table 

•  Shift and goto as before 
•  Reduce 

– state I with item (A→α., z) gives a reduce 
A→α if z is the next character in the input.  

•  LR(1)-parse tables are very big 
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LR(1)-DFA 

From Andrew Appel, “Modern Compiler Implementation in Java” page 65 

(G11)  
 
S’ ::= S$ 
 
S ::= V = E  
      | E 
 
E ::= V 
 
V ::= x 
      | *E 
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LR(1)-parse table 

x * = $ S E V x * = $ S E V 

1 s8 s6 g2 g5 g3 8 r4 r4 

2 acc 9 r1 

3 s4 r3 10 r5 r5 

4 s11 s13 g9 g7 11 r4 

5 r2 12 r3 r3 

6 s8 s6 g10 g12 13 s11 s13 g14 g7 

7 r3 14 r5 
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LALR States 

•  Consider for example the LR(1) states 
             {[X ::= α. , a], [Y ::= β. , c]} 
             {[X ::= α. , b], [Y ::= β. , d]} 
•  They have the same core and can be 

merged to the state  
             {[X ::= α. , a/b], [Y ::= β. , c/d]} 
•  These are called LALR(1) states  

– Stands for LookAhead LR 
– Typically 10 times fewer LALR(1) states than 

LR(1) 
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For LALR(1), Collapse States ... 

Combine states 6 and 13, 7 and 12, 8 and 11, 10 and 14. 



92 

LALR(1)-parse-table 

x * = $ S E V 
1 s8 s6 g2 g5 g3 
2 acc 
3 s4 r3 
4 s8 s6 g9 g7 
5 
6 s8 s6 g10 g7 
7 r3 r3 
8 r4 r4 
9 r1 
10 r5 r5 
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LALR vs. LR Parsing 

•  LALR languages are not “natural” 
–  They are an efficiency hack on LR languages 

•  You may see claims that any reasonable programming 
language has a LALR(1) grammar, {Arguably this is 
done by defining languages without an LALR(1) 
grammar as unreasonable J }. 

•  In any case, LALR(1) has become a standard for 
programming languages and for parser generators, in 
spite of its apparent complexity.  
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Roadmap  

Interpreter 0  

Interpreter 1  

Interpreter 2  

Interpreter 3  

Jargon VM    

Lectures 7    

Lecture 8   

Lectures 9, 10   

Starting from a direct implementation of Slang/L3 semantics,  
we will DERIVE a Virtual Machine in a step-by-step manner.   
The correctness of each step is (more or less) easy to check.  

Lectures 11, 12    

Lecture 7: 
We make this  
leap using  
intuition.  
 
Later we will 
understand 
it more  
formally… 
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 LECTURE 7 
Interpreter 0, Interpreter 2  

1.  Interpreter 0 : The high-level “definitional” 
interpreter 

1.  Slang/L3 values represented directly as OCaml values 
2.  Recursive interpreter implements a denotational 

semantics  
3.  The interpreter implicitly uses OCaml’s runtime stack  

2.  Interpreter 2: A high-level stack-oriented 
machine  

1.  Makes the Ocaml runtime stack explicit  
2.  Complex values pushed onto stacks  
3.  One stack for values and environments  
4.  One stack for instructions  
5.  Heap used only for references  
6.  Instructions have tree-like structure  



97 

Approaches to Mathematical Semantics  

•  Axiomatic: Meaning defined through logical 
specifications of behaviour.  

•  Hoare Logic (Part II)   
•  Separation Logic  

•  Operational: Meaning defined in terms of transition 
relations on states in an abstract machine.  

•  Semantics (Part 1B)  
•  Denotational: Meaning is defined in terms of 

mathematical objects such as functions.  
•  Denotational Semantics (Part II)  
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A denotational semantics for L3? 
A = set of addresses  

S = set of stores = A à V  

V = set of value  
    ≈ A  
       + N 
       + B  
       + { () }  
       + V × V 
       + (V + V)  
       + (V × S) à (V × S) 
         

N = set of integers  B = set of booleans  
I = set of identifiers  
E = set of environments = I à V  

Set of values V solves this  
“domain equation” (here +  
means disjoint union).  
 
Solving such equations is  
where some difficult maths  
is required …  

M = the meaning function  
M : (Expr × E × S) à (V × S)    

Expr = set of L3 expressions 

Not examinable!! 
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Our shabby OCaml approximation 
A = set of addresses  
S = set of stores = A à V  

V = set of value  
    ≈ A  
       + N 
       + B  
       + { () }  
       + V × V 
       + (V + V)  
       + (V × S) à (V × S) 
         E = set of environments = A à V  
M = the meaning function  
M : (Expr × E × S) à (V × S)    

type address  



type store = address -> value 



and value = 

     | REF of address 

     | INT of int 

     | BOOL of bool 

     | UNIT

     | PAIR of value * value 

     | INL of value 

     | INR of value 

     | FUN of ((value * store) 

                                 -> (value * store))



type env = Ast.var -> value 



val interpret :  

       Ast.expr * env * store 

                                  -> (value * store) 
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Most of the code is obvious!  
let rec interpret (e, env, store) = 

    match e with 

    | If(e1, e2, e3) -> 

       let (v, store') = interpret(e1, env, store) in 

             (match v with 

             | BOOL true -> interpret(e2, env, store')

             | BOOL false -> interpret(e3, env, store')

             | v -> complain "runtime error.  Expecting a boolean!”)

    | Pair(e1, e2)  -> 

       let (v1, store1) = interpret(e1, env, store) in 

       let (v2, store2) = interpret(e2, env, store1) in (PAIR(v1, v2), store2) 

    | Fst e -> 

        (match interpret(e, env, store) with 

        | (PAIR (v1, _), store') -> (v1, store') 

        | (v, _) -> complain "runtime error.  Expecting a pair!”)

    | Snd e  -> 

       (match interpret(e, env, store) with 

        | (PAIR (_, v2), store') -> (v2, store') 

        | (v, _) -> complain "runtime error.  Expecting a pair!”)

    | Inl e   -> let (v, store') = interpret(e, env, store) in (INL v, store') 

    | Inr e  -> let (v, store') = interpret(e, env, store) in (INR v, store') 

    :

    :




101 

Tricky bits : Slang functions mapped to OCaml functions! 

let rec interpret (e, env, store) =  
    match e with  
    : 
    : 
    | Lambda(x, e)  -> (FUN (fun (v, s) -> interpret(e, update(env, (x, v)), s)), store) 
    | App(e1, e2) -> (* I chose to evaluate argument first!  *)  
      let (v2, store1) = interpret(e2, env, store) in  
      let (v1, store2) =  interpret(e1, env, store1) in  
           (match v1 with  
           | FUN f -> f (v2, store2) 
           | v -> complain "runtime error.  Expecting a function!”) 
    | LetFun(f, (x, body), e) ->  
       let new_env =  
            update(env, (f, FUN (fun (v, s) -> interpret(body, update(env, (x, v)), s)))) 
       in interpret(e, new_env, store)  
    | LetRecFun(f, (x, body), e) ->  
       let rec new_env g = (* a recursive environment!!! *)  
           if g = f then FUN (fun (v, s) -> interpret(body, update(new_env, (x, v)), s))  
                     else env g 
       in interpret(e, new_env, store)  

update : env * (var * value) -> env 
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Typical implementation of function calls   

!
let fun f (x) = x + 1 !
    fun g(y) = f(y+2)+2 !
    fun h(w) = g(w+1)+3 !
in !
   h(h(17)) !
end  !

h ! h !
g !

h !
g !

f !

h !

g !

h ! h ! h !
g !

h !
g !

f !

h !

g !

h !

Execution  

The run-time data structure is  
the call stack containing an  
activation record for each function  
invocation.   



interpret is implicitly using Ocaml’s runtime stack 

let rec interpret (e, env, store) = 

    match e with 

    | Integer n            -> (INT n, store) 

    | Op(e1, op, e2)   ->

       let (v1, store1) = interpret(e1, env, store) in 

       let (v2, store2) = interpret(e2, env, store1) in 

            (do_oper(op, v1, v2), store2)

    :

    :  


•  Every invocation of interpret is 
building an activation record on 
Ocaml’s runtime stack.   

•  We will now define interpreter 2 
which makes this stack explicit 
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Inpterp_2 data types 

type address = int 



type value = 

     | REF of address 

     | INT of int 

     | BOOL of bool 

     | UNIT

     | PAIR of value * value 

     | INL of value 

     | INR of value 

     | CLOSURE of bool * 

                               closure    



and closure = code * env 




and instruction = 

  | PUSH of value 

  | LOOKUP of var 

  | UNARY of unary_oper 

  | OPER of oper 

  | ASSIGN 

  | SWAP

  | POP 

  | BIND of var 

  | FST

  | SND

  | DEREF 

  | APPLY

  | MK_PAIR 

  | MK_INL

  | MK_INR

  | MK_REF 

  | MK_CLOSURE of code 

  | MK_REC of var * code 

  | TEST of code * code

  | CASE of code * code

  | WHILE of code * code


type address  



type store = address -> value 



and value = 

     | REF of address 

     | INT of int 

     | BOOL of bool 

     | UNIT

     | PAIR of value * value 

     | INL of value 

     | INR of value 

     | FUN of ((value * store) 

                                 -> (value * store))



type env = Ast.var -> value 
















Interp_0 Interp_2 
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and code = instruction list 



and binding = var * value



and env = binding list



type env_or_value = EV of env | V of value 



type env_value_stack = env_or_value list 



type state = code * env_value_stack 



val step : state -> state 



val driver : state -> value



val compile : expr -> code 



val interpret : expr -> value 


Interp_2.ml : The Abstract Machine 

The state is actually  
comprised of a  
heap ---  a global array  
of values --- a pair 
of the form  
  
   (code, evn_value_stack) 
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Interpreter 2: The Abstract Machine 

type state = code * env_value_stack 



val step : state -> state 

 

The state transition function.  
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The driver.  Correctness 

(* val driver : state -> value *)

let rec driver state = 

     match state with 

     | ([], [V v]) -> v 

     | _                  -> driver (step state) 




val compile : expr -> code 


The idea:  if e passes the frond-end and  
     Interp_0.interpret e = v 

then  
      driver (compile e, []) = v’ 

where v’ (somehow) represents v.  

In other words,  
evaluating  
  compile e

should leave the  
value of e on top  
of the stack 
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Implement inter_0 in interp_2 

let step = function  
 | (MK_PAIR :: ds,  (V v2) :: (V v1) :: evs)  ->  (ds,   V(PAIR(v1, v2)) :: evs) 
 | (FST :: ds,            V(PAIR (v, _)) :: evs)  ->  (ds,   (V v) :: evs) 
 : 
 
let rec compile = function  
 | Pair(e1, e2)   -> (compile e1) @ (compile e2) @ [MK_PAIR]  
 | Fst e              -> (compile e) @ [FST]  
 : 

let rec interpret (e, env, store) = 

    match e with 

| Pair(e1, e2)  -> 

       let (v1, store1) = interpret(e1, env, store) in 

       let (v2, store2) = interpret(e2, env, store1) in (PAIR(v1, v2), store2) 

    | Fst e -> 

        (match interpret(e, env, store) with 

        | (PAIR (v1, _), store') -> (v1, store') 

        | (v, _) -> complain "runtime error.  Expecting a pair!”)

    :


interp_0.ml 

interp_2.ml 
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Implement inter_0 in interp_2 

let step = function  
 | ((TEST(c1, c2)) :: ds,  V(BOOL true) :: evs) -> (c1 @ ds, evs)  
 | ((TEST(c1, c2)) :: ds, V(BOOL false) :: evs) -> (c2 @ ds, evs)  
 : 
 
let rec compile = function  
 | If(e1, e2, e3) -> (compile e1) @ [TEST(compile e2, compile e3)] 
 :  
 

let rec interpret (e, env, store) = 

    match e with 

    | If(e1, e2, e3) -> 

       let (v, store') = interpret(e1, env, store) in 

             (match v with 

             | BOOL true -> interpret(e2, env, store')

             | BOOL false -> interpret(e3, env, store')

             | v -> complain "runtime error.  Expecting a boolean!”)

