
A Formulae-as-Types Notion of Control

Timothy G. Griffin∗

Department of Computer Science

Rice University

Houston, TX 77251-1892

Abstract

The programming language Scheme contains the con-
trol construct call/cc that allows access to the cur-
rent continuation (the current control context). This,
in effect, provides Scheme with first-class labels and
jumps. We show that the well-known formulae-as-
types correspondence, which relates a constructive
proof of a formula α to a program of type α, can
be extended to a typed Idealized Scheme. What is
surprising about this correspondence is that it relates
classical proofs to typed programs. The existence of
computationally interesting “classical programs” —
programs of type α, where α holds classically, but
not constructively — is illustrated by the definition
of conjunctive, disjunctive, and existential types us-
ing standard classical definitions. We also prove that
all evaluations of typed terms in Idealized Scheme are
finite.

1 Introduction

The formulae-as-types correspondence [10, 18, 8], also
referred to as the propositions-as-types correspon-
dence and as the Curry/Howard isomorphism, relates
a constructive proof of a formula α to a program of
type α. This correspondence has been restricted to
constructive logic because it is widely believed that,

∗This work was supported in part by DARPA grant CCR-

87-20277. The author’s current address: Departamento de

Ciência da Computação, IMECC – UNICAMP, Caixa Postal

6065, 13801 Campinas SP, Brazil. email: griffin@bruc.ansp.br

0

in general, classical proofs lack computational con-
tent. This paper shows, however, that the formulae-
as-types correspondence can be extended to classi-
cal logic in a computationally interesting way. It is
shown that classical proofs posses computational con-
tent when the notion of computation is extended to
include explicit access to the current control context.

This notion of computation is found in the pro-
gramming language Scheme [16], which contains the
control construct call/cc1 that provides access to
the current continuation (the current control con-
text). This, in effect, provides Scheme with first-
class labels and jumps, and allows for programs that
are more efficient than purely functional programs.
The formulae-as-types correspondence presented in
this paper is based on a typed version of Idealized
Scheme — a typed ISWIM containing an operator
C similar to call/cc — developed by Felleisen et al
[3, 2, 4] for reasoning about Scheme programs.

Section 2 reviews ISWIM and its extension to Ide-
alized Scheme (IS) with the control operator C of
Felleisen et al. Roughly speaking, the evaluation of
C(M) abandons the current control context and ap-
plies M to a procedural abstraction of this context.

A typed version of Idealized Scheme is presented
in Section 3 together with a formulae-as-types corre-
spondence between typed terms and natural deduc-
tion proofs for classical implicational logic. Types
include the type ⊥, which corresponds to the propo-
sition “false.” The type α → ⊥ is abbreviated as ¬α
(“not α”). An application of C is typed as follows.
If M is of type ¬¬α, then C(M) is of type α. This
rule corresponds to the classical inferrrence rule for
elimination of double negation.

Section 4 demonstrates that there are computation-
ally interesting typed IS programs of type α, where α
holds classically, but not constructively. It is shown
that if conjunctive, disjunctive, and existential types
are defined using standard classical definitions, then

1call/cc abbreviates call-with-current-continuation.

Page 1

the operations of pairing, projection, injection, and
analysis by cases can be defined using C.

There are many equivalent ways of defining classi-
cal logic. For example, in place of double negation
elimination, classical logic is often defined by adding
the law of the excluded middle, α ∨ ¬α, to construc-
tive logic. Section 5 shows that the law of the ex-
cluded middle can be given an operational interpre-
tation that is computationally equivalent to that of
C.

In Section 6 it is shown that the well-known cps
(continuation passing style) transform corresponds to
an embedding of classical into constructive logic. Sec-
tion 7 uses a modified cps transform to prove that all
evaluations of well-typed IS programs are finite.

2 From ISWIM to Idealized
Scheme

This section reviews the definition of Landin’s ISWIM
and its extension to Idealised Scheme (IS). Two ver-
sions of ISWIM are presented: a call-by-value version,
denoted as ISWIMv , and a call-by-name version, de-
noted as ISWIMn. These ISWIMs give rise to call-by-
value and call-by-name versions of Idealized Scheme,
denoted as ISv and ISn, respectively.

2.1 Call-by-value

Landin’s ISWIM [11, 12] is a call-by-value language
whose core syntax is made up of expressions of the
λ-calculus,

N ::= x | NN | λx.N

where x ranges over an infinite set of variables.
The operational semantics of ISWIM was defined by
Landin in terms of the SECD-machine. Plotkin [14]
showed that this definition is equivalent2 to the (par-
tial) function evalv:

1. evalv(V) = V ,

2. evalv(MN) = evalv(Q[V/x]) if evalv(M) = λx.Q
and evalv(N) = V .

Each V represents a value, where values are defined
to be variables or λ-abstractions. Throughout this
paper the metavariables V , V1, V2, . . . will range
over values. The notation M [N/x] denotes the usual
capture-avoiding substitution of N for all free occur-
rences of x in M . We will use the notation ISWIMv

for this call-by-value ISWIM to distinguish it from
call-by-name version ISWIMn defined below.

2This paper ignores constants and their evaluation.

An expression of the form (λx.M)V is called a βv-
redex. The function evalv produces a result that
is equivalent to repeatedly reducing the leftmost-
outermost βv-redex not inside the scope of a λ-
abstraction. Felleisen et al [3, 4] have formalized
this evaluation order in terms of evaluation contexts.
ISWIM evaluation contexts E are defined inductively
as

E ::= [] | EN | V E,

where [] represents a “hole.” If E is an evalua-
tion context, then E[M] denotes the term that results
from placing M in the hole of E. It is not difficult to
show that any closed term M is either a value or can
be written in a unique way as M = E[R], where R is a
βv-redex. Moreover, R is the leftmost-outermost βv-
redex of M that is not inside of a λ-abstraction. The
notation M ∝ E[R] means that E[R] is this unique
representation of M . For example, if E0 = (λx, M)[]
and E1 = [], then

(λx, M)V = E0[V] ∝ E1[(λx.M)V].

The unique representation of any non-value in terms
of an evaluation context and a βv-redex gives rise to
the context rewrite rule

E[(λx.M)V] 7→βv
E[M [V/x]], (7→βv

)

which expresses Plotkin’s left reduction
→
v in terms of

evaluation contexts. The reflexive, transitive closure
7→∗

βv
can be taken as an abstract operational seman-

tics for ISWIMv since it is equivalent to evalv .

