
Increasing Bisemigroups and Algebraic Routing

Timothy G. Griffin and Alexander J. T. Gurney

Computer Laboratory, University of Cambridge
Email:{Timothy.Griffin, Alexander.Gurney}@cl.cam.ac.uk

Abstract. The Internet protocol used today for global routing — the
Border Gateway Protocol (BGP) — evolved in a rather organic manner
without a clear theoretical foundation. This has stimulated a great deal
of recent theoretical work in the networking community aimed at model-
ing BGP-like routing protocols. This paper attempts to make this work
more accessible to a wider community by reformulating it in a purely al-
gebraic setting. This leads to structures we call increasing bisemigroups,
which are essentially non-distributive semirings with an additional order
constraint. Solutions to path problems in graphs annotated over increas-
ing bisemigroups represent locally optimal Nash-like equilibrium points
rather than globally optimal paths as is the case with semiring routing.

1 Introduction

A software system can evolve organically while becoming an essential part of
our infrastructure. This may even result in a system that is not well understood.
Such is the case with the routing protocol that maintains global connectivity
in the Internet — the Border Gateway Protocol (BGP). Although it may seem
that routing is a well understood problem, we would argue that meeting the
constraints of routing between autonomous systems in the Internet has actually
given birth to a new class of routing protocols. This class can be characterized
by the goal of finding paths that represent locally optimal Nash-like equilibrium
points rather than paths that are optimal over all possible paths.

This paper is an attempt to present recent theoretical work on BGP in a
purely algebraic setting. Section 2 describes BGP and presents an overview of
some of the theoretical work modeling this protocol. Section 3 presents the quad-
rants model as a framework for discussing how this work relates to the literature
on semiring routing. We define increasing bisemigroups, which are essentially
non-distributive semirings with an additional order constraint. Solutions to path
problems in graphs annotated over increasing bisemigroups represent locally op-
timal Nash-like equilibrium points rather than globally optimal paths as is the
case with semiring routing. Section 4 reformulates the work described in Sec-
tion 2 in terms of increasing bisemigroups. In particular, previous work on BGP
modeling has involved reasoning about asynchronous protocols. Here we employ
a more traditional approach based on simple matrix multiplication. Section 5
outlines several open problems.

2 Theory and practice of interdomain routing

We can think of routing protocols as being comprised of two distinct components,

routing protocol = routing language + algorithm,

where the protocol’s routing language is used to configure a network and the
(often distributed) algorithm is for computing routing solutions to network con-
figurations specified using the routing language. A routing language captures (1)
how routes are described, (2) how best routes are selected, (3) how (low-level)
policy is described, and (4) how policy is applied to routes.

This characterization of routing protocols may seem straightforward to those
familiar with the literature on semiring routing [1–4], where we can consider
a given semiring to be a routing language. However, the Internet Engineering
Task Force (IETF) does not define or develop routing protocols to reflect this
thinking. The IETF documents that define protocols (RFCs) tend to present
all aspects of a routing protocol algorithmically, mostly due to the emphasis
on system performance. The task of untangling the routing language from the
routing algorithm for the purposes of analysis is often a very difficult challenge.

Perhaps the most difficult Internet routing protocol to untangle is the Border
Gateway Protocol (BGP) [5–7]. This protocol is used to implement routing in
the core of the Internet between Internet Service Providers (ISPs) and large or-
ganizations. (The vast majority of corporate and campus networks at the “edge”
of the Internet are statically routed to their Internet provider and do not need
to run BGP.) At the beginning of 2008 there were over 27,000 autonomous net-
works using BGP to implement routing in the public Internet1. An autonomous
network can represent anywhere from one to thousands of routers each running
BGP. Clearly this protocol is an essential part of the Internet’s infrastructure.

The rather complex BGP route selection algorithm can be modeled abstractly
as implementing a total pre-order ≤ so that if a and b are BGP routes and
a < b, then a is preferred over b. BGP routes can be thought of as records
containing multiple fields, and the order as a lexicographic order with respect
to the orders associated with each field’s domain. The most significant attribute
tends to be used to implement economic relationships between networks, while
the less significant tend to be used to implement local traffic engineering goals.

Network operators configure routing policies using low-level and vendor-
specific languages. Abstractly, a policy can be modeled as a function f that
transforms a route a to the route f(a). Policy functions are applied when routes
are exported to and imported from neighboring routers. An important thing to
understand is that BGP standards have intentionally underspecified the lan-
guage used for configuring policy functions. The actual policy languages used
today have emerged over the last twenty years from a complex interaction be-
tween network operators, router vendors, and protocol engineers. This evolution
has taken place with little or no theoretical guidance. This has been positive in

1 Each network is associated with a unique identifier that can be found in BGP routing
tables. See http://bgp.potaroo.net.

the sense that global routing was not overly constrained, allowing it to co-evolve
along with a viable economic model of packet transport [8].