     :


interp_0.ml 

interp_2.ml 
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Tricky bits again!  

let rec interpret (e, env, store) =  
    match e with  
    | Lambda(x, e)  -> (FUN (fun (v, s) -> interpret(e, update(env, (x, v)), s)), store) 
    | App(e1, e2) -> (* I chose to evaluate argument first!  *)  
      let (v2, store1) = interpret(e2, env, store) in  
      let (v1, store2) =  interpret(e1, env, store1) in  
           (match v1 with  
           | FUN f -> f (v2, store2) 
           | v -> complain "runtime error.  Expecting a function!”) 
    : 

let step = function  
 | (POP :: ds,                               s :: evs) -> (ds,  evs)  
 | (SWAP :: ds,                  s1 :: s2 :: evs) -> (ds,  s2 :: s1 :: evs)  
 | ((BIND x) :: ds,                   (V v) :: evs) -> (ds,  EV([(x, v)]) :: evs)  
 | ((MK_CLOSURE c) :: ds,              evs) -> (ds,   V(mk_fun(c, evs_to_env evs)) :: evs) 
 | (APPLY :: ds,  V(CLOSURE (_, (c, env))) :: (V v) :: evs)  
                                                                -> (c @ ds,  (V v) :: (EV env) :: evs) 
let rec compile = function  
 | Lambda(x, e)   -> [MK_CLOSURE((BIND x) :: (compile e) @ [SWAP; POP])] 
 | App(e1, e2)      -> (compile e2) @ (compile e1) @ [APPLY; SWAP; POP]  
 :  
 
 

interp_0.ml 

interp_2.ml 
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Example : Compiled code for rev_pair.slang  

let rev_pair (p : int * int) : int * int  = (snd p, fst p) 

in 

     rev_pair (21, 17) 

end 


MK_CLOSURE([BIND p; LOOKUP p; SND; LOOKUP p; FST; MK_PAIR; SWAP; POP]); 
 BIND rev_pair; 
 PUSH 21; 
 PUSH 17; 
 MK_PAIR; 
 LOOKUP rev_pair; 
 APPLY; 
 SWAP; 
 POP; 
 SWAP; 
 POP 

DEMO TIME!!!  
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 LECTURE 8 
Derive Interpreter 3    

1.  “Flatten” code into linear array 
2.  Add “code pointer” (cp) to machine state 
3.  New instructions :  LABEL,  GOTO, RETURN  
4.  “Compile away” conditionals and while loops 
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Linearise code  

Interpreter 2 copies code  
on the code stack.  
We want to introduce one  
global array of instructions  
indexed by a code pointer (cp).  
At runtime the cp points at the  
next instruction to be executed.  

cp     next  
instruction  

:    : 
:    :  

:    : 
:    :  

  This will require two new  instructions:  
  
  LABEL L  : Associate label L with this location in the code array  
                  
  GOTO L : Set the cp to the code address associated with L    
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Compile conditionals, loops  

If(e1, e2, e3)


code for e1


TEST k 

code for e2


GOTO m 

k: code for e3


m:    

m: code for e1


 TEST k 

code for e2


GOTO m 

k:     

While(e1, e2)
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If ? = 0 Then 17 else 21 end 


PUSH UNIT;

UNARY READ;

PUSH 0;

OPER EQI;

TEST(

    [PUSH 17], 

    [PUSH 21]

)


 PUSH UNIT; 
 UNARY READ; 
 PUSH 0; 
 OPER EQI; 
 TEST L0; 
 PUSH 17; 
 GOTO L1; 
 LABEL L0; 
 PUSH 21; 
 LABEL L1; 
 HALT 

0: PUSH UNIT;

1: UNARY READ;

2: PUSH 0;

3: OPER EQI;

4: TEST L0 = 7;

5: PUSH 17;

6: GOTO L1 = 9;

7: LABEL L0;

8: PUSH 21;

9: LABEL L1;

10: HALT


interp_2 interp_3 interp_3 (loaded) 

Symbolic code  
locations  

Numeric code  
locations  
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Implement inter_2 in interp_3 

let step = function  
 | ((TEST(c1, c2)) :: ds,  V(BOOL true) :: evs) -> (c1 @ ds, evs)  
 | ((TEST(c1, c2)) :: ds, V(BOOL false) :: evs) -> (c2 @ ds, evs)  
 : 
 interp_2.ml 
let step (cp, evs) = 

 match (get_instruction cp, evs) with 

 | (TEST (_, Some _),  V(BOOL true) :: evs)  ->  (cp + 1, evs) 

 | (TEST (_, Some i),  V(BOOL false) :: evs)  ->  (i,          evs) 

 | (LABEL l,                                                 evs)  ->  (cp + 1, evs) 

 | (GOTO (_, Some i),                                 evs)  -> (i,           evs) 

 : 


Code locations are represented as 
 
 (“L”, None)    :  not yet loaded (assigned numeric address)  
    
 (“L”, Some i)  : label “L” has been assigned numeric address i  

Interp_3.ml 
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Tricky bits again!  

let step = function  
 | (POP :: ds,                               s :: evs) -> (ds,  evs)  
 | (SWAP :: ds,                  s1 :: s2 :: evs) -> (ds,  s2 :: s1 :: evs)  
 | ((BIND x) :: ds,                   (V v) :: evs) -> (ds,  EV([(x, v)]) :: evs)  
 | ((MK_CLOSURE c) :: ds,              evs) -> (ds,   V(mk_fun(c, evs_to_env evs)) :: evs) 
 | (APPLY :: ds,  V(CLOSURE (_, (c, env))) :: (V v) :: evs)  
                                                                  -> (c @ ds, (V v) :: (EV env) :: evs)


interp_2.ml 

let step (cp, evs) = 

 match (get_instruction cp, evs) with 

 | (POP,                                            s :: evs) -> (cp + 1, evs) 

 | (SWAP,                             s1 :: s2 :: evs) -> (cp + 1, s2 :: s1 :: evs) 

 | (BIND x,                              (V v) :: evs) -> (cp + 1, EV([(x, v)]) :: evs) 

 | (MK_CLOSURE loc,                        evs) -> (cp + 1, 

                                                                               V(CLOSURE(loc, evs_to_env evs)) :: evs)

 | (RETURN,    (V v) :: _ :: (RA i) :: evs)  -> (i, (V v) :: evs) 

 | (APPLY,  V(CLOSURE ((_, Some i), env)) :: (V v) :: evs) 

                                                              ->   (i, (V v) :: (EV env) :: (RA (cp + 1)) :: evs)


interp_3.ml 

Note that in interp_2 the body of a closure is consumed from 
the code stack. But in interp_3 we need to save the return 
address on the stack (here i is the location of the closure’s code).   
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Tricky bits again!  

 
let rec compile = function  
 | Lambda(x, e)   -> [MK_CLOSURE((BIND x) :: (compile e) @ [SWAP; POP])] 
 | App(e1, e2)      -> (compile e2) @ (compile e1) @ [APPLY; SWAP; POP]  
 :  

interp_2.ml 

let rec comp = function 

 | App(e1, e2)    -> 

   let (defs1, c1) = comp e1 in  

   let (defs2, c2) = comp e2 in  

         (defs1 @ defs2, c2 @ c1 @ [APPLY]) 

 | Lambda(x, e)    -> 

   let (defs, c) = comp e in 

   let f = new_label () in 

   let def = [LABEL f ; BIND x] @ c @ [SWAP; POP; RETURN] in 

        (def @ defs, [MK_CLOSURE((f, None))])


Interp_3.ml 

let compile e = 

    let (defs, c) = comp e in 

       c                    (* body of program *) 

      @ [HALT]     (* stop the interpreter *) 

      @ defs           (*  function definitions *) 

    


Interp_3.ml 
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Interpreter 3  
(very similar to interpreter 2)  
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Some observations 

•  A very clean machine!  
•  But it still has a very inefficient treatment of 

environments. 
•  Also, pushing complex values on the stack is 

not what most virtual machines do. In fact, we 
are still using OCaml’s runtime memory 
management to manipulate complex values. 
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Example : Compiled code for rev_pair.slang  

let rev_pair (p : int * int) : int * int  = (snd p, fst p) 

in 

     rev_pair (21, 17) 

end 


MK_CLOSURE(

    [BIND p; LOOKUP p; SND; 

     LOOKUP p; FST; MK_PAIR; 

     SWAP; POP]);

 BIND rev_pair;

 PUSH 21;

 PUSH 17;

 MK_PAIR;

 LOOKUP rev_pair;

 APPLY;

 SWAP;

 POP;

 SWAP;

 POP
 DEMO TIME!!!  Interp_2 

MK_CLOSURE(rev_pair)

 BIND rev_pair

 PUSH 21

 PUSH 17

 MK_PAIR

 LOOKUP rev_pair

 APPLY

 SWAP

 POP

 HALT

 


LABEL rev_pair

 BIND p

 LOOKUP p

 SND

 LOOKUP p

 FST

 MK_PAIR

 SWAP

 POP

 RETURN
Interp_3 
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 LECTURES 9, 10 
Deriving The Jargon VM  

(interpreter 4)  
1.  First change: Introduce an addressable stack.  
2.  Replace variable lookup by a (relative) location on the stack 

or heap determined at compile time.   
3.  Relative to what? A frame pointer (fp) pointing into the 

stack is needed to keep track of the current activation 
record.  

4.  Second change: Optimise the representation of closures so 
that they contain only the values associated with the free 
variables of the closure and a pointer to code.  

5.  Third change: Restrict values on stack to be simple (ints, 
bools, heap addresses, etc).  Complex data is moved to the 
heap, leaving pointers into the heap on the stack. 

6.  How might things look different in a language without first-
class functions?  In a language with multiple arguments to 
function calls?  



123 

Jargon Virtual Machine  

frame 0 

  Stack 
(really array)  

frame 1 

stack      sp 
pointer  
 
frame      fp  
Pointer  

Frame 2 

grows 

shrinks 

          Code 
(array of instructions) 

          heap 
(array of heap values) 

heap[0] 

heap[heal_limit] 

cp 
          Code  
          pointer Need for  

fp to be  
explained  
soon … 



The stack in interpreter 3   

(1, (2, 17))  
Inl(inr(99))  

:        :  
:        :  

    A stack 
in interpreter 3  

Stack elements in interpreter 3  
are not of fixed size.  
 
Virtual machines (JVM, etc)  
typically restrict stack elements 
to be of a fixed size 
 
We need to shift data from the  
high-level stack of interpreter 3 
to a lower-level stack with  
fixed size elements. 
 
Solution : put the data in the heap.  
Place pointers to the heap on  
the stack.  

“All problems in computer  
science can be solved by  
another level of indirection,  
except of course for the  
problem of too many  
indirections.” 
      --- David Wheeler  
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The 
Jargon VM 

stack  

c :               Header 3, PAIR 
           1  c+1 :              
           d  c+2 :              

d :               Header 3, PAIR 
           2  d+1 :              
           17  d+2 :              

b :               Header 2, INL 
            a b+1 :              

a :               Header 2, INR 
            99 a+1 :           

:        :   

:        :   

:        :   

:        :   

Heap  

   

Some stack elements 
represent pointers 
into the heap 

Stack  

c 
      b     

:        :  
:        :  

      c     
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type instruction = 

  | PUSH of value 

  | LOOKUP of Ast.var 

  | UNARY of Ast.unary_oper 

  | OPER of Ast.oper 

  | ASSIGN 

  | SWAP

  | POP 

  | BIND of Ast.var 

  | FST

  | SND

  | DEREF 

  | APPLY

  | RETURN 

  | MK_PAIR 

  | MK_INL

  | MK_INR

  | MK_REF 

  | MK_CLOSURE of location 

  | TEST of location 

  | CASE of location

  | GOTO of location

  | LABEL of label 

  | HALT 


type instruction =  
  | PUSH of stack_item           (* modified *)  
  | LOOKUP of value_path      (* modified *)  
  | UNARY of Ast.unary_oper  
  | OPER of Ast.oper  
  | ASSIGN  
  | SWAP 
  | POP  
  (*  | BIND of var            not needed *)  
  | FST 
  | SND 
  | DEREF  
  | APPLY 
  | RETURN  
  | MK_PAIR  
  | MK_INL 
  | MK_INR 
  | MK_REF  
  | MK_CLOSURE of location * int   (* modified *)  
  | TEST of location  
  | CASE of location 
  | GOTO of location 
  | LABEL of label  
  | HALT  

interp_3.mli jargon.mli Small change to  
instructions   
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type value = | REF of address | INT of int | BOOL of bool | UNIT

  | PAIR of value * value | INL of value | INR of value | CLOSURE of location * env 

type env_or_value = | EV of env | V of value | RA of address

type env_value_stack = env_or_value list 




type stack_item = 

  | STACK_INT of int 

  | STACK_BOOL of bool 

  | STACK_UNIT 

  | STACK_HI of heap_index    (* Heap Index                      *) 

  | STACK_RA of code_index    (* Return Address             *) 

  | STACK_FP of stack_index   (* (saved) Frame Pointer *) 


A word about implementation   

type heap_item = 

  | HEAP_INT of int 

  | HEAP_BOOL of bool 

  | HEAP_UNIT 

  | HEAP_HI of heap_index                     (* Heap  Index                                        *) 

  | HEAP_CI of code_index                      (* Code pointer for closures                *) 

  | HEAP_HEADER of int * heap_type (* int is number items in heap block *) 


type heap_type = 

    | HT_PAIR 

    | HT_INL 

    | HT_INR 

    | HT_CLOSURE 


Interpreter 3  

Jargon VM 

The headers will be 
essential for  
garbage collection! 
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MK_INR (MK_INL is similar) 

 (MK_INR,       (V v) :: evs)    ->    (cp + 1, V(INR(v)) :: evs)


c 

      v     
:        :  
:        :  

 MK_INR

c 

      a     
:        :  
:        :  

a :              Header 2, INR 
          v  a+1 :              

 Newly allocated 
     locations in  
       the heap 

The stack 
   before   

The stack 
   after   

Jargon VM  

In interpreter 3  

Note: The header types are not really required.  We could  
instead add an extra field here (for example, 0 or 1).  
However, header types aid in understanding the code and  
traces of runtime execution.   
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CASE (TEST is similar)  

(CASE (_, Some _),  V(INL v)::evs) -> (cp + 1, (V v) :: evs) 

(CASE (_, Some i),  V(INR v)::evs) -> (i,          (V v) :: evs) 


CASE i 

c 

      a     
:        :  
:        :  

a :               INR 
   v  a+1 :              

cp = t 

c 

      v     
:        :  
:        :  

cp = i 

CASE i 

c 

      a     
:        :  
:        :  

a :               INL 
   v  a+1 :              

cp = t 

c 

      v     
:        :  
:        :  

cp = t + 1 
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MK_PAIR


 (MK_PAIR,       (V v2) :: (V v1) :: evs)     ->     (cp + 1, V(PAIR(v1, v2)) :: evs)


c 
   v1     

:     :  
:     :  

   v2     
 MK_PAIR


c 

   a     
:     :  
:     :  

a :              Header 3, PAIR 
          v1  a+1 :              

a+2 :                       v2  

Newly allocated 
    locations in  
       the heap 

The stack 
   before   

The stack 
   after   

In Jargon VM:  

In interpreter 3:  
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FST (similar for SND) 

 (FST,       V (PAIR(v1, v2)) :: evs)     ->     (cp + 1, v1 :: evs)


c 

   v1     
:     :  
:     :  

FST
c 

   a     
:     :  
:     :  

a :              Header 3, PAIR 
          v1  a+1 :              

a+2 :                       v2  

Somewhere   
 in the heap 

The stack 
   after   

The stack 
   before   

In Jargon VM:  

In interpreter 3:  

Note that v1 could be a simple value (int or bool), or aother heap address.  



