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ABSTRACT
Traffic engineering in Internet backbones can be improved
by off-line optimization algorithms that automatically con-
figure link weights used by routing protocols. However,
with existing protocols large networks often require some
type of partitioning in order to scale the routing protocol,
and these partitions actually complicate the metrics to the
extent that link-weight optimization is no longer practical.
In this paper we study how an algebraic specification of a
path problem can be naturally decomposed into simpler sub-
problems where each sub-problem can then be solved in-
dependently without changing the global metric being used
network-wide. In addition, we go on to study four possible
combinations of link-state and distance-vector mechanisms
in this setting. In particular, we attempt to clarify the trade-
offs between fast convergence of link-state and low space re-
quirements of distance-vector. The results provide a frame-
work for analyzing existing mechanisms and for designing
more reliable and robust routing protocols.

Categories and Subject Descriptors
C.2 [Computer-Communication Networks]; C.2.2
[Network Protocols]: Routing protocols

General Terms
Theory, Algorithms
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Routing protocols, Algebraic path problem, Link-state,
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Most Internet routing protocols respond to topol-
ogy changes but not to shifts in traffic load [1]. Typi-
cally, link weights are adjusted at network management
time scales to improve network performance. Recent
research on traffic engineering has shown how off-line
algorithms can be used to configure link weights to solve
various network-wide optimization problems [2, 3].

For campus, corporate, or service provider backbones,
the most common intra-domain protocols used are OSPF
and IS–IS. Both of these protocols provide mechanisms
to partition networks into regions in order to allow the
protocols to scale to very large networks. However,
with both protocols the introduction of regions actu-
ally complicates the metric used for finding best paths.
Furthermore, this complication precludes the use of the
automated traffic engineering tools just mentioned.

In this paper we address this issue by untangling the
path problem being solved from the mechanisms used
to solve the problem. We study how an algebraic spec-
ification of a path problem can be decomposed into
simpler sub-problems where each sub-problem can be
solved with a link-state or path-vector approach with-
out changing the global metric being used (Sections 2
and 3). Informally, this decomposition partitions the
network into regions and a core that spans the regions.

Dijkstra’s shortest-path first (SPF) algorithm is asso-
ciated with link-state routing protocols such as OSPF
and IS–IS that are commonly used in enterprise net-
works because of the fast convergence of the SPF al-
gorithm. On the other hand, path- or distance-vector

routing protocols such as RIP and the Border Gate-
way Protocol (BGP) use the distributed Bellman-Ford
(DBF) algorithm [1]. There is a clear trade-off — link-
state protocols converge faster but require more mem-
ory at each router, while distance-vector protocols are
slower to converge but require much less memory.

We develop an analytic cost model for four possi-
ble combinations of link-state and path-vector mech-
anisms to be used inside regions and in the core (Sec-
tion 5.3). We have shown that hybrid algorithms have
better space-time trade-offs than using the same algo-
rithm. Moreover, we have observed that the SPF inside
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Figure 1: A few simple semirings.

regions and the DBF in the core graph is the best alter-
native for practical networks. We then present simula-
tion results of hybrid algorithms in Section 5.3. Related
work and open problems are discussed in Section 6.

2. PRELIMINARIES
The model we develop is not restricted to shortest-

path routing, but can be applied to a very large class of
routing metrics. For background, this section contains a
brief review of this theory. The reader should consult [4,
5] for more details.

The standard shortest-path routing uses weights drawn
from the structure sp = (N∞, min, +, ∞, 0), where
N

∞ = N ∪ {∞}. This structure, and many of its as-
sociated algorithms, can be generalized to a large class
of algebraic structures called semirings. Semirings have
the form (S,⊕,⊗, 0, 1), comprised of a carrier set S,
an associative and commutative additive operation ⊕,
an associative multiplicative operation ⊗, an additive
identity 0, and a multiplicative identity 1. The binary
operations satisfy the distributivity laws — ⊗ must dis-
tribute over finite ⊕-sums. In addition, 0 must be an
annihilator for ⊗. That is, ∀s ∈ S : s ⊗ 0 = 0 ⊗ s = 0.
Figure 1 presents a few simple semirings corresponding
to metrics that are useful in finding optimal paths in
weighted graphs.

