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Abstract

Programmable logic arrays (PLAs) present an alterna-

tive to logic-gate based design. We propose the transistor

level structure of a PLA for single-rail asynchronous appli-

cations. The geometrically regular layout together with the

deployment of dynamic logic help us fine-tune the PLA to

enhance its resistance to side-channel attacks, while par-

ity prediction and checking is employed to protect against

malicious fault injection. Finally, we demonstrate how our

PLAs can be used as building blocks of large-scale sys-

tems with good security characteristics, when combined

with special return-to-zero asynchronous latches.

1. Introduction

Programmable logic arrays can be used instead of cus-

tom logic in VLSI systems [10, 11]. The regularity of a

PLA layout makes its timing predictable and controllable.

This has prompted researchers to adopt PLA structures to

achieve “Timing Closure by Design”, thus reducing de-

sign time [5]. Previous asynchronous programmable logic

work focused on architecture-level full-scale FPGA config-

urations [1]. More recently, dynamic logic has been em-

ployed within asynchronous field-programmable logic de-

vices [9, 8]. We provide an alternative dynamic logic based

PLA. The structure promises to offer quick timing closure

for asynchronous designs, thus providing a powerful build-

ing block for the timing-critical parts of both microproces-

sors [5] and other large-scale systems, including architec-

tures similar to [1, 9, 8]. Furthermore, the predictable na-

ture of regular logic is relevant not only to timing but also

to power consumption. Using a PLA one can more eas-

ily predict, control and balance power consumption, since

parasitics are more likely to be “balanced by construction”

in a regular structure rather than in a randomly placed and

routed standard-cell based design. From the hardware secu-

rity point of view, this is very interesting, since it can con-

tribute to the production of large-scale systems with pre-

dictably balanced power consumption, thus providing de-

fence against power analysis attacks “by design”.

Two recent works [3, 6] focused on dual-rail logic for

security purposes, since by nature it tends to offer balanced

power consumption and fault detection capabilities. As an

alternative, in this paper, we are seeking balanced consump-

tion in a single rail configuration by exploiting the regu-

larity of a PLA structure, while performing parity predic-

tion and checking to protect against fault injection. More

specifically, given n logic equations, we supplement them

with an additional equation whose output maintains the par-

ity of the output vector, and implement all equations us-

ing an n+1 output PLA. Subsequently, we apply an addi-

tional small single-output PLA that performs parity check-

ing, while simultaneously we store the n useful results in n

asynchronous latches. The latches themselves are modified

for balanced power consumption.

Section 2 of this paper presents the PLA prototype from

the synchronous domain and describes the modifications re-

quired for asynchronous operation, as well as power balanc-

ing refinements. Section 3 proposes an asynchronous fault

indicating data processing stage, based on the presented

PLA. Section 4 shows and discusses simulation results on a

case study, while section 5 concludes the paper.

2. The proposed PLA

Figure 1 shows the structure of the proposed PLA. Like

all similar configurations, it realises logic sums-of-products

by using two NOR functions (AND and OR planes) and

suitably following De Morgan’s law. For example, ab+cd is

implemented as (a + b) + (c + d), requiring two AND and

one OR plane elements. The synchronous version was first

presented and analysed in [11]. The figure depicts the point

at which the clock is applied in the synchronous version; in

this work, the global clock is substituted with the “Request”

signal from the previous asynchronous stage (shown in the



figure as Req internal). The PLA is implemented using dy-

namic CMOS logic [12] and as such works in two phases,

namely “precharge” and “evaluate”. When Req internal=0,

the precharge phase is triggered, and points X1 and X4 are

driven to Vdd. In the following evaluate phase, triggered

by Req internal=1, the pull-down network of NMOS tran-

sistors in the AND plane determines the logic value at X1.

After two inverter delays, this value propagates to the OR

plane through the interplane buffer composed of the NAND

gate and inverter INV2. The OR plane pull-down network

then determines the final PLA output. Capacitors C1 – C3

model parasitics, corresponding to long lines in the actual

layout [11]. Capacitor C4 models the output load.