These require more care …   

let step (cp, evs) = 

 match (get_instruction cp, evs) with 

| (MK_CLOSURE loc,   evs) 

    -> (cp + 1, V(CLOSURE(loc, evs_to_env evs)) :: evs)



| (APPLY,    V(CLOSURE ((_, Some i), env)) :: (V v) :: evs) 

    -> (i,  (V v) :: (EV env) :: (RA (cp + 1)) :: evs)



| (RETURN,    (V v) :: _ :: (RA i) :: evs) 

    -> (i,  (V v) :: evs) 

 


In interpreter 3:  



�
MK_CLOSURE(c, n)�

 

 


c 
:               

  v2     
 MK_CLOSURE(c, n)


a :               closure header 
    c  a+1 :              

a+2 :                  v1  

Newly allocated 
   locations in  
       the heap 

The stack 
   before   The stack 

   after   

c = code location of start of instructions for closure, 
n = number of free variables in the body of closure. 
 
Put values associated with free variables on stack,  
then construct the closure on the heap  

  v1     

  vn     

: 
:               

c 

  a     

: 
:               a+n+1 :                  vn  

c 

:        :              
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A stack frame  

c 

    a     

:     :  
:     :  

    v     

    r      
   fp’      fp   

:     :  
:     :  

Return address   
Saved frame pointer   
Pointer to closure   

Argument value   

Stack frame. 
(Boundary  
May vary in the  
literature.)  

Currently executing code for the closure at heap address “a”  
after it was applied to argument v.  



APPLY   

(APPLY,    V(CLOSURE ((_, Some i), env)) :: (V v) :: evs) 

                                                                  -> (i,  (V v) :: (EV env) :: (RA (cp + 1)) :: evs)


APPLY


c 

   a     

:     :  
:     :  

a :              Header n+2, 
CLOSURE  

          v1  

a+n+1 :              

a+1 :              

         vn  

AFTER    
Jargon VM:  

    v     
           i 

:     :   

a+2 :              

BEFORE    

c 

   a     

:     :  
:     :  

    v     

 k+1     
    j      

cp = k  
fp = j  

cp = i  
fp = m  

m :              fp   

Interpreter 3:  



RETURN   

(RETURN,    (V v) :: _ :: (RA i) :: evs)  ->  (i,   (V v) :: evs) 


RETURN


AFTER    Jargon VM:  

Interpreter 3:  

BEFORE    

c    a     

:     :  
:     :  

   v1     

    t      
    j      

cp = i  

fp            

   v2     

c :     :  
:     :  

cp = t   
  (return address)  

fp = j            

   v2     

Replace stack frame 
with return value 



Finding a variable’s value at runtime   

c    a     

:     :  
:     :  

a :              Header n+2, 
CLOSURE  

          v1  
a+1 :              

         vn  

    v     
 code location i  

:     :   

a+2 :              

 k+1     
    j      

fp            

:     :  
:     :  

sp            

Suppose we are  
executing code  
associated with this  
closure. Then every 
free variable in the  
body of the closure  
can be found from  
the frame pointer fp:  
•  Formal parameter: at stack location fp-2 
•  Other free variables :  

•  Follow heap pointer found at fp -1 
•  Each free variable can be associated 

with  a fixed offset from this heap 
address  



LOOKUP (HEAP_OFFSET k)   


              (LOOKUP x,                          evs) -> (cp + 1, V(search(evs, x)) :: evs)


LOOKUP

(HEAP_OFFET k) 


AFTER    Jargon VM:  

Interpreter 3:  

BEFORE    

c 
   a     

:     :  
:     :  

   v     

 k+1     
    j      

:     :  
FREE     sp            

fp            
c 

   a     

:     :  
:     :  

   v     

 k+1     
    j      

:     :  

FREE     sp            

fp            

   vk     

a :              Header 

    v1  

    vk  

     i  

:     :   

:     :   



LOOKUP (STACK_OFFSET -2)   


              (LOOKUP x,                          evs) -> (cp + 1, V(search(evs, x)) :: evs)


LOOKUP

(STACK_OFFET  -2) 


AFTER    Jargon VM:  

Interpreter 3:  

BEFORE    

c 
   a     

:     :  
:     :  

   v     

 k+1     
    j      

:     :  
FREE     sp            

fp            
c 

   a     

:     :  
:     :  

   v     

 k+1     
    j      

:     :  

FREE     sp            

fp            

   v     

push argument  
value onto the  
stack  
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Oh, one problem 

Solution in Jargon VM  

interpreter 3  let rec comp = function 

 : 

 | LetFun(f, (x, e1), e2) -> 

                      let (defs1, c1) = comp e1 in  

                      let (defs2, c2) = comp e2 in  

                      let def = [LABEL f; BIND x] @ c1 @ [SWAP; POP; RETURN] in 

                          (def @ defs1 @ defs2, 

                           [MK_CLOSURE((f, None)); BIND f] @ c2 @ [SWAP; POP])

 : 




Problem:  Code c2 can be anything --- how are we going to  
find the closure for f when we need it?  It has to be a fixed offset 
from a frame pointer --- we no longer scan the stack for bindings! 

let rec comp vmap = function 

 :

| LetFun(f, (x, e1), e2) -> comp vmap (App(Lambda(f, e2), Lambda(x, e1)))

: 


Similar trick for LetRecFun




LOOKUP (STACK_OFFSET -1)   


AFTER    Jargon VM:  
BEFORE    

c 
   a     

:     :  
:     :  

   v     

 k+1     
    j      

:     :  
FREE     sp            

fp            
c 

   a     

:     :  
:     :  

   v     

 k+1     
    j      

:     :  

FREE     sp            

fp            

   a 

For recursive function calls, 
push current closure on to the stack.   

LOOKUP

(STACK_OFFET  -1) 


closure  closure  
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Example : Compiled code for rev_pair.slang  

let rev_pair (p : int * int) : int * int  = (snd p, fst p) 

in 

     rev_pair (21, 17) 

end 


After the front-end, compile treats this as follows.  

App(

    Lambda(

       ”rev_pair”, 

        App(Var ”rev_pair”,  Pair (Integer 21, Integer 17))), 

    Lambda(”p”, Pair(Snd (Var ”p”), Fst (Var ”p”))))
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Example : Compiled code for rev_pair.slang  

                MK_CLOSURE(L1, 0) 
 MK_CLOSURE(L0, 0) 
 APPLY 
 HALT 

L0 :          PUSH STACK_INT 21 
 PUSH STACK_INT 17 
 MK_PAIR 
 LOOKUP STACK_LOCATION -2 
 APPLY 
 RETURN 

L1 :          LOOKUP STACK_LOCATION -2 
 SND 
 LOOKUP STACK_LOCATION -2 
 FST 
 MK_PAIR 
 RETURN 

App(

    Lambda(”rev_pair”, 

                      App(Var ”rev_pair”,  Pair (Integer 21, Integer 17))), 

    Lambda(”p”, Pair(Snd (Var ”p”), Fst (Var ”p”))))


-- Make closure for second lambda 
-- Make closure for first lambda  
-- do application  
-- the end!  
-- code for first lambda, push 21 
-- push 17 
-- make the pair on the heap 
-- push closure for second lambda on stack 
-- apply first lambda  
-- return from first lambda  
-- code for second lambda, push arg on stack 
-- extract second part of pair  
-- push arg on stack again 
-- extract first part of pair  
-- construct a new pair  
-- return from second lambda   

“first lambda” 
 
“second lambda”  



Example : trace of rev_pair.slang execution  

Installed Code = 

0: MK_CLOSURE(L1 = 11, 0)

1: MK_CLOSURE(L0 = 4, 0)

2: APPLY

3: HALT

4: LABEL L0

5: PUSH STACK_INT 21

6: PUSH STACK_INT 17

7: MK_PAIR

8: LOOKUP STACK_LOCATION-2

9: APPLY

10: RETURN

11: LABEL L1

12: LOOKUP STACK_LOCATION-2

13: SND

14: LOOKUP STACK_LOCATION-2

15: FST

16: MK_PAIR

17: RETURN


========== state 1 ==========

cp = 0 -> MK_CLOSURE(L1 = 11, 0)

fp = 0

Stack = 

1: STACK_RA 0

0: STACK_FP 0



========== state 2 ==========

cp = 1 -> MK_CLOSURE(L0 = 4, 0)

fp = 0

Stack = 

2: STACK_HI 0

1: STACK_RA 0

0: STACK_FP 0



Heap = 

0 -> HEAP_HEADER(2, HT_CLOSURE)

1 -> HEAP_CI 11



……






Example : trace of rev_pair.slang execution  

========== state 15 ==========

cp = 16 -> MK_PAIR

fp = 8

Stack = 

11: STACK_INT 21

10: STACK_INT 17

9: STACK_RA 10

8: STACK_FP 4

7: STACK_HI 0

6: STACK_HI 4

5: STACK_RA 3

4: STACK_FP 0

3: STACK_HI 2

2: STACK_HI 0

1: STACK_RA 0

0: STACK_FP 0



Heap = 

0 -> HEAP_HEADER(2, HT_CLOSURE)

1 -> HEAP_CI 11

2 -> HEAP_HEADER(2, HT_CLOSURE)

3 -> HEAP_CI 4

4 -> HEAP_HEADER(3, HT_PAIR)

5 -> HEAP_INT 21

6 -> HEAP_INT 17


========== state 19 ==========

cp = 3 -> HALT

fp = 0

Stack = 

2: STACK_HI 7

1: STACK_RA 0

0: STACK_FP 0



Heap = 

0 -> HEAP_HEADER(2, HT_CLOSURE)

1 -> HEAP_CI 11

2 -> HEAP_HEADER(2, HT_CLOSURE)

3 -> HEAP_CI 4

4 -> HEAP_HEADER(3, HT_PAIR)

5 -> HEAP_INT 21

6 -> HEAP_INT 17

7 -> HEAP_HEADER(3, HT_PAIR)

8 -> HEAP_INT 17

9 -> HEAP_INT 21





Jargon VM : 

output> (17, 21)
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Example : closure_add.slang 

let f(y : int) : int -> int = let g(x :int) : int = y + x  in g end 

in let add21 : int -> int  = f(21)  

     in let add17 : int -> int  = f(17) 

          in add17(3) + add21(10) 

          end 

    end 

end 


App(Lambda(f, App(Lambda(add21, 

                                            App(Lambda(add17, 

                                                        Op(App(Var(add17), Integer(3)), 

                                                              ADD, 

                                                               App(Var(add21), Integer(10)))), 

                                                     App(Var(f), Integer(17))), 

                                        App(Var(f), Integer(21))))), 

       Lambda(y, App(Lambda(g, Var(g)), Lambda(x, Op(Var(y), ADD, Var(x))))))


After the front-end, this becomes represented as follows.  

Note : we really do need  
closures on the heap here — 
the values 21 and 17  
do not exist on the stack 
at this point in the execution.  
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Can we make sense of this?  


MK_CLOSURE(L3, 0)


MK_CLOSURE(L0, 0)


APPLY


HALT


L0 :           PUSH STACK_INT 21


LOOKUP STACK_LOCATION -2


APPLY


LOOKUP STACK_LOCATION -2


MK_CLOSURE(L1, 1)


APPLY


RETURN


L1 :           PUSH STACK_INT 17


LOOKUP HEAP_LOCATION 1


APPLY


LOOKUP STACK_LOCATION -2


MK_CLOSURE(L2, 1)


APPLY


RETURN





L2 :           PUSH STACK_INT 3



LOOKUP STACK_LOCATION -2


APPLY


PUSH STACK_INT 10


LOOKUP HEAP_LOCATION 1


APPLY


OPER ADD


RETURN


L3 :           LOOKUP STACK_LOCATION -2


MK_CLOSURE(L5, 1)


MK_CLOSURE(L4, 0)


APPLY


RETURN


L4 :           LOOKUP STACK_LOCATION -2


RETURN


L5 :           LOOKUP HEAP_LOCATION 1


LOOKUP STACK_LOCATION -2


OPER ADD


RETURN
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The Gap, illustrated 

let fib (m :int) : int  =

    if m = 0 

    then 1 

    else if m = 1 

             then 1 

             else fib(m - 1) + fib (m - 2)

             end 

     end 

in fib (?) end  


slang.byte –c –i4 fib.slang


         Jargon VM code     

fib.slang 
 MK_CLOSURE(fib, 0) 
 MK_CLOSURE(L0, 0) 
 APPLY 
 HALT 

L0 :        PUSH STACK_UNIT 
 UNARY READ 
 LOOKUP STACK_LOCATION -2 
 APPLY 
 RETURN 

fib :       LOOKUP STACK_LOCATION -2 
 PUSH STACK_INT 0 
 OPER EQI 
 TEST L1 
 PUSH STACK_INT 1 
 GOTO L2 

L1 :        LOOKUP STACK_LOCATION -2 
 PUSH STACK_INT 1 
 OPER EQI 
 TEST L3 
 PUSH STACK_INT 1 
 GOTO L4 

L3 :        LOOKUP STACK_LOCATION -2 
 PUSH STACK_INT 1 
 OPER SUB 
 LOOKUP STACK_LOCATION -1 
 APPLY 
 LOOKUP STACK_LOCATION -2 
 PUSH STACK_INT 2 
 OPER SUB 
 LOOKUP STACK_LOCATION -1 
 APPLY 
 OPER ADD 

L4 : 
L2 :        RETURN 
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Remarks  

1. The semantic GAP between a Slang/L3 program 
and a low-level translation (say x86/Unix) has been 
significantly reduced.  

2.  Implementing the Jargon VM at a lower-level of 
abstraction (in C?, JVM bytecodes?  X86/Unix? …) 
looks like a relatively easy programming problem.  

3. However, using a lower-level implementation (say 
x86, exploiting fast registers) to generate very 
efficient code is not so easy.  See Part II Optimising 
Compilers.  

Verification of compilers is an active area of research.  
See  CompCert, CakeML, and DeepSpec.  



What about languages other than Slang/L3?  

•  Many textbooks on compilers treat only languages with 
first-order functions --- that is, functions cannot be passes 
as an argument or returned as a result.  In this case, we 
can avoid allocating environments on the heap since all 
values associated with free variables will be somewhere 
on the stack! 

•  But how do we find these values? We optimise stack 
search by following a chain of static links.  Static links are 
added to every stack frame and the point to the stack 
frame of the last invocation of the defining function.  