Given a semiring (S,⊕,⊗, 0, 1) and a graph graph
G = (V, E), a weight function for G is a mapping w ∈
E → S. (Below, n is the number of vertexes in V .) If
p = v0, v1, · · · , vk is a path in G, then the weight of p,
denoted w(p), is the product of arc weights, w(vo, v1)⊗
w(v1, v2) ⊗ · · · ⊗ w(vk−1, vk). The empty path is given
weight 0. For most semirings useful in network routing
(and all of the examples in Figure 1) the ⊕ operation
is both idempotent (∀s ∈ S : s ⊕ s = s) and selective

(∀s, t ∈ S : s ⊕ t ∈ {s, t}). In such cases the relation
a ≤ b ≡ a = a ⊕ b is a total order, and ⊕ can be used
to select best path weights with respect to this order.

Given a weighted graph, the all-pair best path problem

is to find the best path weight over all paths from i to j
for all i, j ∈ V . Put another way, we would like to find
a matrix R such that

R(i, j) =
⊕

p∈P(i, j)

w(p).

where P(i, j) is the set of all paths from node i to node

j. This may be accomplished using matrix methods by
first defining the semiring of n × n matrices over S. If
X and Y are two matrices, then C = X⊕Y is defined
to be the matrix such that C(i, j) = X(i, j) ⊕ Y(i, j).
The product C = X ⊗ Y is defined to be the matrix

C(i, j) =
⊕

1≤q≤n

X(i, q) ⊗ Y(q, j).

The notation XY is used for X ⊗ Y. The closure of
matrix X, denoted X∗, is defined as

X∗ = I ⊕ X⊕ X2 ⊕ · · · ⊕ Xk ⊕ · · · (1)

where Xk is the k-fold matrix product of X. Note that
X∗ may not exist, or may not be computable.

The function w is then captured in an n×n adjacency

matrix A, where A(u, v) = w(u, v) when (u, v) ∈ E and
A(u, v) = 0 when (u, v) 6∈ E. Given suitable conditions
on the semiring or on the graph, the closure of A exists
and is the solution we are looking for,

A∗(i, j) =
⊕

p∈P(i, j)

w(p). (2)

For many semirings useful in network routing (and all
of the examples in Figure 1) the multiplicative identity
is also an annihilator for ⊕ (∀s ∈ S : s⊕1 = 1⊕ s = 1).
This implies that paths with loops are not considered
in the sum and therefore we have

A∗ = I ⊕ A⊕ A2 ⊕ · · · ⊕ An−1. (3)
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Figure 2: A shortest-paths example.

Figure 2 presents a simple graph where weights are
drawn from the semiring sp. The adjacency matrix is

A =

2

6

6

4

1 2 3 4 5

1 ∞ 7 3 1 ∞

2 7 ∞ 3 3 2
3 3 3 ∞ ∞ ∞

4 1 3 ∞ ∞ 7
5 ∞ 2 ∞ 7 ∞

3

7

7

5

and the solution to the all-pair shortest paths problem
is given by the matrix

A
∗ =

2

6

6

4

1 2 3 4 5

1 0 4 3 1 6
2 4 0 3 3 2
3 3 3 0 4 5
4 1 3 4 0 5
5 6 2 5 5 0

3

7

7

5
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Figure 3: The example with two partitions.

There are many algorithms for computing A∗ [4].
Some of these algorithms are generalizations of of fa-
miliar algorithms such as the Floyd-Warshall, Bellman
Ford, or Dijkstra’s (the last two can be used to compute
A∗ one row or column at a time). See Section 4 for a
discussion of distributed computation.

3. ALGEBRAIC PARTITIONING
A natural way of partitioning a graph G = (V, E)

into m regions is to partition the set of vertexes into m
non-empty disjoint sets, π = {V1, V2, . . . , Vm}. where
V = V1 ∪V2 ∪ · · · ∪Vm where r 6= s implies Vr ∩ Vs = ∅.
We refer to each Vr as a region in the graph G. Let nr

be the size of Vr.
Such a partition induces a partition on the set of arcs

E, with partitions Er,s = {(u, v) ∈ E | u ∈ Vr ∧ v ∈ Vs}
for all 1 ≤ r, s ≤ m. Note that such sets may be empty.
Each region Vr is associated with a set of border nodes,
V b

r ⊆ Vr, defined as

V b
r ≡ {u | ∃s 6= r, v ∈ V such that (u, v) ∈ Er,s}.

