
Routing in Equilibrium

João Luı́s Sobrinho
Instituto de Telecomunicações

Instituto Superior Técnico, Lisbon, Portugal
joao.sobrinho@lx.it.pt

Timothy G. Griffin
Computer Laboratory

University of Cambridge, UK
timothy.griffin@cl.cam.ac.uk

Abstract— Some path problems cannot be modeled using
semirings because the associated algebraic structure is not
distributive. Rather than attempting to compute globally optimal
paths with such structures, it may be sufficient in some cases
to find locally optimal paths—paths that represent a stable
local equilibrium. For example, this is the type of routing
system that has evolved to connect Internet Service Providers
(ISPs) where link weights implement bilateral commercial
relationships between them. Previous work has shown that
routing equilibria can be computed for some non-distributive
algebras using algorithms in the Bellman-Ford family. However,
no polynomial time bound was known for such algorithms. In
this paper, we show that routing equilibria can be computed
using Dijkstra’s algorithm for one class of non-distributive
structures. This provides the first polynomial time algorithm
for computing locally optimal solutions to path problems. We
discuss possible applications to Internet routing.

I. GLOBAL VS. LOCAL OPTIMA

A great deal of research has followed from the
observation—first made about 40 years ago—that the linear
algebra structure (R,+,×, 0, 1) and many of its associated
algorithms can be generalized to a very large class of
algebraic structures called semirings (see [6], [1] for modern
surveys of this area). These structures have the form

(S,⊕,⊗, 0, 1),

where the crucial property is distributivity of ⊗ over ⊕. A
particularly interesting sub-case occurs when the operation
⊕ is selective, as this relates to the kinds of problems
one encounters in routing in communications networks. For
instance, the structure (R∪{∞},min,+,∞, 0) is associated
with distances and shortest-paths in graphs.

A communication network G = (V,E, a) is represented
by an adjacency matrix A where A[i, j] = a(i, j) is the
weight of link (i, j) ∈ E: A[i, j] = 0 if there is no link
from i to j. The matrix A∗ of optimal weights is defined as

A∗[i, j] =
⊕

P∈P(i,j)

a(P), (1)

where P(i, j) represents the set of all paths from node i to
node j in network G and a(P) is the weight of path P ,
that is, the ⊗-multiplication of all link weights along path
P . Since P ranges over all paths from i to j, we refer to
this as a globally optimal solution.

With semirings, when A∗ exists it is a solution for L in
the left matrix equation

L = AL⊕ I, (2)

with I the identity matrix, as well as the solution for R in
the right matrix equation,

R = RA⊕ I. (3)

Section III provides a very brief introduction to semirings
and presents a sufficient condition for the existence of A∗.

Removing distributivity from the semiring axioms leaves
a truly impoverished algebra. Equations (2) and (3) may still
have solutions, but they may be different from each other and
from A∗. Furthermore, solutions to Equations (2) and (3) do
not correspond to globally optimal path weights. We now talk
of locally optimal paths, and call solutions to (2) left-local
solutions and solutions to (3) right-local solutions. These
solutions represent two types of routing in equilibria.

Indeed, routing in the Internet today is not always based
on finding globally optimal paths. One popular form of
intra-domain routing relies on a composite metric which
is not distributive [23], [7]. In the inter-domain context,
routing policies reflect the bilateral commercial agreements
between Internet Service Providers as well as local traffic
engineering rules. In general, it is not possible to model such
policies with distributive algebras [21]. Previous work has
shown that routing equilibria can be computed for some non-
distributive algebras using algorithms in the Bellman-Ford
family. However, no polynomial time bound was known for
such algorithms (this routing background is discussed further
in Section II).

In this paper, we provide sufficient conditions which
guarantee that local optima can be computed in polynomial
time for structures we call prebimonoids and bimonoids (Sec-
tion IV). The basic algorithm used is Dijkstra’s algorithm,
which can solve for one column of (2), or one row of (3), at
a time. Put another way, this popular greedy algorithm can
actually find local optima when distributivity does not hold.