•  One other thing: most languages take multiple arguments 
for a function/procedure call.   



Terminology: Caller and Callee 

!
fun f (x, y) = e1 !
!
… !
!
fun g(w, v) = !
    w + f(v, v) !
!

For this invocation of  
the function f, we say  
that g is the caller  
while f is the callee 

Recursive functions can play  
both roles at the same time … 
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Nesting depth  

 

fun b(z) = e

 

 fun g(x1) = 

    fun h(x2) = 

       fun f(x3) = e3(x1, x2, x3, b, g h, f) 

       in 

           e2(x1, x2, b, g, h, f) 

        end  

    in 

        e1(x1, b, g, h) 

   end

… 

b(g(17))

…


Pseudo-code  
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Nesting depth  

  
fun b(z) = e 
  
 fun g(x1) =  
    fun h(x2) =  
       fun f(x3) = e3(x1, x2, x3, b, g h, f)  
       in  
           e2(x1, x2, b, g, h, f)  
        end   
    in  
        e1(x1, b, g, h)  
   end 
…  
b(g(17)) 
… 

code in big box is at nesting depth k  

    nesting depth k + 1 

                                  
 
 
 
 
 
  
                                                                  nesting depth k + 1 

                            
 
 
                                                                      nesting depth k + 2 

                                                    nesting depth k + 3 

Function g is the definer of h.  Functions g and b must  
share a definer defined at depth k-1 
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Stack with static links and variable number of 
arguments 

             sp 
  

 FP-saved 
     RA 

stack frame for  
callee defined 
at nesting 
depth i <= k + 1 

stack frame for caller 
defined at nesting depth  
k used to evaluate code 
at depth k + 1. 

  args  
   for  
callee  

fp    

  SL{i – 1} The static link points 
down to the closest  
frame of definer  
at nesting  
depth i - 1 
 

  SL{k - 1} 
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 caller and callee at same nesting depth k    

call f 0  

cp 

Code 

FREE sp 

fp 

j : call f 

f : …….. cp 
Code 

sp 

fp 

j : call f 

f : …….. 

FREE 

j+1 

caller’s 
 frame 

 SL{k – 1} 

 SL{k – 1} 

 SL{k – 1} 
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 caller at depth k and callee at depth i < k 

call f (k - i)  

cp 

Code 

FREE sp 

fp 

j : call f 

f : …….. cp 
Code 

sp 

fp 

j : call f 

f : …….. 

FREE 

j+1 

  SL{k - 1} 

 SL{i - 1} 

  SL{k - 1} 

p := !(fp + 2);  
for c = 1 to k – i 
{ 
   p := !(p + 2); 
}  
SL{i-1} := p;  
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 caller at depth k and callee at depth k + 1 

call f (-1) 

cp 

Code 

FREE sp 

fp 

j : call f 

f : …….. cp 

Code 

sp 

fp 

j : call f 

f : …….. 

FREE 

j+1 

  SL{k - 1}   SL{k - 1} 

 FP-saved 

FP-saved 



Access to argument values at static 
distance 0   

arg 0 j  sp 

fp 

FREE 

 ra  

  

sp 

fp 

FREE 

 ra  

  

V 

V fp - j 

     SL      SL 



Access to argument values at static  
distance d, 0 < d 

arg d j  sp 

fp 

FREE 

 ra  

  

sp 

fp 

FREE 

 ra  

  

V 

     SL      SL 

p := !(fp + 2);  
for c = 1 to d 
{ 
   p := !(p + 2); 
}  
v := !(p – j);  
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 LECTUREs 11, 12 
What about Interpreter 1?   

•  Evaluation using a stack  
•  Recursion using a stack  
•  Tail recursion elimination: from recursion to iteration  
•  Continuation Passing Style (CPS) : transform any 

recursive function to a tail-recursive function  
•  “Defunctionalisation”  (DFC) : replace higher-order 

functions with a data structure 
•  Putting it all together:  

–  Derive the Fibonacci Machine  
–  Derive the Expression Machine, and “compiler”!  

•  This provides a roadmap for the interp_0 à interp_1 à 
interp_2 derivations.  
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Example of tail-recursion : gcd  

(* gcd : int * int -> int *) 

let rec gcd(m, n) = 

    if m = n 

    then m 

    else if m < n 

         then gcd(m,      n - m)

         else  gcd(m - n,       n)




gcd(3,5)
 gcd(3,5)

gcd(3,2)


gcd(3,5)

gcd(3,2)

gcd(1,2)


gcd(3,5)

gcd(3,2)

gcd(1,2)

gcd(1,1)


gcd(3,5)

gcd(3,2)

gcd(1,2)

___ 1 ___


gcd(3,5)

gcd(3,2)


___ 1 ___


gcd(3,5)

___ 1 ___


___ 1 ___


Compared to fib, this function uses  
recursion in a different way.  It is  
tail-recursive.  If implemented with  
a stack, then the “call stack” (at least 
with respect to gcd) will  
simply grow and then shrink.  
No “ups and downs” in between.  

Tail-recursive code can be replaced by iterative code  
that does not require a “call stack” (constant space) 



gcd_iter : gcd without recursion!  

(* gcd : int * int -> int *) 

let rec gcd(m, n) = 

    if m = n 

    then m 

    else if m < n 

         then gcd(m,      n - m)

         else  gcd(m - n,       n)




(* gcd_iter : int * int -> int *) 

let gcd_iter (m, n) = 

    let rm = ref m 

    in let rn = ref n 

    in let result = ref 0 

    in let not_done = ref true 

    in let _ = 

         while !not_done 

           do 

                 if !rm = !rn 

                 then (not_done := false; 

                            result := !rm) 

                 else if !rm < !rn 

                          then rn := !rn - !rm 

                          else rm := !rm - !rn

            done 

    in !result




Here we have illustrated 
tail-recursion elimination  
as a source-to-source  
transformation.  However, the 
OCaml compiler will do something 
similar to a lower-level intermediate 
representation.  Upshot : we will  
consider all tail-recursive OCaml 
functions as representing  iterative  
programs.   
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Familiar examples : fold_left, 
fold_right  

(* fold_left :   ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a



      fold_left f a [b1; ...; bn]]  = f (... (f (f a b1) b2) ...) bn

*) 

let rec fold_left f a l =

  match l with

  | []            -> a

  | b :: rest -> fold_left f (f a b) rest 



(* fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b

 

     fold_right f [a1; ...; an] b = f a1 (f a2 (... (f an b) ...))

 *)

let rec fold_right f l b =

  match l with

  | []          -> b

  | a::rest -> f a (fold_right f rest b)


From ocaml-4.01.0/stdlib/list.ml :  

This is tail  
recursive 

This is NOT 
tail  
recursive 
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Question: can we transform any 
recursive function into a tail 

recursive function?  

The answer is  YES!  

•  We add an extra argument, called a continuation, 
that represents “the rest of the computation”   

•  This is called the Continuation Passing Style 
(CPS) transformation.  

•  We will then “defunctionalize” (DFC) these 
continuations and represent them with a stack.  

•  Finally, we obtain a tail recursive function that 
carries its own stack as an extra argument!  

 
We will apply this kind of  
transformation to the code of interpreter 0 as  
the first steps towards deriving interpreter 1.   
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(CPS) transformation of fib  
(* fib : int -> int *) 

let rec fib m =

    if m = 0 

    then 1 

    else if m = 1 

             then 1 

             else fib(m - 1) + fib (m - 2) 



(* fib_cps : int * (int -> int)  -> int *)

 let rec fib_cps (m,  cnt) =

    if m = 0 

    then cnt 1 

    else if m = 1 

            then cnt 1 

            else fib_cps(m -1,  fun a -> fib_cps(m - 2 , fun b  -> cnt (a + b)))




166 

A closer look   

let rec fib_cps (m,  cnt) =

    if m = 0 

    then cnt 1 

    else if m = 1 

            then cnt 1 

            else fib_cps(m -1,  fun a -> fib_cps(m - 2 , fun b  -> cnt (a + b)))


The rest of the computation after computing “fib(m)”.  That is, cnt is a  
function expecting the result of “fib(m)” as its argument.  

The computation waiting  
for the result of “fib(m-2)” 

The computation waiting  
for the result of “fib(m-1)” 

This makes explicit the order of  
evaluation that is implicit in the  
original “fib(m-1) + fib(m-2)” :  
-- first compute fib(m-1)  
-- then compute fib(m-1) 
-- then add results together  
-- then return  
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Expressed with “let” rather than “fun” 

(* fib_cps_v2 : (int -> int) * int -> int *)

let rec fib_cps_v2 (m, cnt) =

    if m = 0 

    then cnt 1 

    else if m = 1 

            then cnt 1 

            else let cnt2 a b = cnt (a + b) 

                    in let cnt1 a = fib_cps_v2(m - 2, cnt2 a) 

                    in fib_cps_v2(m - 1, cnt1)

   


Some prefer writing CPS forms without explicit funs …. 
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Use the identity continuation …  

(* fib_cps : int * (int -> int)  -> int *)

 let rec fib_cps (m, cnt) =

    if m = 0 

    then cnt 1 

    else if m = 1 

            then cnt 1 

            else fib_cps(m -1,  fun a -> fib_cps(m - 2 , fun b  -> cnt (a + b)))

                                                             

                         

let id (x : int) = x 



let fib_1 x = fib_cps(x, id) 


List.map fib_1 [0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10];;



   =  [1; 1; 2; 3; 5; 8; 13; 21; 34; 55; 89]
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Correctness? 
 For all c : int -> int, for all m, 0 <= m,  
 we have,   c(fib m) = fib_cps(m, c). 
 
Proof: assume c : int -> int. By Induction  
on m. Base case : m = 0:  
           fib_cps(0, c) = c(1) = c(fib(0).  
 
Induction step: Assume for all n < m,  c(fib n) = fib_cps(n, c).  
(That is, we need course-of-values induction!)  
           fib_cps(m + 1, c)  
           = if m + 1 = 1 
             then c 1  
             else fib_cps((m+1) -1, fun a -> fib_cps((m+1) -2, fun b -> c (a + b)))  
          = if m + 1 = 1 
             then c 1  
             else fib_cps(m, fun a -> fib_cps(m-1, fun b -> c (a + b)))    
         = (by induction)  
             if m + 1 = 1 
             then c 1  
             else (fun a -> fib_cps(m -1, fun b -> c (a + b))) (fib m) 

NB: This proof pretends that we can  
treat OCaml functions as ideal  
mathematical functions, which of course  
we cannot. OCaml functions might raise  
exceptions like "stack overflow” or  
"you burned my toast", and so on.   But  
this is a convenient fiction as long as  
we remember to be careful.  
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Correctness?  
          = if m + 1 = 1 
             then c 1  
             else fib_cps(m-1, fun b -> c ((fib m) + b)) 
          = (by induction)  
             if m + 1 = 1 
             then c 1  
             else (fun b -> c ((fib m) + b)) (fib (m-1)) 
           = if m + 1 = 1 
             then c 1  
             else c ((fib m) + (fib (m-1))) 
           = c (if m + 1 = 1 
                then 1  
                else ((fib m) + (fib (m-1)))) 
           = c(if m +1 = 1  
                then 1  
                else fib((m + 1) - 1) + fib ((m + 1) - 2)) 
           = c (fib(m + 1)) 
 
      QED. 
 
       



171 

Can with express fib_cps without a 
functional argument ? 

(* fib_cps_v2 : (int -> int) * int -> int *)

let rec fib_cps_v2 (m, cnt) =

    if m = 0 

    then cnt 1 

    else if m = 1 

            then cnt 1 

            else let cnt2 a b = cnt (a + b) 

                    in let cnt1 a = fib_cps_v2(m - 2, cnt2 a) 

                    in fib_cps_v2(m - 1, cnt1)

   


Idea of “defunctonalisation” (DFC): replace id, cnt1 and cnt2 with  
instances of a new data type:  

type cnt = ID | CNT1 of int * cnt | CNT2 of int * cnt 


Now we need an “apply” function of type   cnt * int -> int         
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“Defunctionalised” version of fib_cps 
(* datatype to represent continuations *) 

type cnt = ID | CNT1 of int * cnt | CNT2 of int * cnt 



(* apply_cnt : cnt * int -> int *)

let rec apply_cnt = function 

  | (ID, a)                        -> a 

  | (CNT1 (m, cnt), a) -> fib_cps_dfc(m - 2, CNT2 (a, cnt))

  | (CNT2 (a, cnt), b)   -> apply_cnt (cnt, a + b)



(*  fib_cps_dfc : (cnt * int) -> int *) 

and fib_cps_dfc (m, cnt) =

    if m = 0 

    then apply_cnt(cnt, 1) 

    else if m = 1 

             then apply_cnt(cnt, 1) 

             else fib_cps_dfc(m -1, CNT1(m, cnt)) 



(*  fib_2 : int -> int *)

let fib_2 m = fib_cps_dfc(m, ID) 
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Correctness?  

Let < c > be of type cnt representing  
a continuation c : int -> int constructed by fib_cps.  
 
Then  
    apply_cnt(< c >, m) = c(m)   

and  
    fib_cps(n, c) = fib_cps_dfc(n, < c >).  

fun b  -> cnt (a + b)                                                   CNT2(a, < cnt >)   

fun a -> fib_cps(m - 2 , fun b  -> cnt (a + b))       CNT1(m, < cnt >)   

Proof left  
as an  
exercise!  

fun x  -> x                                                                   ID 

Functional continuation c                    Representation < c >  
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Eureka! Continuations are just lists 
(used like a stack) 

type tag = SUB2 of int | PLUS of int

 

type tag_list_cnt = tag list 




type cnt = ID | CNT1 of int * cnt | CNT2 of int * cnt 


Replace the above continuations with lists! (I’ve selected 
more suggestive names for the constructors.)  

