
Policy Disputes in Path-Vector Protocols

Timothy G. Griffin F. Bruce Shepherd Gordon Wilfong
{griffin, bshep, gtw}@research.bell-labs.com

Bell Laboratories, Lucent Technologies

Abstract

The Border Gateway Protocol, BGP, is currently the
only interdomain routing protocol employed on the Inter-
net. As required of any interdomain protocol, BGP al-
lows policy-based metrics to override distance-based met-
rics and enables each autonomous system to independently
define its routing policies with little or no global coordi-
nation. Varadhan et al. [11] have shown that there are
collections of routing policies that together are not safe in
the sense that they can cause BGP to diverge. That is, an
unsafe collection of routing policies can result in some au-
tonomous systems exchanging BGP routing messages indef-
initely, without ever converging to a set of stable routes. In
this paper we present sufficient conditions on routing poli-
cies that guarantee BGP safety. We use a new formalism,
called the Simple Path Vector Protocol (SPVP), that is de-
signed to capture the underlying semantics of any path vec-
tor protocol such as BGP. We identify a certain circular
set of relationships between routing policies at various au-
tonomous systems that we call a dispute cycle. We show
that systems with no dispute cycles are guaranteed to be
safe. While these include systems whose policies are con-
sistent with shortest paths under some link metric, the class
of systems with no dispute cycles is strictly larger.

1 Introduction

BGP [9, 7, 10] allows each autonomous system to inde-
pendently formulate its routing policies, and it allows these
policies to override distance metrics in favor of policy con-
cerns. In contrast to pure distance-vector protocols such as
RIP [8], Varadhan et al. [11] have shown that there are rout-
ing policies that are unsafe in the sense that they can cause
BGP to diverge. Although it seems that BGP divergence has
not yet occurred in practice, it could potentially introduce a
great deal of instability into the global routing system.

The goal of this paper is to clarify the nature of BGP pol-
icy inconsistencies that can give rise to protocol divergence.
Our main contributions can be summarized as follows. We

introduce a general formalism, called the Simple Path Vec-
tor Protocol (SPVP), that is designed to capture the under-
lying semantics of any path vector protocol such as BGP.
We define a dispute cycle whose arcs correspond to a cer-
tain type of policy dispute. We show that systems with no
dispute cycles are guaranteed to be safe. While these in-
clude systems whose policies are consistent with shortest
paths under some link metric, the class of systems with no
dispute cycles is strictly larger.

The paper is organized as follows. In Section 2 we define
the Simplified Path-Vector Protocol (SPVP). In an SPVP
specification each node (representing an autonomous sys-
tem) has a list of permitted paths to a destination, together
with a ranking of these paths. Solutions to such specifica-
tions are defined to be routing trees that satisfy certain sta-
bility conditions. We define a model of dynamic evaluation
whose stable states correspond to such solutions.

In Section 3 we define two equivalent structures, the dis-
pute wheel and the dispute cycle, that capture a certain type
of circular policy inconsistency. We show that an SPVP
specification with no dispute cycle (no dispute wheel) al-
ways has a unique solution. In addition, we show that such
a specification is safe and so its dynamic evaluation will al-
ways arrive at a stable state.

BGP is different from shortest path routing for several
reasons. First, the relative ranking of routes in BGP is not,
in general, based on path lengths, or any other universally
agreed upon cost function. Second, each autonomous sys-
tem can reject paths arbitrarily (even shortest paths) based
on policy considerations. Even so, it seems a natural ques-
tion to ask which policies are consistent with an edge cost
function. We explore this question in Section 4. We in-
troduce the concept of an SPVP specification being con-
sistent with a given edge cost function. Even in this case,
one may find routing trees that are not shortest path trees
with respect to the cost function. However, we show that
any SPVP specification that is consistent with a cost func-
tion without non-positive cycles will be safe. An immedi-
ate consequence of this is that BGP configurations that are
simply based on “hop count” are safe (even with “padding”
of AS-paths). On the other hand, we show that BGP-like

systems can actually violate “distance metrics” and remain
safe. Finally, Section 5 suggests some problems for fu-
ture work. Full proofs for those omitted here can be found
in [5].

1.1 Related Work

Bertsekas et al. [1] prove convergence for a distributed
version of the Bellman-Ford shortest path algorithm. Be-
cause of the differences between BGP and shortest path
routing mentioned above, these results do not directly ap-
ply to a protocol such as BGP.

In Varadhan et al. [11], the convergence properties of
an abstraction of BGP is studied. They describe a system
similar to our BAD GADGET, for instance, as a simple
example of policies which lead to divergence. In their set-
ting, a node must update each time it receives a new route-
to-origin “advertisement” from one of its neighbors. This
is in contrast to our model where the update sequence de-
termines when nodes process their neighbor’s path choices.
They also define the notion of an auxiliary graph, called a
return graph, to study convergence. Return graphs are de-
fined only for systems with a particular topology, namely a
ring topology, and a restricted set of allowable paths at each
node, namely only counterclockwise paths. A return graph
is defined as follows. For a node v and two permitted paths
P, Q from v to 0, we define an arc (P, Q) if when storing P

at v, and updating the nodes clockwise around the ring, the
node v adopts Q when v is once again reached.

Gouda and Schneider [2, 3] have studied metrics which
always have a maximal tree, that is, a tree in which every
node has its ‘favorite’ path to the origin, contained in the
tree. Their notion of a maximal tree is different from the
central notion of a stable tree introduced in Section 2.2. The
latter is based on reaching a local, as opposed to a global,
equilibrium. Roughly speaking, a metric in their work cor-
responds to a method for ranking paths based on edge costs.
They characterize metrics which admit a maximal tree for
any graph and any possible cost function.