However, there is a problem if we want to use Dijk-
stra’s algorithm for Internet routing with prebimonoids and
bimonoids. Suppose that for left- and right-local solutions
we interpret L[i, j] and R[i, j] as the weights of the left-
and right-locally optimal paths that are to carry traffic from
node i to node j. Then the left-local solution is entirely
consistent with the destination-based, hop-by-hop forwarding
paradigm used in most of the Internet today. However, right-
local solutions can result in forwarding loops if paths are
implemented with destination-based, hop-by-hop forwarding
(an example is provided in Section IV).

The implications for distributed routing algorithms are
clear. We can use Dijkstra’s efficient algorithm at each

node i to compute R(i,), at the cost of abandoning
destination-based, hop-by-hop forwarding. Or we can main-
tain destination-based, hop-by-hop forwarding and construct
all matrix L at each node i at the cost of |V | invocations of
Dijkstra’s algorithm. This and other applications to network
routing are discussed in Section V.

II. RELATED WORK AND MOTIVATION

In [26] and in [7], Sobrinho, and Gouda and Schneider,
respectively, introduced algebraic concepts to investigate the
behavior of intra-domain routing protocols. Those works em-
phasize the role of algebraic distributivity in the distributed
construction of Quality-of-Service (QoS) paths and in the
subsequent hop-by-hop forwarding of packets along them,
with [26] presenting a proof of correctness for link-state
routing protocols.

The need for an ever broader understanding of routing in
the Internet arose from inter-domain routing, which is today
implemented with the Border Gateway Protocol (BGP) [27],
[14]. The computational mechanism underlying BGP is
called path vectoring—a variant of the distributed Bellman-
Ford algorithm. However, in the inter-domain setting the
gamut of routing policies that Internet Service Providers
(ISPs) can apply and realize through BGP can lead to
unwanted behaviors, such as protocol oscillations—as il-
lustrated by Varadhan et al. [28]—and forwarding loops.
Gao and Rexford [5] have shown that if ISPs use simple
policies that reflect typical commercial relationships between
ISPs [15], [16], then the BGP system is guaranteed to operate
correctly. However, the model does not entirely capture the
complexities of the Internet’s evolving commercial relation-
ships nor the complications associated with traffic engineer-
ing policies. In practice, many routing anomalies can arise
due to unanticipated interactions of routing policies [10].

Griffin et al. [11] developed a generic model to understand
and predict the effect of inter-domain routing policies on the
behavior of BGP. The model is graph-theoretic, based on a
path ranking function at each node and a notion of a stable
solution. They called this the Stable Paths Problem [11], and
they presented a sufficient condition for its solution. The
concept of stable solution is a Nash equilibria, which can
also be modeled as a left-local solution [9].

Sobrinho [21] extended his previous work on algebras
for routing to path vectoring protocols, coming up with a
sufficient condition on the cycles of the network that guar-
antees their correctness. The sufficient condition dispenses
with distributivity implying that the resulting paths are only
locally optimal. The proof of termination of vectoring proto-
cols in [21] is grounded on concepts of temporal logic [17],
[18].

These works gave rise to reverse-engineering of Internet
routing protocols in an attempt to further uncover algebraic
constructions that could be used to model existing proto-
cols [13], [12]. In addition, efforts were made to connect
the basic ideas used in the proofs of [11] and [21] with
the matrix-oriented proofs of classical algebraic path prob-
lems [2], [9].

From an abstract point of view, much of this work involved
showing that if non-distributive algebras are used in a con-
strained manner, then left-local solutions (2) can be found
using algorithms in the Bellman-Ford family. However, for
non-distributive algebras, no polynomial time bound was
known for the convergence of such algorithms.

III. SEMIRINGS: A REVIEW

A semiring is a structure of the form

(S,⊕,⊗, 0, 1),

where (S,⊕, 0) is a commutative monoid, (S,⊗, 1) is a
monoid, 0 is an annihilator for ⊗,

∀a∈S a⊗ 0 = 0⊗ a = 0,

⊗ left-distributes over ⊕1,

∀a,b,c∈S a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c),

and right-distributes over ⊕,

∀a,b,c∈S (b⊕ c)⊗ a = (b⊗ a)⊕ (c⊗ a).