However, the negative side is that BGP can exhibit serious anomalies. Be-
cause of the unconstrained nature of policy functions, routing solutions are not
guaranteed to exist and this can lead to protocol divergence [9, 10]. Another
problem is that routing solutions are not guaranteed to be unique. In an in-
terdomain setting routing policies are considered proprietary and not generally
shared between competing ISPs. This can lead to situations where BGP falls
into a local optimum that violates the intended policies of operators, yet no one
set of operators has enough global knowledge to fix the problem [11].

If BGP policy functions could be constrained to always be monotonic, a ≤
b → f(a) ≤ f(b), then standard results might be applied to show that best
routes are globally optimal routes and the above mentioned anomalies could not
occur. However, it appears very unlikely that any fix imposing monotonicity re-
quirements would be adopted by network operators. Sobrinho has shown that
a very simple model of interdomain economic relationships can be implemented
with monotonic functions [12, 13]. He also showed that more realistic models
capturing common implementations of fail-over and load balancing [14] are not
monotonic. Yet even if the interdomain world could agree on a monotonic model
of interdomain economic relationships, combining this in a monotonic lexico-
graphic order with other common traffic engineering metrics may be impossible.
Recent work has shown that obtaining monotonicity with lexicographic products
is fairly difficult [15].

One reaction to this situation is to simply declare interdomain routing a
“broken mess” and move on to something more tractable. Another is to conclude
that there is actually something new emerging here, and that we need to better
understand this type of routing and how it relates to more standard approaches.

2.1 The Stable Paths Problem (SPP)

The Stable Paths Problem (SPP) [16, 17] was proposed as a simple graph-
theoretic model of BGP routing, and was applied to the analysis of several
real-world routing problems [14, 18, 19].

Let G = (V, E, v0) be a graph with origin v0. The set P(v, v0) denotes all
simple paths from node v to node v0. For each v ∈ V , Pv ⊆ P(v, v0) denotes
the set of permitted paths from v to the origin. Let P be the union of all sets Pv.

For each v ∈ V , there is a non-negative, integer-valued ranking function
λv, defined over Pv, which represents how node v ranks its permitted paths. If
P1, P2 ∈ Pv and λv(P1) < λv(P2), then P2 is said to be preferred over P1. Let
Λ = {λv | v ∈ V − {v0}}.

An instance of the Stable Paths Problem, Sspp = (G, P , Λ), is a graph
together with the permitted paths at each node and the ranking functions for
each node. In addition, we assume that P0 = {(v0)}, and for all v ∈ V − {v0}:

– (empty path is permitted) ǫ ∈ Pv,
– (empty path is least preferred) λv(ǫ) = 0, λv(P) > 0 for P 6= ǫ,

– (strictness) If P1, P2 ∈ Pv, P1 6= P2, and λv(P1) = λv(P2), then there is a
u such that P1 = (v u)P ′

1 and P2 = (v u)P ′
2 (paths P1 and P2 have the same

next-hop),
– (simplicity) If path P ∈ Pv, then P is a simple path (no repeated nodes),

A path assignment is a function π that maps each node u ∈ V to a path
π(u) ∈ Pu. (Note, this means that π(v0) = (v0).) We interpret π(u) = ǫ to mean
that u is not assigned a path to the origin.

The SPP work defines an asynchronous protocol for computing solutions to
instances of the stable paths problem. This protocol is in the family of dis-
tributed Bellman-Ford algorithms. A sufficient condition (that the dispute di-
graph is acyclic, described below), is shown to imply that this protocol terminates
with a locally optimal solution.

The dispute digraph is a directed graph where the nodes are paths in the
SPP instance. A dispute arc (p, q) represents the situation where

1. p = (u, v)t is a feasible path from u to v0 with next-hop v,
2. q is a path from v to v0,
3. either (u, v)q is not feasible at u or p is more preferred than (u, v)q) at u.
4. path q is more preferred at v than t.

A transmission arc (p, (u, v)p) is defined when p is permitted at v, (u, v) ∈ E,
and (u, v)p is permitted at u. The dispute digraph is then the union of dispute
and transmission arcs.

Another concept used in [16, 17] is the dispute wheel. Suppose that pm ends
in the initial node of path p0 and that p is a cycle p0p2 · · · pm−1pm. Suppose
that there are paths qj , each terminating in v0, and each sharing its initial node
node with pj . Then this configuration represents a dispute wheel if for each j

the path pjqj+1 is more preferred than path qj , where the subscripts are taken
mod m. In [16] it is shown that every dispute wheel can be mapped to a cycle
in the dispute digraph.

2.2 Sobrinho’s Model

Sobrinho approached the problem from a more algebraic point of view and in-
troduced his routing algebras [20, 12]. This work extended his earlier algebraic
generalizations of shortest-path routing [21]. Sobrinho’s routing algebras take
the form A = (S, ≤, L, ⊗), where ≤ is a preference order over S, L is a set of
labels, and the operator ⊗ maps L×S to S. The set S contains a special element
∞ ∈ S such that: σ < ∞, for all σ ∈ S\{∞} and l ⊗∞ = ∞, for all l ∈ L. A
routing algebra A is said to be increasing if σ < l ⊗ σ for each l ∈ L and each
σ ∈ S − {∞}.