2 A Simple Path-Vector Protocol

This section introduces a framework, called the Simple
Path Vector Protocol (SPVP), that is designed to capture
the underlying semantics of any path vector protocol such
as BGP. The intent is to strip away all but the essentials from
BGP, leaving only the basic notions of permitted paths to a
destination and the ranking of those paths. We seek to study
the safety of routing policies in a manner independent of the
details used to implement those policies (for example, BGP
attributes and import and export transformations). In mod-
eling BGP we make several simplifying assumptions. First,
we ignore all issues relating to internal BGP (iBGP). As a

corollary to this, we assume that there is at most one link
between any two autonomous systems. Second, we ignore
address aggregation. We believe that these simplifications
are not of fundamental importance, and we adopt them in
order to improve the clarity of the statements and proofs.

2.1 BGP Route Selection

In order to motivate the SPVP formalism, we briefly re-
view the route selection process of BGP [9, 7, 10]. BGP
employs a large number of attributes to convey information
about each destination. For example, one BGP attribute
records the path of all autonomous systems that the route
announcement has traversed. For these reasons BGP is of-
ten referred to as a path vector protocol. The BGP attributes
are used by import policies and export policies at each au-
tonomous system in order to implement its routing policies.

In BGP, route announcements are records that include
the following attributes.

nlri : network layer reachability information
(address block for a set of destinations)

next hop : next hop (address of next hop router)
as path : ordered list of vertices traversed

local pref : local preference
med : multi-exit discriminator
c set : set of community tags

The local preference attribute local pref is not passed be-
tween autonomous systems, but is used internally within an
autonomous system to assign a local degree of preference.

Each record r is associated with a 4-tuple, rank-tuple(r),
defined as

〈r.local pref ,
1

| r.as path |
,

1

r.med
,

1

r.next hop
〉.

For a given destination d, the records r with d = r.nlri are
ranked using lexical ordering on rank-tuple(r). The best
route selection procedure for BGP [9] picks routes with the
highest rank. In other words, if two route records share
the same nlri value, then the record with the highest lo-
cal preference is most preferred. If local preference values
are equal, then the record with the shortest as path is pre-
ferred. If these paths have the same length, then the record
with the lowest med value is preferred. Finally, ties are
broken with preference given to the record with the lowest
IP address for its next hop value. Note that this ordering
is “strict” in the sense that if two records r1, r2 are ranked
equally, then r1.next hop = r2.next hop. Route selec-
tion based on highest rank is always deterministic since at
any time there is at most one route record with a given nlri

and a given next hop.
A route transformation T is a function on route records,

T (r) = r′, that operates by deleting, inserting, or modi-
fying the attribute values of r. If T (r) = 〈〉 (the empty
record), then we say that r has been filtered out by T .

Suppose u and w are autonomous systems with a BGP
peering relationship. As a record r moves from w to u it
undergoes three transformations. First, r1 = export(u ←
w, r) represents the application of export policies (defined
by w) to r. Second, r2 = PVT(u ← w, r1) is the
BGP-specific path vector transformation that adds w to the
as path of r1 and filters out the record if its as path con-
tains u. Finally, r3 = import(u ← w, r2) represents the
application of import policies (defined at u) to r2. In par-
ticular, this is the function that assigns a local pref value
for r3. We call the composition of these transformations the
peering transformation, pt(u← w, r), defined as

import(u← w, PVT(u← w, export(u← w, r))).

Suppose autonomous system u0 is originating a destina-
tion d by sending a route record r0 with r0.nlri = d to
(some of) its peers. If uk is an autonomous system and
P = uk uk−1 · · ·u1 u0 is a simple path where each pair
of autonomous systems ui+1, ui are BGP peers, then we
define r(P), the route record received at uk from u0 along
path P , to be

pt(uk ← uk−1, pt(uk−1 ← uk−2, · · · pt(u1 ← u0, ro))).

We say that P is permitted at uk when r(P) 6= 〈〉. We
can then define a ranking function, λuk (P), on AS-paths
permitted at uk as λuk (P) = lex-rank(rank-tuple(r(P))).

The SPVP formalism defined below is based on the no-
tion of permitted paths and ranking functions on these paths.
In terms of BGP, we can think of SPVP as capturing the
semantics that translate the apparent routing policies at au-
tonomous system uk (the import and export policies defined
at uk) into the actual routing policies at uk. Note that the
actual routing policies at uk are the result of the interac-
tion between routing policies of many, possibly distant, au-
tonomous systems.

2.2 SPVP Specifications

A simple, undirected, connected graph G = (V, E) rep-
resents a network of nodes V = {0, 1, 2, . . . , n} connected
by edges E. For any node u, peers(u) = {w | {u, w} ∈ E}
is the set of peers for u. We assume that node 0, called
the origin, is special in that it is the destination to which all
other nodes will attempt to establish a path.

A path in G is a sequence, vk , vk−1, . . . v1, v0, of nodes
such that for each i > 0, {vi, vi−1} is an edge in E. The
empty path is written ε. We assume that all non-empty paths
P = vk, vk−1, . . . , v1, v0 implicitly have a direction from
the first node vk to the last node v0. Suppose e = {u, v}
is an edge in E. If node v is the first node of path P , then
(u, v)P denotes the path that starts at node u, traverses edge
e, and then follows path P .

If P and Q are non-empty paths such that the first node
in Q is the same as the last node in P , then PQ denotes the
path formed by the concatenation of these paths. We extend
this with the convention that εP = Pε = P , for any path
P . For a simple path P = vk, vk−1, . . . , v1, v0 and for any
i, j with k ≥ i > j ≥ 0 we denote by P [vi, vj] the subpath
vi, vi−1, . . . , vj .

