
The Stratified Shortest-Paths Problem
(Invited Paper)

Timothy G. Griffin
Computer Laboratory

University of Cambridge
Email: Timothy.Griffin@cl.cam.ac.uk

Abstract—In the last ten years it has become clear that some
Internet routing protocols do not compute globally optimal paths,
but only locally optimal ones. This represents something rather
novel in the context of the vast literature on routing protocols
for data networking. This paper introduces the Stratified Shortest-
Paths Problem as a tool for exploring the borderline between local
and global optimality problems. The paper contains a tutorial
overview of the algebraic concepts used.

I. A STEP BEYOND SHORTEST PATHS

In attempting to model inter-domain routing in the Internet
it was discovered that global optimality is not an appropriate
framework. Instead, local optimality seems more reasonable.
With local optimality it may not be possible for nodes to
achieve globally optimal paths, but only the best paths given all
the paths available from neighbors. This was first formalized in
a graph-theoretic model called the Stable Paths Problem [10],
and later Sobrinho cast the analysis in a more algebraic
framework [20], [21].

Section II reviews algebraic generalizations of the short-
est paths problem. This research arose primarily from the
Operations Research community — see [6] for an excellent
summary of results from the last four decades. Since the
algebraic approach to routing is not widely known in the data
networking community, I have attempted to make this a short
tutorial overview. The section ends by presenting some of the
more exotic extensions that have evolved in recent years to
model local optimality problems.

This paper introduces the Stratified Shortest-Paths Problem
as an aid for exploring the borderline between local and
global optimality problems. The basic idea (formalized in
Section III), is to consider routing metrics that essentially have
the form

(s, d),

where s is a stratum level in {0, 1, 2, . . . , m − 1}, and d
is a “shortest-paths” distance. Routing metrics are compared
lexicographically, where

(s1, d1) < (s2, d2)

when s1 < s2, or when s1 = s2 and d1 < d2. Policies on arcs
have two components: one applied to the stratum and the other
an integer weight added on to the accumulating distance. The
policies on strata are restricted so that the resulting algebra
always can be used to find local optima (Section II).

The full stratified shortest path problem for m strata comes
with (m+1)! distinct policy functions over strata. Section IV
considers some interesting subsets of this rich policy space
which give rise to routing structures with special properties.
Some of these sub-algebras can be used to find globally
optimal paths, while others only locally optimal paths. Open
problems are discussed in Section V.

II. GLOBAL VS. LOCAL OPTIMA

Figure 1 presents a simple directed graph with arc weights
in N (in this example, the weight on arc (i, j) is the same
as that on arc (j, i), and so the orientation is not shown). We
represent such a graph as G = (V, E), where V is a set
of vertices and E ⊆ V × V is a set of arcs. Arc weights
in this case are represented by a function E → N∞, where
N∞ = N∪{∞} and w(i, j) = ∞ is taken to mean that there
is no arc from i to j.

A weight function w can also be represented as an adja-
cency matrix [3]. For example, the weights on the graph of
Figure 1 can be represented by the matrix

A =



1 2 3 4 5

1 ∞ 2 1 6 ∞
2 2 ∞ 5 ∞ 4
3 1 5 ∞ 4 3
4 6 ∞ 4 ∞ ∞
5 ∞ 4 3 ∞ ∞


The value along the main diagonal is usually taken to be 0
or ∞ depending on minor details of the presentation. The
solution to the all-pairs shortest path problem is a matrix R
such that

R(i, j) = min
p∈P(i, j)

w(p),

where P(i, j) represents the set of all paths from node i to
node j in the graph G and w(p) is the summation of all arc
weights along this path (the weight of the empty path is taken
to be 0). Since p ranges over all paths from i to j, I will refer
to this as a globally optimal solution.

For the example of Figure 1, the solution is

R =



1 2 3 4 5

1 0 2 1 5 4
2 2 0 3 7 4
3 1 3 0 4 3
4 5 7 4 0 7
5 4 4 3 7 0


978-1-4244-5489-1/10/ $26.00 c©2010 IEEE

1

2

3

4

5

6

5 42

1

4

3

Fig. 1. Shortest paths example. Bold arrows indicate a shortest-path tree
rooted at node 1.

There are many algorithms, centralized and distributed, for
computing the solution from an adjacency matrix, see for
example [3]. For simplicity, the only algorithm used in this
paper is based on iteration of matrix multiplication.

Matrix multiplication is defined just as is the standard
operation over matrices of reals, except that + is replaced by
min and × is replaced by +. That is, if B and C are matrices,
then

(BC)(i, j) = min
1≤q≤n

B(i, q) + C(q, j). (1)

Note that the identity matrix for multiplication, denoted I, is
defined as I(i, i) = 0 and I(i, j) = ∞, for i 6= j. Matrix
“addition” in this context is defined as

(B min C)(i, j) = B(i, j) minC(i, j). (2)

An iterative method for computing a solution R is defined
as

A(0) = I
A(k+1) = AA(k) min I.

It is then not too hard to show that for an n-node graph,
A(n) = A(n−1), so the iteration terminates after n− 1 steps.
In addition, A(n−1) = R, the globally optimal solution.

Another way of looking at this is by noting that

A(n−1) = AA(n−1) min I.

Thus the matrix A(n−1) solves the matrix equation

X = AX min I. (3)

We can read this equation as saying that a solution X is a
locally optimal solution. Suppose that i 6= j are two nodes.
Then for any X solving Equation 3 we have

X(i, j) = min
1≤q≤n

A(i, q) + X(q, j)

= min
q∈N(i)

w(i, q) + X(q, j),

where N(i) = {q | (i, q) ∈ E} are the neighbors of
node i. That is, X can be thought of as a local solution —
X(i, j) represents the best path weights that i can obtain given
its immediate neighbors’ best paths. Happily, any globally
optimal solution is a locally optimal solution! This will not be
the case for the algebraic structures considered in Section II-C.