A (finite) graph G = (V, E) is annotated with a function w which maps
edges of E into L. If an initial weight σ0 is associated with node v0, then the
weight of a path terminating in v0, p = vjvj−1 · · · v1v0, is defined to be w(p) ≡
w(vj , vj−1) ⊗ · · · ⊗ σ0.

Sobrinho defines an asynchronous protocol for computing solutions to such
path problems. Again this protocol is in the family of distributed Bellman-Ford
algorithms. The algorithm itself forces paths to be simple — no repetitions of
nodes along a path is allowed. Sobrhinho develops a sufficient condition (that all
cycles are free, described below), which guarantees that this protocol terminates
with a locally optimal solution. He shows that if an algebra is increasing, then
this sufficient condition always holds.

A cycle vnvn−1 · · · v1v0 = vn is free if for every α0, α1 · · ·αn = α0, with
αj ∈ S −∞, there is an i, 1 ≤ i ≤ n, such that αi < w(ui, ui−1)⊗αi−1. Thus a
cycle that is not free is closely related to a dispute wheel of the SPP framework.

3 The quadrants model

We first review how path problems are solved using semirings [1–4]. Let S =
(S, ⊕, ⊗, 0, 1) be a semiring with the additive identity 0, which is also a
multiplicative annihilator, and with multiplicative identity 1. We will assume
that ⊕ is commutative and idempotent. The operations ⊕ and ⊗ can be extended
in the usual way to matrices over S. For example, the multiplicative identity
matrix is defined as follows.

I(i, j) =

{

1 if i = j,

0 otherwise

Given a finite directed graph G = (V, E) and a function w : E → S we can
define the adjacency matrix A as

A(i, j) =

{

w(i, j) if (i, j) ∈ E,

0 otherwise

The weight of a path p = i1, i2, i3, · · · , ik is then calculated as

w(p) = w(i1, i2) ⊗ w(i2, i3) ⊗ · · · ⊗ w(ik−1, ik),

where the empty path is usually give the weight 1. Define A(k) as

A(k) ≡ I ⊕ A ⊕ A2 ⊕ · · · ⊕ Ak.

The following facts are well known. Let P (i, j) be the set of all paths in G from i

to j. The set of paths made up of exactly k arcs is denoted by P k(i, j) ⊆ P (i, j).
Then

Ak(i, j) =
∑

p∈P k(i,j)

w(p).

Note that the proof of this fact relies on the (left) distribution rule c⊗ (a⊕ b) =
(c ⊗ a) ⊕ (c ⊗ b). The set of paths made up of at most k arcs is denoted by
P (k)(i, j) ⊆ P (i, j), and

A(k)(i, j) =
∑

p∈P (k)(i,j)

w(p).

In particular, if there exists a q such that A(q) = A(q+1), then

A(q)(i, j) =
∑

p∈P (i,j)

w(p)

represents a “global optimum” over all possible paths from i to j.

3.1 Can iteration be used to obtain a “local” optimum?

The matrix B = A(q) is a fixed point of the equation

B = I ⊕ (A ⊗ B),

which suggests the following iterative method of computing A(k).

A[0] = I

A[k+1] = I ⊕ (A ⊗ A[k])

Of course, using distribution we can see that A(k) = A[k].
However, if distribution does not hold in S we may in some cases still be

able to use this iterative method to compute a fixed point! Note that in this case
matrix multiplication is not associative.

But how could such a fixed point B be interpreted? For i 6= j we can see that

B(i, j) =
∑

s∈N(i)

w(i, s) ⊗ B(s, j)

where N(i) is the set of all nodes adjacent to i, N(i) = {s | (i, s) ∈ E}. Such
a fixed point may not represent a “global optimum” yet it can be interpreted
as a Nash-like equilibrium point in which each node i obtains “locally optimal”
values — node i computes its optimal value associated with paths to node j

given only the values adopted by its neighbors. This closely models the type of
routing solution we expect for BGP-like protocols.

3.2 Relating routing models

We have described the algebraic method of computing path weights w(p). The
literature on routing also includes the functional method, where we have a set of
transforms F ⊆ S → S and each directed arc (i, j) is associated with a function
f(i, j) ∈ F . The weight of a path p = i1, i2, i3, · · · , ik is then calculated as

w(p) = f(i1, i2)(f(i2, i3)(. . . f(ik−1, ik)(a) . . .)).

where a is some value originated by the node ik. BGP is perhaps the best example
of a functional approach to path weight computation.