Think 
nil 

Think 
cons 
type1 

type int_list = NIL | CONS of int * int_list


Think 
cons 
type2 
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The continuation lists are used like a stack!  

type tag = SUB2 of int | PLUS of int 

type tag_list_cnt = tag list 



(* apply_tag_list_cnt : tag_list_cnt * int -> int *)

let rec apply_tag_list_cnt = function 

  | ([], a)                           -> a 

  | ((SUB2 m) :: cnt, a) -> fib_cps_dfc_tags(m - 2, (PLUS a):: cnt)

  | ((PLUS a) :: cnt, b)  -> apply_tag_list_cnt (cnt, a + b)



(* fib_cps_dfc_tags : (tag_list_cnt * int) -> int *) 

and fib_cps_dfc_tags (m, cnt) =

    if m = 0 

    then apply_tag_list_cnt(cnt, 1) 

    else if m = 1 

            then apply_tag_list_cnt(cnt, 1) 

            else fib_cps_dfc_tags(m - 1, (SUB2 m) :: cnt) 



(*  fib_3 : int -> int *)

let fib_3 m = fib_cps_dfc_tags(m, []) 
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Combine Mutually tail-recursive 
functions into a single function  

type state_type =  
  | SUB1 (* for right-hand-sides starting with fib_   *)  
  | APPL  (* for right-hand-sides starting with apply_ *)  
 
type state = (state_type * int * tag_list_cnt) -> int  
 
(* eval : state -> int              A two-state transition function*)  
let rec eval = function  
  | (SUB1, 0,                    cnt) -> eval (APPL, 1,                           cnt)  
  | (SUB1, 1,                    cnt) -> eval (APPL, 1,                           cnt)  
  | (SUB1, m,                   cnt) -> eval (SUB1, (m-1), (SUB2 m) :: cnt)  
  | (APPL, a, (SUB2 m) :: cnt) -> eval (SUB1, (m-2), (PLUS a) :: cnt) 
  | (APPL, b,  (PLUS a) :: cnt) -> eval (APPL, (a+b),                    cnt) 
  | (APPL, a,                       [])  -> a  
 
(*  fib_4 : int -> int *) 
let fib_4 m = eval (SUB1, m, [])  
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Eliminate tail recursion to obtain The Fibonacci Machine!  

(* step : state -> state *)  
let step = function  
  | (SUB1, 0,                     cnt) -> (APPL, 1,                           cnt)  
  | (SUB1, 1,                     cnt) -> (APPL, 1,                           cnt)  
  | (SUB1, m,                    cnt) -> (SUB1, (m-1), (SUB2 m) :: cnt)  
  | (APPL, a, (SUB2 m) :: cnt) -> (SUB1, (m-2),  (PLUS a) :: cnt) 
  | (APPL, b,  (PLUS a) :: cnt) -> (APPL, (a+b),                     cnt) 
  | _ -> failwith "step : runtime error!” 
 
(* clearly TAIL RECURSIVE! *)  
let rec driver state = function  
    | (APPL, a, []) -> a  
    |  state            -> driver (step state) 
 
(*  fib_5 : int -> int *) 
let fib_5 m = driver  (SUB1, m, [])  

In this version we have 
simply made the   
tail-recursive 
structure very explicit. 
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Here is a trace of fib_5 6.  
 1 SUB1 || 6 || []

 2 SUB1 || 5 || [SUB2 6]

 3 SUB1 || 4 || [SUB2 6, SUB2 5]

 4 SUB1 || 3 || [SUB2 6, SUB2 5, SUB2 4]

 5 SUB1 || 2 || [SUB2 6, SUB2 5, SUB2 4, SUB2 3]

 6 SUB1 || 1 || [SUB2 6, SUB2 5, SUB2 4, SUB2 3, SUB2 2]

 7 APPL || 1 || [SUB2 6, SUB2 5, SUB2 4, SUB2 3, SUB2 2]

 8 SUB1 || 0 || [SUB2 6, SUB2 5, SUB2 4, SUB2 3, PLUS 1]

 9 APPL || 1 || [SUB2 6, SUB2 5, SUB2 4, SUB2 3, PLUS 1]

10 APPL || 2 || [SUB2 6, SUB2 5, SUB2 4, SUB2 3]

11 SUB1 || 1 || [SUB2 6, SUB2 5, SUB2 4, PLUS 2]

12 APPL || 1 || [SUB2 6, SUB2 5, SUB2 4, PLUS 2]

13 APPL || 3 || [SUB2 6, SUB2 5, SUB2 4]

14 SUB1 || 2 || [SUB2 6, SUB2 5, PLUS 3]

15 SUB1 || 1 || [SUB2 6, SUB2 5, PLUS 3, SUB2 2]

16 APPL || 1 || [SUB2 6, SUB2 5, PLUS 3, SUB2 2]

17 SUB1 || 0 || [SUB2 6, SUB2 5, PLUS 3, PLUS 1]

18 APPL || 1 || [SUB2 6, SUB2 5, PLUS 3, PLUS 1]

19 APPL || 2 || [SUB2 6, SUB2 5, PLUS 3]

20 APPL || 5 || [SUB2 6, SUB2 5]

21 SUB1 || 3 || [SUB2 6, PLUS 5]

22 SUB1 || 2 || [SUB2 6, PLUS 5, SUB2 3]

23 SUB1 || 1 || [SUB2 6, PLUS 5, SUB2 3, SUB2 2]

24 APPL || 1 || [SUB2 6, PLUS 5, SUB2 3, SUB2 2]

25 SUB1 || 0 || [SUB2 6, PLUS 5, SUB2 3, PLUS 1]




26 APPL || 1 || [SUB2 6, PLUS 5, SUB2 3, PLUS 1]

27 APPL || 2 || [SUB2 6, PLUS 5, SUB2 3]

28 SUB1 || 1 || [SUB2 6, PLUS 5, PLUS 2]

29 APPL || 1 || [SUB2 6, PLUS 5, PLUS 2]

30 APPL || 3 || [SUB2 6, PLUS 5]

31 APPL || 8 || [SUB2 6]

32 SUB1 || 4 || [PLUS 8]

33 SUB1 || 3 || [PLUS 8, SUB2 4]

34 SUB1 || 2 || [PLUS 8, SUB2 4, SUB2 3]

35 SUB1 || 1 || [PLUS 8, SUB2 4, SUB2 3, SUB2 2]

36 APPL || 1 || [PLUS 8, SUB2 4, SUB2 3, SUB2 2]

37 SUB1 || 0 || [PLUS 8, SUB2 4, SUB2 3, PLUS 1]

38 APPL || 1 || [PLUS 8, SUB2 4, SUB2 3, PLUS 1]

39 APPL || 2 || [PLUS 8, SUB2 4, SUB2 3]

40 SUB1 || 1 || [PLUS 8, SUB2 4, PLUS 2]

41 APPL || 1 || [PLUS 8, SUB2 4, PLUS 2]

42 APPL || 3 || [PLUS 8, SUB2 4]

43 SUB1 || 2 || [PLUS 8, PLUS 3]

44 SUB1 || 1 || [PLUS 8, PLUS 3, SUB2 2]

45 APPL || 1 || [PLUS 8, PLUS 3, SUB2 2]

46 SUB1 || 0 || [PLUS 8, PLUS 3, PLUS 1]

47 APPL || 1 || [PLUS 8, PLUS 3, PLUS 1]

48 APPL || 2 || [PLUS 8, PLUS 3]

49 APPL || 5 || [PLUS 8]

50 APPL ||13|| []


The OCaml file in basic_transformations/fibonacci_machine.ml  
contains some code for pretty printing such traces….  
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Pause to reflect 

•  What have we accomplished?  
•  We have taken a recursive function and turned it 

into an iterative function that does not require 
“stack space” for its evaluation (in OCaml)  

•  However, this function now carries its own 
evaluation stack as an extra argument!  

•  We have derived this iterative function in a step-
by-step manner where each tiny step is easily 
proved correct.  

•  Wow!  
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That was fun!  Let’s do it again!  

type expr =  
   | INT of int  
   | PLUS of expr * expr 
   | SUBT of expr * expr 
   | MULT of expr * expr 
 
(* eval : expr -> int  
   a simple recusive evaluator for expressions *)  
let rec eval = function  
   | INT a                -> a  
   | PLUS(e1, e2)   -> (eval e1) + (eval e2)  
   | SUBT(e1, e2)   -> (eval e1) - (eval e2)  
   | MULT(e1, e2)   -> (eval e1) * (eval e2)  

This time we will derive a 
stack-machine AND  
a “compiler” that translates  
expressions into a list of  
instructions for the machine.  
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Here we go again : CPS  
type cnt_2  = int -> int 



type state_2 = expr * cnt_2 



(* eval_aux_2 : state_2 -> int *) 

let rec eval_aux_2 (e, cnt) = 

   match e with 

   | INT a        -> cnt a 

   | PLUS(e1, e2) -> 

       eval_aux_2(e1, fun v1 -> eval_aux_2(e2, fun v2 -> cnt(v1 + v2)))

   | SUBT(e1, e2) -> 

       eval_aux_2(e1, fun v1 -> eval_aux_2(e2, fun v2 -> cnt(v1 - v2)))

   | MULT(e1, e2) -> 

       eval_aux_2(e1, fun v1 -> eval_aux_2(e2, fun v2 -> cnt(v1 * v2)))



 (* id_cnt : cnt_2 *)

let id_cnt (x : int) = x 



(*  eval_2 : expr -> int *) 

let eval_2 e = eval_aux_2(e, id_cnt) 
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Defunctionalise!  
type cnt_3 = 

  | ID 

  | OUTER_PLUS of expr * cnt_3

  | OUTER_SUBT of expr * cnt_3

  | OUTER_MULT of expr * cnt_3

  | INNER_PLUS of int * cnt_3

  | INNER_SUBT of int * cnt_3

  | INNER_MULT of int * cnt_3



type state_3 = expr * cnt_3 



(* apply_3 : cnt_3 * int -> int *) 

let rec apply_3 = function 

   | (ID,                   v)                       -> v 

   | (OUTER_PLUS(e2, cnt), v1) -> eval_aux_3(e2, INNER_PLUS(v1, cnt))

   | (OUTER_SUBT(e2, cnt), v1) -> eval_aux_3(e2, INNER_SUBT(v1, cnt))

   | (OUTER_MULT(e2, cnt), v1) -> eval_aux_3(e2, INNER_MULT(v1, cnt))

   | (INNER_PLUS(v1, cnt), v2) -> apply_3(cnt, v1 + v2) 

   | (INNER_SUBT(v1, cnt), v2) -> apply_3(cnt, v1 - v2) 

   | (INNER_MULT(v1, cnt), v2) -> apply_3(cnt, v1 * v2) 
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Defunctionalise!  


(* eval_aux_2 : state_3 -> int *) 

and eval_aux_3 (e, cnt) = 

   match e with 

   | INT a        -> apply_3(cnt, a) 

   | PLUS(e1, e2) -> eval_aux_3(e1, OUTER_PLUS(e2, cnt)) 

   | SUBT(e1, e2) -> eval_aux_3(e1, OUTER_SUBT(e2, cnt)) 

   | MULT(e1, e2) -> eval_aux_3(e1, OUTER_MULT(e2, cnt)) 



(* eval_3 : expr -> int *) 

let eval_3 e = eval_aux_3(e, ID) 
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Eureka! Again we have a stack! 
type tag = 

  | O_PLUS of expr

  | I_PLUS of int 

  | O_SUBT of expr

  | I_SUBT of int 

  | O_MULT of expr

  | I_MULT of int 



type cnt_4 = tag list 

type state_4 = expr * cnt_4



(* apply_4 : cnt_4 * int -> int *) 

let rec apply_4 = function 

   | ([],              v)                    -> v 

   | ((O_PLUS e2) :: cnt, v1) -> eval_aux_4(e2, (I_PLUS v1) :: cnt)

   | ((O_SUBT e2) :: cnt, v1) -> eval_aux_4(e2, (I_SUBT v1) :: cnt)

   | ((O_MULT e2) :: cnt, v1) -> eval_aux_4(e2, (I_MULT v1) :: cnt)

   | ((I_PLUS v1) :: cnt, v2) -> apply_4(cnt, v1 + v2)

   | ((I_SUBT v1) :: cnt, v2) -> apply_4(cnt, v1 - v2)

   | ((I_MULT v1) :: cnt, v2) -> apply_4(cnt, v1 * v2)
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Eureka! Again we have a stack! 


(* eval_aux_4 : state_4 -> int *) 

and eval_aux_4 (e, cnt) = 

   match e with 

   | INT a                -> apply_4(cnt, a) 

   | PLUS(e1, e2) -> eval_aux_4(e1, O_PLUS(e2) :: cnt) 

   | SUBT(e1, e2) -> eval_aux_4(e1, O_SUBT(e2) :: cnt) 

   | MULT(e1, e2) -> eval_aux_4(e1, O_MULT(e2) :: cnt) 



(* eval_4 : expr -> int *) 

let eval_4 e = eval_aux_4(e, []) 
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Eureka! Can combine apply_4 and 
eval_aux_4    

type acc = 

  | A_INT of int 

  | A_EXP of expr 



type cnt_5 = cnt_4



type state_5 = cnt_5 * acc 



val : step : state_5 -> state_5  



val driver : state_5 -> int 



val eval_5 : expr -> int




Type of an “accumulator” that  
contains either an int  
or an expression.  