A. Semirings

The mathematical basis of shortest-path computations can
be represented concisely as a tuple,

sp = (N∞, min, +, ∞, 0).

A great deal of research has followed from the observation
— first made about 40 years ago — that this (min, +)
structure and many associated algorithms can be generalized
to a very large class of algebraic structures call semirings.
These structures have the form

(S, ⊕, ⊗, 0, 1)

where ⊕ and ⊗ are binary operations over set S, 0 ∈ S is the
identity for ⊕, and 1 ∈ S is the identity for ⊗. Figure 2
presents just a few semirings that might be useful in data
networking.

The symbols normally used for semirings are derived from
the familiar ring

(R, +, ×, 0, 1).

The notation may be a bit confusing when speaking of the
shortest path semiring where ⊕ = min, ⊗ = +, and 1 = 0.
The notation does have one thing going for it — the operations
of matrix addition and multiplication now look more like their
familiar counterparts,

(B⊕C)(i, j) = B(i, j)⊕C(i, j)

(BC)(i, j) =
⊕∑

1≤q≤n

B(i, q)⊗C(q, j).

It turns out that many of the matrix methods for solving several
types of semiring equations are related to analogous methods
in classical linear algebra (see [6] for an extensive account).

What properties of (S, ⊕, ⊗, 0, 1) are required for it to be
a semiring? First, both (S, ⊕) and (S, ⊗) must be semigroups,
which is nothing more than saying their binary operations are
associative. For example, it must be that a⊕(b⊕c) = (a⊕b)⊕c
for every a, b, c ∈ S. The additive operator ⊕ is required to
be commutative. That is, for all a, b ∈ S, a ⊕ b = b ⊕ a.
Furthermore, 0 must be the identity for ⊕ and 1 must be the
identity for ⊗. That is, for all a ∈ S,

a⊕ 0 = 0⊕ a = a
a⊗ 1 = 1⊗ a = a.

In addition, 0 must be an annihilator for ⊗. That is, for all
a ∈ S,

a⊗ 0 = 0⊗ a = 0.

Finally, we need distributivity conditions to hold for multipli-
cation on the right and left of a sum:

L.DIST : a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c),
R.DIST : (a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c).

A graph G = (V, E) can now be weighted over a
semiring with a function w : E → S. The weight of a path

name S ⊕ ⊗ 0 1 possible use in routing

sp N∞ min + ∞ 0 shortest paths
spm [m]∞ min + ∞ 0 shortest paths (bounded distance)
bw N∞ max min 0 ∞ widest paths (greatest capacity)

bwm [m]∞ max min 0 ∞ widest paths (greatest bounded capacity)
rel [0, 1] max × 0 1 most-reliable paths

cup.cap(W) 2W ∪ ∩ {} W shared link attributes?
cap.cup(W) 2W ∩ ∪ W {} shared path attributes?

Fig. 2. A few semiring examples together with possible interpretations in terms of network routing. For many more examples, see [1], [5], [6]. The following
notations are used: N∞ = N ∪ {∞} and [m]∞ = {0, 1, . . . , m− 1, ∞}.

p = v0, v1, v2 · · · vk−1, vk is defined as the product of the arc
weights (remember, ⊗ = + in shortest paths),

w(p) = w(v0, v1)⊗ w(v1, v2)⊗ · · · ⊗ w(vk−1, vk).

The weight of the empty path is 1 (which is 0 in shortest
paths). The globally optimal solution to the all-pairs path
problem is a matrix R such that

R(i, j) =
⊕∑

p∈P(i, j)

w(p).

Such an R is also a solution to the matrix equation

X = AX⊕ I, (4)

and again, globally optimal solutions (if they exist) are locally
optimal solutions.

Figure 3 presents a widest path example using the same
arc weights as the shortest path example of Figure 1, but now
interpreted in the semiring bw (defined in Figure 2). For this
example the solution matrix is

R =



1 2 3 4 5

1 ∞ 4 4 6 4
2 4 ∞ 5 4 4
3 4 5 ∞ 4 4
4 6 4 4 ∞ 4
5 4 4 4 4 ∞


Note that here global optimality is captured by

R(i, j) = max
p∈P(i, j)

w(p),

where w(p) represents the minimal weight along path p.
To find solutions, the iterative method for computing short-

est paths can be generalized to semirings,

A(0) = I
A(k+1) = AA(k) ⊕ I

If the following limit exists,

A∗ = lim
k→∞

A(k)

then A∗ is a solution to Equation 4 (in some sense the best
solution, see [6]).

1

2

3

4

5

2

1 3

6 4

5 4

Fig. 3. Widest paths example, using semiring bw. Bold arrows indicate a
widest-path tree rooted at 1.

There are various sufficient conditions that imply that A∗

exists. Here we assume that the multiplicative identity 1 is
also an additive annihilator,

a⊕ 1 = 1⊕ a = 1.

This is the case with all of the semirings of Figure 2.
In many cases the additive operator ⊕ is idempotent, mean-

ing that a ⊕ a = a for each a ∈ S. All of the examples of
Figure 2 have an idempotent ⊕. In this case we can define a
natural partial order on S as

a ≤ b ⇐⇒ a = a⊕ b.

For this order, the operation ⊕ is the greatest lower bound
(glb). The order is a total order when the operation ⊕ is
selective. That is, if a⊕ b ∈ {a, b} for every a, b ∈ S.