The literature also contains two methods for path weight summarization.
We outlined the algebraic approach above using a commutative and idempotent

semigroup. The ordered method uses an order ≤ on S, and we take ‘best weights’
to mean minimal with respect to ≤. These two approaches are closely related
(more below), but they are at the same time quite distinct. For example, mini-
mizing the set S = {α, β} with respect to an order ≤ will result in a subset of
S, whereas α⊕ β may not be an element of S. If α and β are weights associated
with network paths p and q, then the best weight α⊕β in the algebraic approach
need not be associated with any one network path.

weight summarization
weight
computation algebraic ordered

algebraic

NW — Bisemigroups

(S, ⊕, ⊗)

Semirings [1–3]
Non-distributive semirings [22, 23]

NE — Order Semigroups

(S, ≤, ⊗)

Ordered semirings [24–26]
QoS algebras [21]

functional
SW — Semigroup Transforms

(S, ⊕, F)

Monoid endomorphisms [1, 2]

SE — Order Transforms

(S, ≤, F)

Sobrinho structures [12, 13].

Fig. 1. The Quadrants Model of Algebraic Routing.

Figure 1 presents the four ways we can combine the algebraic and ordered ap-
proaches to weight summarization with the algebraic and functional approaches
to weight computation. We discuss each in more detail.

The northwest (NW) quadrant contains bisemigroups of the form (S, ⊕, ⊗).
Semirings [1–3] are included in this class, although we do not insist that bisemi-
groups satisfy the axioms of a semiring. For example, we do not require that ⊗
distributes over ⊕.

A semigroup (S, ⊗) can be translated to a set of functions using Cayley’s
left- or right-representation.

(S, ⊗) �

cayley
// (S, F)

For example, with the left representation we associate a function fa with each
element a ∈ S and define fa(b) = a ⊗ b. The semigroup (S, ⊗) then becomes
the set of functions structure F = {fa | a ∈ S}. We can then use a Cayley
representation to translate a bisemigroup (S, ⊕, ⊗) into a semigroup transform
(S, ⊕, F),

(S, ⊕, ⊗) �

cayley
// (S, ⊕, F)

If we start with a semiring, then we arrive in the SW quadrant at what Gondran
and Minoux call an algebra of endomorphisms [1]. However, it is important to
note that not all semigroup transforms arise in this way from semirings, and we
do not require the properties of monoid endomorphisms.

The NE quadrant includes ordered semigroups, which have been studied ex-
tensively [24–26]. Such structures have the form (S, ≤, ⊗), where ⊗ is monotonic
with respect to ≤. That is, if a ≤ b, then c ⊗ a ≤ c ⊗ b and a ⊗ c ≤ b ⊗ c. So-
brinho [21] studied such structures (with total orders) in the context of Internet
routing. In our framework, we require only that ≤ be a pre-order (reflexive and
transitive), and we do not require monotonicity but infer it instead (which is
why we call these structures order semigroups rather than ordered semigroups).

Turning to the SE quadrant of Figure 1, we have structures of the form
(S, ≤, F), which include Sobrinho’s routing algebras [12] as a special case.
Sobrinho algebras (as defined in [13]) have the form (S,�, L, ⊗), where � is a
preference relation over signatures (that is, a total pre-order), L is a set of labels,
and ⊗ is a function mapping L×S to S. We can map this to an order transform
(S,�, FL) with FL = {gλ | λ ∈ L}, where gλ(a) = λ ⊗ a. Thus we can think of
the pair (L, ⊗) as a means of indexing the set of transforms FL. In addition to
this slightly higher level of abstraction, we do not insist that � be total.

Commutative, idempotent monoids can be translated into orders,

(S, ⊕)
�
natord

// (S, ≤)

in two ways, either a ≤⊕
R b ≡ b = a⊕ b, or a ≤⊕

L b ≡ a = a⊕ b. These orders are
clearly dual, with a ≤L b iff b ≤R a. If 1 is also an additive annihilator, then we
have for all a ∈ S, 0 ≤⊕

R a ≤⊕
R 1 and 1 ≤⊕

L a ≤⊕
L 0, and the orders are bounded.

Using the natord and cayley translations we can move from the NW to the
SE quadrants of Figure 1,

(S, ⊕, ⊗) �

natord
//

_

cayley

��

(S, ≤, ⊗)
_

cayley

��

(S, ⊕, F) �
natord

// (S, ≤, F)

We can use these translations to investigate how properties appropriate to
each quadrant are related. For example, an order transform is increasing when
for all a and f we have

a 6= ⊤ =⇒ a < f(a),

where ⊤ is the top element of the order. Pushing this property through the above
translations yields a definition of increasing for each quadrant.

(a 6= 0 =⇒ a = a ⊕ (b ⊗ a))∧
(b ⊗ a = a ⊕ (b ⊗ a) =⇒ a = 0)

�
left-natord

//

_

left-cayley

��

a 6= ⊤ =⇒ a < b ⊗ a
_

left-cayley

��(a 6= 0 =⇒ a = a ⊕ f(a))∧
(f(a) = a ⊕ f(a) =⇒ a = 0)

�
left-natord

// a 6= ⊤ =⇒ a < f(a)

For example, a left increasing bisemigroup is a bisemigroup where for all a and
b we have a 6= 0 =⇒ a = a ⊕ (b ⊗ a)) and b ⊗ a = a ⊕ (b ⊗ a) =⇒ a = 0. In
other words, where a 6= 0 =⇒ a <⊕

L b ⊗ a. In this paper we will use the term
increasing bisemigroup to mean left increasing bisemigroup.

