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Abstract
We present a hardware oriented priority queue algorithm re-
quiring n

2 comparators and swappers to maintain an n item
queue. It supports two operations, insert and extract mini-
mum (or alternatively, extract maximum), both of which op-
erate in a single cycle. Thus, sorting time is O(n).

Records with identical keys are always extracted in FIFO
order of insertion. A formal proof of correctness of these
sorting and FIFO characteristics is presented.

1 Introduction
A priority queue is an essential component in many soft-
ware systems. This paper was motivated by the appar-
ent lack of a priority queue algorithm that could be effi-
ciently implemented in hardware. Such a device could be
used in a wide range of applications from rapid scheduling
(e.g. for multithreaded processors [Moo94] or ATM network
routers [The93]) to event timers which can efficiently handle
multiple events.

The next section presents a statement of objectives. Sec-
tion 3 reviews background material starting with a hard-
ware view of the popular software priority queue, the heap
sort. Then the hardware oriented rebound (section 3.3) and
up/down (section 3.4) sorters are discussed because they
provide inspiration for the tagged up/down sorter (section 4).
Whilst the tagged up/down sorter is a deceptively simple al-
gorithm, it has a complex behaviour. To show that the algo-
rithm conforms to the objectives a machine checked formal
proof of correctness is given (section 5). Finally implemen-
tation strategies are presented in section 6 and conclusions
are drawn in section 7.

2 Objectives
There are two objectives:

1. To design a device which can perform an insert or ex-
tract minimum (or as a variant, an extract maximum)
operation every clock cycle.
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2. Records with identical keys should be extracted in
FIFO order of insertion (particularly useful for some
scheduling operations).

3 Background
There are many hardware sorting techniques, of which most
aim to sort a complete set of data in the minimum time us-
ing as little hardware as possible (e.g. Batcher sorting net-
works [Bat68, Dij87], heap sort on a systolic array [Lin93]
and others [BDHM84]). Unfortunately these do not meet
our first objective of single cycle insertion and extraction.

In order to meet the first objective it is essential that any
number inserted must be compared (and possibly swapped)
with the current minimum value. An obvious solution would
be maintain a sorted list but this would require n−1 compare
and swap units to sort n numbers in a single cycle.

3.1 Non-scalable solutions
There are several non-scalable solutions. For example, if key
size can be kept very small then a FIFO may be allocated for
every possible key [HPDL92]. Sorting is then just a mul-
tiplexing operation. Alternatively, if there is a wide range
of possible keys but only a small number of records then a
parallel search through all the records, using a content ad-
dressable memory structure, could be used [HK89].

If fast insertion is required but slow extraction is sufficient
then a priority packet queue may be used [PF95]. In such a
scheme inserted keys are compared with the current mini-
mum and the larger result is buffered. Extraction picks up
the current minimum and then an exhaustive search of the
buffer is performed to find the new minimum, either serially
or with some degree of parallelism.

3.2 Variations on the heap sort
Typically software implementations of priority queues
utilise the heap sort technique which takes O(log(n)) time
to insert or extract [CLR91]. Insertions are made at the bot-
tom of the heap and the heap is then massaged into a cor-
rect ordering (this process is sometimes called the “heapify”
function). Extraction of the minimum is from the top and the
hole it leaves is filled by a value from the bottom followed
by an invocation of the heapify function.

A hardware variant to meet the objectives would require
insertion and extraction initiated from the top of the heap. A
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dedicated processing element (PE) could be placed at each
level of the tree structure within the heap. Thus, large val-
ues (assuming an extract minimum is required) would ripple
down through the levels dislodging even larger values and
settling in their place.

The only problem now is to maintain a balanced heap in
order to prevent the algorithm degenerating into a sorted list
structure. One approach would be to maintain a count of the
number of nodes below every node so that at each level of
the tree a decision about which lower levels should store the
next value. This appears to be inefficient in terms of storage
but it should be noted that the number of PEs and the size of
the counter for each node would grow as O(log(n)). Thus,
in terms of silicon real-estate this would work well for large
datasets. Unfortunately an insertion or extraction takes at
least two cycles (read and examine followed by a write).

3.3 The rebound sorter

The rebound sorter was proposed by T.C. Chen
et al. [BDHM84] and improved upon by Ahn and Mur-
ray [AM89]. Whilst it is unsuitable for our application it
forms the basis for more suitable approaches.