Theorem 1 [Theorem 4 in Plotkin??] evalv(M) =
V iff M 7→∗

βv
V .

An ISWIMv term M evaluates to V if and only if
M 7→∗

βv
V .

The notation of evaluation contexts gives a clear
picture of the manner in which subterms are evalu-
ated during the evaluation of a term. (The notation
7→k

βv
denotes a k-fold application of the 7→βv

rule.)

Lemma 2 1. If E[M] 7→k
βv

E[N], then M 7→k
βv

N .

2. If E[M] 7→∗
βv

V , then there is a value V0 such
that E[M] 7→∗ E[V0] 7→

∗
βv

V .

Thus, at any point i in an evaluation sequence

M0 7→βv
M1 7→βv

· · · 7→βv
Mi 7→βv

· · ·

if Mi = E[N], for a non-value N , then E must “wait”
for N to evaluate to a value before the evaluation
sequence can continue with computations involving
subterms of E. That is, E represents the rest of

Page 2

the computation that remains to be done after N is
evaluated. The context E is called the continuation
(or control context) of N at this point in the evalu-
ation sequence. The notation of evaluation contexts
allows, as we shall see below, a concise specification
of the operational semantics of operators that ma-
nipulate continuations (indeed, this was its intended
use [3, 2, 4, 1]).

The programming language Scheme [16] contains
call/cc, a control construct that provides programs
with direct access to a procedural abstraction repre-
senting the current continuation (the current control
context). Felleisen et al [3, 2, 4, 1] have presented
an extension to ISWIM called Idealized Scheme3, or
IS, which incorporates two constructs that manipu-
late control contexts. IS expressions are defined by
extending the grammar of ISWIM as follows:

N ::= · · · A(N) | C(N).

The operators A and C are called, respectively, abort
and and control. In IS, any closed term M is either
a value, or can be written in a unique way as M =
E[R], where R is either a βv-redex, R = A(N), or
R = C(N).

Informally, the evaluation of A(M) throws away
the current control context and continues with the
evaluation of M . This is expressed with a context
rewrite rule, where the definition of evaluation con-
texts has been extended to IS expressions in the ob-
vious way, as

E[A(M)] 7→A M (7→A)

The operational semantics of C(M) can be de-
scribed informally as follows. As with A, the evala-
tion of E[C(M)] abondons the control context E. The
term M is then applied to a procedural abstraction
of the abandoned control context. If this procedure is
invoked with a value V in any context E1, then E1 is
abandoned and evaluation resumes with E[V]. This
is expressed with the rule,

E[C(M)] 7→C Mλz.A(E[z]). (7→C)

The operator A can be defined in terms of C as

A(M)
def
= C(λd.M),

where d is a dummy variable not free in M , since

E[A(M)] = E[C(λd.M)]
7→C (λd.M)λz.A(E[z])
7→βv

M

3This paper treats only the assignment-free sublanguage of

Idealized Scheme.

Therefore, A(M) will be treated as a defined con-
struct, and the rules 7→βv

and 7→C will be treated as
defining the operational semantics of IS. The notation
7→u denotes the union of the two evaluation rules.

The operational semantics of C differs from that of
call/cc in that C need not return to the location of
its use. If a version of call/cc were to be added to
IS, say K, then it would have the evaluation rule

E[K(M)] 7→K E[Mλz.A(E[z])]. (7→K)

However, this addition is not necessary since an oper-
ator computationally equivalent to K can be defined
as

Kd(M)
def
= C(λk.k(Mk)). (Kd)

One use of Kd is in the implemention of a
“catch/throw” mechanism similar to that of Common
Lisp [17]. Think of the evaluation of E0[Kd(λj.M)]
as a “catch” that labels the current context with
the name j. If j is never invoked, or “thrown to”
during the evaluation of M , then this expression re-
turns “normally.” If, on the other hand, an appli-
cation of j, such as E1[jV], is encountered during
the evaluation of M , then the value V is “thrown
back to” the location labeled by j. That is, the con-
text E1 is abandoned and evaluation resumes with
E0[V]. The following illustrates how this is accom-
plished with the evaluation rules of Idealized Scheme.
If Q = λz.A(E0[z]), then

E0[Kd(λj.M)] 7→C (λk.k((λj.M)k))Q
7→βv

Q((λj.M)Q)
7→βv

Q(M [Q/j])

If M [Q/j] 7→∗
βv

V , then the evaluation returns “nor-
mally” with

7→∗
βv

QV

7→β A(E0[V])
7→A E0[V]
· · · · · ·

If, on the other hand, a value is eventually thrown,
then

Q(M [Q/j]) 7→∗
βv

E1[QV]

7→βv
E1[A(E0[V])]

7→A E0[V]
· · · · · ·

showing that the context E1 is abandoned and that
evaluation continues with V in the restored context
E0.

Page 3

It should be noted that the operational semantics
of ISWIMv would be unaltered if cbv evaluation con-
texts were redefined as

E ::= [] | NE | EV

so that the argument of a funtion application is eval-
uated before the function part. However with the
addition of C this is no longer the case. If the evalua-
tion of M jumps to context E1 and the evaluation of
N jumps to E2, then the result of MN will depend
on which term is evaluated first.

2.2 Call-by-name

The definition of call-by-name ISWIM, ISWIMn, dif-
fers from call-by value only in the definition of eval-
uation contexts and the β rule. Call-by-name (cbn)
evaluation contexts are defined as

E ::= [] | EN

while the call-by-name β rule is define as

E[(λx.M)N] 7→βv
E[M [N/x]], (7→βv

)

where E is a call-by-name evaluation context.
Plotkin [14] defined the operational semantics of
ISWIMn with the function evaln:

1. evaln(V) = V ,

2. evalv(MN) = evaln(Q[N/x]) if evaln(M) =
λx.Q.

As in the call-by-name case, we have an agreement
between this operational semantics and the context
rewrite rule.

Lemma 3 evaln(M) = V iff M 7→∗
βv

V .

A call-by-name Idealized Scheme, ISn, is obtained
by extending ISWIMn with the control operator and
the evaluation rule

E[C(M)] 7→C Mλz.A(E[z]), (7→C)

where E is now a call-by-name evaluation context.

3 Formulae-as-types for IS

This section develops a typed version of Idealized
Scheme (ISt) together with a formulae-as-types cor-
respondence between ISt expressions and a system
of natural deduction for classical implicational logic.
The evaluation of typed terms requires a minor mod-
ification to the operational semantics of IS.