3.3 Quadrants model and metarouting

Griffin and Sobrinho [13] proposed metarouting as a means of defining routing
protocols in a high-level and declarative manner. Metarouting is based on using
a metalanguage to specify routing languages. Algebraic properties required by
algorithms are derived automatically from a metalanguage specification, in much
the same way that types are derived in modern programming languages.

It is envisioned that metarouting will be used to specify (and implement) new
routing protocols as follows. Assume that a fixed menu of generic routing algo-
rithms has been implemented, each associated with a specific set of correctness
requirements. First, the algebraic component is defined using the metalanguage,
resulting in a set of automatically inferred properties. Next, the routing language
can then be associated with any algorithm whose requirements set is contained
in the set of inferred properties. This checking could be done at protocol de-
sign time or later at network configuration time. A metarouting implementation
must then compile the specification and algorithm choices into efficient code for
representing routing tables, calculating best routes, parsing and packing binary
on-the-wire representations and so on. Protocol compilation is a topic of ongoing
research.

The quadrants model of Figure 1 has been adopted as the algebraic basis
for metarouting. Rather than confining metarouting to the SE quadrant, as was
done in [13], the metarouting project is now attempting to capture structures
and operations in each of the four quadrants, as well as operations between
quadrants. In this model, properties are not required but inferred.

4 A relational reformulation in terms of bisemigroups

We reformulate the theories described in Section 2 in terms of bisemigroups.
This is not meant to be completely faithful in every detail, rather it represents
an attempt to recast the essential ideas in a purely algebraic setting.

Let S = (S, ⊕, ⊗) be a bisemigroup. Throughout this section we will assume
that ⊕ is idempotent, commutative, and selective (a ⊕ b = a ∨ a ⊕ b = b), and
that both 0 and 1 exist and that 0 is a multiplicative annihilator. Note that since
⊕ is idempotent, commutative, and selective it follows that ≤⊕

L is a total order.
Let A be an adjacency matrix over S. Since ⊕ is selective, for each i 6= j

there exists sk
(i,j) ∈ N(i) ≡ {s | (i, s) ∈ E} such that

A[k+1](i, j) =
∑

s∈N(i)

w(i, s) ⊗ B(s, j) = w(i, sk
(i,j)) ⊗ A[k](sk

(i,j), j)

We assume that we have a deterministic method of selecting a unique sk
(i,j).

For the iterative algorithm we define a particular sequence of values that is
called the history of A[k](i, j). Histories are inspired by constructs of the same
name in [27] that record causal chains of events in an asynchronous protocol.
Here, the history of A[k](i, j), denoted H [k](i, j), will in some sense explain how
the value A[k](i, j) came to be adopted at step k of the iteration.

H [0](i, j) = (1)

H [k+1](i, j) =

H [k](i, j) if A[k](i, j) = A[k+1](i, j),

H [k](sk
(i,j), j), A[k+1](i, j) if A[k+1](i, j) <⊕

L A[k](i, j),

H [k](sk−1
(i,j), j), A[k](i, j) if A[k](i, j) <⊕

L A[k+1](i, j).

Note that if A[k+1](i, j) <⊕
L A[k](i, j), then node i obtained a more pre-

ferred value at step k + 1. In this case the history H [k+1](i, j) is the sequence
H [k](sk

(i,j), j), A[k+1](i, j), where H [k](sk
(i,j), j) is a history explaining how

value A[k](sk
(i,j), j) was adopted at state k. Since A[k+1](i, j) = w(i, sk

(i,j)) ⊗

A[k](sk
(i,j), j), the complete history explains how A[k+1](i, j) was adopted at

step k + 1.
On the other hand, when A[k](i, j) <⊕

L A[k+1](i, j), then node i lost a more
preferred value at step k+1. In this case the history H [k+1](i, j) is the sequence
H [k](sk−1

(i,j), j), A[k](i, j), which ends in the value lost at step k + 1. Since this

lost value is A[k](i, j) = w(i, sk−1
(i,j))⊗A[k−1](sk−1

(i,j), j), the sequence H [k](sk−1
(i,j), j)

explains how node sk−1
(i,j) came to adopt A[k](sk−1

(i,j), j) at step k, thus forcing node

i to abandon A[k](i, j) at step k + 1.
Of course this last type of history depends on violations of monotonicity,

∀a, b, c ∈ S : a ≤⊕
L b → c ⊗ a ≤⊕

L c ⊗ b.

We define the dispute relation DS to record such violations,

DS ≡ {(a, c ⊗ b) | a, b, c ∈ S, a ≤⊕
L b ∧ c ⊗ b <⊕

L c ⊗ a}

Of course, in the case that S is monotonic, then is DS is empty. In addition we
define a relation

TS ≡ {(a, b ⊗ a) | a, b ∈ S, b 6= 1}.

Note that TS is the anti-reflexive sub-relation of ≤⊗
R, (using ⊗!) where

a ≤⊗
R b ≡ ∃c ∈ S : b = c ⊗ a.