For each v ∈ V − {0}, let Pv be the set of permitted
paths from v to the origin (node 0). If P is a path from v to
the origin and P 6∈ Pv, then P is said to be rejected at node
v. If P = v, vk, . . . , v1, v0 = 0 is in Pv, then the node vk

is called the next hop for path P . Let P =
⋃

v∈V P
v be the

set of all permitted paths to the origin.
For each v ∈ V − {0}, there is a non-negative, integer-

valued ranking function λv : Pv representing how node v

ranks its permitted paths. If P1, P2 ∈ P
v and λv(P1) <

λv(P2), then P2 is said to be preferred over P1. Let
Λ = {λv | v ∈ V − {0}}. An SPVP specification,
S = (G,P , Λ), is a graph together with the permitted paths
at each non-zero node and the ranking functions for each
non-zero node.

We impose the following restrictions on Λ and P .

(empty path is permitted) for each v ∈ V , ε ∈ Pv,

(empty path is lowest ranked) for each v ∈ V , λv(ε) =
0,

(strictness) if λv(P1) = λv(P2), then P1 = P2 or there is
a u such that P1 = (v, u)P ′

1 and P2 = (v, u)P ′
2 (paths

P1 and P2 have the same next-hop).

(simplicity) if path P ∈ Pv, then P is a simple path (no
repeated nodes),

(consistency of permitted paths) If P ∈ Pvand w 6= 0 is
in P , then P [w, 0] ∈ Pw.

Paths correspond to BGP’s as path attribute. Unlike
BGP however, in SPVP the number u is prepended to all
paths at node u. This merely simplifies the exposition. The
“consistency of permitted paths” is also not an essential
condition, since any specification that does not satisfy it can
easily be transformed into one that does.

Let S = (G,P , Λ) be an SPVP specification. A routing
tree T = (P1, P2, · · · , Pn) is a vector of paths with Pi ∈
P i, such that the union of these paths is a tree. Note that
some of the Pi may be the empty path. Node i is stable
with respect to this tree if λi((i, j)Pj) ≤ λi(Pi) whenever
(i, j)Pj ∈ P

i. A tree T = (P1, P2, · · · , Pn) is stable if
every node is stable.

An SPVP specification S = (G,P , Λ) is called solvable
if there exists a stable routing tree for S. Otherwise, S is
called unsolvable. A stable routing tree T is called a solu-
tion for the specification S.

2 0
2 1 01 3 0

1 0

4 3 0
4 2 0

3 0

2 0
2 1 01 3 0

1 0

4 3 0
4 2 0

2 0
2 1 01 3 0

1 0

3 0

4 2 0
4 3 0

3 4 2 0
3 0

3 4 2 0

(a)
GOOD GADGET

(b) (c)
NAUGHTY GADGET

(d)
BAD GADGETA routing tree

3

2

0

1

4

3

2

0

1

4

3

2

0

1

4

3

2

0

1

4

Figure 1. Examples of SPVP specifications.

Griffin and Wilfong [6] have shown that statically de-
tecting solvability for real-world BGP is NP-hard. Simi-
larly, [5] shows that the basic question of solvability is still
NP-complete for the more abstract model of SPVP.

Figure 1 (a) presents an SPVP specification called GOOD
GADGET. The ranking function for each non-zero node is
depicted as a vertical list next to the node, with the highest
ranked path at the top going down to the lowest ranked non-
empty path at the bottom. The routing tree

((1 3 0), (2 0), (3 0), (4 3 0))

is a solution for this specification, and it is illustrated in
Figure 1 (b). The dynamic model of SPVP, defined below,
will always converge to this solution. Also, this is the only
solution for GOOD GADGET since any other routing tree is
not stable. For example, in the tree

((1 0), (2 0), (3 0), (4 3 0)),

nodes 1 and 2 would both prefer to change their paths
to ones of higher rank. A modification of GOOD GAD-
GET, called NAUGHTY GADGET, is shown in Figure 1 (c).
NAUGHTY GADGET adds one permitted path (3 4 2 0) for
node 3, yet it has the same unique solution as GOOD GAD-
GET. However, as is explained below, the dynamic evalua-
tion of this specification can diverge. Finally, by reordering
the ranking of paths at node 4, we produce a specification
called BAD GADGET, presented in Figure 1 (d). This specifi-
cation, which is similar to examples of [11], has no solution
and its dynamic evaluation will always diverge.

2.3 A Simple Dynamic Model

We now present a simplified model of distributed evalua-
tion that ignores the implementation details related to mes-
sage queues and message passing. This model was used
in [6], but with a different specification language. This
model is equivalent to a special case of a more general mes-
sage passing model, where it is assumed that each node
performs an atomic step that processes all of its message
queues, computes any changes to best routes, and sends up-
date messages to all of its peers.

A state for a specification S = (G,P , Λ) is a vector
s = (P1, . . . , Pn−1) of paths where Pi ∈ P

i. Note that
states do not always represent trees. We say that path Pi is
stored at node i in this state, and we also say that the trivial
path 0 is always stored at node 0. The system moves from
state to state as nodes update. When a node updates it can
replace its current path with a path of higher rank, if such a
path is available. It can also lose its path, if it is no longer
available from its next hop, and be forced to accept a path
of lower rank.

To formalize this, we define the set of choices that a
node has when it updates, how it chooses a best path, and
how it updates. The choice of paths for node u in state
s = (P1, . . . , Pn−1) is the set Choices(u, s), which is de-
fined to be all P ∈ Pu such that either P = (u, 0) and
{u, 0} ∈ E or P = (u, v)Pv for some {u, v} ∈ E. There
is one best choice in any state s, Best(u, s), defined to be
the unique P ∈ Choices(u, s) such that λu(P) is maximal,
if Choices(u, s) is not empty. Otherwise, Best(u, s) is the
empty path.