The C-elements implementing 4-phase single-rail hand-

shaking are also shown, together with the required delay

element (four inverters are shown for the illustration – more

or less can be used as required). Evidently, in the asyn-

chronous operation context the PLA is treated as combi-

national hardware handling bundled data coming from an

asynchronous latch. The PLA output is also considered to

feed the latch of the next logic stage.

While the PLA operation described above is typical of

dynamic CMOS logic, the design of Figure 1 also includes

some non-standard elements. Firstly, the first inverting el-

ement of the interplane buffer is not a pure inverter but a

NAND gate. This ensures that the voltage at point X2 is

the logic inverse of X1 only in the evaluation phase. During

precharge, the voltage at X2 is kept high, therefore point

X3 is kept low and the need for a ground switch in the OR

plane is eliminated. This mechanism both speeds up the

OR plane, and saves power, since it minimizes the switch-

ing activity in the interplane buffer. It was first proposed

in [10]. The second non-standard technique is the charge

sharing phenomenon exploited in the AND plane. Notice

transistor MN1. In effect, it is the ground switch of the

AND plane, but it has been moved between the precharge

PMOS and the NMOS implementing the function. As soon

as Req internal goes high, capacitor C1 transfers some of its

charge to C2 through MN1, regardless of the input pattern.

If any of the MN2 i NMOS transistors are on, then the rest

of the charge in C1 will be transfered to ground and X1 will

be driven low. The charge sharing effect thus speeds up the

discharge process and the overall PLA evaluation phase. If

all MN2 i transistors are off, then C1 loses some charge to

C2; this charge is replenished when transistor MP2 is turned

on, since X2 is driven low. Thus, the design continues to op-

erate correctly. In the next precharge phase, transistor MN3

turns on and discharges C2.

The addition of two inverter delays between the activa-

tion of the AND and OR planes in Figure 1 is our own modi-

fication to the original structure of [11]. Indeed, in [11] both

planes were activated simultaneously by the system clock

(equivalent to Req internal). Simulation showed that this

created unnecessary activity on the interplane buffer, con-

suming power needlessly.

2.1. Power consumption experiments

In order to study the PLA of the previous subsection

better and, most importantly, evaluate its security charac-

teristics, we conducted a number of HSPICE simulations,

on an elementary asynchronous PLA cell, comprising three

primary inputs, a single AND term and a single OR term.

We targetted a UMC 0.18µm CMOS technology. The top

graph of Figure 2 shows the power consumption profile of

the cell, for arbitrary values of the primary inputs. The two

leftmost and the one rightmost power spikes correspond to

power dissipated at the control logic of the structure and

are therefore of minor interest in the security context, since

they leak no data dependent information. The two impor-

tant power consumption areas are the ones corresponding

to the evaluate and precharge operations of the PLA. Each

area comprises a number of distinguishable spikes, corre-

sponding to power dissipation in the AND plane, the inter-

plane buffer and the OR plane, separated in time due to the

delayed activation of the OR plane (Figure 1). The bottom

graph of Figure 2 shows the integral of the “evaluate” and

“precharge” power dissipation areas, corresponding to the

potentially data dependent energy consumed by the PLA.

Figure 3 shows the power and energy traces of the cell

for the four possible combinations of the input signals,

namely for all three inputs at 0 (experiment A), one input

at 1 and the other two at 0 (exp. B), two inputs at 1 and

one at 0 (exp. C), and finally all inputs at 1 (exp. D). The

graphs show that the traces are practicaly identical when-

ever at least one of the inputs is at 1. Indeed, experiments

B, C and D produce virtually non-distinguishable simula-

tion results. The situation is different if all inputs are at 0.

Indeed, the power trace corresponding to the evaluate phase

of experiment A produces an additional spike not seen in

any other experiment (pointed in Figure 3 by an arrow),

while the subsequent precharge phase of experiment A pro-

duces a spike that can be measured to be 34.5% shorter than

the corresponding spike in experiment B (the two spikes are

also shown in the graph by arrows). There is also a small

disparity in energy consumption, but this can be ignored as

it is only of the order of 2%.