The generalized dispute digraph is then defined as the relation

DS = (TS ∪ DS)tc,

where tc denotes the transitive closure.
Note that if (a, b ⊗ a) ∈ TS , then if S is increasing we have a <⊕

L b ⊗ a. If
(a, c⊗b) ∈ DS , then a ≤⊕

L b, and if S is increasing then b <⊕
L c⊗b, so a <⊕

L c⊗b.
Thus we have proved the following.

Lemma 1. If S is increasing, then DS ⊆ <⊕
L .

A DS sequence σ is any non-empty sequence of values over S such that if
σ = a1, a2, . . . , ak, for 2 ≤ k, then for each 1 ≤ i < k we have (ai, ai+1) ∈ DS .

Lemma 2. For each k, i, and j, H [k](i, j) is a DS sequence.

Lemma 3. Suppose that A[k](i, j) 6= A[k+1](i, j), then | H [k+1](i, j) |= k + 1.

Theorem 1. If S is an increasing bisemigroup and only simple paths are al-
lowed, then there must exist a k such that A[k] = A[k+1]. Thus B = A[k] is a
solution to the equation B = I ⊕ (A ⊗ B).

As mentioned in Section 2, the SPP theory also used the concept of dispute
wheels while Sobrinho’s theory used the related concept of non-free cycles. We
now show how these concepts are related to generalized dispute digraphs.

Dispute wheels and non-free cycles can both be captured relationally [28].
Let

RS ≡ (≤⊗
R ◦ <⊕

L)tc.

Lemma 4. Suppose that a1 RS a2 RS a3. That is, there exists b1 and b2 such
that

a1 ≤⊗
R b1 ⊗ a1 <⊕

L a2 ≤⊗
R b2 ⊗ a2 <⊕

L a3.

Then either a1 ≤⊗
R a3 or (b1 ⊗ a1, b2 ⊗ a2) ∈ DS .

Corollary 1. If (a, a) ∈ RS, then (a, a) ∈ DS.

In particular, if S is an increasing bisemigroup, then we know that all cycles
are free and that dispute wheels cannot exist.

5 Open problems and discussion

We do not mean to suggest that the only possible application of increasing
bisemigroups is in network routing. Non-distributive semirings have been con-
sidered in other types of path optimization problems such as circuit layout [22,
23], and there may be problems in areas such as operations research to which
increasing bisemigroups could be applied. This suggests several open problems.

5.1 Problem 1: dropping selectivity

To what extent can the results of the previous section be extended to non-
selective bisemigroups?

The assumption that ≤⊕
L is a total order pervades the proof techniques we use.

However, there is good motivation for relaxing the totality condition and allowing
for a non-selective ⊕. This is important for the metarouting effort [13], since
many of the translations going from eastern to western quadrants of Figure 1
involve a min-set construction, which does not, in general, result in an additive
semigroup that is selective.

Min-set constructions are a type of reduction defined by Wongseelashote [29].
For any finite subset A ⊆ S, let min≤(A) ≡ {x ∈ A | ∀y ∈ A : ¬(y < x)}, be the
minimal subset of A. Here y < x means y ≤ x ∧ ¬(x ≤ y) and so the operation
is well defined even for pre-orders. The set of all minimal sets is denoted as
min≤(S) ≡ {A ⊆ S | A is finite and min≤(A) = A}. If A, B ∈ min ≤(S),
then define A ⊕ B ≡ min ≤(A ∪ B). Thus we can construct a commutative and
idempotent semigroup (min≤(S), ⊕) from a pre-ordered set (S, ≤).

If a 6= b and both are in a minimal set A = min ≤(A), then either they
are equivalent a ∼ b (a ≤ b and b ≤ a), or they are incomparable a♯b (¬(a ≤
b) and ¬(b ≤ a)). We believe that min-set semigroups closely model the way
Internet routing protocols compute equal cost multi-paths and they way they
can partition routes into distinct service classes. Equal cost multi-paths arise
when the weights of at least two distinct paths are equivalent, w(p) ∼ w(q).
Load balancing can then be implemented by forwarding traffic along both paths
p and q (today this is usually accomplished with a function that selects paths
by hashing on information such as IP addresses and port numbers). In the case
that w(p)♯w(q), then we can interpret this as meaning that the data traffic
itself must contain information that can be used to select path p or path q. As
a simple example, suppose that weights w(p) somehow contain a destination
address and that w(p)♯w(q) arises only when these addresses differ. In this case
the destination address carried in a data packet is used to select a path. For
another example, suppose that weights w(p) contain a type of service and that
w(p)♯w(q) means the associated paths support different types of service. In this
case the data traffic would be expected to contain a type-of-service field used to
select an appropriate path.

5.2 Problem 2: complexity bounds

What is the computational complexity (number of steps required) of the iterative
algorithm for increasing bisemigroups? We suspect that the worst case complex-
ity will involve an exponential in the number of nodes in the graph. However,
this may not be the case for all (non-distributive) increasing bisemigroups.