The driver will be  
clearly tail-recursive … 
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Rewrite to use driver, accumulator  

let step_5 = function 

   | (cnt,                    A_EXP (INT a)) -> (cnt, A_INT a)

   | (cnt,     A_EXP (PLUS(e1, e2))) -> (O_PLUS(e2) :: cnt, A_EXP e1) 

   | (cnt,     A_EXP (SUBT(e1, e2))) -> (O_SUBT(e2) :: cnt, A_EXP e1) 

   | (cnt,     A_EXP (MULT(e1, e2))) -> (O_MULT(e2) :: cnt, A_EXP e1) 

   | ((O_PLUS e2) :: cnt,  A_INT v1) -> ((I_PLUS v1) :: cnt, A_EXP e2)

   | ((O_SUBT e2) :: cnt,  A_INT v1) -> ((I_SUBT v1) :: cnt, A_EXP e2)

   | ((O_MULT e2) :: cnt, A_INT v1) -> ((I_MULT v1) :: cnt, A_EXP e2)

   | ((I_PLUS v1) :: cnt,   A_INT v2) -> (cnt, A_INT (v1 + v2))

   | ((I_SUBT v1) :: cnt,   A_INT v2) -> (cnt, A_INT (v1 - v2))

   | ((I_MULT v1) :: cnt,   A_INT v2) -> (cnt, A_INT (v1 * v2))

   | ([],                                     A_INT v) -> ([], A_INT v) 



let rec driver_5 = function 

    | ([], A_INT v) -> v

    | state            -> driver_5 (step_5 state) 



let eval_5 e = driver_5([], A_EXP e) 
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Eureka! There are really two 
independent stacks here --- one for 
“expressions” and one for values  

type directive = 

  | E of expr 

  | DO_PLUS 

  | DO_SUBT

  | DO_MULT 



type directive_stack = directive list 



type value_stack = int list 



type state_6 = directive_stack * value_stack 



val step_6 : state_6 -> state_6 



val driver_6 : state_6 -> int



val exp_6 : expr -> int 


The state is now  
two stacks!  
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Split into two stacks  

let step_6 = function 

   | (E(INT v) :: ds,                   vs) -> (ds, v :: vs)

   | (E(PLUS(e1, e2)) :: ds,     vs) -> ((E e1) :: (E e2) :: DO_PLUS :: ds, vs)

   | (E(SUBT(e1, e2)) :: ds,     vs) -> ((E e1) :: (E e2) :: DO_SUBT :: ds, vs) 

   | (E(MULT(e1, e2)) :: ds,     vs) -> ((E e1) :: (E e2) :: DO_MULT :: ds, vs)

 

   | (DO_PLUS :: ds, v2 :: v1 :: vs) -> (ds, (v1 + v2) :: vs) 

   | (DO_SUBT :: ds, v2 :: v1 :: vs) -> (ds, (v1 - v2) :: vs) 

   | (DO_MULT :: ds, v2 :: v1 :: vs) -> (ds, (v1 * v2) :: vs) 

   | _ -> failwith "eval : runtime error!"        



let rec driver_6 = function 

    | ([], [v]) -> v

    | state     -> driver_6 (step_6 state) 



let eval_6 e = driver_6 ([E e], []) 
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An eval_6 trace  
e = PLUS(MULT(INT 89,  INT 2),  SUBT(INT 10,  INT 4))


Top of each 
stack is on  
the right 

state 1  DS = [E(PLUS(MULT(INT(89), INT(2)), SUBT(INT(10), INT(4))))] 
             VS = [] 
state 2  DS = [DO_PLUS; E(SUBT(INT(10), INT(4))); E(MULT(INT(89), INT(2)))] 
             VS = [] 
state 3  DS = [DO_PLUS; E(SUBT(INT(10), INT(4))); DO_MULT; E(INT(2)); E(INT(89))] 
             VS = [] 
state 4  DS = [DO_PLUS; E(SUBT(INT(10), INT(4))); DO_MULT; E(INT(2))] 
             VS = [89] 
state 5  DS = [DO_PLUS; E(SUBT(INT(10), INT(4))); DO_MULT] 
             VS = [89; 2] 
state 6  DS = [DO_PLUS; E(SUBT(INT(10), INT(4)))] 
             VS = [178] 
state 7  DS = [DO_PLUS; DO_SUBT; E(INT(4)); E(INT(10))] 
             VS = [178] 
state 8  DS = [DO_PLUS; DO_SUBT; E(INT(4))] 
             VS = [178; 10] 
state 9  DS = [DO_PLUS; DO_SUBT] 
             VS = [178; 10; 4] 
state 10DS = [DO_PLUS] 
             VS = [178; 6] 
state 11DS = [] 
             VS = [184] 

in
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Key insight 

This evaluator is interleaving two distinct computations:  
 
   (1) decomposition of the input expression into sub-expressions 
   (2) the computation of +, -, and *.  

Idea: why not do the decomposition BEFORE the computation?  

Key insight: An interpreter can (usually) be refactored into a  
translation (compilation!) followed by a lower-level interpreter.     

 
Interpret_higher (e)  = interpret_lower(compile(e)) 
 

Note : this can occur at many levels of abstraction: think of machine code 
being interpreted in micro-code …  
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Refactor --- compile!  

(* low-level instructions *) 

type instr = 

  | Ipush of int 

  | Iplus  

  | Isubt  

  | Imult  



type code = instr list 



type state_7 = code * value_stack 



(* compile : expr -> code *) 

let rec compile = function 

   | INT a                  -> [Ipush a] 

   | PLUS(e1, e2)   -> (compile e1) @ (compile e2) @ [Iplus] 

   | SUBT(e1, e2)   -> (compile e1) @ (compile e2) @ [Isubt] 

   | MULT(e1, e2)  -> (compile e1) @ (compile e2) @ [Imult] 






Never put off till run-time what  
you can do at compile-time. 
                -- David Gries 



193 

Evaluate compiled code.  

(* step_7 : state_7 -> state_7 *) 

let step_7 = function 

   | (Ipush v :: is,          vs) ->  (is, v :: vs)

   | (Iplus :: is, v2::v1::vs) -> (is, (v1 + v2) :: vs)

   | (Isubt :: is, v2::v1::vs) -> (is, (v1 - v2) :: vs)

   | (Imult :: is, v2::v1::vs) -> (is, (v1 * v2) :: vs)

   | _ -> failwith "eval : runtime error!" 



let rec driver_7 = function 

    | ([], [v]) -> v

    | _ -> driver_7 (step_7 state)



let eval_7 e = driver_7  (compile e, []) l
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An eval_7 trace  
compile (PLUS(MULT(INT 89, INT 2), SUBT(INT 10, INT 4)))

    = [push 89; push 2; mult; push 10; push 4; subt; plus]


Top of each 
stack is on  
the right 

state 1   IS = [add; sub; push 4; push 10; mul; push 2; push 89] 
            VS = [] 
state 2   IS = [add; sub; push 4; push 10; mul; push 2] 
            VS = [89] 
state 3   IS = [add; sub; push 4; push 10; mul] 
            VS = [89; 2] 
state 4   IS = [add; sub; push 4; push 10] 
            VS = [178] 
state 5   IS = [add; sub; push 4] 
            VS = [178; 10] 
state 6   IS = [add; sub] 
             VS = [178; 10; 4] 
state 7   IS = [add] 
             VS = [178; 6] 
state 8   IS = [] 
            VS = [184] 

co
m

pu
te

 
in

sp
ec

t 
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Interp_0.ml à interp_1.ml à interp_2.ml  

The derivation from eval to compile+eval_7 can be used  
as a guide to a derivation from Interpreter 0 to interpreter 2.   

1. Apply CPS to the code of Interpreter 0 
2. Defunctionalise  
3. Arrive at interpreter 1, which has a single 

continuation stack containing expressions, 
values and environments  

4. Spit this stack into two stacks : one for 
instructions and the other for values and 
environments  

5. Refactor into compiler + lower-level interpreter  
6. Arrive at interpreter 2.  
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Taking stock  

Interpreter 0  

Interpreter 1  

Interpreter 2  

Interpreter 3  

Jargon VM    

Split stack into two, refactor    

Linearise code   

Low-level addressable stack   

Starting from a direct implementation of Slang/L3 semantics,  
we have DERIVED a Virtual Machine in a step-by-step manner.   
The correctness of aach step is (more or less) easy to check.  

Explicit stack via CPS+DFS    
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Compiler Construction 
Lent Term 2017 

 
Part III : Lectures 13 – 16  

 
Timothy G. Griffin 
tgg22@cam.ac.uk 

Computer Laboratory 
University of Cambridge   

•  13 : Compilers in their OS context  
•  14 : Assorted Topics  
•  15 : Runtime memory management 
•  16 : Bootstrapping a compiler  
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Lecture 13 

•  Code generation for multiple platforms. 
•  Assembly code  
•  Linking and loading  
•  The Application Binary Interface (ABI)  
•  Object file format (only ELF covered)  
•  A crash course in x86 architecture and instruction set 
•  Naïve generation of x86 code from Jargon VM instructions  
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We could implement a Jargon byte code interpreter … 

... 


... 

void vsm_execute_instruction(vsm_state *state, bytecode instruction)

{

  opcode code   = instruction.code; 

  argument arg1 = instruction.arg1;

  switch (code) {

        case PUSH: { state->stack[state->sp++] = arg1; state->pc++; break; }

        case POP : { state->sp--; state->pc++; break; }

        case GOTO: { state->pc = arg1; break; }

        case STACK_LOOKUP: {



  state->stack[state->sp++] = 

               state->stack[state->fp + arg1]; 



  state->pc++;  break; }

        

       ... 

       ... 

    }

}

... 

... 


•  Generate compact byte code for 
each Jargon instruction. 

•  Compiler writes byte codes to a file.  
•  Implement an interpreter in C or C++ 

for these byte codes. 
•  Execution is much faster than our 

jargon.ml implementation. 
•  Or, we could generate assembly 

code from Jargon instructions …. 
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Backend could target multiple platforms  

Intermediate  
code 

  x86/Linux  code gen      

ARM/Android code gen    

…
 

…
 

…
 

Target? 

Back end 

x86/windows  

x86/linux  

ARM/android  

Assembly code 

 x86/Windows code gen      

One of the great benefits of Virtual Machines is their 
portability.  However, for more efficient code we may want to 
compile to assembler.  Lost portability can be regained  
through the extra effort of implementing code generation for 
every desired target platform. 
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Assembly, Linking, Loading 

assembly  
code file 

assembler 

assembly  
code file 

assembler 

assembly  
code file 

assembler 

… 

… 
… 

  linker      

 object  
code file 

 object  
code file 

 object  
code file 

single executable object code file 

Operating System 

RUN! 

  loader     

Object code 
libraries 

From symbolic 
names and  
addresses to  
numeric codes  
and numeric 
addresses 

Name  
resolution, 
creation of  
single address  
space 

Address  
relocation,  
memory  
allocation, 
dynamic  
linking  
 

(main tasks) 

Link errors 
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The gcc manual (810 pages) 
 https://gcc.gnu.org/onlinedocs/gcc-5.3.0/gcc.pdf 
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Applications Binary Interface (ABI) 

•  C calling conventions used for systems calls 
or calls to compiled C code.  

•  Register usage and stack frame layout 
•  How parameters are passed, results 

returned 
•  Caller/callee responsibilities for placement 

and cleanup  
•  Byte-level layout and semantics of object files.  

•  Executable and Linkable Format (ELF).  
Formerly known as Extensible Linking 
Format.  

•  Linking, loading, and name mangling  
 

We will use x86/Unix as our running example. 
Specifies many things, including the following.   

Note: the conventions  
are required for  
portable interaction 
with compiled C.  
Your compiled  
language does not 
have to follow the  
same conventions! 



Object files  

Must contain at least  

•  Program instructions 
•  Symbols being exported  
•  Symbols being imported 
•  Constants used in the program (such as strings)   

Executable and Linkable Format (ELF) is a common 
format for both linker input and output.  



ELF details (1) 



ELF details (2) 



The Linker  

What does a linker do? 
• takes some object files as input,  notes all undefined symbols.  
• recursively searches libraries adding ELF files which  
  define such symbols until all names defined (“library search”).  
• whinges if any symbol is undefined or multiply defined. 
 
Then what? 
• concatenates all code segments (forming the output  
  code segment). 
• concatenates all data segments.  
• performs relocations (updates code/data segments  
  at specified offsets. 

Recently there had been renewed interest in optimization at this stage.  



Dynamic vs. Static Loading 

There are two approaches to linking: 
Static linking (described on previous slide).  
    Problem: a simple “hello world” program may give a 10MB  
    executable if it refers to a big graphics or other library. 
Dynamic linking  
    Don’t incorporate big libraries as part of the executable,  
    but load them into memory on demand. Such libraries are  
    held as “.DLL” (Windows) or ”.so” (Linux) files. 

Pros and Cons of dynamic linking: 
(+) Executables are smaller  
(+) Bug fixes to a library don’t require re-linking as the new version 
  is automatically demand-loaded every time the program is run. 
(-) Non-compatible changes to a library wreck previously working  
   programs “DLL hell”. 
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A “runtime system”  

A library implementing functionality needed to run compiled  
code on a given operating system.  Normally tailored to the  
language being compiled.  

•  Implements interface between OS and language. 
•  May implement memory management.  
•  May implement “foreign function” interface (say we want 

to call compiled C code from Slang code, or vice versa).  
•  May include efficient implementations of primitive 

operations defined in the compiled language.  
•  For some languages, the runtime system may perform 

runtime type checking, method lookup, security checks, 
and so on.    

•  …  
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Runtime system  

 
Virtual Machine  

 
Implementation  
Includes runtime 

system  
 
 

Generated  
    code  Generated  

   code  
Run-time system   

Linker  

Executable   

Targeting a VM  Targeting a platform  

In either case, implementers of the compiler and  
the runtime system must agree on many low-level details of  
memory layout and data representation. 
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Typical (Low-Level) Memory Layout (UNIX) 

Rough schematic of traditional  
layout in (virtual) memory.  

high 
memory 

low 
memory 

program instructions 

Global vars and constants 

Stack 

Heap 

The heap is used for  
dynamically allocating  
memory.  Typically either  
for very large objects or  
for those objects that are 
returned by functions/procedures 
and must outlive  
the associated activation record.  
 