Define type expressions α as

α ::= t | α → α′,

where t is a member of a set of atomic types. Type
expressions will also be read as propositions (formu-
lae), with α → β representing “α implies β.”

The syntax of ISWIM is modified so that variables
are tagged with a type expression: xα and λxα.M .
Typed ISWIM, written as ISWIMt, is defined in the
same way as the simply-typed λ-calculus. A variable
xα has type α; if M has type α → β and N has
type α, then MN has type β; if M has type β, then
λxα.M has type α → β. The notation Mα means
that M has type α.

First, the Curry-Howard isomorphism between
ISWIMt terms and natural deduction proofs for min-
imal logic (M) is presented. The reader is referred
to Prawitz [15], Stenlund [18], and Girard [8], for a
complete treatment. Second, the correspondence is
extended to ISt with a logically consistent typing for
C.

Natural deduction derivations (proofs) Σ are tree-
structured objects whose leaves contain formulae rep-
resenting assumptions and whose nodes represent the
application of inference rules. A derivation Σ with
conclusion α is written as

Σ
α

The system M of natuarl deduction derivations is
generated from assumptions α, the inference rule for
→-elimination (→ E, or modus ponens)

Σ1 Σ2

α → β α

β

and the inference rule for →-introduction (→ I)

[α]
Σ
β

α → β

The notation
α
Σ
β

means that there are zero or more undischarged oc-
currences of the assumption α in the derivation Σ,
while the notation

[α]
Σ
β

Page 4

means that some of these assumptions have been dis-
charged (made unavailable).

For each derivation Σ there is a corresonding
ISWIMt term M of type α, which is defined by in-
duction on the structure of Σ. Assume that the as-
sumptions of Σ are divided into a disjoint collection
of sets, each associated with a unique variable. An
assumption α corresponds to the variable xα, where
x is the variable associated with the set for α. If

Σ1

α → β

corresponds to the term Mα→β and

Σ2

α

corresponds to the term Nα, then

Σ1 Σ2

α → β α

β

corresponds to (MN)β . If

α
Σ
β

corresponds to Mβ , then

[α]
Σ
β

α → β

corresponds to (λxα.M)α→β , provided that the set of
discharged assumptions is the set associated with the
variable x.

We will now extend the correspondence between
typed terms and proofs to IS by finding a logically
consistent typing for C. Let us start by looking at
the 7→C rule

E[C(M)] 7→C Mλz.A(E[z]). (7→C)

Let α and β be arbitrary types. Suppose that E
is of type β and that the hole in E is expecting a
term of type α. It seems reasonable to give the term
λz.A(E[z]) the type α → β since for any value V of
type α,

(λz.A(E[z]))V 7→+
u E[V],

which is of type β. Therefore, since both sides of the
7→C rule are of type β, M must have type (α → β) →

β. We then arrive at the following typing rule for
C(M): if M has type (α → β) → β, then C(M) has
type α.

It follows from this derivation that if N is a closed
term of type β, then A(N) = C(λd.N) can be given
any type α. Therefore, if we want a type system that
is logically consistent when types are read as proposi-
tions, β must be a proposition that has no proof (oth-
erwise every proposition is provable). Assume that
the set of atomic types contains the type ⊥, which
represents an empty type, or the proposition “false.”
Define ¬α (read “not α”) as

¬α
def
= α → ⊥, (¬α).

We then arrive at a logically consistent typing for
C(M): if M has type ¬¬α, then C(M) has type
α. This will be the typing used for typed Idealized
Scheme, which is written as ISt. Such an instance
of C(M) will often be written as Cα(M) in order to
make explicit the type of the term.

From a logical perspective, Cα(M) correponds to
the classical proof rule for double negation elimina-
tion (⊥c)

Σ
¬¬α
α

if M¬¬α corresponds to the derivation Σ. The system
C is defined to be M extended with the ⊥c rule.

Note that A(M) now corresponds to the construc-
tive rule for ⊥-elimination (⊥e)

Σ
⊥
α

which can be derived in C. The notation Aα(M) in-
dicates that this term has type α. The constructive
system J is defined to be M extended with the ⊥e

rule.

There is one problem with this typing of IS. The
7→C rule applies only when the entire expression
E[C(M)] is of type ⊥, and since there are no closed
terms of this type, the rule is useless! To rectify this
problem, a minor modification is made to the oper-
ational semantics of IS. The basic idea is as follows.
Instead of evaluating an expression Mα with the 7→u

rules, the expression C(λk¬α.kM) is evaluated with
the rules of 7→u being applied only inside of the ex-
pression C(λk. · · ·). The rules now make “type sense”
since the body of the λ-expression is of type ⊥.

Formally, define the operational semantics 7→t as

Page 5

the union of the following rules.

C(λk.E[(λx.M)V]) 7→tβv
C(λk.E[M [V/x]])

C(λk.E[C(M)]) 7→tC C(λk.Mλz.A(E[z]))

C(λk.kV) 7→Ce
V

The last rule is subject to the proviso that k is not
free in V . This rule merely allows for the removal
of the outermost C at the end of some computations.
An expression is in 7→t normal form if none of these
rules apply.

Definition 1 (evaluation of typed terms) A
closed ISt expression Mα evaluates to Q if

Cα(λk¬α.kM) 7→∗
t Q

and Q is in 7→t normal form.

That 7→t is only a minor modification to the 7→u

semantics is stated in the following lemma.

Lemma 4 If C(λk.kM) 7→∗
u V , then C(λk.kM) 7→∗

t

Q, where Q is either V , Cλk.kV ′, or Cλk.V ′, and
V = V ′[λx.A(x)/k].

In other words, the only type violation of the system
7→u is the replacement of the top-level continuation k
with λx.A(x).

The types of “classical programs” cannot be given
the same operational interpretation as the types of
“constructive programs.” A program M correspond-
ing to a constructive proof of α → β takes inputs
of type α to outputs of type β. This is no longer
the case with classical programs since the evaluation
of an expression need not return to the point of its
evaluation but may “jump” to some other evalua-
tion context. In the type system presented here, the
distinction between a “returning expression” and a
“jumping expression” cannot be made by inspecting
an expression’s type. Thus, if M is a classical pro-
gram of type α → β and N is a classical program of
type α, we know only that if the application of M to
N returns to the current control context, then it will
return with a (classical) value of type β. Note that
the evaluation of either M , N , or the application of
M to N could result in a jump.