We will restrict ⊕ to be idempotent:

∀a∈S a = a⊕ a.

The algebra of square matrices whose elements are taken
from an idempotent semiring, with the usual definitions of
matrix ⊕-addition and matrix ⊗-multiplication [6], is and
idempotent semiring as well.

In an idempotent semiring, the canonical order � is
defined by a � b if a ⊕ b = b. Since 0 is the additive
identity, we have 0 � a for all a ∈ S. Left-distributivity of
⊗ over ⊕ is equivalent to left-isotonicity of ⊗ for �,

∀a,b,c∈S b � c⇒ a⊗ b � a⊗ c,

and right-distributivity of ⊗ over ⊕ is equivalent to right-
isotonicity of ⊗ for �,

∀a,b,c∈S b � c⇒ b⊗ a � c⊗ a.

A condition stronger than idempotency is selectivity,

∀a,b∈S a⊕ b = a ∨ a⊕ b = b,

which implies that the canonical order is total.
Perhaps the most familiar example is the selective semiring

used for the classical shortest paths problem,

sp = (R∞,min,+,∞, 0),

where R∞ = R ∪ {∞}. Another familiar semiring is used
for finding widest paths,

bw = (R∞,max,min, 0,∞),

which is often called a bottleneck algebra.

1Some authors would choose the term right when we chose left, and
vice-versa.

Let G = (V,E, a) be a network: (V,E) is a directed graph
and a is a map E → S. We represent a network G by its
adjacency matrix A:

A[i, j] =

{
a(i, j), if (i, j) ∈ E;
0, otherwise.

A path P = v1v2 · · · vkvk+1 of length k is a sequence of
nodes such that (vm, vm+1) ∈ E for each m, 1 ≤ m ≤ k.
The weight of path P is

a(P) = a(v1, v2)⊗ a(v2, v3)⊗ · · · ⊗ a(vk, vk+1).

The empty path is given weight 1. Let P(i, j) be the set of
all paths from i to j in G. An optimal path P from i to j,
if it exists, is a path from i to j with �-maximum weight:

a(P) =
⊕

Q∈P(i,j)

a(Q).

Denote by A∗ the matrix the (i, j) entry of which is the
weight of an optimal path from i to j.

A path is simple if it does not repeat a node. A circuit
C = v1, v2, · · · vk, v1 is a path that starts and ends at the
same node and does not repeat any of the other nodes. If
every circuit C in the network is such that a(C) � 1, then
A∗ exists and it is a solution for L in the left matrix equation

L = AL⊕ I,

as well as the solution for R in the right matrix equation,

R = RA⊕ I.

Moreover, A∗ can be computed with Bellman-Ford algo-
rithm at polynomial time complexity. Under the stronger
condition on the entries of A,

∀(i,j)∈E a(i, j) � 1̄, (4)

which implies that a(C) � 1 for all circuits C, Dijkstra’s
algorithm also computes A∗ [6].

IV. PREBIMONOIDS AND BIMONOIDS: PRIMITIVE
STRUCTURES

A. Definition

A prebimonoid is an algebraic structure of the form

(S,⊕,⊗, 0, 1),

where (S,⊕, 0) is a commutative monoid, 1 is an identity
for ⊗, and 0 is an annihilator for ⊗. In a prebimonoid, we
dispense with both the associativity of ⊗ and the distribu-
tivity of ⊗ over ⊕. Dispensing with associativity of ⊗ has
two advantages. First, important routing problems can easily
be modeled with prebimonoids (see Section IV-B). Second,
the prebimonoids properties carry over from elements to
matrices: the algebra of square matrices whose elements are
taken from a prebimonoid is a prebimonoid as well. That
would not be so if associativity of ⊗ were required in the
definition of prebimonoid. (Indeed, associativity of matrix
multiplication requires distributivity of multiplication over

addition of the elements of the matrices.) A prebimonoid is
a bimonoid if ⊗ is associative.