The basic sorting element (see figure 1) consists of two
memory elements capable of storing one word, a compara-
tor and various data paths. Incoming data consists of two
words: a word of key and a word of associated data to form
a record. Records are inserted key first followed by the data
on the subsequent cycle. The comparator is used to compare
keys stored in the Ln and Rn parts of the sorting element
in order to determine the direction that the (key, data) pairs
should take; this is known as the decision cycle. The values
input in the following cycle will be the associated data so the
decision made in the current cycle is used again in order that
the data follows its key; this is known as the continuation
cycle.

Figure 2 illustrates the sorting behaviour. The principle of
the algorithm is that incoming values proceed down the left
side until they rebound off the bottom (hence the name) or
hit a larger value on the diagonally lower right.

It can be seen that records take two cycles to insert or ex-
tract and all of the insertions must take place followed by all
the extractions. Thus, this algorithm does not meet our ob-
jectives. Furthermore, it should be noted that n−1 compara-
tors are required to sort n records and that these comparators
are only used every other cycle.
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Figure 1. Structure of the rebound sorter
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Figure 2. An example of a rebound sort

3.4 The up/down sorter

The up/down sorting algorithm was originally designed to be
implemented in bubble memory technology [LCW81]. It is
constructed as a linear array of sorting elements in a similar
manner to the rebound sorter described in the previous sec-
tion. However, (key, data) pairs are inserted in parallel and
the sorting element (see figure 3) is more complex, primarily
because of the implementation technology.

Initially all of the sorting elements contain infinity which
may be indicated by the maximum possible number. An in-
serted value arrives in An. Simultaneously a copy of Cn is
made to Bn, and Dn is transferred to An+1. A compare and
steer operation takes place resulting in the maximum of An
andBn being transferred toDn and the minimum ofAn and
Bn transferred to Cn. Extraction similarly involves Cn be-
ing removed or transferred to Bn−1, Dn copied to An and
Cn+1 transferred to Bn followed by the compare and steer
operation. An example is given in figure 4.

Interestingly this algorithm allows insert and extract op-
erations to be interleaved, and only requires n

2 sorting ele-
ments to sort n numbers. Unfortunately this implementa-
tion uses four storage areas per sorting element but if im-
plemented in digital electronics this may be reduced to just
two storage areas. The next section abstracts this algorithm,
determines that FIFO ordering of identical keys is not main-
tained and suggests solutions. Then a clocked digital imple-
mentation is presented.
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  Cn=min(An,Bn)
  Dn=max(An,Bn)

Figure 3. The up/down sorting element
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Figure 4. An example of an up/down sort

4 The tagged up/down sorter

4.1 Abstracting the up/down sorter algorithm
The up/down sorting element (see figure 3) may be ab-
stracted to two memory elements which may be swapped,
and a comparator (see figure 5). The algorithm may then be
described as a two stage process:

1. Insert:

(L′0 :={key = new key, data = new data})
∧ (∀ n ≥ 0.(L′n+1 := Ln))

or extract:

(extracted := R0) ∧ (∀ n ≥ 0.(R′n := Rn+1))

2. Compare and swap:

∀ n ≥ 0.(L′n, R
′
n) :=

if (Ln.key < Rn.key) then (Rn, Ln)
else (Ln, Rn)

where key=key part of the record
data=associated data part of the record

Ln,Rn=the current left and right records
L′n,R′n=the next left and right records

Whilst this algorithm sorts correctly, the FIFO ordering of
records with identical keys is not maintained (see figure 6).
This problem arises when records on the right are swapped
back to the left.
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Figure 5. Abstraction of the up/down sorter
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Figure 6. Ordering problem with the up/down sorter

4.2 Ensuring FIFO ordering

FIFO ordering could be assured by associating an order of
entry number with each record. However, a cleaner solution
is to tag records by setting a single tag bit when they arrive
on the right so that if they are swapped to the left they can
be forced to swap back to the right on the next cycle. This
works because once a record arrives on the right it must be
sorted with respect to the other keys on the right. If a record
gets swapped to the left, then on the next cycle (regardless of
whether an insert or extract takes place) it will be compared
with the right value which was previously physically below
it. Thus the right key must be either greater than the one
on the left or have the same key. However, the record on the
right was inserted later than the record on the left. Therefore,
a swap must be performed if the ordering on the right is to
be maintained (see figure 7 for an example). This is formally
proved in the next section.