To explain these observations, refer back to Figure 1.

Whenever one or more of the inputs to transistors MN2 i is

at 1, point X1 is discharged in the evaluate phase, thus keep-

ing the NAND gate and inverter INV2 at the precharged val-

ues. In contrast, if all inputs are 0, then the NAND gate will

be fed by two 1s, thus consuming power by pulling down,

forcing also INV2 to pull up and consume more power. In

other words, when all inputs are at 0 there is switching activ-

ity on the interplane buffer during “evaluate”, and this cre-



C1 C3

C4

C2

X4

"Clock"

D1......

X3X2X1

INV3

INV1

INV2NAND

MP3

MN4_m

MN4_1 MN4_2MN2_1 MN2_n

MN3

MN1

MP2
MP1

Req_internal

Output to
async latch

Vdd

......

Product terms from
the AND plane

(from inside the PLA)

"OR" plane"AND" plane

......

Inputs from
async latch

......

......

Vdd

Req_out

Ack_outAck_in

Req_in

CC

Figure 1. PLA structure based on [11]

ates the additional spike pointed at in the top graph of Figure

3. As regards the disparity of spikes in the precharge phase,

notice that during that phase there always exists a short pe-

riod of time during which the NAND gate has to output 0,

since it is fed by two 1s (because X1 is precharged to 1,

while the logic 0 value has not yet reached D1). If some of

the previous primary input values are 1, this means switch-

ing activity, since the previous “evaluate” phase should have

driven the NAND to 1. Simply put, during the precharge

phase, input combinations B, C and D experience the same

switching activity that combination A experiences during

the evaluate phase. Hence, both cases consume practically

equal energy, but at different time points, which leads to

imbalanced power traces. This is a security hazard.

2.2. Balancing power signatures

The simulations of the previous subsection have shown

that the considered PLA design has interesting security

properties, because it offers naturally balanced power and

energy consumption for all input combinations but the all

0s pattern. We now weaken this disparity, while retaining

practically equal energy consumption.

The obvious way to balance out the differencies of Fig-

ure 3 is to increase the power consumption in the precharge

phase of experiment A and in the evaluate phase of experi-

ments B, C and D by appropriate amounts. Figure 4 shows

our solution for this. In the figure, the original PLA cell is

supplemented with two small power consuming networks,

comprising three transistors each. Further, two inverters are

added to the delay line of the PLA (between points D1 and

D2); these inverters are deliberately faster than the rest of

the inverters in the line. This keeps the overall delay at

acceptable levels, while creating a data-independent power

spike, as will be seen in Figure 5. For the time being, focus

on networks N1 and N2. All transistors in N1 are open only

when Req internal=0, D1=1 and X2=0. The first two con-

ditions only hold simultaneously for a brief period of time,

in the beginning of the precharge phase, while the logic 0

in Req internal has not yet propagated to D1. The last con-

dition will be true only when point X2 has been driven to 0

during the previous evaluate phase, i.e. only when the pre-

vious primary inputs are all at 0. Therefore, this dummy

network increases the power consumption at the beginning

of the precharge phase of experiment A. The situation with

network N2 is very similar. It only consumes power while

D1=1, D2=0 and X1=0, that is, for a brief period of time in

the evaluate phase of experiments B, C, D.

Figure 5 shows the results of simulation experiments A

and B for the structure of Figure 4. Comparing the evalu-

ate phase signatures of the two cases, we note that in exp.

A the two previously distinguishable secondary spikes are

now almost merged, while in exp. B the previously missing

spike has appeared. The highest peak of exp. B is around

23% higher than its exp. A counterpart. This is a signif-

icant improvement compared to the situation of Figure 3,

where there was no clear spike at all in exp. B. Besides,

the percentage is probably not very meaningful, given the

comparatively small heights of both spikes. Focusing on

the precharge phase signatures, we observe the emergence

of two sharp and tall spikes in both experiments. This is a

result of the introduced fast inverters, and it is a data inde-

pendent phenomenon. It can also be noticed that the dispar-

ity between the power spikes pointed in Figure 3 has been

brought down to around 23%.