A prebimonoid is idempotent if ⊕ is idempotent and it
is selective if ⊕ is selective. The canonical order is defined
as is semirings. Since associativity of ⊗ is not required in
prebimonoid, the sequence of successive ⊗-multiplications is
relevant in the definition of weight of a path. The left-weight
of path P = v1v2 · · · vkvk+1 is defined as

aL(P) = a(v1, v2)⊗ (a(v2, v3)⊗ (· · · ⊗ a(vk, vk+1) · · ·)),

that is, the ⊗-multiplications are performed from right to left.
A left-optimal path from i to j, if it exists, is a path from i
to j with �-maximum left-weight,

A∗L[i, j] =
⊕

P∈P(i,j)

aL(P). (5)

Cognate definitions can be made for right-weights aL(P) and
right-optimal paths A∗R. In a bimonoid, there is no distinction
between left- and right-weights and left- and right-optimal
paths. In this case, the matrix of optimal path weights is
denoted simply by A∗, as in semirings.

Let matrix L satisfy the left matrix equation

L = AL⊕ I.

Such a matrix is called a left-local solution. Because a
prebimonoid does not require left-distributivity, the (i, j)
entry of L is not necessarily the left-weight of a left-optimal
path from i to j—L is not necessarily equal to L∗. We define
a left-locally optimal path from v1 to vk+1 to be a path
P = v1v2 · · · vkvk+1 such that

L[vm, vk+1] = a(vm, vm+1)⊗ L[vm+1, vk+1],

for all m, 1 ≤ m ≤ k. Again, cognate definitions can be
made for right-local solution and right-locally optimal paths.

B. Customer-provider, peer-peer: no associativity

The Internet consists of a large number of ISPs with estab-
lished commercial relationships between them. A highly sim-
plified model classifies the relationships into either customer-
provider or peer-peer. In a customer-provider relationship,
the customer pays to the provider for access to the Internet
whereas in a peer-peer relationship, the peers agree to
exchange traffic between themselves and their customers
free of charge. The routing-related rules governing these
relationships were laid out in [5]: to a customer, an ISP
exports all routes; to a provider or a peer, an ISP only
exports routes learned from customers; routes learned from
customers are preferred to routes learned from peers, and
the latter are preferred to routes learned from providers.
This routing paradigm was modeled algebraically in [21].
In the current formulation, the elements of the selective
prebimonoid are {1, c, r, p, 0}, where c, r, and p, stand,
respectively, for customer route and customer link, peer route
and peer link, and provider route and provider link. The
prebimonoid operations ⊕ and ⊗ are given, respectively, in
the next two charts (see [1]).

⊕ 1 c r p 0
1 1 1 1 1 1
c 1 c c c c
r 1 c r r r
p 1 c r p p
0 1 c r p 0

⊗ 1 c r p 0
1 1 c r p 0
c c c 0 0 0
r r r 0 0 0
p p p p p 0
0 0 0 0 0 0

For example, c⊗p = 0 means that an ISP does not export to
a provider a route learned from another provider; r ⊗ c = r
means that an ISP exports to a peer a route learned from a
customer, there becoming a peer route.

The prebimonoid is not associative since, for example,

p⊗ (r ⊗ p) = p⊗ 0 = 0 6= p = p⊗ p = (p⊗ r)⊗ p.

The prebimonoid is also not right-distributive since, for
example,

(c⊕ p)⊗ r = c⊗ r = 0 6= p = 0⊕ p = (c⊗ r)⊕ (p⊗ r).

However, the prebimonoid is left-distributive. From the re-
sults in [21], we can conclude that A∗L exists and, because of
left-distributivity, it is a left-local solution. In a similar way,
if a prebimonoid is right-distributive, then A∗R is a right-local
solution.

Although we do not explore the details here, it is fairly
straightforward to extend this analysis to capture arc weights
that are a function of path weights, which is a common
feature of Internet routing. For example, assume Λ be a set of
indices for a set of function F = {fλ ∈ S → S | λ ∈ Λ}. We
then define the left-application function � ∈ Λ→ (S → S)
as

λ� s = fλ(s), (6)

and the left-weight of a path as

aL(P)
= a(v1, v2) � (a(v2, v3) � · · ·� (a(vk, vk+1) � 1 · · ·))
= fa(v1,v2)(fa(v2,v3)(· · · fa(vk,vk+1)(1) · · ·)).