With the assumption that 1 is an additive annihilator, it is
easy to see that for every a ∈ S, 1 ≤ a ≤ 0. (For shortest
paths, this says 0 ≤ a ≤ ∞.) There is another interesting
consequence of this assumption. Note that for any a, b ∈ S,
a = 1⊗ a = (1⊕ b)⊗ a = a⊕ (b⊗ a). Thus we have

a ≤ b⊗ a, (5)

which is related to the inflationary property required of some
algebraic structures treated below.

Figure 4 illustrates the use of the semiring
cup.cap({a, b, c}), whose natural order is a partial

1

2

3

4

5

{a}

{b, c} {b}

{a, b,} {b}

{a, b, c} {c}

Fig. 4. An example using semiring cup.cap({a, b, c}), which has a natural
partial order.

order (in this case ⊇). This example is somewhat unusual
from the network routing perspective, but it illustrates the
generality of the algebraic approach. A solution is a matrix
R satisfying this global optimality condition:

R(i, j) =
⋃

p∈P (i, j)

w(p),

where w(p) is now the intersection of all arc weights in p.
The resulting solution for Figure 4 is

R =



1 2 3 4 5

1 {a b c} {a b c} {a b c} {a b} {b c}
2 {a b c} {a b c} {a b c} {a b} {b c}
3 {a b c} {a b c} {a b c} {a b} {b c}
4 {a b} {a b} {a b} {a b c} {b}
5 {b c} {b c} {b c} {b} {a b c}


which can be obtained by the iterative method. How can this be
interpreted? For x ∈ {a, b, c}, interpret x ∈ R(i, j) to mean
that there is at least one path from i to j with x in every arc
weight along the path. Perhaps this could be used for network
management purposes, where {a, b, c} represent (desirable?)
properties of links. The other partially ordered example from
Figure 2 is cap.cup. Using that algebra, x ∈ {a, b, c} and
x ∈ R(i, j) says that every path from i to j contains an x in
at least one arc weight.

Unlike the previous examples, Figure 4 does not depict a
“best path tree” rooted at node 1. That is because we have a
partial order and no such tree exists, in general. For example,
R(1, 2) = {a, b, c}, since path 1, 2 contributes {a}, path
1, 3, 2 contributes {b, c}, and path 1, 4, 3, 2 contributes {b}. In
other words, no single path from node 1 to node 2 has weight
R(1, 2). Not all path finding algorithms can be generalized to
such semirings — for example, Dijkstra’s algorithm requires
a total order.

B. Beyond Semirings

Many problems (including the stratified shortest-paths prob-
lem) are best modeled by placing functions on arcs. That is, we
sometimes need to replace the multiplicative structure (S, ⊗)
of a semiring with a set of functions F ⊆ S → S. Gondran

and Minoux call the resulting structures algebras of monoid
endomorphisms (AME),

(S, ⊕, F, 0, 1).

As with semirings, we require that (S, ⊕) be a commutative
semigroup with identity 0. Corresponding to the semiring
requirement that 0 is a multiplicative annihilator, we have here
the requirement that f(0) = 0 for every f ∈ F . Finally, every
function f ∈ F must be distributive with respect to ⊕,

DIST : f(a⊕ b) = f(a)⊕ f(b).

A graph G is weighted with functions from F using a
weight function w : E → F . If p = v0, v1, v2 · · · vk−1, vk

is a path in G of k arcs, then the weight of p is

w(p) = w(v0, v1)(w(v1, v2) · · · (w(vk−1, vk)(1) · · ·)).

Another way to write this is

w(p) = (w(v0, v1) ◦ w(v1, v2) ◦ · · · ◦ w(vk−1, vk))(1)

The empty path is given the weight 1.
Every semiring can be considered as an AME by defining

functions fb, where fb(a) = b⊗ a, and letting F = {fb | b ∈
S}. We can also easily restrict the values placed on arcs by
taking only a subset of this F . For example, starting with the
shortest-paths algebra sp, we can construct

sp+ = (N∞, min, F+, ∞, 0),

where F+ is defined so that no arc can be given weight 0. That
is, F+ = {fb | b ∈ N∞ ∧ b 6= 0 ∧ ∀a ∈ N∞ : fb(a) = b + a}.
This algebra is important in Section III.

Matrix multiplication must be redefined. If H is a matrix
containing functions in F and C is a matrix containing
elements in S, then

(HC)(i, j) =
⊕∑

1≤q≤n

H(i, q)(C(q, j)).

The iterative method is redefined as

H(0) = I
H(k+1) = HH(k) ⊕ I.

Note that H(k) is a matrix over S.
Again, we seek sufficient conditions that ensure that H∗

exists. For semirings, we made the assumption that the
multiplicative identity 1 is an additive annihilator. Here we
simply assume that there is an additive annihilator, and we
denote it as 1. With semirings, Equation 5 was derived from
the assumption concerning 1. Here we must assume that all
functions are inflationary with respect to ≤:

∀a ∈ S, f ∈ F : a ≤ f(a).

Again, it is not too difficult to show that under these as-
sumptions H(n−1) is a globally optimal solution for an n-
node graph. In addition, globally optimal solutions are locally
optimal ones, and satisfy the equation

X = HX⊕ I. (6)

1 2

3

4

5

(1 1)

(10, 10) (10, 10) (1, 1)

(1, 1)

(1, 1)
(1, 1)

Fig. 6. A widest-shortest path tree rooted at node 1. The path 1, 3, 2, 4 is
only locally optimal, since 1, 2, 4 has a lower weight but is not compatible
with the best path from node 1 to node 2.