As mentioned, previous complexity analysis of BGP has invariably involved
distributed (asynchronous) algorithms. Yet an asynchronous version of our it-
erative algorithm can have exponential worst-case complexity even in the case
of shortest-paths routing due to the non-deterministic interleaving of routing

messages (see for example [30]). Here we are asking instead for the inherent
complexity associated with an increasing bisemigroups, in terms of the complex-
ity of our iterative algorithm alone.

Acknowledgments

This paper benefited greatly from discussions with Gordon Wilfong and João
Lúıs Sobrinho. We also thank John Billings, Martin Hyland, Philip Taylor, and
Barney Stratford for their helpful comments. A. Gurney is supported by a Doc-
toral Training Account from the Engineering and Physical Sciences Research
Council (EPSRC). T. Griffin is grateful for support under the the Cisco Collab-
orative Research Initiative.

References

1. Gondran, M., Minoux, M.: Graphes, diöıdes et semi-anneaux: Nouveaux modéles
et algorithmes. Tec & Doc (2001)

2. Gondran, M., Minoux, M.: Graphs and Algorithms. Wiley (1984)
3. Carré, B.: Graphs and Networks. Oxford University Press (1979)
4. Backhouse, R., Carr, B.: Regular algebra applied to path-finding problems. J.

Inst. Math. Appl. 15 (1975) 161–18
5. Rekhter, Y., Li, T.: A Border Gateway Protocol. RFC 1771 (BGP version 4)

(March 1995)
6. Stewart, J.W.: BGP4: Inter-Domain Routing in the Internet. Addison-Wesley

(1999)
7. Halabi, S., McPherson, D.: Internet Routing Architectures. Second edn. Cisco

Press (2001)
8. Huston, G.: Interconnection, peering and settlements: Parts I and II. Internet

Protocol Journal 2(1 and 2) (March, June 1999)
9. K.Varadhan, R.Govindan, Estrin., D.: Persistent route oscillations in inter-domain

routing. Computer Networks 32 (2000) 1–16 based on a 1996 technical report.
10. Systems, C.: Endless BGP convergence problem in Cisco IOS software re-

leases. Field Note, October 10 2001, http://www.cisco.com/warp/public/770/
fn12942.html

11. Griffin, T.G., Huston, G.: RFC 4264: BGP Wedgies (November 2005) IETF.
12. Sobrinho, J.L.: An algebraic theory of dynamic network routing. IEEE/ACM

Transactions on Networking 13(5) (October 2005) 1160–1173
13. Griffin, T.G., Sobrinho, J.L.: Metarouting. In: Proc. ACM SIGCOMM. (August

2005)
14. Griffin, T.G., Gao, L., Rexford, J.: Inherently safe backup routing with BGP. In:

Proc. IEEE INFOCOM. (April 2001)
15. Gurney, A., Griffin, T.G.: Lexicographic products in metarouting. In: Proc. Inter.

Conf. on Network Protocols. (October 2007)
16. Griffin, T.G., Shepherd, F.B., Wilfong, G.: Policy disputes in path-vector protocols.

In: Proc. Inter. Conf. on Network Protocols. (November 1999)
17. Griffin, T.G., Shepherd, F.B., Wilfong, G.: The stable paths problem and in-

terdomain routing. IEEE/ACM Transactions on Networking 10(2) (April 2002)
232–243

18. Griffin, T.G., Wilfong, G.: On the correctness of IBGP configuration. In: Proc.
ACM SIGCOMM. (September 2002)

19. Griffin, T.G., Wilfong, G.: An analysis of the MED oscillation problem in BGP.
In: Proc. Inter. Conf. on Network Protocols. (2002)

20. Sobrinho, J.L.: Network routing with path vector protocols: Theory and applica-
tions. In: Proc. ACM SIGCOMM. (September 2003)

21. Sobrinho, J.L.: Algebra and algorithms for QoS path computation and hop-by-hop.
IEEE/ACM Transactions on Networking 10(4) (August 2002) 541–550

22. Lengauer, T., Theune, D.: Unstructured path problems and the making of semir-
ings. Lecture Notes in Computer Science 519 (1991) 189–200

23. Lengauer, T., Theune, D.: Efficient algorithms for path problems with general cost
criteria. Lecture Notes in Computer Science 510 (1991) 314–326

24. Fuchs, L.: Partially Ordered Algebraic Systems. Addison-Wesley (1963)
25. Birkhoff, G.: Lattice Theory, 3rd edition. Amer. Math. Soc. (1967)
26. Johnson, R.E.: Free products of ordered semigroups. Proceedings of the American

Mathematical Society 19(3) (1968) 697–700
27. Griffin, T., Wilfong, G.: A safe path vector protocol. In: Proc. IEEE INFOCOM.