In order to model asynchronous routing processes we al-
low multiple nodes to update simultaneously. Let A ⊆ V

be non-empty, and s = (P1, . . . , Pn−1) be a state. Then
state s′ = (P ′

1, . . . , P
′
n−1) is reached from s by updating

the nodes of A if

P ′
i =

Pi if i 6∈ A, (i does not update)

Best(i, s) otherwise.

We use the notation s
A
−→ s′ to denote this state transition.

For example,

((1 0), (2 0), (3 0), ε)
{1,2}
−→ ((1 3 0), (2 1 0), (3 0), ε)

is a state transition for BAD GADGET.
A state s = (P1, . . . , Pn−1) is stable if for each i ∈

V −{0}we have Best(i, s) = Pi, or equivalently, if s
A
−→ s

for every set A. Informally, in a stable state there is no
node that could pick a path better than its current path. It is
easy to show that any stable state must contain a solution (a
stable routing tree).

(1 0)
(2 0)
(3 0)

(4 2 0)

(1 0)
(2 0)

(3 4 2 0)
(4 3 0)

(1 3 0)
(2 1 0)
(3 0)

(4 2 0)

(1 3 0)
(2 1 0)

(3 4 2 0)
(4 3 0)

(1 3 0)
(2 1 0)

(3 4 2 0)
(4 2 0)

(1 3 0)
(2 0)
(3 0)

(4 2 0)

(1 3 0)
(2 0)

(3 4 2 0)
(4 3 0)

(1 0)
(2 1 0)
(3 0)

(4 2 0)

(1 0)
(2 0)

(3 4 2 0)
()

(1 3 0)
(2 1 0)

(3 4 2 0)
()

(1 3 0)
(2 0)

(3 4 2 0)
()

Figure 2. A strongly connected component
from the evaluation digraph of NAUGHTY GAD-
GET.

The evaluation digraph of a specification S =
(G,P , Λ), denoted Eval(S), is a labeled directed graph
having one node for each possible state. If s

A
−→ s′, then

there is an arc from the node representing s to the node rep-
resenting s′ labeled A. A cycle C in Eval(S) is a sequence
of states

s1
A1−→ s2

A2−→ s3 · · ·
Am−→ sm+1

where s1 = sm+1. This cycle is non-trivial if it contains no
self loops. It is clear that if Eval(S) contains a non-trivial
cycle, then the specification S can diverge.

An update sequence σ is a function such that σ(t) ⊆ V ,
for each t ≥ 0. From any starting state s0 the function σ

defines an infinite path in Eval(S) composed of arcs st
σ(t)
−→

st+1. We write σ(s0, t) to denote st.
A specification S is said to converge with update se-

quence σ and initial state s0, written S(s0, σ) ↓, if there

is some time t such that σ(s0, t) is a stable state. Other-
wise, S is said to diverge with σ and initial state s0, written
S(s0, σ) ↑. An update sequence σ is fair if each node u,
u ∈ σ(t) for infinitely many t’s. A system S is said to be
safe if S(s0, σ) ↓ for every fair σ and every initial state s0.

The specification GOOD GADGET is safe. On the other
hand, NAUGHTY GADGET is solvable, but not safe. The
evaluation digraph of NAUGHTY GADGET has 81 states.
Figure 2 shows a strongly connected component from this
digraph. For readability we have not labeled arcs, and we do
not show parallel arcs nor self loops (s A

−→ s). Any update
sequence that remains within this strongly connected com-
ponent will diverge. Finally, BAD GADGET will diverge for
any update sequence.

3 Sufficient Conditions

In this section we develop a sufficient condition that will
guarantee that an SPVP specification has a unique solution
and is safe. The sufficient condition concerns the absence
of a circular set of relationships between ranking functions
that we call a dispute cycle. The structure of dispute cy-
cles is further elucidated with the definition of an equivalent
structure called a dispute wheel.

3.1 The Dispute Digraph

For any specification S = (G,P , Λ) we construct a di-
rected graph, DD(S), called the dispute digraph. For each
permitted path P of S there is a node in DD(S) labeled P .
There are two kinds of arcs in the dispute digraph, trans-
mission arcs and dispute arcs.

u 0

Q
P
. . .

. . .

. . .

. . .

.

Q

P [v, 0]

P [v, 0]

v

(u, v)Q

{u, v}

λ
v

λ
u

P = (u, v)P [v, 0]

Figure 3. Conditions for dispute arc Q −→ P .

Suppose that nodes u and v are peers. If Q is a permitted
path at v and P is a permitted path at u, then a dispute arc
from path Q to path P , denoted Q −→ P , represents a local
policy dispute between peers u and v concerning the rela-
tive ranking of paths P and Q. Informally, it represents the
fact that node v could increase the rank of its best path by
abandoning P [v, 0] and adopting Q, while this action would

force u to abandon path P and select as its best path one that
could potentially have lower rank than P . More formally,
Q −→ P is a dispute arc if and only if the following condi-
tions hold :

1. P is a permitted path from u to 0 with next-hop v,

2. Q is a path from v to 0, permitted at v,

3. path (u, v)Q is rejected at u, or λu((u, v)Q) < λu(P),

4. λv(P [v, 0]) ≤ λv(Q).

Figure 3 illustrates these conditions.
There is a transmission arc from vP to (u, v)P , denoted

vP · · ·> (u, v)P , when nodes u and v are peers, vP is
permitted at v, and (u, v)P is permitted at u. Informally,
vP · · ·> (u, v)P might be read as “node v permits path vP ,
which allows u to permit path (u, v)P ”. Figure 4 shows the
dispute digraphs for the specifications of Figure 1. Again,
the dotted arcs are transmission arcs, while the solid arcs
are dispute arcs.