C. Beyond AMEs

We now enter a recently discovered and fairly wild territory
— we are going to allow algebras that do not have distributiv-
ity! In order to show how this might in fact be meaningful and
useful, we first construct one such wild and terrifying algebra
using a lexicographic construction.

Let S = (S,⊕S , FS , 0S , 1S) and T =
(T,⊕T , FT , 0T , 1T) be AMEs. Suppose that ⊕S is
commutative, idempotent, and selective. This means that
the associated order ≤S is total. The lexicographic product
of semigroups (S, ⊕S) and (T, ⊕T) is the semigroup
(S × T,⊕), where

(s1, t1)⊕(s2, t2) =


(s1, t1 ⊕T t2) (if s1 = s2)
(s1, t1) (if s1 < s2)
(s2, t2) (if s2 < s1)

This construction will be used to construct the additive
component of a new AME. The multiplicative component
will be constructed using the direct product, where a pair
(f, g) ∈ FS × FT is taken to represent a new function
h : (S × T) → (S × T),

h(s, t) = (f(s), g(t)).

Now define the lexicographic product of S and T , denoted
S ~× T , as

(S × T, ⊕, FS × FT , (0S , 0T), (1S , 1T)).

This construction does not always result in an AME, because
it may not be distributive. It was shown in [11], [12] that

DIST(S ~× T) ⇐⇒ DIST(S) ∧ DIST(T) ∧ (K(S) ∨ C(T)),

where these properties are defined in Figure 5.
Note that the shortest-widest paths algebra, sp ~× bw, is

distributive. On the other hand, reversing the product results in
bw ~× sp, which might be used to find widest shortest paths in
a graph. This structure is not distributive [19]. Why? Because
¬K(bw) ∧ ¬C(sp).

In spite of this lack of distributivity, we can find widest-
shortest path trees as illustrated in Figure 6. Note that the tree
illustrated in that figure does not represent a globally optimal
tree, only a locally optimal tree. To see this, note that path
4, 2, 1 has weight (1, 2) while path 4, 2, 3, 1 has weight (1, 21).
Although (1, 2) < (1, 21), the best path from node 4 to node

1 is 4, 2, 3, 1 of weight (1, 21). Thus, 4, 2, 3, 1 represents a
locally optimal path.

When can we find local optima when algebraic structures
lack distributivity? Today we know a few sufficient conditions
(for various flavors of proof, see [2], [8], [10], [11], [20], [21]).
Here we use the condition that (S, ⊕, F, 0, 1) be strictly
inflationary, property S.INFL of Figure 5. The cited proofs all
restrict consideration to elementary paths in a graph — those
that do not contain any loops.

To see why this last restriction might be needed, consider
applying the iterative method to the widest-shortest example
of Figure 6:



A(2)(i, 1)

1 (0, ∞)
2 (10, 20)
3 (10, 10)
4 (1, 2)
5 (1, 2)

 →



A(3)(i, 1)

1 (0, ∞)
2 (10, 20)
3 (10, 10)
4 (1, 3)
5 (1, 3)

 →



A(4)(i, 1)

1 (0, ∞)
2 (10, 20)
3 (10, 10)
4 (1, 4)
5 (1, 4)

 → · · · →



A(21)(i, 1)

1 (0, ∞)
2 (10, 20)
3 (10, 10)
4 (1, 21)
5 (1, 21)


Happily, we only count to convergence in this example. In
general, the iterative method can diverge when using non-
distributive, strictly inflationary algebras due to (self-induced)
counting-to-infinity.

If the iterative method is to be salvaged, then we need some
way of restricting weight calculations to elementary paths. For
this we introduce the absorbing product construction. First we
select a new “infinity” 0 that is not in S or T and form the
set

S ×0 T = ((S − {0S})× (T − {0T })) ∪ {0}.

Now, rather than pairs of the form (s, t), we use pairs of the
form 〈s, t〉, which denote elements of S ×0 T ,

〈s, t〉 =
{

0 (if s = 0S ∨ t = 0T)
(s, t) (otherwise)

The direct product is now re-defined so that every pair (f, g) ∈
FS × FT is taken to represent the function h : (S ×0 T) →
(S ×0 T),

h(s, t) = 〈f(s), g(t)〉
h(0) = 0.

The resulting lexicographic product is denoted S ~×0 T . It can
be shown that

(DIST(S) ∧ DIST(T) ∧ K0(S)) =⇒ DIST(S ~×0 T),

where these properties are defined in Figure 5.
We then define an algebra, called paths, as follows. Let EV

represent the set of all sequences of vertices in graph G =

property definition description
DIST ∀a, b ∈ S, f ∈ F : f(a⊕ b) = f(a)⊕ f(b) distributive

INFL ∀a ∈ S, f ∈ F : a ≤ f(a) inflationary

S.INFL ∀a ∈ S, F ∈ F : a 6= 0 =⇒ a < f(a) strictly inflationary

K ∀a, b ∈ S, f ∈ F : f(a) = f(b) =⇒ a = b cancellative

K0 ∀a, b ∈ S, f ∈ F : f(a) = f(b) =⇒ (a = b ∨ f(a) = 0) almost cancellative

C ∀a, b ∈ S, f ∈ F : f(a) = f(b) constant

C0 ∀a, b ∈ S, f ∈ F : f(a) 6= f(b) =⇒ (f(a) = 0 ∨ f(b) = 0) almost constant

Fig. 5. Some properties for algebraic structures of the form (S, ⊕, F, 0, 1). Note that in this paper we consider only lexicographic products whose first
component is totally ordered. In [11], [12] the properties K and C are more complex since a more general form of the lexicographic product is studied. The
property C0 is used in Section IV-C. The property inflationary is called monotonicity in [20], [21] and increasing in [8], [12].