4 Conjunctive, disjunctive,

and existential types

This section demonstrates that there are computa-
tionally interesting ISt terms of type α, where α holds
in classical, but not constructive, logic. It is shown

that if conjunctive and disjunctive types are defined
using standard classical definitions, then the opera-
tions of pairing, projection, injection, and analysis
by cases can be defined using C. The section con-
cludes by pointing out that if ISt types are extended
with universal types ∀xt.α(x), then existential types
∃xt.α(x) can be defined in ISt.

4.1 Definitions in call-by-name

That the connectives for conjunction and disjunc-
tion cannot be defined in constructive (implicational)
logic4 is related, via the Curry/Howard correpon-
dence, to the fact that pairing, projection, injection,
and analysis by cases are not definable in the sim-
ply typed λ-calculus. It is well known, however, that
the connectives for conjunction and disjunction can
be defined classically in terms of negation and impli-
cation as

α ∧ β
def
= ¬(α → ¬β),

α ∨ β
def
= ¬α → β.

The remainder of the section proceeds as follows.
The introduction and elimination rules for ∧ and ∨
are derived in the classical system C and the com-
putational properties of the ISt terms corresponding
to these derived rules are investigated. It is shown
that these terms can be used for pairing, projection,
injection, and analysis by cases.

The ∧-introduction rule

Σ1 Σ2

α β

α ∧ β

(∧I)

can be derived in C as

Σ1

[α → ¬β] α

¬β

Σ2

β

⊥

¬(α → ¬β)

If Mα and Nβ are ISt terms corresponding to the
derivations Σ1 and Σ2, then the ISt term

〈M, N〉
def
= λfα→¬β .fMN

of type α ∧ β corresponds to the derived ∧-
introduction rule.

The two rules for ∧-elimiantion

Σ
α1 ∧ α2

αi

(∧Ei),

4For a proof of this see Prawitz?? page 59.

Page 6

can be derived in C as

[αi] [¬αi]

⊥
Σ ¬α2

¬(α1 → ¬α2) α1 → ¬α2

⊥
¬¬αi

αi

If the term M of type α∧β corresponds to the deriva-
tion to Σ, then the ISt term

πi(M)
def
= C(λj¬αi .Mλxα1

1 .λxα2

2 .jxi)

of type αi corresponds to the derived rule for ∧-
elimination.

The derivations of the computational properties of
these terms are carried out with the 7→u rules, with
the understanding that typed terms are to be evalu-
ated using the 7→t rules. This is done only to avoid
the notational clutter of wrapping around each term
the expression C(λk. · · ·).

Computationally, the terms 〈M, N〉 and πi repre-
sent operations of pairing and projection. That is, we
can derive the reduction rule

E[π1(〈M1, M2〉)] 7→πi
E[Mi], (7→πi

)

as follows. Let Q = λz.A(E[z]), then

E[π1(〈M1, M2〉)] 7→C 〈M1, M2〉(λx1.λx2.Qxi)
7→βn

(λx1.λx2.Qxi)M1M2

7→+
βn

QMi

7→βn
A(E[Mi])

7→A E[Mi].

The projection is thus computed at the top-level and
the result is thrown back to the original context.

Turning to disjunction, the introduction rule

Σ
α1

α1 ∨ α2

(∨I1),

can be derived in C in such a way that if Mα corre-
sponds to the derivation Σ, then

inj1(M)
def
= λk¬α1 .Aα2(kM)

is a ISt term of type α1 ∨ α2 corresponding to the
derived rule for ∨I1. The introduction rule

Σ
α2

α1 ∨ α2

(∨I2),

can be derived in C in such a way that if the term M
of type α2 corresponds to the derivation Σ, then

inj2(M)
def
= λk¬α1 .M

is of type α1 ∨ α2 corresponding to the derived ∨I2

rule. Finally, the ∨-elimination rule

Σ
α1 ∨ α2

[α1]
Σ1

δ

[α2]
Σ2

δ

δ

(∨E).

can be derived in C in such a way that the term

case(M, F1, F2)
def
= C(λj¬δ.j(F2(Mλa.j(F1a))))

of type δ corresponds to the derived rule when Fi =
λxαi

i .Mi correspond to the derivations

[αi]
Σi

δ

αi → δ

for i ∈ {1, 2}.
Computationally, the terms

inji(M) and case(M, F1, F2) represent operations of
injection and case analysis, since it is easy to derive
for ISn the rules

E[case(inji(N), F1, F2)] 7→casei
E[FiN]. (7→casei

)

A more symetric definition of the terms of injection
and case analysis can be obtained with a redefinition
of disjunction as

α ∨ β
def
= ¬α → ¬¬β.

Injections can now be defined as

inji(M
αi)

def
= λf¬α1

1 .λf¬α2

2 .fiM

of type α1 ∨ α2. Case analysis can abe defined as

case(M, F1, F2)
def
= C(λj¬δ.MG1G2),

where Gi = λx.j(Fix).

4.2 Definitions in call-by-value

As above, the call-by-name evaluation of the projec-
tion computes as

E[π1(〈M1, M2〉)] 7→+ (λx1.λx2.Qxi)M1M2.

Now, however, both M1 and M2 must evaluate to val-
ues V1 and V2, respectively, before the two β-redices

Page 7

can be contracted. If this occurs, then the reduction
can be continued as

7→+
u (λx1.λx2.Qxi)V1M2

7→βv
(λx2.Qxi[V1/x1])M2

7→+
u (λx2.Qxi[V1/x1])V2

7→β QVi

7→β A(E[Vi])
7→A E[Vi]

...
...

Thus, the evaluation of E[πi(〈M1, M2〉)] forces both
M1 and M2 to be evaluated to values V1 and V2 at
the top-level before Vi is thrown back to the context
E. Note, however, that in general the terms Mi need
not return. As a special case, if the evaluation starts
with a pair of values, then we have

E[πi(〈V1, V2〉)] 7→+
u E[Vi].

This should be campared to adding operators for
pairing and projection to ISWIMt together with the
evaluation rule

E[πi(〈M1, M2〉)] 7→πi
E[Mi]. (7→πi

)

If E[πi(〈M1, M2〉)] 7→πi
E[Mi], then Mi must evalu-

ate to a value Vi before the evaluation can continue
with subterms of E (by an extension of Lemma 2, Sec-
tion 2, with the appropriate definition of evaluation
contexts). The classical definition requires, however,
that both M1 and M2 are evaluated to values.