It is then easy to extend Dijkstra’s algorithm to handle
such algebras, which have been used to model BGP-like
routing [21], [8].

C. Widest-shortest paths: no distributivity

We now present an example of a bimonoid where ⊗
distributes neither to the left nor to the right over ⊕. From
the shortest-path algebra and the widest-path algebra, we
can compose two product algebras: the shortest-widest path
algebra and the widest-shortest path algebra. Whereas the
first is distributive the second is not [26]. The widest-shortest
path algebra is the algebraic structure

bw ~× sp = (R∞ × R∞,⊕,⊗, (0,∞), (∞, 0)),

where

(b1, d1)⊕ (b2, d2) =

(b1,min{d1, d2}), if b1 = b2,
(b1, d1), if b1 > b2,
(b2, d2), if b1 < b2,

and

(b1, d1)⊗ (b2, d2) = (min{b1, b2}, d1 + d2).

Figure 1 (a) presents an example network over bw ~× sp.
Its adjacency matrix A is

A =

1 2 3 4 5

1 (0,∞) (5, 1) (0,∞) (0,∞) (0,∞)
2 (0,∞) (0,∞) (0,∞) (0,∞) (0,∞)
3 (0,∞) (5, 4) (0,∞) (5, 1) (0,∞)
4 (5, 1) (0,∞) (0,∞) (0,∞) (10, 1)
5 (10, 5) (0,∞) (5, 1) (0,∞) (0,∞)

The matrix of optimal weights, the left-local solution, and

the right-local solution are, respectively,

A∗ =

1 2 3 4 5

1 (∞, 0) (5, 1) (0,∞) (0,∞) (0,∞)
2 (0,∞) (∞, 0) (0,∞) (0,∞) (0,∞)
3 (5, 2) (5, 3) (∞, 0) (5, 1) (5, 2)
4 (10, 6) (5, 2) (5, 2) (∞, 0) (10, 1)
5 (10, 5) (5, 4) (5, 1) (5, 2) (∞, 0)

,

L =

1 2 3 4 5

1 (∞, 0) (5, 1) (0,∞) (0,∞) (0,∞)
2 (0,∞) (∞, 0) (0,∞) (0,∞) (0,∞)
3 (5,7) (5, 3) (∞, 0) (5, 1) (5, 2)
4 (10, 6) (5, 2) (5, 2) (∞, 0) (10, 1)
5 (10, 5) (5, 4) (5, 1) (5, 2) (∞, 0)

,
and

R =

1 2 3 4 5

1 (∞, 0) (5, 1) (0,∞) (0,∞) (0,∞)
2 (0,∞) (∞, 0) (0,∞) (0,∞) (0,∞)
3 (5, 2) (5, 3) (∞, 0) (5, 1) (5, 2)
4 (10, 6) (5,7) (5, 2) (∞, 0) (10, 1)
5 (10, 5) (5,5) (5, 1) (5, 2) (∞, 0)

,
where the entries marked in bold indicate those values which
are not optimal weights.

Figure 1 (b) illustrates the left-locally optimal paths to
node 2. Note that the left-local solution is compatible with
the kind of destination-based, hop-by-hop forwarding used
in the Internet. On the other hand, Figure 1 (c) shows right-
locally optimal paths to node 2. (The annotations on arcs
indicate which arcs are used by which source nodes to reach
destination 2.) Observe that the union of all right-locally
optimal paths to node 2 is not a tree rooted at 2, and not
even an acyclic graph rooted at 2. This means that right-
local solutions are not compatible with destination-based,
hop-by-hop forwarding: a link-state routing protocol does
not operate correctly in this situation. Column 2 of matrix
R gives the width-length of the (right-locally optimal) paths
computed by the various nodes to reach destination 2. Node

1

2

34 5

(5, 1)

(5, 1)

(5, 4)

(5, 1)

(10, 5)

(10, 1)

(5, 1)

(a) A weighted graph.

1

2

34 5

(b) The left-locally optimal paths to node 2.