(V, E) that have no repeated vertices. For each arc (i, j) ∈ E
define the function f(i, j) as

f(i, j)(σ) =
{
∞ (if σ = ∞∨ i ∈ jσ)
jσ (otherwise)

Here jσ denotes the concatenation of j onto the sequence σ.
Let FE denote the set of all such functions. We abuse notation
a little and extend the application of such functions to sets
U ⊆ EV ,

f(i, j)(U) = {σ′ | σ′ = f(i, j)(σ) ∧ σ ∈ U ∧ σ′ 6= ∞)}

Finally, the algebra paths is defined as

paths = (2EV ∪ {∞}, ∪, FE , EV , {}).

This is essentially an algebraic encoding of the ASPATH from
BGP (but not meant to be in any way efficient, since here we
carry along a set of paths, that may grow exponentially large
with respect to the size of the graph).

We can then “fix” the widest-shortest path algebra by adding
paths using an absorbing product,

(bw ~× sp) ~×∞ paths,

and the iterative method will always converge. Note that this
is not the best way to implement the iterative method, since
it could lead to path sets that are exponentially large (with
respect to the size of the graph). However, this approach allows
us to make connections with extensive literature on algebraic
routing. It also allows us to make a clear distinction between
the problem being solved and the algorithms used to solve it.

III. STRATIFIED SHORTEST-PATHS

We now construct the stratified shortest-paths algebra as

strspm = Sm ~×∞ sp+,

where the strata algebra Sm is defined below. We want strspm

to be strictly inflationary so that it can be used to solve
local optimality problems. With a minor change to the proofs
of [11], [12] to accommodate the absorbing product, it is easy
to show that

(S.INFL(S) ∨ (INFL(S) ∧ S.INFL(T))) =⇒ S.INFL(S ~×0 T).

Since S.INFL(sp+) this means that Sm need only be infla-
tionary. Therefore, let INFm denote the set of all inflationary
policy functions over [m]∞,

INFm = {f ∈ [m]∞ → [m]∞ | ∀a ∈ S, a ≤ f(a)}.

The (inflationary) strata algebra (an AME) is then defined as

Sm = ([m]∞, min, INFm, ∞, 0).

Note that there are (m + 1)! policies in INFm.
Let’s make sure we understand the definition of strspm.

Metrics are of of the form ∞, representing lack of reachability,
or of the form (s, d), where s ∈ [m]∞ is a stratum and d ∈
N is a distance. Such metrics are compared lexicographically
with the stratum being most significant. Policy functions (arc
weights) are represented as pairs, (f, w), where f ∈ INFm

and w ∈ N and 0 < w. The policy application is defined as

(f, w)(s, d) = 〈f(s), w + d〉,
(f, w)(∞) = ∞.

Note the use of the absorbing product (defined in Section II-C).
If either element of the pair becomes ∞, then the pair is
replaced by ∞

Figure 7 presents the sets INFm, for m ∈ {1, 2, 3}.
Functions f ∈ INFm are represented as a vector

f = (x0, x1, . . . , xm−1)

where each xi is in [m]∞, and f(s) = xs. Since f(∞) = ∞
for all inflationary functions, this is left implicit. For example,
for function q of Figure 7 (c) we have

q(0) = 2
q(1) = ∞
q(2) = 2

q(∞) = ∞.

Figure 7 also contain information concerning some properties
of each policy that are discussed in the next section.

Figure 8 presents two examples over strsp3. The configu-
rations of the two graphs are nearly the same — they differ
only in the weight on the first link (2, 1). Yet this change
results in very different best-path trees rooted at node 1.

0 DIST K∞ C∞
a 0 ? ? ?
b ∞ ? ? ?

(a) Policy functions for one stratum, INF1.

0 1 DIST K∞ C∞
a 0 1 ? ?
b 0 ∞ ? ? ?
c 1 1 ? ?
d 1 ∞ ? ? ?
e ∞ 1 ? ?
f ∞ ∞ ? ? ?

(b) Policy functions for two strata, INF2

0 1 2 DIST K∞ C∞
a 0 1 2 ? ?
b 0 1 ∞ ? ?
c 0 2 2 ?
d 0 2 ∞ ? ?
e 0 ∞ 2 ?
f 0 ∞ ∞ ? ? ?

g 1 1 2 ?
h 1 1 ∞ ? ?
i 1 2 2 ?
j 1 2 ∞ ? ?
k 1 ∞ 2 ?
l 1 ∞ ∞ ? ? ?

m 2 1 2
n 2 1 ∞ ?
o 2 2 2 ? ?
p 2 2 ∞ ? ?
q 2 ∞ 2 ?
r 2 ∞ ∞ ? ? ?

s ∞ 1 2 ?
t ∞ 1 ∞ ? ?
u ∞ 2 2 ?
v ∞ 2 ∞ ? ?
w ∞ ∞ 2 ? ?
x ∞ ∞ ∞ ? ? ?

(c) Policy functions for three strata, INF3

Fig. 7. The sets INFm of increasing policy functions, for m ∈ {1, 2, 3}.
The last entry of each policy is not shown since it is always ∞. For example,
in table (c), n represents the policy vector (2, 1, ∞, ∞). The set INFm

can be treated as a subset of INFm+1. However, there is no relationship
between these tables with respect to the (arbitrary) names assigned to policy
functions.

〈0, 3〉 〈0, 4〉

〈0, 2〉 〈0, 2〉

〈0, 0〉 〈0, 1〉1 2

3 4

5 6

(d, 1)

(j, 1)

(a, 1)

(b, 1)(f , 1)

(f , 1)

(a, 1)

(f , 1)

(a) A weighted graph over strsp3.