Assuming that each partition Vs is a set of contiguous
integers, the associated arc partition induces a block
partition of the adjacency matrix,

A =

2

6

6

4

A1,1 A1,2 · · · A1,m

A2,1 A2,2 · · · A2,m

...
...

. . .
...

Am,1 Am,2 · · · Am,m

3

7

7

5

.

Each Ar,s is the nr × ns matrix associated with the
weights of the set of arcs Er,s. Note that each sub-
matrix Ar,r along the diagonal corresponds to a region
in G (not required to be connected).

For example, suppose we partition the graph of Fig-
ure 2 into two regions, π = {V1, V2}, where V1 =
{1, 2, 3} and V2 = {4, 5}. The corresponding block-
partitioned adjacency matrix is

A =

»

A1,1 A1,2

A2,1 A2,2

–

=

2

6

6

4

1 2 3 4 5

1 ∞ 7 3 1 ∞

2 7 ∞ 3 3 2
3 3 3 ∞ ∞ ∞

4 1 3 ∞ ∞ 7
5 ∞ 2 ∞ 7 ∞

3

7

7

5

Figure 3 presents this partitioned graph where dashed
lines correspond to inter-region arcs.

Define the region matrix, R, to be the block-diagonal
matrix associated with all regions and intra-region arcs,

R =

2

6

6

6

4

A1,1 0 · · · 0

0 A2,2 · · · 0

...
...

. . .
...

0 0 · · · Am,m

3

7

7

7

5

.

Here, each 0 represents a sub-matrix of the appropri-
ate size containing only the value 0. Note that

R
∗ =

2

6

6

6

6

4

A
∗

1,1
0 · · · 0

0 A
∗

2,2
· · · 0

.

..
.
..

. . .
.
..

0 0 · · · A
∗

m,m

3

7

7

7

7

5

which captures the solution to the routing problem
within each region in isolation. How can these solutions
to sub-problems be used to compute A∗?

First, we define the boundary matrix, B, to be the
adjacency matrix of those arcs not included in R,

B =

2

6

6

6

4

0 A1,2 · · · A1,m

A2,1 0 · · · A2,m

...
...

. . .
...

Am,1 Am,2 · · · 0

3

7

7

7

5

.

Suppose that R∗ has been computed, then we can
derive a set of virtual arcs between border nodes within
each region, which we call transit arcs. Given two bor-
der nodes in region r, u, v ∈ V b

r , if A∗
r,r(u, v) 6= 0, then

(u, v) is a transit arc in region r. Note that (u, v) may
or may not be in E. We can then define the transit

matrix T to capture the weights of transit arcs,

T(u, v) =







A∗
r,r(u, v) if (u, v) is a transit

arc in region r
0 otherwise

The border arcs together with the transit arcs define
the core graph with respect to a partition π. Thus,

C = B ⊕ T

is the adjacency matrix of the core graph.
For our running example we have

R =

2

6

6

4

1 2 3 4 5

1 ∞ 7 3 ∞ ∞

2 7 ∞ 3 ∞ ∞

3 3 3 ∞ ∞ ∞

4 ∞ ∞ ∞ ∞ 7
5 ∞ ∞ ∞ 7 ∞

3

7

7

5
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Figure 4: The core graph with virtual arcs.

and

B =

2

6

6

4

1 2 3 4 5

1 ∞ ∞ ∞ 1 ∞

2 ∞ ∞ ∞ 3 2
3 ∞ ∞ ∞ ∞ ∞

4 1 3 ∞ ∞ ∞

5 ∞ 2 ∞ ∞ ∞

3

7

7

5

Figure 4 illustrates the core graph of the running ex-
ample, where dotted lines are transit (virtual) arcs.

Theorem 3.1.