(a)
3 0

4 2 0

4 3 0

2 0 2 1 0 1 0

1 3 0

3 0

4 2 0

4 3 0

2 0 2 1 0 1 0

1 3 0 3 4 2 0
(c)

3 0

4 2 0

4 3 0

2 0 2 1 0 1 0

1 3 0
(b)

3 4 2 0

Figure 4. Dispute digraphs for (a) GOOD , (b)
NAUGHTY, and (c) BAD GADGET.

A directed path in DD(S) is of the form

T = P1 a1 P2 a2 · · ·Pn−1 an−1 Pn,

where Pi ∈ P , and each Pi ai Pi+1 represents a dispute arc
or a transmission arc. A directed path contains a cycle if
Pi = Pj for some i 6= j. We usually refer to cycles in the
dispute digraph as dispute cycles.

Lemma 3.1 Any dispute cycle must contain at least two
dispute arcs.

From Figure 4 we see that the dispute digraph of
GOOD GADGET has no cycles, while the dispute digraph
of NAUGHTY GADGET contains the simple cycles

(3 4 2 0) −→ (4 3 0) −→ (3 4 2 0)

and

(1 3 0) −→ (2 1 0) −→ (4 2 0) · · ·> (3 4 2 0) −→ (1 3 0).

The second cycle is also contained in the dispute digraph
of BAD GADGET.

3.2 Dispute Wheels

We now give an alternate representation of dispute cycles
in terms of structures called dispute wheels. While dispute
cycles are built from local relationships between the rank-
ing functions of peers, dipute wheels are based on “long
distance” relationships.

A dispute wheel, Π = (U,Q,R), of size k, is a set
of nodes U = {u0, u1, · · ·uk−1}, and sets of paths Q =
{Q0, Q1, · · ·Qk−1} and R = {R0, R1, · · ·Rk−1}, such
that for each 0 ≤ i ≤ k − 1 we have (1) Ri is a path
from ui to ui+1, (2) Qi ∈ P

ui , (3) RiQi+1 ∈ P
ui , and (4)

λui(Qi) ≤ λui(RiQi+1). When discussing dispute wheels,
all subscripts are to be interpreted modulo k. See Figure 5
for an illustration of a dispute wheel. Since permitted paths
are simple, it follows that the size of any dispute wheel is at
least 2.

u0

Q0

R0

u1

Q1

Ri
ui

Qi+1

ui+1

Qi

uk−1

Qk−1

Rk−1

Figure 5. A dispute wheel of size k.

The rim of a dispute wheel Π is the (possibly non-
simple) path R0R1 · · ·Rk−1, which is a (possibly non-
simple) cycle in the graph G. A rim fragment is any path
of the form RiRi+1 · · ·Ri+m, where 0 ≤ i ≤ k − 1 and
0 ≤ m ≤ k − 2.

A dispute wheel Π′ = (U ′,Q′,R′), is a sub-wheel of a
dispute wheel Π if U ′ ⊆ U , Q′ ⊆ Q, and each R ∈ R′ is a
rim fragment of Π.

A minimal dispute wheel is one in which for each 0 ≤
i ≤ k − 1, either RiRi+1Qi+2 is not permitted at ui, or
λui(RiRi+1Qi+2) ≤ λui(RiQi+1). Note that any dispute
wheel of size 2 is minimal.

Lemma 3.2 Every dispute wheel contains a minimal sub-
wheel.

Proof: Suppose that Π is a dispute wheel that is not min-
imal. Then for some ui in Π we have λui(RiQi+1) <

λui(RiRi+1Qi+2). Create a sub-wheel of size k − 1 by
deleting ui+1 and Qi+1, and replacing path Ri with rim
fragment RiRi+1. Repeating this process must eventually
arrive at a minimal sub-wheel.

We now show that dispute wheels are equivalent to dis-
pute cycles. We can extend the notion of a dispute arc to
“distant disputes” in the following way. Let P = P1P2 be
a path permitted at u, where P2 is a path permitted at some
node v. Suppose that Q is also permitted at v, and we have

1. path P1Q is rejected at u, or λu(P1Q) < λu(P1P2),

2. λv(P2) ≤ λv(Q).

We write Q ; P when these conditions hold.

Lemma 3.3 If Q ; P , then there is a path in the dispute
digraph from Q to P of length | P1 |.

Corollary 3.4 Suppose that Π = (U,Q,R) is a minimal
dispute wheel of size k. Then

R0Q1 ; Rk−1Q0 · · ·RiQi+1 ; Ri−1Qi · · ·; R0Q1

and so there is a directed cycle in the dispute digraph.

Lemma 3.5 If the dispute digraphDD(S) contains a cycle,
then S has a dispute wheel.

Corollary 3.6 A specification S has a dispute wheel if and
only if the dispute digraphDD(S) contains a cycle.

3.3 Two Trees Imply a Dispute Wheel

In general, an SPVP specification may have more than
one solution. We show that in this case the dispute digraph
has a cycle.

Although a solution is not always a spanning tree, it of-
ten simplifies proofs to assume that all solutions of S are
spanning trees. For any specification S we can construct
an essentially equivalent specification Ŝ all of whose solu-
tions are spanning trees. Add a new node v∗ adjacent to 0
for which v∗0 is its only permitted path. Also add the edge

{u, v∗} for each u ∈ V and make (u, v∗, 0) the unique path
whose u-ranking is greater than λu(ε), and modify λu so
that this is less than all other paths in Pu. This allows us to
use the following fact.