〈2, 4〉 〈2, 3〉

〈2, 3〉 〈1, 2〉

〈0, 0〉 〈1, 1〉1 2

3 4

5 6

(f , 1)

(f , 1)

(l, 1)

(b, 1)

(d, 1)

(j, 1)
(f , 1)

(a, 1)

(b) Like (a), but the weight on arc (2, 1) is changed
from (a, 1) to (l, 1).

Fig. 8. A best path trees rooted at node 1 are shown in bold. Note that
(a, 1)(0, 0) = (0, 1), whereas (l, 1)(0, 0) = (1, 1). This makes a large
impact on the best path tree rooted at 1.

IV. SUB-ALGEBRAS

Given that | INFm |= (m + 1)!, the policy space on m
strata is quite large. In this section we investigate restricting
this space to subsets of policies W ⊆ INFm. The associated
sub-algebras are denoted by

Sm(W) = ([m]∞, min, W, ∞, 0),

strspm(W) = Sm(W) ~×∞ sp+.

Of course this gives rise to an enormous space of sub-algebras!
For example, with m = 3 there are 224 sub-algebras. Our
challenge then is to identify subsets W so that the resulting
sub-algebras are somehow useful or interesting. Some may be
useful for solving particular routing problems, while others
may prove useful in solving problems that have nothing
whatsoever to do with routing!

If P is a property (such as DIST), then Em(P) represents
the set of all policies in INFm satisfying property P. Of
course the algebra Sm(Em(P)) has property P by definition.
However, note well that since the algebra strspm(Em(P))
is constructed with the lexicographic product, it may fail to

1 2

3

4

5

(j, 1)

(s, 1)(a, 10) (a, 10)

(a, 1)

Fig. 9. Shortest paths with filters, over INF3. Note that the path 5, 4, 2, 1
with weight (1, 3) would be the globally best path from node 5 to node 1.
But in this case, poor node 5 is left with no path! The locally optimal solution
has R(5, 1) = ∞.

have property P. But remember, by construction strspm(W)
is always strictly inflationary, so locally optimal solutions to
path problems can always be found (Section II-C).

A. Almost shortest paths

Some policy functions in fk ∈ INFm can be represented as
fk = (k, k+1, . . . , m−1, ∞, ∞, · · · , ∞), and interpreted
as the +k function. Since f0, f1, . . . , fm ∈ INFm, we see
that spm (defined in Figure 2) is contained in Sm as a sub-
algebra. For example,

0 1 2 DIST K∞ interpretation
a 0 1 2 ? ? +0
j 1 2 ∞ ? ? +1
r 2 ∞ ∞ ? ? +2
x ∞ ∞ ∞ ? ? +3

are the “additive” policy functions of S3. Note that this set
results in a stratified shortest path algebra that is distributive.

We can extend this set to construct an algebra that might
be interpreted as shortest paths with filtering. In INF3, these
functions are

0 1 2 DIST K∞ interpretation
a 0 1 2 ? ? +0
j 1 2 ∞ ? ? +1
r 2 ∞ ∞ ? ? +2
x ∞ ∞ ∞ ? ? +3
b 0 1 ∞ ? ? filter 2
e 0 ∞ 2 ? filter 1
f 0 ∞ ∞ ? ? filter 1, 2
s ∞ 1 2 ? filter 0
t ∞ 1 ∞ ? filter 0, 2
w ∞ ∞ 2 ? filter 0, 1

Note that the associated stratified shortest paths problem
admits only locally optimal solutions in general. Figure 9
presents an example over INF3. This example illustrates
another important point concerning non-distributive path prob-
lems — a shortest path tree may not be a spanning tree even
in a completely connected graph.

B. Distributive sub-algebras

A interesting subset of INFm are those functions that have
have property DIST. Figure 10 presents E3(DIST). Observe
that the set Em(DIST) itself can be treated as a semiring! If

0 1 2 K∞ C∞
a 0 1 2 ?
b 0 1 ∞ ?
c 0 2 2
d 0 2 ∞ ?
f 0 ∞ ∞ ? ?
g 1 1 2
h 1 1 ∞ ?
i 1 2 2
j 1 2 ∞ ?
l 1 ∞ ∞ ? ?
o 2 2 2 ?
p 2 2 ∞ ?
r 2 ∞ ∞ ? ?
x ∞ ∞ ∞ ? ?

Fig. 10. The set E3(DIST) containing all distributive policies functions of
of Figure 7 (c).

we define f min g to be the function such that (f min g)(s) =
f(s) min g(s), then

(Em(DIST), min, ◦, (∞, ∞, . . . ,∞), (0, 1, 2, . . . , m, ∞))

is a semiring (proof left to the reader).
Figure 11 presents an example a graph using this semiring.

As with Figure 4, this semiring is associated with a partial
order, and so no best-paths tree is shown. The values (functions
in this case!) next to each node are the globally optimal values
associated with paths to node 1. For example, the value shown
at node 5 results from

(0, 2,∞) = (0,∞, ∞) min(1, 2,∞),

where (0,∞, ∞) = w(5, 4, 2, 1) and (1, 2,∞) =
w(5, 6, 4, 2, 1). How can we interpret the function (0, 2,∞)
at node 5? One possibility is to say that if node 1 originated a
0-value, node 5 would see a 0-value, if node 1 originated a 1-
value, node 5 would see a 2-value, and if node 1 originated a
2-value, node 5 would see a ∞ (no path). (Perhaps such what-
if functions could actually be exploited in data networking.)