A∗ = R∗ ⊕ R∗C∗R∗ (4)

Proof: From Conway [6] we have the identity

(X ⊕ Y)∗ = X∗(YX∗)∗. (5)

By construction, it is clear that A = R⊕B, and so we
obtain A∗ = R∗(BR∗)∗. From Equation (1) we have

(BR∗)∗ = I ⊕ BR∗ ⊕ (BR∗)2 ⊕ · · · ⊕ (BR∗)k ⊕ · · ·

When we look at the (i, j)−th entry of (BR∗)k we have
a summation of product terms of the form

B(i, q1)R
∗(q1, q2)B(q2, q3) · · ·B(qk−1, qk)R∗(qk, j),

where the qt are ranging over all nodes. The only non-
zero product terms are those where each R∗(qt, qt+1)
is not 0, and so (qt, qt+1) is a transit arc, and each
B(qs, qs+1) is not 0, and so (qs, qs+1) is a border arc.
The only exception is the last expression in each term,
R∗(qk, j). Therefore (BR∗)∗ = I ⊕ C∗R∗, because the
sum over all such product terms is exactly the same as
exploring all paths in the core graph. (End of proof.)

4. HYBRID PROTOCOLS
Equation (4) can be read as a scheme for the decom-

position of the computation of A∗:

1. Compute R∗

2. Construct the matrix C = B⊕ T

3. Compute C∗

4. Construct A∗ as R∗ ⊕ R∗C∗R∗.

Note that different algorithms can be used in the first
and the third steps. In the context of network routing, it
is interesting to consider how the work of the first and
the third steps could be done by different distributed

algorithms (routing protocols).
We first need to consider a more general problem.

The solution to a matrix equation of the form

F = AF⊕ M

is F = A∗M. In terms of routing, the matrix M could
model a mapping where M(q, j) contains a metric as-
sociated with some destination j that is external to the
graph represented by A [7].

In the context of Internet routing we want to compute
F in a distributed manner. Let us model each router
as vertex i ∈ V Typically, the router associated with
node i will only compute the i-th row F(i, ). With
this interpretation, the next-hops associated with the
entries of F(i, ) encode the forwarding table at router
i. Matrix M could represent the attachment of static
routes, or it might be produced as the forwarding table
of another protocol [7].

A synchronous approximation to distributed algorithms
in the Bellman-Ford family can be given by the follow-
ing iterative algorithm.

F(0) = M

F(k+1) = AF(k) ⊕ M

At step k+1 node i can compute the i-th row of F(k+1)

as

F(k+1)(i, j) = (
⊕

q

A(i, q)F(k)(q, j)) ⊕ M(i, j)

Care must be taken to avoid counting to infinity in a
distributed implementation. One easy solution is to in-
clude a path of router identifiers with each route an-
nouncement and eliminate those with loops (similar to
ASPATHS in BGP).

In link-state protocols, the matrix A is constructed
at each node via link-state flooding. Then each node i
computes one row A∗(i, ) using an efficient algorithm
such as Dijkstra’s SPF. In order to compute the i-th
row of F = A∗M, each node needs access to the map-
ping M. In OSPF and IS–IS this kind of information is
piggy-backed on link-state announcements.

We can now restate our decomposition in terms of
equations that must be solved. First solve the region
routing problem

F1 = RF1 ⊕ I

for R∗, then solve

F2 = CF2 ⊕ F1



for core routing C∗ and for exporting region routes to
the core C∗R∗. Finally, solve

F = F1 ⊕ F1F2.

for importing region external routes to regions R∗(C∗R∗).
If core routing is done via link-states, then the entries of
F1 can be disseminated across the core as piggy-backed
otherwise by iteration. Similarly, F2 can be dissemi-
nated across regions.

5. COST MODEL AND SIMULATION
We are interested in estimating asymptotic space and

computation costs for four combinations of link-state
with the SPF and path-vector with the DBF (viz., the
Dijkstra’s SPF both inside regions and in the core (D-
over-D ), the Dijkstra’s SPF inside regions and the dis-
tributed Bellman-Ford in the core (B-over-D ), the dis-
tributed Bellman-Ford inside regions and the Dijkstra’s
SPF in the core (D-over-B ), and the distributed Bellman-
Ford both inside regions and in the core (B-over-B )).
We will ignore the communication costs of disseminat-
ing routing information across the network. Suppose
the graph G = (V, E) has n = |V | nodes and a = |E|
arcs. Let the graph be partitioned into m regions such
that region r has nr nodes and ar arcs. Also let there be
br boundary nodes in region r with a total of nb =

∑

br

boundary nodes, and ab inter-region arcs. According
to Section 3, the core graph has nb nodes and at most
ac = ab +

∑

br(br − 1) arcs when all regions are con-
nected, thus region r has br(br − 1) transit arcs.