1

2

34 5

5→ 2

1, 3, 4→ 2

5→ 23→ 2

4→ 2

4→ 23→ 2

(c) The right-locally optimal paths to node 2.
Fig. 1. (a) A network over the algebraic structure of widest-shortest paths.
Paths to node 2 are indicated with thicker links in the left-local solution (b)
and the right-local solution (c). Note that (c) cannot be implemented with
the standard destination-based, hop-by-hop forwarding mechanism typically
used in the Internet. Packets destined to node 2 would get trapped in the
loop 3 4 5 3.

Algorithm 1 Generalized Dijkstra’s algorithm.
for all nodes do

2: est [u] := 0
est [t] := 1

4: set := nodes
repeat

6: find v ∈ set such that est [v] =
⊕

x∈set est [x]
set := set − {v}

8: for each in-neighbor u of v do
if est [u] ≺ a(u, v)⊗ est [v] then

10: est [u] := a(u, v)⊗ est [v]
until set = ∅

3 finds the path 3 4 1 2 with width-length (5, 3), meaning
that it forwards packets addressed at 2 to node 4; node 4
finds the path 4 5 3 2 with width-length (5, 7), meaning that
it forwards packets addressed at 2 to node 5; and node 5
finds the path 5 3 2 with width-length (5, 5), meaning that it
forwards packets addressed at 2 to node 3. Hence, packets
addressed at 2 are trapped in the forwarding loop 3 4 5 3.

D. Dijkstra’s algorithm

Given that the Left Matrix Equation (2) and the Right
Matrix Equation (3) describe routing equilibria, we explore
algorithms that solve them. We focus on finding a left-
local solution to the left matrix equation. (A right-local
solution is found by transposition.) It turns out that under an
appropriate condition on the links of the network, Dijkstra’s
algorithm does compute one column of a left-local solution.
The condition is called left-absorption:

∀(i,j)∈E,b∈S a(i, j)⊗ b � b. (7)

Left-absorption generalizes to prebimonoids Condition (4)—
needed for the use of Dijkstra’s algorithm in selective
semirings—since (7) follows from (4) and right-isotonicity.

Theorem 4.1: If the network is left-absorptive, then Algo-
rithm 1 computes the t-th column of a left-local solution.

Proof: Clearly, Algorithm 1 terminates after |V | iter-
ations of the repeat loop. Let l(u, t) be the value of est [u]
upon protocol termination. Once a node is extracted from set
in line 7 it is never put back there again. Thus, l(u, t) is the
value of est [u] after the extraction of u from set . The value
of variable est [u] can only �-increase during execution of
the algorithm. Hence,

est [u] � l(u, t), (8)

at any time.
We first show by induction on the number of extractions

from set that
est [x] � l(u, t) (9)

for all u outside set and all x still in set . Consider the
moment when u is extracted from set . By the choice of
u in line 6, we have that inequality (9) is valid after
the extraction. Any node x that subsequently witnesses a
change in variable est [x] must do so in line 10, yielding

a(x, u) ⊗ l(u, t) = est [x]. Because of left-absorption, we
have est [x] = a(x, u) ⊗ l(u, t) � l(u, t), as we wanted to
show. Inequality (9) implies

l(v, t) � l(u, t), (10)

if u is extracted from set before v.
We can now prove that the l(u, t), u ∈ V , satisfy the

t-column of a left-local solution. Trivially, l(t, t) = 1. In
addition, if 0 ≺ l(u, t), then there is an out-neighbor v of
u such that l(u, t) = a(u, v) ⊗ l(v, t). We are left to show
that a(u, v) ⊗ l(v, t) � l(u, t) for all links uv. Consider an
arbitrary link uv. If v is extracted from set before u, we
get a(u, v) ⊗ l(v, t) � est [u] after the extraction of v and
execution of lines 9 and 10. From (8), we conclude that

a(u, v)⊗ l(v, t) � est [u] � l(u, t).

Otherwise, if v is extracted from set after u, from left-
absorption and (10), we write

a(u, v)⊗ l(v, t) � l(v, t) � l(u, t).