But the set Em(DIST) does not give rise to a stratified
shortest path sub-algebra that is distributive! From the rules
of Section II-C we see this set of policies must be further
restricted to those that are almost cancellative. Figure 12
presents these policy functions. Note that both examples of
Figure 8 use this algebra. This may seem strange if our
intuition is entirely based on shortest paths, where sub-paths
of shortest paths are themselves shortest paths. In other words,
distributivity alone is not enough to prevent this kind of
behavior (an algebra needs to be cancellative).

C. Autonomous routing — BGP revisited

BGP is the interdomain routing protocol used to maintain
connectivity between autonomous networks in the global In-
ternet [13], [18], [22]. BGP does not have any guarantees
of convergence [16] — some routing policies can cause the
BGP speakers to exchange routes forever without establishing

(0, 2, ∞) (1, 2, ∞)

(0, 2, ∞) (0, 1, ∞)

(0, 1, 2) (0, 1, 2)1 2

3 4

5 6

d

j

a

bf

f

a

f

Fig. 11. An example using the semiring of distributive policy functions.
This is essentially the configuration of Figure 8 (a), except that here policy
functions are used as weights and values.

0 1 2
a 0 1 2
b 0 1 ∞
d 0 2 ∞
f 0 ∞ ∞
j 1 2 ∞
l 1 ∞ ∞
r 2 ∞ ∞
x ∞ ∞ ∞

Fig. 12. Policy functions of Figure 7 (c) having both DIST and K0.
It follows from Section III that the stratified shortest paths sub-algebra
strspm(Em(DIST ∧ K0)) is distributive.

a stable routing. However, the natural economic constraints
of interdomain routing [14], [15] do seem to go a long way
toward ensuring stable routing policies [4].

Sobrinho first modeled this algebraically [20], [21]. Suppose
we have three strata {0, 1, 2}, interpreted as follows: 0 is the
type of a downstream route, 1 is the type of a peer route, and
2 is the type of an upstream route. The policy functions for
customer-peer-provider links can be taken from Figure 7 (c),

0 1 2
f 0 ∞ ∞
l 1 ∞ ∞
o 2 2 2

Here f would be used on a downstream arc, l on a peer arc,
and o on an upstream arc.

These simple policies are naturally seen as a subset of
all autonomous policy functions — those functions having
property C∞. Figure 13 lists these functions from INF3. Why
are these called autonomous1 policy functions? Because in a
distributed environment, these policies can be implemented
without passing a stratum number “across the wire”. For

1While I am on the topic of autonomy, let me apologize for the confusing
way in which this topic was treated in [9]. Happily, in the same session of that
SIGCOMM, João Luı́s Sobrinho first mapped the way forward by sketching
out an algebraic approach to modeling BGP [20].

0 1 2 DIST K∞
f 0 ∞ ∞ ? ?
h 1 1 ∞ ?
l 1 ∞ ∞ ? ?
o 2 2 2 ?
p 2 2 ∞ ?
q 2 ∞ 2
r 2 ∞ ∞ ? ?
t ∞ 1 ∞ ?
u ∞ 2 2
v ∞ 2 ∞ ?
w ∞ ∞ 2 ?
x ∞ ∞ ∞ ? ?

Fig. 13. The policy functions of Figure 7 (c) having property C∞.

example, in E3(C∞) we have

p = (2, 2, ∞) = (2, 2, 2) ◦ (1, 2, ∞),

which means that the one router can use (1, 2, ∞) as an
export policy, while the other end of the link uses (2, 2, 2)
as an import policy — the composition giving rise to the actual
arc’s policy (2, 2, ∞). This is exactly how pure BGP works
(without communities) since the LOCAL PREF attribute is
not sent over the wire and the abstract “policy on the arc” is
implemented as the composition of export and import policies.

However, there is no reason to suppose that the full range of
autonomous policies are not actually being used somewhere in
the wide Internet. Each of them can be given a perfectly rea-
sonable economic interpretation. For example, p = (2, 2,∞)
could be used for some kind of discount provider that only
gives me routes from its peers and customers, but none of its
own upstream routes. And q = (2,∞, 2) could be a provider
that does not provide me with its peer routes.

Note that there may be many interesting subsets of au-
tonomous policies having interesting and distinct interpreta-
tions. For example, consider the following properties,

0 1 2 DIST K∞ C∞
f 0 ∞ ∞ ? ? ?
t ∞ 1 ∞ ? ?
w ∞ ∞ 2 ? ?
l 1 ∞ ∞ ? ? ?
r 2 ∞ ∞ ? ? ?
v ∞ 2 ∞ ? ?

This might be interpreted as an algebra of independent paths.

D. Sub-strata

We could replace use of the strata algebra Sm with the
lexicographic product of two strata algebra

Sm ~×∞ Sk

in order to model strata with sub-strata. Note that we are not
really introducing anything new here since this product can be
encoded as a sub-algebra of Sm×k. But it may be easier to

comprehend the rules when they are written explicitly using
sub-strata. For example, the safe backup policies of [7] can be
modeled as a sub-algebra of of Sm ~×∞ S3.

〈s, 0〉 〈s, 1〉 〈s, 2〉
D 〈s, 0〉 〈s + 1, 0〉 〈s + 1, 0〉
P 〈s, 1〉 〈s + 1, 1〉 〈s + 1, 1〉
U 〈s, 2〉 〈s, 2〉 〈s, 2〉

The first primary strata acts as a counter for how many
times the customer-provider-peer rules have been “violated”.
Of course we could augment this collection of policies with
various types of filters.

V. OPEN PROBLEMS

This paper presents only a preliminary peek at the stratified
shortest-paths problem. My hope is that at least a few readers
will be inspired to look deeper. I’ll wrap up by presenting
some open problems that seem worth pursuing.