This computational behavior can be improved with
a modified defininition of conjunction. Suppose we
define conjunction as

α ∧ β
def
= ¬((T → α) → ¬(T → β)),

where T is any type for which there exists some cloded
value V of type T . Define pairing and projection as

〈M, N〉
def
= λf.f(λt.M)(λt.N),

πi(M)
def
= (C(λj.Mλx1.λx2.jxi))V.

It is then possible to derive the reduction

E[π1(〈M1, M2〉)] 7→πi
E[Mi], (7→πi

)

using the call-by-value rules.
In a similar way, the definitions disjunction given

above can be used in the call-by-value setting, but
the evaluation of E[case(M, F1, F2)] forces FiM to
be evaluated to at the top-level to a value V ′

i before
this value is thrown back to the context E.

This computational behavior can agian be modi-
fied starting with a redefinition of conjunction (the
symetric version) as

α ∨ β
def
= ¬(T → α → ¬¬(T → β).

inji(M
αi)

def
= λf¬α1

1 .λf¬α2

2 .fi(λt.M)

case(M, F1, F2)
def
= C(λj¬δ.MG1G2)V,

where Gi = λx.j(λt.Fi(xt)).

E[case(inj1(N1), F1, F2)] 7→+
u (λa.Q(F1a))N1,

and

E[case(inj2(N2), F1, F2)] 7→+
u Q(F2N2)

are easy to derive using the 7→u rules. Suppose that
Ni evaluates to Vi. If FiVi evaluate to a value V ′

i ,
then in both cases evaluation can be continued as

7→+
u QV ′

i

7→βv
A(E[V ′

i])
7→A E[V ′

i]
...

...

4.3 Existential types

Suppose that ISt types are extended with univer-
sal types, ∀x.α, where x ranges over integer terms.
In logical terms, this corresponds to extending the
propositional calculus to a first-order predicate cal-
culus. It is assumed that types (propositions) have
been extended to include predicates such as equality.
If M has type ∀x.α and n is an integer expression,
then Mn has type α[n/x]. If x is not free in any type
of a free variable of Mα, then λx.M has type ∀x.α.

Existential types can now be defined with the stan-
dard classical definition,

∃x.α
def
= ¬∀x.¬α(x).

Define the terms

P1
def
= λx.λwα(x).λf∀y.¬α(y).fxw

of type ∀x.(α(x) → ∃y.α(y)), and

P2
def
= λp∃x.α(x).λf∀x.(α(x)→β).C(λj¬β .p(λx.λw.j(fxw)))

of type ∃x.α(x) → (∀x.(α(x) → β)) → β. These
terms represent operators for computing with (weak)

Page 8

existential types (see, for example, [10]). For an in-
teger value n, V1 of type α[n/x], and V2 of type
∀x.(α(x) → β), the evaluation

E[P2(P1nV1)V2] 7→+
u Q(V2nV1)

can be derived with Q = λz.A(E[z]). If V2nV1 eval-
uates to a value V , then this value is thrown back to
the context E.

5 The excluded middle

There are many equivalent ways of defining classi-
cal logic. For example, in place of double negation
elimination, classical logic is often defined by adding
the law of the excluded middle, α ∨ ¬α, to construc-
tive logic. This section shows that the law of the
excluded middle can be given an operational inter-
pretation that is computationally equivalent to that
of C.

For any α, the law of the excluded middle can be
derived in C as

[α]
[¬(α ∨ ¬α)] α ∨ ¬α

⊥
¬α

[¬(α ∨ ¬α)] α ∨ ¬α

⊥

¬¬(α ∨ ¬α)

α ∨ ¬α

This derivation corresponds to the ISt term

cα def
= C(λj¬(α∨β).j(inj2(λaα.j(inj1(a)))))

of type α ∨ ¬α. It is then easy to derive, using the
7→u rules, an evaluation rule for c,

E[c] 7→c E[inj2(λa.Q(inj1(a)))],

where Q = λz.A(E[z]). (As in the previous section,
notational clutter is avoided by using the 7→u evalu-
ation rules.)

Alternatively, suppose that typed constants cα are
added to an extended ISWIM, which contains in-
jections and analysis by cases. Note that this cor-
responds to an alternative formalization of classical
logic in which the double negation elimination rule
can be derived as

α ∨ ¬α [α]

Σ
¬¬α [¬α]

⊥
α

α

This derivation corresponds to the derived version of
C,

Cα
c (M)

def
= case(cα, λaα.a, λk¬α.Aα(Mk)),

where M corresponds to Σ. Suppose that 7→c is taken
as a primitive evaluation rule and evaluation contexts
include contexts of the form case(E, M1, M2). Then
the evaluation rule for Cc can be derived as

E[Cc(M)] 7→Cc Mλz.Q′(inj1(z)), (7→Cc)

where Q′ = λz.A(E[case(z, λa.a, λk.A(Mk))]). Note
that 7→Cc is computationally equivalent to the 7→C

rule, since for any context E1,

E1[(λz.Q′(inj1(z)))V] 7→+ E[V].

Similar results can be obtained for other formaliza-
tions of classical logic. For example, suppose classical
logic is defined as J extended with Peirce’s law

Σ
(α → β) → α

α

This rule can be put into correspondence with a typed
version of K (see Section 2 for the definition of K) as
follows. If M is a term of type (α → β) → α, then
Kα

β (M) has type α. Now C can then be defined as

Cα(M)
def
= Kα

⊥
(λj¬α.Aα(Mj)),

which corresponds to the derivation of double nega-
tion elimination using ⊥e and Peirce’s law. The 7→C

rule can then be derived with the rules 7→βv
, 7→A, and

7→K.

6 The cps transform is a logi-
cal embedding

A common approach to providing a semantics for a
language that contains labels and jumps is via a trans-
lation to a language that explicitly represents contin-
uations as functions. Such a translation is often called
a continuation passing style transformation, or simply
a cps transformation.

6.1 Call-by-value cps

A cps transform M for untyped λ-expressions was
introduced by Fischer [7] and extended to expressions
containing C by Felleisen et al [3]. A slightly modified

Page 9

cps transform is defined here as

x = λk.kx,

λx.M = λk.k(λx.M),

MN = λk.M(λm.N(λn.mnk)),

C(M) = λk.M(λm.m(λz.λd.kz)λx.A(x)).

This definition differs from the one in [3] in the last
clause, where we use λx.A(x) rather than λx.x.