The tagged up/down sorting algorithm may thus be de-
fined as a two stage process:

1. Insert:

(L′0 :={key = new key, data = new data,
tag = false})

∧ (∀ n ≥ 0.(L′n+1 := Ln))

or extract:

(extracted := R0) ∧ (∀ n ≥ 0.(R′n := Rn+1))

2. Compare and swap:

∀ n ≥ 0.(L′n, R
′
n) :=

if ((Ln.key < Rn.key) ∨ Ln.tag)
then (Rn, {key = Ln.key, data = Ln.data,

tag = true})
else (Ln, Rn)

where key=key part of the record
data=associated data part of the record
tag=the tag part of the record

Ln,Rn=the current left and right records
L′n,R′n=the next left and right records

3



3
4
1
2
2
2

3
4
1
2
2

2’

3
4
1
2

2’2

3
4
1

2

2’

3
4

2’

2 2’

1’

0

1

2

0 0 0

1

1

1 1

2

2

2

2

3

1’

2’2

4

3 1’

4

8

4

1

3

8

4

1
2

2’

22’

0

3

8

1

4’
22’

0

3

8

1

1
2
2

4’

2

0

3’

8

1

1
2
2
2

4’

8

1
2
2
2
3

Insert:

Extract:

Key:
insert
extract
swap after insert 
or extract

2’1

2’0
2’0

2’0
2’12’2

2’0

2’2

2’1

2

0

1

’8

’8

’8
’8
’8

’8

’8

’8

’8

’8

’8

’8

’8

’8

’8

’8

’8 ’8 ’8 ’8 ’8

’8 ’8 ’8

’8

’8 ’8

’8

’8

’8

’8

’8

’8

’8

’8

’8

Figure 7. Using tagging to ensure FIFO ordering

5 Proof of correctness of the algo-
rithm

Formal verification of an algorithm entails making a formal
definition of the algorithm and proving that, under particular
constraints, certain necessary (and formally defined) proper-
ties are assured. These necessary properties give a more ab-
stract specification of the behaviour of the algorithm. In this
work, the key property is that the least record currently in the
queue is the one returned by the extract operation. An invari-
ant is defined to specify well-formed states of the queue and
it is proved that key property holds for these states. The in-
variance is proved by showing it holds on an empty queue
and is maintained by both insert and extract operations. The
proof of these properties is realised using the HOL sys-
tem [GM93], a high integrity machine-implementation of
a classical higher order logic. The HOL system has been
used often for reasoning about properties of hardware de-
signs [Gor86, Coh88, Coh89, Gra92, Mel93]. The scope of
other applications can be gleaned from the proceedings of
the annual HOL Users Group Workshops [AJLW91, CG92,
JS93, MC94]. The use of this system lends a high level of
assurance that the proof is valid.

Using formal methods demands a precise and complete
specification of the algorithm’s data structures and its opera-
tions and likewise the invariant and desired properties. Con-
cepts expressed informally in natural language need trans-
lation into precise logical expressions, and these must be
subjected to examination to confirm that they capture the in-
tended concepts adequately. Hence in presenting the verifi-
cation we dwell at length on the representation of the queue
and the definition of the invariant.

5.1 Representing the queue and algorithm

Both insert and extract operations involve shifting one side
of the stack one position relative to the other. We repre-
sent the nonempty locations of the queue as a pair of lists
of records. Inserting a record consists of augmenting the
left list with a new record at its head, while extraction re-
moves the head record from the right list. Both are followed
by a compare and swap function passing over the list pair.

An informal proof by induction on the number of records
in an infinite queue satisfies that the inserted records always
cluster at the front of the queue, with no intervening empty
locations, and thus the chosen representation is suitable.

A record datatype has a key field of type :num (natu-
ral numbers), a data field of arbitrary type, a tag field of
type :bool, and a timestamp field also of type :num. The
timestamp serves only to record the order of insertion of
records for specifying the required FIFO behaviour when
two records have the same key, and is used by the algorithm
specification. Record field selectors key , time , and tag , and
a tagging function set tag are defined, all with the obvious
meanings.