Thus, in both cases, a(u, v)⊗ l(v, t) � l(u, t).
Assuming ⊕ and ⊗ are constant-time operations, the

algorithmic complexity of Dijkstra’s algorithm remains the
same as traditional accounts [3]. That is, a worst-case running
time of O(V 2). Since left- or right-local solution requires |V |
calls to this algorithm, the worst-case running time to solve
is O(V 3). In sparse graphs this could be improved since the
running time for Dijkstra’s algorithm can be improved to
O(E log V) using binary heaps or to O(E + V log V) using
Fibonacci heaps.

V. DISCUSSION AND OPEN PROBLEMS

We have made a clear distinction between left- and right-
local solutions to path problems. Vectoring protocols, such
as the Border Gateway Protocol (BGP) [27], [14], the In-
terior Gateway Protocol (IGRP), and the Enhanced IGRP
(EIGRP) [23], [7], settle for the left-local solutions, thus
yielding locally optimal paths rather than globally optimal
paths. We have also shown that for some prebimonoids both
left- and right-local solutions can be computed with multiple
applications of Dijkstra’s algorithm. This provides the first
polynomial time algorithm for arriving at locally optimal
solutions over such algebras.

We suspect that the results presented here may find appli-
cations in some intra-domain routing settings that require
the use of routing policies going beyond what can be
expressed within a simple shortest paths model. For example,
distributivity can be lost easily when routes are discarded
due to policy. If locally optimal solutions are sufficient in
these cases, then we have shown that Dijkstra’s algorithm
can in fact be used to compute solutions in some policy-rich
settings. The most efficient approach would be to compute
right-local solutions using Dijkstra’s algorithm at each router
in the network as is currently done with protocols such as
OSPF and IS-IS. However, with non-distributive algebras
this is not compatible with destination-based, hop-by-hop
forwarding and so would require some kind of tunneling

mechanism such as MPLS [4]. (Note that tunneling would
also be required if we attempted to implement globally
optimal paths for non-distributive routing metrics.)

On the other hand, left-local solutions could be computed
using Dijkstra’s algorithm, but the entire all-pairs shortest
path problem would have to be solved at each router in order
to achieve loop-free hop-by-hop forwarding. The additional
expense could be traded off against the fact the tunneling is
not required and slow path exploration techniques avoided.
This might prove to be a reasonable approach in some
networks.

Distributed Bellman-Ford algorithms have better scaling
properties since memory requirements at each router scale
with the number of network destinations, while link-state
routing protocols must store records for all links in the
network. Inter-domain link-state routing would have enor-
mous space requirements since the link-state domain would
include the global Internet. But we suspect that there is
another intrinsic obstacle to using Dijkstra’s algorithm in the
inter-domain setting. The problem is that link-state flooding
reveals policy, which is today considered proprietary. How-
ever, the link-state approach may be applicable to Internal
BGP (an important mode of BGP used within a network)
since link state announcements would remain private within
an ISP. Another possible application might be to improve
convergence time for a popular method of implementing
Virtual Private Networks [24] that currently employs BGP.

Several interesting theoretical problems remain open. First,
for a large class of prebimonoids it is known that the
Bellman-Ford algorithm (or iterative matrix methods) will
eventually terminate when paths are restricted to simple
paths. Yet no polynomial bound on the number of iterations
required is known [9].

Second, the problem of finding globally optimal paths for
prebimonoids does not seem to have a general solution at
this time. Some authors have demonstrated techniques for
finding globally optimal paths for a modified algebra which
is distributive, and then translating solutions back to the non-
distributive metrics (see [20], [19], [25] and Chapter 5 of [1]).
Perhaps these techniques can be generalized to a large class
of prebimonoids.

ACKNOWLEDGEMENTS

We have benefited from discussions with Fred Baker,
John S. Baras, Bruce Davie, Alexander Gurney, Vilius
Naudžiūnas, Iulian Nitescu, Cristel Pelsser, Philip Taylor, and
Gordon Wilfong. Timothy G. Griffin would like to thank the
following for their financial support: Cisco Systems, Boeing,
and EPSRC (grant EP/F002718/1).

REFERENCES

[1] J. S. Baras and G. Theodorakopoulos. Path problems in networks.
Morgan & Claypool, 2010.

[2] C. Chau, R. Gibbens, and T. G.Griffin. Towards a unified theory of
policy-based routing. In Proc. IEEE INFOCOM, April 2006.