In summary, the picture of Figure 5 is more secure than

that of Figure 3, both because of the weakening of dispar-

ities and because of the emergence of a new spike (in the

“precharge” phase) that attracts attention from the dispari-

ties. The energy consumption is still acceptably balanced,



Figure 2. Power and energy profiles of a simple PLA cell

Figure 3. Power and energy profiles of the PLA cell for all input values
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Figure 4. The PLA cell with “dummy” power consuming elements

Figure 5. Power and energy profiles of the PLA cell of Figure 4

with a variation of around 4.9% (bottom graph of Figure 5).

The transistor count of the cell has increased by 6. In the

PLA layout, this will only affect the width of the interplane

buffers. Finally, the overall increase in the energy consump-

tion of the system is measured (bottom graphs of Figures 3

and 5) at 34.9%. This is a very encouraging observation,

considering that the usual method of balancing power (dual-

rail [3, 6]) is at times reported to require an increase of over

100%.

3. System Design from PLAs

Figure 6 depicts how an asynchronous data-processing

stage can be configured using the PLA structure presented

in the previous section. Clearly the configuration follows

the standard single-rail asynchronous data path prototype

[7]. The normally n-output PLA implements n+1 functions,

the additional one being the parity predictor, maintaining

even or odd parity on the output bus at all times. This

provides a degree of defence against fault injection attacks;

the problem at this point is the design of secure single-rail

latches, as well as a secure solution for the parity checker.

These are the tasks of the next two subsections.

3.1. Secure single-rail latches

Figure 7a illustrates the standard Non Return To Zero

(NRTZ) asynchronous transparent latch design. This de-

sign is particularly vulnerable to side-channel attacks; in-

deed, although the first logic level (AND gates) always

returns to zero when Req out=0, whether or not the sec-

ond level (NOR gates) will experience switching activity

is highly data-dependent. The simple modification of Fig-
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Figure 6. The overall programmable logic asynchronous configuration

ure 7b produces a Return To Zero (RTZ) latch that ex-

hibits data-independent consumption. Indeed, as soon as

the latch does not need to hold valid data (i.e. as soon as

Req out=Ack out=0), the NOR gates are reset to 0. There-

fore, exactly one of them will switch when Req out assumes

1 again. The design of Figure 7b can be used in any single-

rail data path (for example in the latches feeding the PLA in

Figure 6). It cannot, however, be used for the latches that are

being fed by the PLA. The reason is that when a latch is fed

by a dynamic CMOS PLA as shown in this paper, it should

only be able to register data during the evaluate phase of the

PLA. In the nomenclature of Figure 1, the latch should only

be allowed to register when both Req internal and Req out

are 1. The modification of Figure 7c implements this, while

maintaining data-independant consumption.

Notice that all latch designs receive complementary in-

puts. This does not mean a dual-rail data path; indeed, an

inversion of the single-rail input is enough for the latches

to be utilisable. In the particular context of this work, the

PLA by nature produces both the functional output and its

inverse; these are the output and input of inverter INV3 of

Figure 4 respectively. Clearly this does not mean that the

PLA is dual-rail.

3.2. Parity checking

Parity checking in the context of self-checking design is

typically done using two XOR trees, thus satisfying the ro-

bust self-checking theory [4]. Our point of view in this work

is considerably different: we do not expect and do not tar-

get faults that develop permanently on our system. We are

only concerned with maliciously injected, short-lived tran-

sients. In this context, it is acceptable to use a single-output

checker in the circuit of Figure 6. It is further sensible to use

a small, single output, balanced power consumption PLA as

designed in Section 2 to provide the parity checking func-

tionality, particularly given that there is no obvious way to

balance the power consumption of XOR trees. This way, the

configuration of Figure 6 in a sense resembles a Whirlpool

PLA [2], although the last two stages are minimal in size

and are used purely for parity checking.