5.1 Analytic Cost Model
In distributed algorithms, R∗ is computed by com-

puting A∗
r,r for partition r independently and putting

them together. Each node computes one row of A∗
r,r us-

ing either the SPF or the DBF algorithm. Since all the
nodes run the routing algorithm simultaneously, so the
worst-case computation cost is the computation cost of
a node in the largest region, Gmax. Suppose t(Gr , X) is
the computation cost of running routing algorithm X
at a node in the graph Gr, tx(π, X) is the maximum
computation cost at any border node to export region
internal routes to the core graph using algorithm X ,
and ti(π, X) is the maximum computation cost at any
non-border node to import region external routes using
algorithm X . Then the distributed computation cost of
our hybrid algorithms can be estimated with

τ(π, X, Y ) = t(Gmax, X) + t(Gc, Y ) + tx(π, Y ) + ti(π, X) (6)

where Gmax is the largest region sub-graph, Gc is the
core graph, X and Y are instances of either the SPF or
the DBF algorithms and X is used inside regions and
Y is used in the core graph.

By substituting t with s for space in above formula-
tion, we can estimate the distributed space cost of our

hybrid algorithm with

σ(π, X, Y ) = s(Gmax, X) + s(Gc, Y ) + sx(π, Y ) + si(π, X) (7)

We know the computation complexity of the SPF
algorithm is O(n ln n + a) and the DBF algorithm is
O(dn2) where d is the maximum degrees of neighbor-
hood of a node. Computation cost of the SPF for ex-
porting routes to the core can be estimated to O(

∑

brnr)
≈ mbrnr as each border node exports nr routes to non-
border nodes from region r and there are br border
nodes in region r. Similarly, import cost can be esti-
mated to O(br1

∑

nr2
)≈ O(br1

n) as each border node in
region r1 imports all routes across the network

∑

nr2
=

n into region r1 and there are br1
border nodes in region

r1. For the DBF algorithm, export cost is O(d
∑

brnr)
and import cost is O(dbr1

∑

nr2
)≈ O(dbr1

n) since a
node processes routes sequentially from all of its neigh-
bors in the DBF. Table 1 summarizes the computation
costs of running the SPF and the DBF algorithms.

X t(G, X) tx(π, X) ti(π, X)
Dijkstra (D) n lnn + a mbrnr brn
Bellman-Ford (B) dn2 dmbrnr dbrn

Table 1: Computation costs (in big O).

Again, we know the space complexity of the SPF algo-
rithm is O(n+a) and the DBF algorithm is O(n+d). We
can estimate the space requirement of link-state mech-
anism for export operation as O(

∑

brnr) since a bor-
der node needs to store link-state information for all
region internal routes announced by all border nodes.
Similarly, we can estimate the space requirement of link-
state mechanism for import operation as O(br1

∑

nr2
) ≈

O(br1
n) since a non-border node needs to store link-

state information for all routes announced by all border
nodes in the region. For the DBF algorithm, the space
requirement for import and export operations is to store
routes to all nodes (i.e.,

∑

nr = n). Table 2 summa-
rizes the space costs (in big O) for running the SPF and
the DBF algorithms. By substituting values of X and

X s(G, X) sx(π, X) si(π, X)
Dijkstra (D) n + a mbrnr brn
Bellman-Ford (B) n + d n n

Table 2: Space costs (in big O).

Y and values of t(G, X), tx(π, X), and ti(π, X) from
Table 1 to Equation (6), we have computation costs (in
big O) of our hybrid algorithms as shown in Table 3.

Similarly, by substituting values of X and Y and val-
ues of s(G, X), sx(π, X), and si(π, X) from Table 2 to



Y-over-X Computation cost τ(G, X, Y )
D-over-D nr lnnr + ar + nb lnnb + ac + brn + mbrnr

B-over-D nr lnnr + ar + brn + dcnb(nb + n)
D-over-B drnr(nr + n) + nb lnnb + ac + mbrnr

B-over-B drnr(nr + n) + dcnb(nb + n)

Table 3: Hybrid computation costs (in big O).

Equation (7), we have the space costs (in big O) of our
hybrid algorithms as shown in Table 4.