Although the cps transform is defined for untyped
expressions, it defines a transformation on typed ex-
pressions as well. Assume there is a distinguished
type o, and define the transformation α∗ on types as

t∗ = t,

(α → β)
∗

= α∗ → (β∗ → o) → o.

Theorem 5 [cps as a typed transform] If M is an ISt

expression of type α, then M has type (α∗ → o) → o.

This fact simply extends a result of Meyer and
Wand [13] from simply-typed terms to typed terms
containing C.

An embedding of classical implicational logic (C)
into constructive implicational logic (J) is defined to
be a translation of formulae α′ such that if there is
a classical proof of α, then there is a constructive
proof of α′, where α is classically equivalent to α′. It
is interesting to note that if we take A to be a basic
construct, then the cps transform corresponds to such
an embedding.

For S being J or C, let Γ `S α represent the as-
sertion that there exists an S-derivation for α, all of
whose undischarged assumptions are in the set of for-
mulae Γ. Let Γ∗ = {α∗ | α ∈ Γ}. Theorem 5 can now
be restated in terms of proofs.

Theorem 6 (cps as a proof transform) If Σ is a
proof of Γ `C α corresponding to M , then there exists
a proof Σ of Γ∗ `J (α∗ → o) → o that corresponds to
M .

If o = ⊥, then it is easy to check that for all α,

`C α ↔ ¬¬α∗,

and so the translation corresponds to an embedding5.

5The author has not been able to find this embedding men-

tioned in the literature of proof theory.

6.2 Call-by-name cps

A call-by-name version of cps was defined by
Plotkin ?? and is here extended to Idealized Scheme.

x = x,

λx.M = λk.k(λx.M),

MN = λk.M(λm.mNk),

C(M) = λk.M(λm.m(λz.z(λf.λd.fk))λx.x).

This translation also corresponds to a translation on
typed terms and, equivalently, as an embedding of
classical logic into minimal logic. Define the transla-
tion α+ on types (formulae) as follows.

t+ = t,

(α → β)+ = ((α+ → o) → o) → .(β+ → o) → o.

Theorems corresponding to Theorem 5 and ?? can
now be stated for the call-by-name cps transform.

Theorem 7 [cbn cps as a typed transform] If M

is an ISt expression of type α, then M has type
(α+ → o) → o.

Theorem 8 (cbn cps as a proof transform) If
Σ is a proof of Γ `C α corresponding to M , then

there exists a proof Σ of Γ+ `M (α+ → o) → o that
corresponds to M .

7 Evaluations are finite

In this section it is shown that all computations with
well-typed ISt terms are finite.

Theorem 9 (finite evaluation) The evaluation of
any well-typed ISt term Mα is finite.

The method of proof involves a translation of ISt

terms M to simply-typed λ-terms M ′ so that any
infinite evaluation sequence starting from M induces
an infinite β-reduction sequence starting from M ′.
Then, since there are no infinite β-reductions in the
simply-typed λ-calculus (see, for example, [9]) there
can be no infinite evaluations of ISt terms.

An obvious candidate for this translation is the cps
transform of the previous section. However, as men-
tioned in Plotkin [14], the cps transform M introduces
many “bookkeeping” redexes. These bookkeeping re-
dexes prevent the direct use of the cps transform as
the desired translation. To overcome this problem, a

modified cps transform M is defined that contracts

Page 10

many of the bookkeeping redexes, that is, M →∗
β M .

This modified cps transform will serve as the trans-
lation described above.

For the purposes of this proof the operator A will
be taken as primitive and the evaluation rules of ISt

will include the rule

C(λk.E[A(M)]) 7→tA C(λk.M). (7→tA)

Clearly, there is no loss of generality in this assump-
tion.

The following abbreviations are used throughout
this section.

A
def
= λx.A(x),

J(V)
def
= λz.λd.V z

(z, d not free in V),

M◦ def
= λk0.M [J(k0)/k].

Define Ψ(xα) = xα∗

, and Ψ(λxα.M) = λxα∗

.M .
Define

M
def
= λk.(M : k),

for k not free in M . Given a term M of type α, and
a value V of type α∗ → o, define the term M : V of
type o, by induction on M (it is assumed that types
are chosen appropriately and that new variables are
chosen to avoid capture):

1. V1 : V0 = V0Ψ(V1)

2. V1V2 : V0 = Ψ(V1)Ψ(V2)V0

3. V1N : V0 = N : λn.Ψ(V1)nV0

4. MV1 : V0 = M : λm.mΨ(V1)V0

5. MN : V0 = M : (λm.N : (λn.mnV0))

6. A(M) : V0 = M : A

7. C(M) : V0 = M : λm.mJ(V0)A

8. #C(λj.M) : V0 = (M : A)[J(V0)/j].

The special symbol # will be used to mark the top-
level of a term. This definition was based on Plotkin’s
definition of M : V in [14]. However, the M : V
defined here reduces more redexes and is extended to
the language of IS.

The relation →β denotes the usual notion of β re-
duction, while →+

β and →∗
β denote the transitive, and

transitive, reflexive closures, respectively, of →β .

Lemma 10 For all M , M →∗
β M .

Therefore, if M has type α, then M has type
(α∗ → o) → o. The following lemma states that ev-
ery 7→t evaluation step from a term M induces zero

or more →β steps on the term #M .

Lemma 11 1. If M0 7→tβv
M1, then #M0 →+

β

#M1.

2. If M0 7→tC M1, then #M0 →∗
β #M1.

3. If M0 7→tA M1, then #M0 = #M1.

The proof of this lemma will require the following
lemmas.

Lemma 12 For all M , values V0 and V1,

(M : V0)[Ψ(V1)/x] = M [V1/x] : V0[Ψ(V1)/x]

Proof. By induction on M . 2

Corollary 13 For all M , values V ,

M [Ψ(V)/x] = M [V/x]

Proof. M [Ψ(V)/x] = (λk.(M : k))[Ψ(V)/x]
= (λk.(M : k)[Ψ(V)/x])
= (λk.M [V/x] : k) (by lemma 12)

= M [V/x]. 2

Lemma 14 For all evaluation contexts E, non-
values M , and values V

E[M] : V = M : V E

where V E is defined by induction on E as

1. V [] = V ,

2. V E1N = (λm.N : (λn.mnV))E1 ,

3. V E1V ′

= (λm.mΨ(V ′)V)E1 ,

4. V V ′E1 = (λn.Ψ(V ′)nV)E1 .

Proof. By induction on E. 2

When a term M is inserted into the hole of a
context E1 a context switch may occur. That is
E1[M] ∝ E2[R], where E1 6= E2. (Note that E1 = E2

only when M = R.) There are three ways this
can happen. First, a downward context switch oc-
curs when M is not a value and M ∝ E3[R] and
E2 = E1[E3]. In this case we have

E1[M] : V = M : V E1 = E2[R] : V E1 = R : (V E1)E2

The other cases arise when M = V0 is a value. If
E1 = E2[V []] or E1 = E2[[]V1], then E1[V0] ∝ E2[R]

Page 11

is an upward context switch. If E1 = E3[[]E4[R]]
then E2 = E3[V0E4] and this is called a rightward
context switch. In the case of an upward or a right-
ward context shift, E[V0] reduces to R : V , for some
V .