A few auxiliary functions are needed to define operations
on lists and list pairs. We use the symbol “:” as the infix
(cons) operator that adds a new element at the head of a list,
and “::” for the infix append operator. The (higher order)
function Map applies a function to every element in a list.
The meaning of the function is expressed below, represent-
ing the primitive recursive definition that exists in the HOL
system. Note that function application is indicated by jux-
taposition, lists are enclosed by “[” and “]”, elements are
separated by “;”, and the empty list is “[ ]”.

Map f [a0; . . . ; an] = [f a0; . . . ; f an]

Two Map functions for application to pairs of lists are
given. Map2 1 applies a function f to pairs of elements
from each list, and builds a single list as a result. Map2 2 is
similar but returns instead a pair of lists. Both functions have
an additional function-valued argument g which is applied to
the remaining elements of the longer list, should the lists be
unequal in length. (In our application, one list may be at
most one longer than the other.) A minor variant of the for-
mer named Map2 1a (not shown) supplies the remainders
of both lists as an added argument to the function f .

(Map2 1 fg([l0; l1; . . . ; ln], [r0; r1; . . . ; rn; rn+1]) =
[f(l0, r0); f(l1, r1); . . . ; f(ln, rn)] :: (g[rn+1])

(Map2 2 fg([l0; l1; . . . ; ln], [r0; r1; . . . ; rn; rn+1]) =
([l′0; l′1; . . . ; l′n] :: ll, [r′0; r′1; . . . ; r′n] :: rr)

where (l′0, r
′
0) = f(l0, r0), (l′1, r

′
1) = f(l1, r1),

. . . , (l′n, r
′
n) = f(ln, rn), (ll, rr) = g[rn+1]

We define two distinct ordering relations. below is used
by the algorithm to determine when a swap should be per-
formed. It considers only the keys of the records, and the
tagged property of the left one, in accordance with the al-
gorithm description. BELOW represents the ordering rela-
tion of the specification, and rather than tags, uses the time-
stamps to decide the ordering of records with identical keys.
A lower time is interpreted as an earlier insertion. BELOW
is transitive.

below (a, b)
def
= (a.key < b.key) ∨ (a.tag)

BELOW (a, b)
def
=

(a.key < b.key) ∨ ((a.key = b.key) ∧ (a.time < b.time))

The Compare and swap function maps down the pair of
lists, swapping the records (and tagging the right ones) as
required so the record on the right is below the record on
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the left for every pair of records. If the lists are of un-
equal length, the remaining element is moved to the right
and tagged.1 Notice that the timestamp of records does not
affect the behaviour of the function.

Compare and swap
def
=

Map2 2
(λ(a, b).(if (below (a, b))then(b, set tag a)else(a, b)))
(λ[x].([ ], [set tag x]))

Insert adds a new record on the left, while Extract re-
moves the head element of the right list, thus both cause the
two lists to shift one position relative to the other, always
shifting the left side down relative to the right.

Insertx(ll, rr)
def
= Compare and swap ((x : ll), rr)

Extract (ll, (r : rr))
def
= (r,Compare and swap (ll, rr))

The definitions of both operations combine the re-
quired shifting of the lists and the application of the
Compare and swap function. Extract returns both the ex-
tracted record as well as the diminished queue.

5.2 Defining an invariant

The invariant captures many intuitions about the queue oper-
ation. These include that all records on the right are ordered,
that tagged records on the left are BELOW the next lower
record on the right, and that pairs of records at each level are
ordered. Additionally, the right side has as many or just one
more record than the left side, untagged records in the left
must have a later timestamp than every lower record with
the same key in either side, and every record on the right is
tagged. Formulating precise definitions of these properties
relies on the Map functions described above.