Y-over-X Space cost σ(π, X, Y )
D-over-D nr + ar + nb + ac + mbrnr + brn
B-over-D nr + ar + brn + dc + nb + n
D-over-B dr + nr + nb + ac + mbrnr + n
B-over-B dr + nr + dc + nb + n

Table 4: Hybrid space costs (in big O).

5.2 Analytic plots
Since there are many parameters in our cost model,

we analyze the behavior of our system with the following
assumptions:

dr = dc = d ≪ n d is a small constant
a = nd a is constant multiple of n
nr = n/m partitions are of equal size
ar = nd/m no. of arcs in a partition
br = c ≪ nr br is a small constant
nb = mbr = mc total no. of border nodes
ab = md ab is constant multiple of m

Note

that for a fixed-sized network, as the number of par-
titions m increases, the size of regions n/m decreases
and the size of the core cm increases. As a result, the
computation cost of regions routing decreases while the
computation cost of core routing increases. The com-
putation cost for exporting region internal routes to the
core and the computation cost for importing region ex-
ternal routes to regions do not change very much as the
number of partitions increases.

Fig. 5 presents the space-time complexity plots for
four hybrid algorithms for n = 100, d = 5, and c = 2.
The x-axis in each of the plots represents the number
of (almost) equally sized partitions. That is, when x is
0, there are no partitions (or the network is one large
partition), whereas for x = 25 the network has 25 par-
titions with 4 nodes in each partition.

In Fig. 5(a), we observe that with partitioning the
overall computation cost of D-over-D does not change
very much, but there is a significant reduction in over-
all space requirement for some small number of parti-
tions. In contrast, there is a significant reduction in
overall computation cost of B-over-B for some small

number of partitions since for small m, n2/m2 is larger
than mn. However, overall space requirement does not
change very much as the number of partitions increases
as seen in Fig. 5(d).

We know that the SPF is fast and requires large
space, while the DBF is slow but requires low space.
Fig. 5(b) and Fig. 5(c) present performance when these
very different algorithms are combined into one hybrid
algorithm. They clearly illustrate the trade-offs be-
tween time and space. For example, in Fig. 5(b), as
we increase the number of partitions, we see a clear
improvement in space utilization at the cost of compu-
tation time. Similarly, in Fig. 5(c) we see a clear benefit
in computation time at the cost of increased space uti-
lization. In both cases the trade-offs are more dramatic
for some small number of partitions.

5.3 Simulation
In order to examine the behavior, we have imple-

mented simulators of our hybrid algorithms. We have
two subroutines, one for the SPF algorithm and the
other for the Bellman-Ford algorithm, which take a
graph and a source node to compute the SPT rooted
at the source node and return the routing table. Algo-
rithm X is used inside regions and algorithm Y in the
core graph. Algorithm 1 lists the pseudo-code for simu-
lation of our hybrid algorithms, where A∗

r is the region
routing table at a node in region r, A∗

c is the core rout-
ing table at a border node. Â∗

r is the routing table at a
border node in region r after export operation and Ā∗

r

is the routing table at a non-border node after import
operation.

Algorithm 1 Hybrid simulation algorithm.

for each region Gr of G do
2: for each node v of Gr do

A∗
r = X(Gr , v)

4: for each region Gr of G do
for all border nodes (u, v) of Gr do

6: if A∗
r(u, v) 6= ∞ then

Add virtual arc A∗
r(u, v) to Gc

8: for each node v of Gc do
A∗

c = Y (Gc, v)
10: for all regions Gr1

, Gr2
of G, r1 6= r2 do

for all border nodes u of Gr1
and v of Gr2

do
12: for each leaf node w of Gr2

do
Â∗

r1
(u, w) = A∗

c(u, v) ⊗ A∗
r2

(v, w)
14: for each region Gr of G do

for each leaf node u and border node v of Gr do
16: for each route Â∗

r(v, w), w 6= u do
Ā∗

r(u, w) = R∗
r(u, w)⊕

18: A∗
r(u, v) ⊗ Â∗

r(v, w)

For the link-state algorithm, we have constructed link-
state packets for all the nodes and links of the input
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(a) D-over-D time and space plots
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(b) B-over-D time and space plots
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(c) D-over-B time and space plots
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(d) B-over-B time and space plots

Figure 5: Analytic time-space plots for fixed-size networks against increasing number of partitions.

graph, stored them in a link-state database, and mea-
sured space taken by the database. We have run the
SPF algorithm on the link-state database for each node
in the graph and taken the maximum amount of time
of all the nodes. On the other hand, for the path-
vector algorithm, we have measured space requirements
for storing links to neighboring nodes and routes to all
the destinations and we have taken the maximum of all
nodes. We have run Bellman-Ford algorithm on the in-
put graph and taken the maximum of the convergence
time of all the nodes. We have added times and spaces
respectively from each step to estimate the total amount
of time and space needed by each of our four algorithms.