In languages like Java and ML,  
the heap is managed 
automatically (“garbage collection”)  

Dealing with Virtual Machines 
allows us to ignore some of 
the low-level details…. 
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A Crash Course in x86 assembler 
•  A CISC architecture  
•  There are 16, 32 and 64 bit versions 
•  32 bit version :  

•  General purpose registers : EAX EBX ECX EDX 
•  Special purpose registers : ESI EDI EBP EIP ESP 

•  EBP : normally used as the frame pointer 
•  ESP : normally used as the stack pointer  
•  EDI : often used to pass (first) argument  
•  EIP  : the code pointer  

•  Segment and flag registers that we will ignore …  
•  64 bit version:  

•  Rename 32-bit registers with “R” (RAX, RBX, RCX, …) 
•  More general registers:  R8 R9 R10 R11 R12 R13 R14 R15 

Register 
names can 
indicate “width” 
of  a value.  

rax : 64 bit version 
eax : 32 bit version (or lower 32 bits of rax)  
  ax : 16 bit version (or lower 16 bits of eax) 
   al : lower 8 bits of ax 
  ah : upper 8 bits of ax  



See https://en.wikibooks.org/wiki/X86_Assembly 

movl $4, %eax          // GAS (aka AT&T) notation

mov  eax, 4                // Intel notation


The syntax of x86 assembler comes in several flavours.   
Here are two examples of “put integer 4 into register eax”:  

I will (mostly) use the GAS syntax, where a suffix is used 
to indicate width of arguments:  

•  b (byte) = 8 bits 
•  w (word) = 16 bits 
•  l (long) = 32 bits 
•  q (quad) = 64 bits 

For example,  we have movb, movw movl, and movq.   
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Examples (in GAS notation)   

movl $4, %eax      # put 32 bit integer 4 in register eax

movw $4, %eax    # put 16 bit integer 4 in lower 16 bits of eax

movb $4, %eax     # put 4 bit integer 4 in lowest 4 bits of eax

movl 
%esp, %ebp  # put the contents of esp into ebp

movl 
(%esp), %ebp  # interpret contents of esp as a memory

                                        # address. Copy the value at that address 

                                        # into register ebp 

movl 
%esp, (%ebp)  # interpret contents of ebp as a memory

                                        # address. Copy the value in esp to

                                        # that address.  

movl 
%esp, 4(%ebp)  # interpret contents of ebp as a memory

                                          # address. Add 4 to that address. Copy 

                                          # the value in esp to this new address.
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A few more examples 

call label  # push return address on stack and jump to label

ret             # pop return address off stack and jump there 

                   # NOTE: managing other bits of the stack frame 

                   # such as stack and frame pointer must be done 

                   # explicitly

subl $4, %esp   # subtract 4 from esp. That is, adjust the 

                             # stack pointer to make room for one 32-bit

                             # (4 byte) value. (stack grows downward!) 


Assume that we have implemented a procedure in C called  
allocate that will manage heap memory. We will compile and  
link this in with code generated by the slang compiler. At the x86 
level, allocate will expect a header in edi and return a heap  
pointer in eax.  



Some Jargon VM instructions are “easy” to translate  

GOTO loc     jmp loc



POP             addl $4, %esp                 // move stack pointer 1 word = 4 bytes



PUSH v       subl $4, %esp                 // make room on top of stack 

                     movl $i, (%esp)             // where i is an integer  representing v

 

FST             movl 4(%esp), %edx    // 4 bytes, 1 word, after header

                     movl %edx, (%esp)      // replace “a” with “v1” at top of stack 

 

SND            movl 8(%esp), %edx    // 8 bytes, 2 words, after header

                    movl %edx, (%esp)       // replace “a” with “v2” at top of stack 


c 

   v1     
:     :  
:     :  

FST
c 

   a     
:     :  
:     :  

a :              header 
   v1  a+1 :              

a+2 :                 v2  

sp              sp              

Remember: X86 is CISC, so RISC architectures may require more instructions …   
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… while others require more work 

c 
   v1     

:     :  
:     :  

   v2     
 MK_PAIR


c 

   a     
:     :  
:     :  

a :              Header 3, PAIR 
          v1  a+1 :              

a+2 :                       v2  

movl $3, %edi                     // construct header in edi

shr $16, %edi,                     // … put size in upper 16 bits (shift right)

movw $PAIR, %di              // … put type in lower 16 bits of edi

call allocate                         // input: header in ebi, output: “a” in eax

movl (%esp), %edx           // move “v2” to the heap, 

movl %edx, 8(%eax)        //  …  using temporary register edx

addl $4, %esp                     // adjust stack pointer (pop “v2”)

movl (%esp), %edx           // move “v1” to the heap 

movl %edx, 4(%eax)        //  …  using temporary register edx

movl %eax, (%esp)           // copy value “a” to top of stack


One possible x86 (32 bit) implementation of MK_PAIR:  
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  LOOKUP  APPLY RETURN  CASE TEST ASSIGN REF   

Left as exercises for you :   

Here’s a hint.   For things you don’t understand, just experiment! 
OK, you need to pull an address out of a closure and call it.  Hmm,  
how does something similar get compiled from C?     

      _func:  


pushq 
%rbp                    # save frame pointer


movq 
%rsp, %rbp        # set frame pointer to stack pointer 


subq 
$16, %rsp           # make some room on stack 


movl 
$17, %eax           # put 17 in argument register eax


movq 
%rdi, -8(%rbp)  # rdi contains the argument f


movl 
%eax, %edi         # put 17 in register edi, so f will get it


callq 
*-8(%rbp)           # WOW, a computed address for function call! 


addq 
$16, %rsp            # restore stack pointer 


popq 
%rbp                     # restore old frame pointer 


ret                                         # restore stack 


 
int func ( int (*f)(int) ) { return (*f)(17); } /* pass a function pointer and apply it /* 
 

X86,  
64 bit 
 
without  
–O2 



What about arithmetic?  

Houston, we have a problem…. 

•  It may not be obvious now, but if we want to have 
automated memory management we need to be 
able to distinguish between values (say integers) 
and pointers at runtime.  

•  Have you ever noticed that integers in SML or 
Ocaml are either 31 (or 63) bits rather than the 
native 32 (or 64) bits?  

•  That is because these compilers use a the 
least significant bit to distinguish integers (bit = 
1) from pointers (bit = 0).  

•  OK, this works.  But it may complicate every 
arithmetic operation!  

•  This is another exercise left for you to ponder 
… 
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Lecture 14 
Assorted Topics  

 
1.  Stacks are slow, registers are fast 

1.  Stack frames still needed … 
2.  … but try to shift work into registers 
3.  Caller/callee save/restore policies  
4.  Register spilling  

2.  Simple optimisations  
1.  Peep hole (sliding window) 
2.  Constant propagation 
3.  Inlining  

3.  Representing objects (as in OOP)  
1.  At first glance objects look like a closure containing 

multiple function (methods) …  
2.  … but complications arise with method dispatch 

4.  Implementing exception handling on the stack 
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Stack vs regsisters    

V1 
add 

V2 
V1 + V2 

r7 : … 
add r8 r3 r7 

r3 : V2 

r8 : V1 

… 
r7 : V1 + V2 

r3 : V2 

r8 : V1 

… 

Stack-oriented: 
(+) argument locations is  
      implicit, so instructions  
      are smaller. 
(---) Execution is slower  

Register-oriented: 
(+++) Execution MUCH faster 
(-) argument location is  
     explicit, so instructions 
     are larger   
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Main dilemma : registers are fast, but are fixed in 
number.  And that number is rather small.  

•  Manipulating the stack involves RAM access, which can be 
orders of magnitude slower than register access (the “von 
Neumann Bottleneck”) 

•  Fast registers are (today) a scarce resource, shared by many 
code fragments 

•  How can registers be used most effectively?  
•  Requires a careful examination of a program’s structure  
•  Analysis phase: building data structures (typically directed 

graphs) that capture definition/use relationships 
•  Transformation phase : using this information to rewrite 

code, attempting to most efficiently utilise registers 
•  Problem is NP-complete 
•  One of the central topics of Part II Optimising Compilers. 

•  Here we focus only on general issues : calling conventions and 
register spilling   
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Caller/callee conventions  
•  Caller and callee code may use overlapping sets of registers 
•  An agreement is needed concerning use of registers 

•  Are some arguments passed in specific registers? 
•  Is the result returned in a specific register?  
•  If the caller and callee are both using a set of registers for 

“scratch space” then caller or callee must save and restore 
these registers so that the caller’s registers are not 
obliterated by the callee. 

•  Standard calling conventions identify specific subsets of 
registers as “caller saved” or “callee saved”  

•  Caller saved: if caller cares about the value in a register, 
then must save it before making any call 

•  Callee saved: The caller can be assured that the callee 
will leave the register intact (perhaps by saving and 
restoring it)   
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Another C example.   
X86, 64 bit, with gcc 

int 

callee(int, int,int,

            int,int,int,int);



int caller(void)

{

   int ret;

   ret = callee(1,2,3,4,5,6,7);

   ret += 5;

   return ret;

}


         _caller:


pushq 
%rbp            # save frame pointer 


movq 
%rsp, %rbp  # set new frame pointer 


subq 
$16, %rsp   # make room on stack 


movl 
$7, (%rsp)  # put 7th arg on stack


movl 
$1, %edi     # put 1st arg on in edi


movl 
$2, %esi     # put 2nd arg on in esi


movl 
$3, %edx    # put 3rd arg on in edx


movl 
$4, %ecx    # put 4th arg on in ecx


movl 
$5, %r8d    # put 5th arg on in r8d


movl 
$6, %r9d    # put 6th arg on in r9d


callq 
_callee        #will put resut in eax 


addl 
$5, %eax    # add 5 


addq 
$16, %rsp   # adjust stack 


popq 
%rbp          # restore  frame pointer


ret                 # pop return address, go there
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Regsiter spilling  

•  What happens when all registers are in use? 
•  Could use the stack for scratch space … 
•  … or (1) move some register values to the stack, (2) 

use the registers for computation, (3) restore the 
registers to their original value  

•  This is called register spilling  
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Simple optimisations.      
Inline expansion  

fun f(x) = x + 1  
fun g(x) = x – 1  
… 
… 
fun h(x) = f(x) + g(x) 

fun f(x) = x + 1  
fun g(x) = x – 1  
… 
… 
fun h(x) = (x+1) + (x-1) 

inline f and g  

(+) Avoid building activation 
     records at runtime 
(+) May allow further  
     optimisations    
 
(-) May lead to “code bloat” 
     (apply only to functions  
     with “small”  bodies?)  

Question: if we inline all  
occurrences of a function,  
can we delete its definition from  
the code? 
What if it is needed at link time? 



 Be careful with variable scope  

!
let val x = 1 !
    fun g(y) = x + y !
    fun h(x) = g(x) + 1   !
in !
   h(17) !
end  !

!
let val x = 1 !
    fun g(y) = x + y !
    fun h(x) = x + y + 1   !
in !
   h(17) !
end  !

Inline g in h 

!
let val x = 1 !
    fun g(y) = x + y !
    fun h(z) = x + z + 1   !
in !
   h(17) !
end  !

NO 

YES 

What kind of care might be needed will  
depend on the representation level of the  
Intermediate code involved.  
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 (b) Constant propagation, constant folding  

David Gries :  
“Never put off till  
run-time what you can do  
at compile-time.” 

How about this?  
 
Replace  
 
    x * 0  
 
with  
 
    0 
 
OOPS, not if x has type  
float!  
 
     NAN*0 = NAN, 

But be careful  

Note : opportunities 
 are often exposed  
by inline expansion! 

let x = 2  
let y = x – 1 
let z = y * 17   

let x = 2  
let y = 2 – 1 
let z = y * 17   

let x = 2  
let y = 1 
let z = y * 17   

let x = 2  
let y = 1 
let z = 1 * 17   

let x = 2  
let y = 1 
let z = 17         

Propagate  
constants and 
evaluate simple  
expressions at  
compile-time  
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(c) peephole optimisation 

Communications of the ACM,  
July 1965 

Eliminate!  

Results for syntax-directed code generation. 
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peephole optimisation 

… code sequence …  
 
 
 

Sweep a window over the code  
sequence looking for instances of simple code 
patterns that can be rewritten to better code … 
(might be combined with constant folding, etc,  
and employ multiple passes)   

Examples  
-- eliminate useless combinations (push 0; pop)  
-- introduce machine-specific instructions  
-- improve control flow.  For example:  rewrite  
          “GOTO L1 … L1: GOTO L2”  
       to  
          “GOTO L2 … L1 : GOTO L2”)  



gcc example.  
-O<m> turns on optimisation to level m 

int h(int n)  { return (0 < n) ? n : 101 ; } 

 

int g(int n)  { return 12 * h(n + 17); } 


g.c


gcc –O2 –S –c g.c  
_g:                                  



.cfi_startproc


pushq 
%rbp


movq 
%rsp, %rbp


addl 
$17, %edi


imull 
$12, %edi, %ecx


testl 
%edi, %edi


movl 
$1212, %eax          


cmovgl
%ecx, %eax


popq 
%rbp


ret


.cfi_endproc





g.s (fragment)


Wait. What happened to  
the call to h???  

 GNU AS (GAS) Syntax 
          x86, 64 bit 



gcc example (-O<m> turns on optimisation) 

int h(int n)  { return (0 < n) ? n : 101 ; } 

 

int g(int n)  { return 12 * h(n + 17); } 


g.c


The compiler must have done something similar to this:  


int g(int n)  { return 12 * h(n + 17); }

è 

 int g(int n)  { int t := n+ 17; return 12 * h(t); }

è

int g(int n)  { int t := n+ 17; return 12 *((0 < t) ? t : 101 ); }

è

int g(int n)  { int t := n+ 17; return (0 < t) ? 12 * t : 1212 ; }

è …
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New Topic:  
OOP Objects (single inheritance) 

let start := 10 
 
   class Vehicle extends Object { 
      var position := start  
      method move(int x) = {position := position + x}  
   } 
   class Car extends Vehicle { 
      var passengers := 0 
      method await(v : Vehicle) = 
         if (v.position < position) 
         then v.move(position – v.position)  
         else self.move(10)  
   }  
   class Truck extends Vehicle { 
      method move(int x) =  
         if x <= 55 then position := position +x 
   } 
   var t := new Truck 
   var c := new Car  
   var v : Vehicle := c 
in  
   c.passengers := 2; 
   c.move(60); 
   v.move(70); 
   c.await(t) 
end  

method override 

subtyping allows a 
Truck or Car to be viewed and 
used as a Vehicle 
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Object Implementation? 

 
–  how do we access object fields? 

•  both inherited fields and fields for the current 
object? 

–  how do we access method code? 
•  if the current class does not define a particular 

method, where do we go to get the inherited 
method code? 