Lemma 15 For any non-empty context E1, if
E1[V1] ∝ E2[R], then for any value V2,

V E1

2 Ψ(V1) →
+ R : V E2

2 .

Proof.By induction on E1.
Case 1: E = []. Trivial.
Case 2: E1 = E3N . This requires two subcases.
Case 2.1: E3 6= []. This requires two subcases.
Case 2.1.1: N is not a value. In this case we have

E1[V1] = E3[V1]N ∝ E4[R]N = E2[R]

and so using induction,

V E1

2 Ψ(V1) = V E3N
2 Ψ(V1)

= (λm.(N : (λn.mnV2)))
E3Ψ(V1)

→+ R : (λm.(N : (λn.mnV2)))
E4

= R : V E4N
2

= R : V E2

2 .

Case 2.1.2: N = V3 is a value. In this case we have

E1[V1] = E3[V1]V3 ∝ E4[R]V3 = E2[R]

and so using induction,

V E1

2 Ψ(V1) = V E3V3

2 Ψ(V1)
= (λm.mΨ(V3)V2)

E3Ψ(V1)
→+ R : (λm.mΨ(V3)V2)

E4

= R : V E4V3

2

= R : V E2

2 .

Case 2.2: E3 = []. This requires two subcases.
Case 2.2.1: N is not a value. In this case we have

E1[V1] = V1N ∝ V1E3[R] = E2[R]

and so using induction and lemma 14,

V E1

2 Ψ(V1) = V
[]N
2 Ψ(V1)

= (λm.(N : (λn.mnV2)))Ψ(V1)
→ N : (λn.Ψ(V1)nV2)
= R : (λn.Ψ(V1)nV2)

E4

= R : V V1E4

2

= R : V E2

2 .

Case 2.2.2: N = V3 is a value. In this case we have

E1[V1] = V1V3 ∝ E2[R]

where E2 = [] and R = V1V3.

V E1

2 Ψ(V1) = V
[]V3

2 Ψ(V1)
= (λm.mΨ(V3)V2)Ψ(V1)
→ Ψ(V1)Ψ(V3)V2

= V1V3 : V2

= R : V E2

2 .

Case 3: E1 = V3E3. THis requires two subcases.
Case 3.1: E3 = []. In this case we have

E1[V1] = V3V1 ∝ E2[R]

where E2 = [] and R = V3V1.

V E1

2 Ψ(V1) = V
V3[]
2 Ψ(V1)

= (λn.Ψ(V3)nV2)Ψ(V1)
→ Ψ(V3)Ψ(V1)V2

= V3V1 : V2

= R : V E2

2 .

Case 3.2: E3 6= []. In this case we have

E1[V1] = V3E3[V1] ∝ V3E4[R] = E2[R]

and so using induction

V E1

2 Ψ(V1) = V V3E3

2 Ψ(V1)
= (λn.Ψ(V3)nV2)

E3Ψ(V1)
→+ R : (λn.Ψ(V3)nV2)

E4

= R : V V3E4

2

= R : V E2

2 .

2

Corollary 16

J(AE) →+
β Ψ(λz.A(E[z])).

Proof. Suppose E[z] ∝ E′[R]. Then we have

J(AE) = λz.λd.AEz

→+
β λz.λd.(R : AE′

)

and, on the other hand,

Ψ(λz.A(E[z])) = λz.A(E[z])
= λz.λd.(A(E[z]) : d)
= λz.λd.(E[z] : A)

= λz.λd.(R : AE′

).

2

Proof of Lemma 11. For the first part of the
lemma, suppose

M0 = C(λk.E[(λx.M)V]),
M1 = C(λk.E[M [V/x]]).

Page 12

There are two cases to consider.
Case 1: M is not a value or M is a value and E = [].
Looking at the left-hand side, we have

#M0 = (E[(λx.M)V] : A)◦

= ((λx.M)V : AE)◦

= ((λx.M)Ψ(V)AE)◦

→β (M [Ψ(V)/x]AE)◦

= (M [V/x]AE)◦

= ((λk1.M [V/x] : k1)A
E)◦

→β (M [V/x] : AE)◦.

Now, turning to the right-hand side,

#M1 = (E[M [V/x]] : A)◦

= (M [V/x] : AE)◦,

which is equal to the left-hand side. Case 2: M is a
value and E 6= []. Suppose that E[M [V/x]] ∝ E ′[R].

#M0 →+
β (M [V/x] : AE)◦

= (AEΨ(M [V/x]))◦

→+
β (R : AE′

)◦

= #M1.

For the second part of the lemma, suppose

M0 = C(λk.E[C(N)]),
M1 = C(λk.Nλz.A(E[z])).

Looking at the left-hand side, we have

#M0 = (E[C(N)] : A)◦

= (C(N) : AE)◦

= (N : λm.mJ(AE)A)◦

→+
β (N : λm.m(Ψ(λz.A(E[z])))A)◦.

Turning to the right-hand side, there are two cases to
consider. Suppose N is not a value, then

#M1 = (Nλz.A(E[z]) : A)◦

= (N : λm.mΨ(λz.A(E[z]))A)◦,

and the left- and right-hand sides are equal. Suppose,
on the other hand, that N is a value. Looking at the
left-hand side, we have

#M0 →+
β (Ψ(N)Ψ(λz.A(E[z]))A)◦,

while on the right we have

#M1 = (Nλz.A(E[z]) : A)◦

= (Ψ(N)Ψ(λz.A(E[z]))A)◦,

which is equal to the left-hand side.

Finally, for the third part of the lemma, suppose

M0 = C(λk.E[A(N)]),
M1 = C(λk.N).