5.3.1 Topology generation

We have used BRITE [8] topology generator for gen-
erating topologies for our simulation. For a given num-
ber of nodes, say n, we have generated n graphs with
1 to n partitions. We have used BRITE’s Router Wax-
man model with n routers for no partitioning, for n par-
titions, we have used AS Waxman model, and for other
partitioned graphs, we have used Top-Down model. Note
that for m partitions when n is not an integer multiple
of m, we have first generated a graph with m regions
where each region has ⌊n/m⌋ nodes and then randomly
distributed n mod m nodes to different partitions.

5.3.2 Simulation results

We have simulated the system for a fixed number of
nodes and varying the number of partitions from one
to number of nodes in the partitions and recorded con-

vergence time and memory usage for each combination.
Fig. 6 plots times and space against number of parti-
tions for 100 nodes of our hybrid algorithms. x-axis rep-
resents the number of partitions, left y-axis represents
convergence time, and right x-axis represents memory
usage. It is observed that simulation plots are similar to
that of analytical plots of Fig. 5. For some small num-
ber of partitions, 4 - 9 in Fig. 6 convergence times and
memory usage of our hybrid algorithms are minimum.

As we have discussed earlier, the convergence time
does not change very much for D-over-D (Fig. 6(a)), but
the memory usage is minimum for some small number
of partitions, here 4-9 partitions for 100 nodes. There-
fore, if we want to design a network for fast convergence
and consider space, we should use D-over-D . It is clear
from Fig. 6(d) that memory usage for B-over-B , which
is very low, does not vary significantly, but the conver-
gence time drops sharply as the number of partitions
increases. Still convergence time of B-over-B is much
higher than that of D-over-D . Therefore, if memory is
our main concern we could use B-over-B to get some
convergence time benefit by partitioning instead of us-
ing a single path-vector domain.

Fig. 6(b) indicates that the memory usage falls sharply
as the number of partitions increases, at the same time
the convergence time increases slowly for B-over-D .
On the other hand, Fig. 6(c) indicates that the con-
vergence time falls sharply and the memory usage in-
creases rapidly for D-over-B as the number of partitions
increases. Therefore, both D-over-B and B-over-D have
significant trade-offs in time and space as number of
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(a) D-over-D time and space plots

 0

 20

 40

 60

 80

 100

 120

 5  10  15  20  25  30
 0

 1

 2

 3

 4

 5

 6

C
on

ve
rg

en
ce

 ti
m

e 
(m

s)

M
em

or
y 

us
ag

e 
(K

B)

Number of partitions

TIME
SPACE

(b) B-over-D time and space plots
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(c) D-over-B time and space plots
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(d) B-over-B time and space plots

Figure 6: Simulation time-space plots for fixed-size networks against increasing number of partitions.

partitions increases.

6. DISCUSSION
Recently, a hybrid link-state path-vector protocol for

inter-domain routing was proposed, HLP [9]. We leave
it as an open problem whether or not HLP can be mod-
elled algebraically. The difficulty here is that BGP met-
rics cannot be modelled with semirings because alge-
braic realistic models of BGP do not obey the distribu-
tivity properties. This would invalidate much of the
reasoning done in Sections 2 and 3. Furthermore, the
partitions in HLP actually overlap — HLP is essentially
a link-state domain for each “customer/provider cone”
in the network and path-vectoring domain with respect
to peering links. Routers can be in multiple cones, and
link-state flooding is restricted to conform to a simple
model of commercial relationships. The shortcoming of
this approach is that it ties the mechanism very tightly
to an over-simplified model of inter-domain policies. It
is difficult to see how to extend such a model to the more
expressive, but still safe, policies described in [10].
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