Overall, with the addition of secure latches and parity

checkers, the architecture of Figure 6 provides a PLA-based

secure asynchronous data path stage, providing a constant

indication of the health of the chip.

4. Case Study

This section presents power simulations on a small

example PLA designed according to Figure 6, and thus

demonstrates the power balancing of Section 2 on a some-

what bigger scale design. We implemented the following

three logic functions on the PLA:

s = abc + abc + abc + abc

d = ab + ac + bc

p = ac + bc + ab

Function p is effectively the even parity prediction function

of s and d. That is, the overall 3-bit output vector of the PLA

will always maintain even parity. Thus, any fault injection

attempt corrupting any one - or all three - of the PLA output

lines will be detectable at the PLA output, because it will re-

verse the overall parity. Overall, the considered small PLA

has three symmetrical inputs, ten product terms and three

outputs (3× 10× 3). Three secure latches (Figure 7b) feed

the PLA, while two special latches as of Figure 7c store the

useful PLA outputs s and d. In addition, all of s, d, p are fed

to the secondary parity-checking PLA that implements the

parity checking function:

check = sdp + sdp + sdp + sdp
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Function check produces a 1 to signify fault detection and

a 0 to confirm fault-free operation. The parity checker is

therefore a 3 × 4 × 1 PLA.

We simulate for four different input vectors, namely abc

= {111,011,001,000}. Since the inputs are symmetrical,

these combinations are enough to depict the power con-

sumption variations of the PLA. The power and energy

graphs are shown in Figure 8.

A simple inspection of the waveforms reveals that the

power traces for the evaluate and precharge phases in all

four cases assume very similar forms, with the same num-

ber of spikes at the same time points. This is a very de-

sirable situation, since it makes it harder for an attacker to

guess the input pattern. As regards the heights of the power

spikes, in the evaluate phase input vectors 000, 100, 110,

111 respectively demonstrate highest spikes at 3.53, 3.73,

3.74 and 3.97mW, corresponding to a maximum variation

of 12.5% which is not disappointing. In the subsequent

precharge phase, the respective values are 5.70, 6.25, 5.72,

5.99mW, thus experiencing a maximum variation of 9.6%.

Notice that in the precharge phase the values are not mono-

tonically increasing. This factor is very favourable for de-

fence purposes. As regards the overall energy consumption,

the variation between experiments is as low as 3.8%. Fi-

nally, the design exhibits strictly data independent timing,

since timing only depends on the delay line. This is another

source of immunity against side-channel attacks.

The simulation results of this section confirm the secu-

rity potential of asynchronous programmable logic. In the

synchronous domain, programmable logic takes more area

than random gate-based design. While this will probably

also be true in the asynchronous world, in the context of

security applications this area penalty can be compensated

for through area savings due to using single, as opposed to

dual-rail [3]. Using single-rail also gives significant power

consumption savings, as confirmed in section 2. Further-

more, good timing characteristics and easy timing closure

have always been advantages of PLA-based logic design,

and clearly these are inherent properties of asynchronous

PLA systems as well. Finally, it has to be noted that the

power balancing performed in this paper clearly refers to

nominal values of device characteristics. Fabrication vari-

ations or temperature changes may change the power con-

sumption behaviour. However, sensibly assuming that such

variations will be random, this will introduce a degree of

randomness which is always favourable for security.

5. Conclusion

In this paper, we have presented an asynchronous PLA

prototype. It enables the asynchronous designer to enjoy

the benefits of regularity, predictability and easy timing clo-

sure associated with PLAs. Further, we have demonstrated



Figure 8. Power simulation results

the potential of using dynamic CMOS PLAs in security ap-

plications. Finally, we have given a full configuration from

which side-channel attack defiant and fault-detecting asyn-

chronous logic can be built.
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