•  how do we handle method override? 
–  How do we implement subtyping (“object 

polymorphism”)? 
•  If B is derived from A, then need to be able to 

treat a pointer to a B-object as if it were an A-
object. 
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Another OO Feature 

•  Protection mechanisms 
–  to encapsulate local state within an object, 

Java has “private” “protected” and “public” 
qualifiers 

•  private methods/fields can’t be called/used outside 
of the class in which they are defined 

– This is really a scope/visibility issue! Front-
end during semantic analysis (type checking 
and so on), the compiler maintains this 
information in the symbol table for each class 
and enforces visibility rules.  
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Object representation 

class A { 
public: 
   int a1, a2; 
 

   void m1(int i) { 
      a1 = i; 
   } 
   void m2(int i) { 
      a2 = a1 + i; 
   } 
} 

C++ 

object data 
a1 

a2 

m1_A 

m2_A 
method table 

An A object  

NB: a compiler typically generates methods with an extra argument  
representing the object (self) and used to access object data. 
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Inheritance (“pointer polymorphism”) 

object data 

m1_A 

m2_A 

method table 
(code entry  

points =  
memory locations) 

a1 

a2 

b1 

m3_B 

class B : public A { 
public: 
   int b1; 
 
   void m3(void) { 
      b1 = a1 + a2; 
   } 
} 

a B object  

Note that a pointer to a B object can  
be treated as if it were a pointer to an A object! 
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Method overriding 

object data 

m1_A_A 

m2_A_C 

method table 

a1 

a2 

c1 

m3_C_C 

class C : public A { 
public: 
   int c1; 
 
   void m3(void) { 
      b1 = a1 + a2; 
   } 
   void m2(int i) { 
      a2 = c1 + i; 
   } 
} 

declared defined 

a C object  
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Static vs. Dynamic  

•  which method to invoke on overloaded 
polymorphic types? 

class C *c = ...; 
class A *a = c; 
 
a->m2(3); 

??? 

m2_A_A(a, 3); static 

m2_A_C(a, 3); dynamic 
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Dynamic dispatch 

•  implementation: dispatch tables 

ptr to C 
Is also a ptr to A  

a1 

a2 

b1 

m1_A_A 

m2_A_C 

m3_C_C 

*(a->dispatch_table[1])(a, 3); 

class C *c = ...; 
class A *a = c; 
 
a->m2(3); 
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This implicitly uses some form of pointer 
subtyping  

void m2_A_C(class_A *this_A, int i) { 
   class_C *this = convert_ptrA_to_ptrC(this_A); 
 
   this->a2 = this->c1 + i; 
} 

void m2(int i) { 
      a2 = c1 + i; 
} 



Topic 1 : Exceptions (informal description)  

e handle f ! raise e !

If expression e evaluates  
“normally” to value v,  
then v is the result of the  
entire expression. 
 
Otherwise, an exceptional 
value v’ is “raised” in the  
evaluation of e, then  
result is (f v’)  

Evaluate expression e to  
value v, and then raise v  
as an exceptional value, 
which can only be  
“handled”. 

Implementation of exceptions  
may require a lot of language-specific 
consideration and care.  Exceptions 
can interact in powerful and unexpected 
ways with other language features.  
Think of C++ and class destructors,  
for example. 



Viewed from the call stack 

Call stack just 
before evaluating  
code for  
 
e handle f !

handle 
frame 

Push a special 
frame for the 
handle 

. . .  
 
. . . 

handle 
frame 

current 
frame 

. . .  
 
. . . 

“raise v” is  
encountered 
while evaluating 
a function body  
associated with  
top-most frame 

frame  
for f 
 v 

“Unwind” call stack. 
Depending on language,  
this may involve some  
“clean up” to free resources. 



Possible pseudo-code implementation   

e handle f !
let fun _h27 () = !
  build special “handle frame” !
  save address of f in frame; !
  … code for e … !
  return value of e !
in _h27 () end !

raise e ! … code for e … !
save v, the value of e; !
unwind stack until first !
fp found pointing at a handle frame; !
Replace handle frame with frame !
for call to (extracted) f using !
v as argument. !
!
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Lecture 15  
Automating run-time memory 

management  

 
•  Managing the heap 
•  Garbage collection    

–  Reference counting 
–  Mark and sweep  
–  Copy collection  
–  Generational collection 

       Read Chapter 12 of  
Basics of Compiler Design 
      (T. Mogensen)   
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Explicit (manual) memory management 

•  User library manages memory; programmer 
decides when and where to allocate and de-
allocate 
–  void* malloc(long n) 
–  void free(void *addr) 
–  Library calls OS for more pages when necessary 
–  Advantage: Gives programmer a lot of control. 
–  Disadvantage: people too clever and make mistakes. 

Getting it right can be costly. And don’t we want to 
automate-away tedium?   

–  Advantage: With these procedures we can implement 
memory management for “higher level” languages ;-) 
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Memory Management   

•  Many programming languages allow programmers to 
(implicitly) allocate new storage dynamically, with no 
need to worry about reclaiming space no longer used.  
–  New records, arrays, tuples, objects, closures, etc. 
–  Java, SML, OCaml, Python, JavaScript, Python, 

Ruby, Go, Swift, SmallTalk, … 
•  Memory could easily be exhausted without some method 

of reclaiming and recycling the storage that will no longer 
be used. 
–  Often called “garbage collection” 
–  Is really “automated memory management” since it 

deals with allocation, de-allocation, compaction, and 
memory-related interactions with the OS.    
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Automation is based on an approximation : if data can be 
reached from a root set, then it is not “garbage” 

r1 

stack 
and  

registers 

r2 

ROOT SET 
--------------------  HEAP ---------------------------------------- 

Type information required (pointer or not),  
some kind of “tagging” needed. 
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… Identify Cells Reachable From Root Set…  

r1 

stack 

r2 
registers 
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… reclaim unreachable cells 

r1 

stack 

r2 
registers 
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But How? Two basic techniques, 
and many variations   

•  Reference counting : Keep a reference count 
with each object that represents the number of 
pointers to it.  Is garbage when count is 0.  

•  Tracing : find all objects reachable from root set. 
Basically transitive close of pointer graph.  

For a very interesting (non-examinable) treatment of this subject see 
 
     A Unified Theory of Garbage Collection.  
     David F. Bacon, Perry Cheng, V.T. Rajan.  
     OOPSLA 2004.  
 
In that paper reference counting and tracing are presented as “dual”  
approaches, and other techniques are hybrids of the two.  
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Reference Counting, basic idea: 

•  Keep track of the number of pointers to each object (the 
reference count). 

•  When Object is created, set count to 1. 
•  Every time a new pointer to the object is created, 

increment the count.  
•  Every time an existing pointer to an object is destroyed, 

decrement the count 
•  When the reference count goes to 0, the object is 

unreachable garbage 
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Reference counting can’t detect cycles! 

 

r1 

stack 
r2 

•  Cons  
•  Space/time overhead to maintain count.  
•  Memory leakage when have cycles in data. 

•  Pros 
•  Incremental (no long pauses to collect…)  
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Mark and Sweep 

•  A two-phase algorithm 
– Mark phase: Depth first traversal of object 

graph from the roots to mark live data 
– Sweep phase:  iterate over entire heap, 

adding the unmarked data back onto the free 
list 
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Copying Collection 

•  Basic idea: use 2 heaps 
–  One used by program 
–  The other unused until GC time 

•  GC: 
–  Start at the roots & traverse the reachable data 
–  Copy reachable data from the active heap (from-

space) to the other heap (to-space) 
–  Dead objects are left behind in from space 
–  Heaps switch roles 
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Copying Collection 

to-space from-space 

roots 
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Copying GC 

•  Pros 
–  Simple & collects cycles 
–  Run-time proportional to # live objects 
–  Automatic compaction eliminates fragmentation 

•  Cons 
–  Twice as much memory used as program requires 

•  Usually, we anticipate live data will only be a small fragment 
of store 

•  Allocate until 70% full 
•  From-space = 70% heap; to-space = 30% 

–  Long GC pauses = bad for interactive, real-time apps 
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OBSERVATION: for a copying garbage 
collector 

•  80%  to 98% new objects die very quickly. 
•  An object that has survived several collections has a bigger 

chance to become a long-lived one. 
•  It’s a inefficient that long-lived objects be copied over and over.   

Diagram from Andrew Appel’s Modern Compiler Implementation  
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IDEA: Generational garbage collection 

Segregate objects into multiple areas by age, and collect areas 
containing older objects less often than the younger ones. 

Diagram from Andrew Appel’s Modern Compiler Implementation  
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Other issues… 

 
–  When do we promote objects from young generation to old 

generation 
•  Usually after an object survives a collection, it will be 

promoted 
–  Need to keep track of older objects pointing to newer ones! 
–  How big should the generations be? 

•  When do we collect the old generation? 
•  After several minor collections, we do a major collection 

–  Sometimes different GC algorithms are used for the new and 
older generations. 

•  Why? Because the have different characteristics 
•  Copying collection for the new 

–  Less than 10% of the new data is usually live 
– Copying collection cost is proportional to the live data 

•  Mark-sweep for the old 
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 LECTURE 16 
Bootstrapping  a compiler  

•  Compilers compiling themselves! 
•  Read Chapter 13 Of  

•  Basics of Compiler Design  
•  by Torben Mogensen  

http://www.diku.dk/hjemmesider/ansatte/torbenm/Basics/ 

http://mythologian.net/ouroboros-symbol-of-infinity/ 



Bootstrapping.  We need some notation . . .   

 app 
 
  A  

  A 
 
mch  

   A 
 inter 
   B  

An application  
called app written  
in language A 

An interpreter or  
VM for language A 
Written in language B  

A machine called  
mch running  
language 
A natively.  

hello 
 
 x86  
 x86 
 
 M1  

 JBC 
  jvm 
  x86  

hello 
 
 JBC  

 x86 
 
 M1  

Simple Examples  



Tombstones  

 C  

 trans  
A          B          

This is an application called trans 
that translates programs in language 
A into programs in language B, and it is  
written in language C.  



Ahead-of-time compilation  

 JBC 
  jvm 
  x86  

Java     JBC  

JBC  

 javac  
Hello 
 
Java  

 x86 
 
 M1  

Hello 
 
 JBC  JBC        x86  

JBC  

   aot  

 JBC 
  jvm 
  x86  
 x86 
 
 M1  

Hello 
 
x86 
 x86 
 
 M1  

 jvm 
 
 C++  C++        x86  

 x86  

  gcc  

 x86 
 
 M1  

Thanks to David Greaves  
for the example.   



Of course translators can be translated  

 C  

 trans  
A          B           B  

 foo_2  
D          E          

 A  

  foo_1  
D          E          

Translator foo_2 is produced 
as output from trans when  
given foo_1 as input.  



Our seemingly impossible task   

 L  

  comp.L  
L          B          

We have just invented a really great  
new language L (in fact we claim that  
“L is far superior to C++”). To prove how  
great L is we write a compiler  
for L in L (of course!).   This  
compiler produces machine code B  
for a widely used instruction set 
(say B = x86). 

There are many many ways we could go about this task.  
The following slides simply sketch out one plausible route 
to fame and fortune.  

 B  

  comp.B  
L          B          

Furthermore, we want to compile our  
compiler so that it can run  
on a machine running B. 
Our compiler is written in L!  
How can we compiler our compiler? 

?



Step 1 
Write a small interpreter (VM) for 
a small language of byte codes  

 MBC 
 zoom 
    B  
   B 
 
 M1  

C++          B  

  B  

  gcc  

   B 
 
 M1  

 MBC 
 zoom 
  C++  

MBC = My Byte Codes 

The zoom machine! 



Step 2 
Pick a small subset S of L and  

write a translator from S to MBC   

 B  

   gcc  
C++          B           C++  

comp_1.cpp  
S          MBC          

Write comp_1.cpp by hand. (It sure would be nice if we  
could hide the fact that this is written is C++.) 
 
Compiler comp_1.B is produced 
as output from gcc when comp_1.cpp is given as input.  

  B  

  comp_1.B  
S          MBC          



Step 3 
Write a compiler for L in S   

 S  

comp_2.S  
L          B          

Write a compiler comp_2.S for the full language L, but written only  
in the sub-language S.  
 
Compile comp_2.S using comp_1.B to produce comp_2.mbc  

  B  

comp_1.B  
S          MBC          MBC  

 comp_2.mbc  
L          B          



Step 4 
Write a compiler for L in L, and then compile it!   

 L  

comp.L  
L          B          

Rewrite/extend compiler  
comp_2.S to produce 
comp.L using the full  
power of language L.  
 
 
 
                

 MBC  

comp_2.mbc  
L          B          B  

comp.B  
L          B          

 MBC 
 zoom 
    B  
   B 
 
 M1  

We have achieved 
       our goal!  



 C++  

S          MBC          comp_1.cpp  

    B  

C++            B             gcc  

   S  

L           B          comp_2.S  

   B  

S          MBC          comp_2.mbc   MBC  

L           B            yippee     B  

L           B          yippeeee   

   L  

L           B          comp.L  

Putting it all together  

We wrote these compilers  
and the MBC VM.  

 MBC 
 zoom 
    B  

  B 
 
 M1  

  B 
 
 M1  

  B 
 
 M1  

1 

2 

3 

4 

5 

6 



Step 5 : Cover our tracks and leave the world 
mystified and amazed!   

 L  

 comp.L  
L          B          

 MBC  

 comp_2.mbc  
L          B          

1. Use gcc to compile the zoom interpreter 
2. Use zoom to run voodoo with input comp.L to output the 

compiler comp.B.   MAGIC! 

 MBC 
 zoom 
  C++  

Our L compiler download site contains only three components:  

Our instructions:  

Shhhh!  Don’t tell  
anyone that  
we wrote the first  
compiler in C++ 

comp_2.mbc is a just file of bytes. 
We give it the mysterious and  
intimidating name : voodoo  



Another example (Mogensen, Page 285) 

                               Solving a different problem. 
You have:  
  (1) An ML compiler on ARM.  Who knows where it came from. 
  (2) An ML compiler written in ML, generating x86 code.  
You want:  
   An ML compiler generating x86 and running on an x86 platform.  