Fact 3.7 For any specification S there is a 1-1 mapping be-
tween its solutions and those of Ŝ. Namely, for for each
solution T for S there is a unique solution T̂ for Ŝ such that
T is a subtree of T̂ .

Theorem 3.8 If a specification S has more than one solu-
tion, then it has a dispute wheel.

Proof: Suppose S has two distinct solutions P =
(P1, . . . , Pn−1) and Q = (Q1, . . . , Qn−1). We repre-
sent the two stable configurations P,Q as two trees T1, T2

rooted at the node 0. Using Fact 3.7, we assume that T1, T2

are spanning. Let H be the graph (V, E(T1)∩E(T1)) which
is induced by the intersection of these two trees. Now let T

be the component of H containing the origin. Thus every
edge of H entering V (T) is either in E(T1) − E(T2) or
E(T2)−E(T1).

We now construct a dispute wheel. Since V − V (T) is
nonempty (otherwise T1 = T2) we may choose an edge
{u0, v0} ∈ T1, where u0 6∈ V (T) and v0 ∈ V (T). On the
other hand, u0 has a path to the origin in T2. This path must
be of the form R0(u1, v1)Q1 where (i) u1 6∈ V (T), v1 ∈
V (T) and Q1 is the unique path in T from v1 to the origin,
(ii) R0 is a path from u0 to u1 in T2 but entirely contained in
the node set V −V (T) and (iii) R0 has at least one edge (for
otherwise one of T1, T2 would not be stable). We repeat this
process at u1, except we now examine a path from u1 to the
origin in the tree T1. Continuing to alternate in this fashion
we must eventually repeat some node, which without loss
of generality is u0.

To see that this is a dispute wheel, we need only show
that for each i,

λui ((ui, vi)Qi) ≤ λui(Ri(ui+1, vi+1)Qi+1).

Without loss of generality, assume that (ui, vi)Qi is in T1.
If the inequality did not hold, then we would have

λui (Ri(ui+1, vi+1)Qi+1) < λui ((ui, vi)Qi),

which would mean that T2 is not stable.
Note that NAUGHTY GADGET illustrates the fact that the

converse of this result does not hold. NAUGHTY GADGET
has a unique solution but is not safe, and so has a cycle in
its dispute digraph.

3.4 No Dispute Wheel Implies a Solution

Theorem 3.9 Let S be an SPVP specification. If S has no
dispute wheel, then S is solvable.

Proof: Using Fact 3.7, we can assume that any solution
for S will be a spanning tree. Suppose that T is a tree (not
necessarily spanning) in G, rooted at 0, such that each node
of T is stable with respect to T . If u ∈ V − V (T) and
P ∈ Pu, then P is said to be consistent with T if it can
be written as P = P1(u1, v1)Q1, where P1 is a path in
V − V (T), v1 ∈ V (T), Q is the unique path from v1 to the
origin in T , and {u1, v1} ∈ E. Such a P is called a direct
path to T if P1 is empty and u = u1. Let D(T) be the set
of nodes u ∈ V − V (T) that have a direct path to T . Note
that if V −V (T) is not empty, then D(T) is not empty (G is
connected). Let H(T) be the set of nodes u ∈ D(T) whose
highest ranked path consistent with T is a direct path. If
V − V (T) is not empty, let F (T) be the tree formed by
adding the nodes of H(T) to T together with their highest
ranked direct paths.

Let T0 = {0} be the trivial tree rooted at the origin. If Ti

is such that V − V (Ti) is not empty, then define

Ti+1 =

{

F (Ti) if H(Ti) is not empty

error otherwise

Note that if all nodes of Ti are stable with respect to Ti, then
all nodes of Ti+1 are stable with respect to Ti+1. Thus, if
there exists an i with V (Ti) = V , then Ti is a solution for
S, since it is stable.

On the other hand, suppose there exists an i such that
Ti+1 = error. Let u0 be any node in D(Ti) and let Q0 ∈
Pu0 be a direct path. Note that there must be a path P0,
permitted at u0 and consistent with Ti, which has higher
rank than Q0. Since P0 is consistent with Ti it has the form
P0 = R0(u1, v1)Q1 where R0 is a path from u0 to u1 in
V − V (Ti), v1 ∈ V (Ti), Q1 is the unique path from v1 to
0 in Ti, and {u1, v1} ∈ E. Note that v1 ∈ D(Ti), and since
H(Ti) is empty we can repeat this process with u1. If we
continue in this manner it is clear that we will eventually
form a dispute wheel.

3.5 Divergence Implies a Dispute Wheel

Suppose that C is a non-trivial cycle in the evaluation
digraph. A node u is changing in a cycle C if there are at
least two distinct states of C in which u has different paths.
Since C is non-trivial, there is at least one node changing
in C. Let values(C, u) be the set of paths that u adopts
in C. Let F (C) be the set of nodes that store a fixed path
throughout C. Note that 0 ∈ F (C), so this set is never
empty.

Lemma 3.10 Suppose P ∈ P u is adopted by u in C,
and let v be the first fixed node of P . Then each node
w ∈ P [u, v], stores the path P [w, 0] in some state of C.
In particular, v stores P [v, 0] throughout C.

Proof: Let P [u, v] = (u = x0, x1, . . . xt−1, xt = v). The
result holds by assumption for x0, so suppose that for some
i ≥ 0, and for each j ≤ i, xj adopts the path P [xj , 0] in
some state of C. If i = t, the result is proved. Otherwise xi

is changing in C and adopts the path P [xi, 0]; thus at this
point in the cycle, xi+1 must have P [xi+1, 0] stored. The
result follows by induction.

Theorem 3.11 If there is a non-trivial cycle in the evalua-
tion digraph, then S contains a dispute wheel.