(March 2000)

28. Chau, C., Gibbens, R., G.Griffin, T.: Towards a unified theory of policy-based
routing. In: Proc. IEEE INFOCOM. (April 2006)

29. Wongseelashote, A.: Semirings and path spaces. Discrete Mathematics 26(1)
(1979) 55–78

30. Karloff, H.: On the convergence time of a path-vector protocol. In: ACM-SIAM
Symposium on Discrete Algorithms (SODA). (2004)

A Proofs

Lemma 3 The proof is by induction on k. The base case is clear. Suppose every
entry of H [k] is a DS sequence. The analysis of H [k+1](i, j) is in three cases.
Case 1 : A[k](i, j) = A[k+1](i, j). Then H [k+1](i, j) = H [k](i, j) and the claim
holds.
Case 2 : A[k+1](i, j) <⊕

L A[k](i, j), so we have

w(i, sk
(i,j)) ⊗ A[k](sk

(i,j), j) <⊕
L w(i, sk−1

(i,j)) ⊗ A[k−1](sk−1
(i,j), j)

≤⊕
L w(i, sk

(i,j)) ⊗ A[k−1](sk
(i,j), j).

In this case H [k+1](i, j) = H [k](sk
(i,j), j), A[k+1](i, j). There are three sub-cases

to consider.
Case 2.1 : A[k−1](sk

(i,j), j) = A[k](sk
(i,j), j). This is not possible.

Case 2.2 : A[k](sk
(i,j), j) <⊕

L A[k−1](sk
(i,j), j). Then (A[k](sk

(i,j), j), w(i, sk
(i,j)) ⊗

A[k](sk
(i,j), j)) is in TS , and since H [k](sk

(i,j), j) ends in A[k](sk
(i,j), j), it follows

that H [k+1](i, j) is a DS sequence.
Case 2.3 : A[k−1](sk

(i,j), j) <⊕
L A[k](sk

(i,j), j). Then (A[k−1](sk
(i,j), j), A[k+1](i, j))

is in DS, and since H [k](sk
(i,j), j) ends in the value A[k−1](sk

(i,j), j), it follows

that H [k+1](i, j) is a DS sequence.

Case 3 : A[k](i, j) <⊕
L A[k+1](i, j), so we have

w(i, sk−1
(i,j)) ⊗ A[k−1](sk−1

(i,j), j) <⊕
L w(i, sk

(i,j)) ⊗ A[k](sk
(i,j), j)

≤⊕
L w(i, sk−1

(i,j)) ⊗ A[k](sk−1
(i,j), j).

In this case H [k+1](i, j) = H [k](sk−1
(i,j), j), A[k](i, j). There are three sub-cases

to consider.
Case 3.1 : A[k−1](sk−1

(i,j), j) = A[k](sk−1
(i,j), j). This is not possible.

Case 3.2 : A[k](sk−1
(i,j), j) <⊕

L A[k−1](sk−1
(i,j), j). Then

(A[k](sk−1
(i,j), j), w(i, sk−1

(i,j)) ⊗ A[k−1](sk−1
(i,j), j)) ∈ DS,

and since H [k](sk−1
(i,j), j) ends in A[k](sk−1

(i,j), j), H [k+1](i, j) is a DS sequence.

Case 3.3 : A[k−1](sk−1
(i,j), j) <⊕

L A[k](sk−1
(i,j), j). Then H [k](sk−1

(i,j), j) ends in the

value A[k−1](sk−1
(i,j), j), and

(A[k−1](sk−1
(i,j), j), w(i, sk−1

(i,j)) ⊗ A[k−1](sk−1
(i,j), j)) ∈ TS ,

so H [k+1](i, j) is a DS sequence.
Lemma 3 The proof is by induction on k. For k = 0, suppose A[0](i, j) 6=
A[1](i, j). Since A[1](i, j) = w(i, s0

(i,j))⊗A[0](s0
(i,j), j) = w(i, s0

(i,j))⊗I(s0
(i,j), j) it

must be that s0
(i,j) = j and A[1](i, j) = w(i, j). Therefore H [1](i, j) = 1, w(i, j),

and | H [1](i, j) |= k + 1.
Next, suppose that A[k](i, j) 6= A[k+1](i, j). There are two cases to consider.

Case 1 : A[k+1](i, j) <⊕
L A[k](i, j). In this case

H [k+1](i, j) = H [k](sk
(i,j), j), A[k+1](i, j).

As in the proof of Lemma 3, it must be that A[k−1](sk
(i,j), j) 6= A[k](sk

(i,j), j).

By induction, | H [k](sk
(i,j) |= k, so | H [k+1](i, j) |= k + 1.

Case 2 : A[k](i, j) <⊕
L A[k+1](i, j), so we have

H [k+1](i, j) = H [k](sk−1
(i,j), j), A[k](i, j).

As in the proof of Lemma 3, it must be that A[k−1](sk−1
(i,j), j) 6= A[k](sk−1

(i,j), j).

By induction, | H [k](sk−1
(i,j), j) |= k, so | H [k+1](i, j) |= k + 1.

Theorem 1 Suppose that k does not exist. Since only simple paths are allowed,
the set of values w(p) for all paths p is finite. Since histories must grow without
bound there must at some point be an a such that (a, a) ∈ DS , which contradicts
Lemma 1.