On the left we have

#M0 = (E[A(N)])◦

= (A(N) : AE)◦

= (N : A)◦,

which is equal to #M1. 2

Lemma 17 All sequences of 7→C steps are finite.

Proof. Any sequence of 7→C steps must have the form

M0 ∝ E1[C(M1)] 7→C M1V1

∝ E2[C(M2)]V1 7→C M2V2

· · · · · · · · · · · ·
∝ Ei[C(Mi)]Vi−1 7→C MiVi

· · · · · · · · · · · ·

where V1 = λz.A(E1[z]), Vi+1 = λz.A(Ei+1[z]Vi).
This sequence must be finite since each Mi+1 is a
proper subterm of Mi and all terms have finite depth.
2

By essentially the same argument we can prove the
following lemma.

Lemma 18 All evaluation sequences composed only
of applications of the 7→tC and 7→tA rules are finite.

We can now prove the main result of this section.
Proof of Theorem 9. Let M be a typed IS term
of type α. Suppose there is an infinite evaluation
sequence

Cλk¬α.M0 7→t Cλk¬α.M1 7→t · · ·

where M0 = kM . Let Ni = Cλk.Mi and Qi = #Ni.
Then, by Lemma 11,

Q0 →∗
β Q1 →∗

β · · ·

where Qi = Qi+1 = · · · = Qi+j is possible only when
the evaluation subsequence from Qi to Qi+j is com-
posed only of 7→tC and 7→tA steps. Since each such
subsequence is finite by Lemma 18, it must be possi-
ble to find an infinite subsequence

Q0 →+
β Q′

1 →+
β Q′

2 →+
β · · ·

However, since Q0 is well-typed (of type (α∗ → o) →
o), this contradicts the well-known fact that simply
typed λ-terms are strongly normalizing. Therefore,
there cannot exist an infinite evaluation sequence
starting from M . 2

Page 13

8 Conclusion

This paper has shown that a formulae-as-typed cor-
respondence can be defined between classical propo-
sitional logic and a typed Idealized Scheme contain-
ing a control operator similar to Scheme’s call/cc.
It should be noted, however, that the paper merely
presents a formal correspondence between classical
logic and Idealized Scheme. At this point there still
remains the question: Why should there be any cor-
respondence at all? Whether or not there is a “deeper
reason” underlying the correspondence is unclear at
this time.

[Note: Shortly before the publication deadline for
this conference the work of Andrzej Filinski [6, 5] was
brought to my attention. His work may provide a
“deeper reason,” for the correspondence described in
this paper. However, due to the lack of time, I have
been unable to investigate this thoroughly. Filinki de-
fines the Symmetric Lambda Calculus (SLC), which
gives a symmetric treatment of values and continua-
tions. He then develops a categorical model of this
language in which values and continuations are dual
notions. Classical types for control operators seem to
arise naturally in this setting.]

9 Acknowledgments

I’m indebted to Matthias Felleisen for introducing me
to call/cc, for spending many hours patiently ex-
plaining his work in this area, and for his comments
on drafts of this paper. I would like to thank Bob
Harper for his comments on drafts of this paper and
for bringing the work of Andrzej Filinski to my at-
tention.

References

[1] M. Felleisen. The calculi of λv-CS conversion: a
syntactic theory of control and state in impera-
tive higher-order programming languages. PhD
thesis, Indiana University, 1987. Technical Re-
port No. 226.

[2] M. Felleisen and D. Friedman. Control opera-
tors, the secd-machine, and the λ-calculus. In
Formal Description of Programming Concepts
III, pages 131–141. North-Holland, 1986.

[3] M. Felleisen, D. Friedman, E. Kohlbecker, and
B. Duba. Reasoning with continuations. In
Proceedings of the First Symposium on Logic in
Computer Science, pages 131–141. IEEE, 1986.

[4] M. Felleisen, D. Friedman, E. Kohlbecker, and
B. Duba. A syntactic theory of sequential con-
trol. Theoretical Computer Science, 52(3):205–
237, 1987.

[5] A. Filinski. Declarative continuations: An in-
vestigation of duality in programming language
semantics. In Summer Conference on Category
Theory and Computer Science, Manchester, UK.
Springer-Verlag, 1989. to appear in the LNCS
series.

[6] A. Filinski. Declarative continuations and cat-
egorical duality. Master’s thesis, University
of Copenhagen, Copenhagen, Denmark, August
1989. DIKU Report 89/11, Computer Science
Department.

[7] M. J. Fischer. Lambda calculus schemata. In
Proc. ACM Conference on Proving Assertions
About Programs, pages 104–109, 1972. SIG-
PLAN Notices 7.1.

[8] J.-Y. Girard, P. Taylor, and Y. Lafont. Proofs
and Types, volume 7 of Cambridge Tracts in
Computer Science. Cambridge University Press,
1989.

[9] R. J. Hindley and J. Seldin. Introduction to
Combinators and λ-Calculus. London Mathe-
matical Society Student Texts. Cambridge Uni-
versity Press, 1986.

[10] W. Howard. The formulae-as-types notion of
construction. In J. P. Seldin and J. R. Hind-
ley, editors, To H. B. Curry: Essays on Combi-
natory Logic, Lambda-Calculus, and Formalism,
pages 479–490. Academic Press, NY, 1980.

[11] P. Landin. The mechanical evaluation of expres-
sions. Computer Journal, 6(4), 1964.

[12] P. Landin. The next 700 programming lan-
guages. Commun. ACM, 9(3):157–166, 1966.

[13] A. R. Meyer and M. Wand. Continuation se-
mantics in typed lambda-calculi (summary). In
R. Parikh, editor, Logics of Programs, pages 219–
224. Springer-Verlag, 1985. Lecture Notes in
Computer Science, Volume 193.

[14] G. Plotkin. Call-by-name, call-by-value and
the λ-calculus. Theoretical Computer Science,
1:125–159, 1975.

[15] D. Prawitz. Natural Deduction. Almquist and
Wiksell, 1965.

Page 14

[16] J. Rees and e. W. Clinger. The revised3 report
on the algorithmic language scheme. SIGPLAN
Notices, 21(12):37–79, 1986.

[17] G. L. Steele. Common Lisp: The Language. Dig-
ital Press, Bedford, MA, 1984.

[18] S. Stenlund. Combinators, Lambda-Terms and
Proof Theory. D. Reidel, Dordrecht, Holland,
1972.

Page 15