Proof: Let C be a non-trivial cycle in Eval(S). Let U

be the subset of nodes u changing in C such that there is a
path (u, w)Q ∈ values(C, u) where w ∈ F (C). That is, u

adopts a path in C that leads directly to a fixed node. By
Lemma 3.10, U cannot be empty.

We now construct a dispute wheel. Let u0 be a node in
U . Let Q0 be u0’s direct path to F (C), (u0, w0)Q

′
0. It is

easy to check that Q0 is unique, and that of all paths in
values(C, u0) the path Q0 is of lowest rank. Let H0 ∈
values(C, u0) be the adopted path of highest rank at u0.
Lemma 3.10 tells us that we can write this path as H0 =
R0Q1, where R0 is a path from u0 to u1 of changing nodes,
u1 ∈ U , and Q1 = (u1, w1)Q

′
1 for some w1 ∈ F (C). We

can now perform the same construction for u1. Repeating
this process in the obvious way results in a dispute wheel.

Corollary 3.12 If S has no dispute wheel, then the evalu-
ation graph Eval(S) has no non-trivial cycles, and so S is
safe.

The converse of this result does not hold. For example,
BAD BACKUP presented in Figure 6 is the result of a slight
modification to BAD GADGET (the path (40) is added and
made the highest ranked path at node 4). This specification
has a dispute wheel but the evaluation graph has no cycles.
In other words, the dispute wheel of BAD BACKUP is not
dynamically realizable in our simple model of evaluation.
Note that if the edge {0, 4} is deleted (modeling link fail-
ure), then this system becomes BAD GADGET.

2 0
2 1 01 3 0

1 0

3 0
3 4 2 0 4 3 0

4 2 0
4 0

3

2

0

1

4

Figure 6. The specification BAD BACKUP.

4 SPVP and Shortest Paths

Varadhan et al. [11] first observed that BGP policies
could interact in a way that results in protocol divergence.
Their examples always include autonomous systems that
choose longer paths (in terms of “hop count”) over shorter
ones. They stated “We believe that only shortest path route
selection is provably safe.” The results of the previous sec-
tions will be used to explore this statement. We interpret
it to mean that any class of policies not based on shortest
path route selection will not be provably safe. Notice that
implicitly, the conjecture is suggesting that systems whose
policies are based on shortest path route selection will, in
fact, be safe.

We begin by formalizing a fairly liberal notion of “short-
est path route selection” that seems appropriate for proto-
cols such as BGP. We then show that any SPVP specifica-
tion that is consistent with shortest path route selection will
indeed be safe. However, we show that the converse is not
true. Hence, BGP-like systems can actually violate “dis-
tance metrics” and remain safe.

As is standard for undirected graphs, we work with an
associated orientation of it; we think of an undirected edge
e = {a, b} as being replaced by two arcs, e− = (a, b) and
e+ = (b, a). We are also given costs c(e+) and c(e−) asso-
ciated with traversing the edge e in the two directions. Thus
c induces a cost function on any directed path P in the re-
sulting oriented graph: c(P) =

∑

a∈A(P) c(a). The cost
function c is positive if for each arc a, c(a) > 0.

There are several possible ways to formalize the notion
of “shortest path route selection” for a cost function c. Since
a node u in an SPVP specification is not required to treat all
possible paths to the origin as permitted paths, we cannot
insist that u take the shortest path. However, it seems rea-
sonable to insist that if u has a choice between two permit-
ted paths and these paths have different costs, then u cannot
prefer the higher cost path over the lower cost path. For-
mally, we say that the S = (G,P , Λ) is consistent with
the cost function c if for each w and P1, P2 ∈ P

w, (1)
if λw(P1) < λw(P2), then c(P2) ≤ c(P1), and (2) if
λw(P1) = λw(P2), then c(P2) = c(P1).

If S is consistent with a cost function c, then there are
only two sources for policy disputes. First, not all paths
have to be permitted at any given node. Second, ranking
functions force ties to be broken, and this may be done dif-
ferently at different nodes. Both reasons are captured in the
following lemma.

Lemma 4.1 If specification S is consistent with cost func-
tion c, and Q −→ P is a dispute arc, where P ∈ Pu

and Q ∈ Pw. Then either (a) (u, w)Q 6∈ Pu or (b)
c(Q) = c(P [w, 0]).

If a cost function c has negative directed cycles, then S

2 0
2 1 01 3 0

1 0

4 3 0
4 2 0

3 0
3 4 2 0

8

8

−4

−4

−4

−4

8

3

2

0

4

1

Figure 7. NAUGHTY GADGET with negative link
costs

can be consistent with c and yet not safe. For example, con-
sider the costs attached to the edges of NAUGHTY GADGET
in Figure 7, where the cost of traversing an edge is the same
in each direction. NAUGHTY GADGET is consistent with
this cost function, but we know from Section 2 that this sys-
tem is not safe. Note that this graph contains a cycle of cost
−16. Also, notice that any S will be consistent with the
cost function c that has cost 0 for every arc and so, in par-
ticular, NAUGHTY GADGET will be consistent with such a
cost function. Thus we restrict ourselves to SPVP specifica-
tions consistent with cost functions that do not realize any
directed cycles of cost at most 0.

Define a cost function c to be coherent if it does not result
in any non-positive directed cycles. Note that any positive
cost function is coherent.

Theorem 4.2 If S is consistent with a coherent cost func-
tion, then S has no dispute wheel.

Proof: Suppose that c is a coherent cost function, S is
consistent with c, and S contains a dispute wheel of size k.
For any 0 ≤ i ≤ k − 1 we have λui(Qi) ≤ λui(RiQi+1),
and so c(RiQi+1) = c(Ri) + c(Qi+1) ≤ c(Qi). Summing
these inequalities we obtain

k−1
∑

i=0

c(Ri) + c(Qi+1) ≤

k−1
∑

i=0

c(Qi).