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms. MIT Press, Cambridge, MA, second edition, 2001.

[4] B. S. Davie and Y. Rekhter. MPLS: Technology and Applications.
Morgan Kaufmann, 2000.

[5] L. Gao and J. Rexford. Stable internet routing without global
coordination. IEEE/ACM Transactions on Networking, pages 681–
692, December 2001.

[6] M. Gondran and M. Minoux. Graphs, Dioids, and Semirings : New
Models and Algorithms. Springer, 2008.

[7] M. G. Gouda and M. Schneider. Maximizable routing metrics.
IEEE/ACM Trans. Netw., 11(4):663–675, 2003.

[8] T. G. Griffin. The stratified shortest-paths problem. In The third
International Conference on COMmunication Systems and NETworkS
(COMSNETS), January 2010.

[9] T. G. Griffin and A. J. T. Gurney. Increasing bisemigroups and
algebraic routing. In 10th International Conference on Relational
Methods in Computer Science (RelMiCS10), April 2008.

[10] T. G. Griffin and G. Huston. RFC 4264: BGP Wedgies, November
2005. IETF.

[11] T. G. Griffin, F. B. Shepherd, and G. Wilfong. The stable paths prob-
lem and interdomain routing. IEEE/ACM Transactions on Networking,
10(2):232–243, April 2002.

[12] A. Gurney. Construction and verification of routing algebras. PhD
thesis, University of Cambridge, 2009.

[13] A. J. T. Gurney and T. G. Griffin. Lexicographic products in
metarouting. In Proc. Inter. Conf. on Network Protocols, October
2007.

[14] S. Halabi and D. McPherson. Internet Routing Architectures. Cisco
Press, second edition, 2001.

[15] G. Huston. Interconnection, peering and settlements: Part I. Internet
Protocol Journal, 2(1), June 1999.

[16] G. Huston. Interconnection, peering and settlements: Part II. Internet
Protocol Journal, 2(2), June 1999.

[17] L. Lamport. An assertional correctness proof of a distributed algo-
rithm. Science of Computer Programming, 2(3):175–206, December
1982.

[18] L. Lamport. The temporal logic of actions. ACM Trans. on
Programming Languages and Systems, 16(3):872–923, April 1994.

[19] T. Lengauer and D. Theune. Efficient algorithms for path problems
with general cost criteria. Lecture Notes in Computer Science,
510:314–326, 1991.

[20] T. Lengauer and D. Theune. Unstructured path problems and the
making of semirings. Lecture Notes in Computer Science, 519:189–
200, 1991.

[21] J. L.Sobrinho. An algebraic theory of dynamic network routing.
IEEE/ACM Transactions on Networking, 13(5):1160–1173, October
2005.

[22] R. Perlman. Interconnections — Bridges, Routers, Switches, and
Internetworking Protocols. Addison-Wesley, second edition, 2000.

[23] A. Retana, R. White, and D. Slice. EIGRP: Basic Operation and Con-
figuration. Addison Wesley, Reading, MA, 2000. ISBN 0201657732.

[24] E. Rosen and Y. Rekhter. BGP/MPLS VPNs. RFC 4364, 2006.
[25] A. Sen, K. S. Candan, A. Ferreira, B. Beauquier, and S. Perennes.

On shortest path problems with ”non-markovian” link contribution
to path lengths. In NETWORKING ’00: Proceedings of the IFIP-
TC6 / European Commission International Conference on Broadband
Communications, High Performance Networking, and Performance
of Communication Networks, pages 859–870, London, UK, 2000.
Springer-Verlag.

[26] J. L. Sobrinho. Algebra and algorithms for QoS path computation
and hop-by-hop routing in the Internet. IEEE/ACM Transactions on
Networking, 10(4):541–550, August 2002.

[27] J. W. Stewart III. BGP4: Inter-Domain Routing in the Internet.
Addison Wesley, Reading, MA, 1999. ISBN 0201379511.

[28] K. Varadhan, R. Govindan, and D. Estrin. Persistent route oscillations
in inter-domain routing. Computer Networks, 32:1–16, 2000. An early
version was a widely circulated ISI technical report from 1996.