Complexity. In general, we have very little understanding
of the computational complexity of finding solutions for the
locally optimal paths in strictly inflationary algebras. Perhaps
the more restricted nature of the stratified shortest-paths prob-
lem will allow some progress to be made on this question. It is
not clear that worst-case intractability would be entirely fatal
since the global Internet routing system seems to be chugging
along fairly well.

New algorithms. I have made every effort here to make
a clear distinction between the specification of the problem
being solved and algorithms used to solve a problem. In fact,
for strictly inflationary, non-distributive algebras we know only
algorithms derived from path-vectoring. Perhaps there exist
many others for strspm or for special case strspm(W), where
W is a subset of the full set of (m + 1)! policy functions.
Again, it is hoped that the concrete nature of the stratified
shortest path problem might make it easier to make progress
along new algorithmic avenues.

Applications. The stratified shortest-paths problem arose
from models of inter-domain routing, but I suspect that there
may be many applications far removed from networking that
can be modeled with such algebraic structures. There may be
many interesting sub-languages lurking within INFn.

Interdomain Stratigraphy. Some researchers have at-
tempted to infer AS-path relationships from collected data, (for
example [17]). This work seems to assume that all the ASes are
using a very simple set of policies. But how can we tell if this
is true? The LOCAL PREF attribute is a 32 bit quantity, so in
the worst case we have to consider INF232 , which contains
232! policies — and with the use of communities, each of
these policies is actually implementable in BGP.

It would be interesting to know the number of distinct
LOCAL PREF values used by each AS in the public Internet.
Call the maximum value among these k. If we were omniscient
and could peek inside of every router configuration in the
world, then we would probably do a good job of modeling

BGP using a subset of INFk (ignoring MED and other traffic
engineering attributes). But how is the inference problem
impacted by k? What is the difference between inference for
INFk and INFk+1?

ACKNOWLEDGEMENTS

I would first like to thank the organizers of COMSNETS
2010 for inviting me to present this paper. Some of the ideas
in the paper arose first while I was presenting a tutorial at
the University of Carlos III, in Madrid. Discussions there
with Iljitsch van Beijnum were especially helpful. Thanks
also to M. Abdul Alim, Arthur Azevedo de Amorim, John
Billings, Jon Crowcroft, Marcelo Fiore, Alexander Gurney,
Vilius Naudžiūnas, João Sobrinho, and Philip Taylor for their
helpful discussions and feedback. Finally, I am grateful for
financial support from EPSRC (grant EP/F002718/1), Boeing,
and Cisco Systems.

REFERENCES

[1] B. Carré. Graphs and Networks. Oxford University Press, 1979.
[2] C. Chau, R. Gibbens, and T. G.Griffin. Towards a unified theory of

policy-based routing. In Proc. IEEE INFOCOM, April 2006.
[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction

to Algorithms. MIT Press, Cambridge, MA, second edition, 2001.
[4] L. Gao and J. Rexford. Stable internet routing without global coordina-

tion. IEEE/ACM Transactions on Networking, pages 681–692, December
2001.

[5] M. Gondran and M. Minoux. Graphs and Algorithms. Wiley, 1984.
[6] M. Gondran and M. Minoux. Graphs, Dioids, and Semirings : New

Models and Algorithms. Springer, 2008.
[7] T. G. Griffin, L. Gao, and J. Rexford. Inherently safe backup routing

with BGP. In Proc. IEEE INFOCOM, April 2001.
[8] T. G. Griffin and A. J. T. Gurney. Increasing bisemigroups and algebraic

routing. In 10th International Conference on Relational Methods in
Computer Science (RelMiCS10), April 2008.

[9] T. G. Griffin, A. D. Jaggard, and V. Ramachandran. Design principles of
policy languages for path vector protocols. In Proc. ACM SIGCOMM,
2003.

[10] T. G. Griffin, F. B. Shepherd, and G. Wilfong. The stable paths problem
and interdomain routing. IEEE/ACM Transactions on Networking,
10(2):232–243, April 2002.

[11] A. Gurney. Construction and verification of routing algebras. PhD
dissertation, 2009.

[12] A. J. T. Gurney and T. G. Griffin. Lexicographic products in metarouting.
In Proc. Inter. Conf. on Network Protocols, October 2007.

[13] S. Halabi and D. McPherson. Internet Routing Architectures. Cisco
Press, second edition, 2001.

[14] G. Huston. Interconnection, peering and settlements: Part I. Internet
Protocol Journal, 2(1), June 1999.

[15] G. Huston. Interconnection, peering and settlements: Part II. Internet
Protocol Journal, 2(2), June 1999.

[16] K.Varadhan, R.Govindan, and D. Estrin. Persistent route oscillations in
inter-domain routing. Computer Networks, 32:1–16, 2000.

[17] Z. M. Mao, L. Qiu, J. Wang, and Y. Zhang. On as-level path inference.
In Proc. ACM SIGMETRICS, 2005.

[18] Y. Rekhter, T. Li, and S. Hares. A Border Gateway Protocol 4 (BGP-4).
RFC 4271, January 2006.

[19] J. L. Sobrinho. Algebra and algorithms for QoS path computation
and hop-by-hop routing in the Internet. IEEE/ACM Transactions on
Networking, 10(4):541–550, August 2002.

[20] J. L. Sobrinho. Network routing with path vector protocols: Theory and
applications. In Proc. ACM SIGCOMM, September 2003.

[21] J. L. Sobrinho. An algebraic theory of dynamic network routing.
IEEE/ACM Transactions on Networking, 13(5):1160–1173, October
2005.

[22] I. van Beijnum. BGP : Building Reliable Networks with the Border
Gateway Protocol. O’Reilly, 2002.