After cancellation this implies
∑k−1

i=0 c(Ri) ≤ 0. Thus the
rim of the dispute wheel is a cycle of cost at most zero,
which is a contradiction.

From Corollary 3.12, we can conclude that any S consis-
tent with a positive cost function is safe. In particular, rout-
ing policies based on hop-count (even with AS-padding) are
always safe. In addition, it can be shown that if all paths are
permitted, then this results in a shortest-path routing tree.

We now show that the converse of Theorem 4.2 is not
true. The specification INCOHERENT of Figure 8 has an
acyclic dispute digraph and hence is safe. However, it
is not consistent with any coherent cost function. To see
this, suppose that we are given arc costs c(1, 2) = A,

c(2, 3) = B, c(3, 1) = C, c(1, 0) = D, c(3, 0) = E

and c(4, 3) = F . The cost for any other arc is arbi-
trary. Suppose INCOHERENT is consistent with these costs,
then the fact that node 1 prefers path [1 2 3 0] over path
[1 0] means that A + B + E ≤ D. Also the fact that
node 4 prefers path [4 3 1 0] over path [4 3 0] means that
F + C + D ≤ F + E. Adding these inequalities together
we obtain A + B + C + D + E + F ≤ D + E + F .
By cancellation, we arrive at A + B + C ≤ 0, so there
is a nonpositive cycle (123). That is, INCOHERENT is not
consistent with any coherent cost function. Notice that the
dispute digraph of INCOHERENT, as shown in Figure 8, is
acyclic and hence INCOHERENT is safe.

In summary, the class of specifications with acyclic dis-
pute digraphs is provably safe, yet it is strictly larger than
those based on shortest paths.

1

0

4

1 2 3 0
1 0

4 3 1 0
4 3 0

4 3 0 3 0 2 3 0 1 2 3 0

1 03 1 04 3 1 0

3 3 0
3 1 0

2
2 3 0

A B
C

D D

F

Figure 8. INCOHERENT and its dispute digraph.

5 Discussion and Future Work

Is it possible to guarantee that BGP will not diverge?
Broadly speaking, this problem can be addressed either stat-
ically or dynamically. A static solution would rely on pro-
grams to analyze routing policies to verify that they do
not contain policy conflicts that could lead to protocol di-
vergence. This is essentially the approach advocated in
Govindan et al. [4]. However, there are two practical chal-
lenges facing this approach. First, autonomous systems cur-
rently do not widely share their routing policies, or only
publish incomplete specifications. Second, even if there
were complete knowledge of routing policies, Griffin and
Wilfong [6] have recently shown that checking for various
global convergence conditions is either NP-complete or NP-
hard. Therefore, a static approach would most likely require
the development of new heuristic algorithms for detecting
this class of policy conflict.

A dynamic solution to the BGP divergence problem
would be some mechanism to suppress or completely pre-
vent at “run time” those BGP oscillations that arise from
policy conflicts. Using route flap dampening [12] as a dy-
namic mechanism to address this problem has two distinct
drawbacks. First, route flap dampening cannot eliminate
BGP protocol oscillations, it will only make these oscilla-
tions run in “slow motion”. Second, route flap dampening
events do not provide network administrators with enough
information to identify the source of the route flapping. In
other words, route flapping caused by policy conflicts will
look the same as route flapping caused by unstable routers
or defective network interfaces. So it seems that any dy-
namic solution would require an extension to the BGP pro-
tocol to carry additional information that would allow pol-
icy disputes to be detected and identified at run time.

The proof of Theorem 3.11 contains an algorithm for ex-
tracting dispute wheels from dynamic cycles in the eval-
uation graph. This may provide a key to the design of a
dynamic solution. It might be possible to extend the BGP
protocol in such a way that this “extraction” can be done in
a distributed manner. This could allow for the suppression
of routes involved in policy-based oscillations and for the
identification of the autonomous systems involved.

References

[1] D. Bertsekas and R. Gallagher. Data Networks. Prentice
Hall, 1992.

[2] M. Gouda and M. Schneider. Maximizable routing metrics.
Proc. Sixth International Conference on Network Protocols,
pages 71–78, 1998.

[3] M. Gouda and M. Schneider. Stabilization of maximal met-
ric trees. Workshop on Self-Stabilizing Systems ’99, 1999.

[4] R. Govindan, C. Alaettinoglu, G. Eddy, D. Kessens, S. Ku-
mar, and W. Lee. An architecture for stable, analyzable in-
ternet routing. IEEE Network, 13(1):29–35, 1999.

[5] T. Griffin, F. Shepherd, and G. Wilfong. Policy disputes in
path-vector protocols. Bell Labs Technical Memorandum,
1999.

[6] T. Griffin and G. Wilfong. An analysis of BGP convergence
properties. In SIGCOMM’99, 1999.

[7] B. Halabi. Internet Routing Architectures. Cisco Press,
1997.

[8] C. Hendrick. Routing information protocol. RFC 1058,
1988.

[9] Y. Rekhter and T. Li. A border gateway protocol. RFC 1771
(BGP version 4), 1995.

[10] J. W. Stewart. BGP4, Inter-Domain Routing in The Internet.
Addison-Wesley, 1998.

[11] K. Varadhan, R. Govindan, and D. Estrin. Persistent route
oscillations in inter-domain routing. ISI technical report 96-
631, USC/Information Sciences Institute, 1996.

[12] C. Villamizar, R. Chandra, and R. Govindan. BGP route flap
damping. RFC 2439, 1998.