The records on the right are ordered, with the least at
the head. The predicate compares successive records on the
right by using two copies of the right list, offset by one posi-
tion. Note the expression (λx.[ ]) is a function which returns
the empty list [ ] when applied to any argument, thus ignor-
ing the extra element in the longer list argument. The pred-
icate All holds when applied to a list, all members of which
are the value T, the HOL constant for true. TL returns the
remainder of a list without the head element.

rt Ordered rr
def
= All (Map2 1 BELOW (λx.[ ])(rr,TL rr))

If a record on the left side is tagged, then it is BELOW the
record on the right one level deeper in the queue. This to-
gether with the previous invariant captures the property re-
ferred to in subsection 4.2 that once a record arrives on the
right it is sorted with respect to the keys of other records on
the right. The⇒ symbol represents implication.

lt Tagged (ll, rr)
def
=

All (Map2 1 (λ(a, b). a.tag ⇒ BELOW (a, b))
(λx.[ ])(ll,TL rr))

1The λ symbol identifies a local function whose arguments end with a
“.”. Compare and swap is an example of a “curried” higher order function,
where the list pair argument is not shown in the definition.

Each pair of records at the same depth in the queue is or-
dered, with the one on the right BELOW the left one.

pair Ordered (ll, rr)
def
=

All (Map2 1 (λ(a, b). BELOW (b, a))(λx.[ ])(ll, rr))

Every untagged record on the left that has the same key value
as a record located deeper on either side, must have a later
timestamp. This uses the Map variant Map2 1a , which in-
cludes the remaining parts of the lists as arguments to the
first function argument. This allows the relation to consider
all records deeper in the queue.

lt UnTagged (ll, rr)
def
=

All
(Map2 1a
(λ(a, b)(aa, bb).
¬(a.tag)⇒
All (Map (λc.(a.key = c.key)⇒ (c.time < a.time))aa) ∧
All (Map (λc.(a.key = c.key)⇒ (c.time < a.time))bb))
(λx.[ ])
(ll, rr))

The right side is either the same length as or one longer than
the left side. Len gives the length of a list.

Lengths (ll, rr)
def
=

(Len ll = Len rr) ∨
(Len ll + 1 = Len rr)

Lastly, every record on the right is tagged.

rt Tagged rr
def
= All (Map (λa. a.tag)rr)

The invariant is the conjunction of the six conditions.

Invariant (ll, rr)
def
=

rt Ordered rr ∧ lt Tagged (ll, rr) ∧
pair Ordered (ll, rr) ∧ Lengths (ll, rr) ∧
lt UnTagged (ll, rr) ∧ rt Tagged rr

Two more predicates are required. The timestamp must
reflect the order of insertion of records. Thus the timestamp
of an inserted record must be later than that of every record
with the same key already in the queue. Also, records are
not tagged prior to insertion.

load constraintx(ll, rr)
def
=

¬(x.tag) ∧
All (Map (λa.(x.key = a.key)⇒ (a.time < x.time))ll) ∧
All (Map (λa.(x.key = a.key)⇒ (a.time < x.time))rr)

Finally, the Least predicate expresses that a record is the
minimum with respect to the BELOW ordering for all
records in the queue.

Leastx(ll, rr)
def
=

All (Map (λa.BELOW (x, a))ll) ∧
All (Map (λa.BELOW (x, a))rr)

5.3 Results
The correctness result comprises three theorems. (Note that
HOL theorems are identified by the ` symbol.) These theo-
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rems express that the invariant holds on an empty queue, it is
preserved through both queue operations, and it assures the
extracted record is the least.
` Invariant ([ ], [ ]) (1a)

` load constraintx(ll, rr)⇒ (1b)
Invariant (ll, rr)⇒

Invariant (Insertx(ll, rr))

` Invariant (ll, (r : rr))⇒ (1c)
∀removed rest .
((removed , rest) = Extract (ll, (r : rr)))⇒
(removed = r) ∧ (Least removed(ll, rr)) ∧
(Invariant rest)

Theorem (1a) follows immediately from the invariant
definition. We prove an intermediate result to assist the proof
of the other theorems. This result shows a shift followed by
a Compare and swap operation maintains the invariant on
the rest of the queue.

` Invariant (ll, (r : rr))⇒ (2)
Invariant (Compare and swap (ll, rr))

The proof is by successive list inductions, first on ll then
on rr. The two base cases are solved using the Lengths
constraint to derive that the queue is empty or has one el-
ement. The result follows immediately in both cases. For
the case when both ll and rr are nonempty, the proof can
be reduced to five conditions involving the front elements
of each list, and the maintenance of the invariant on the
Compare and swap’ed remainders of the list. The latter is
solved by the inductive hypothesis and the fact that if the
invariant holds on a queue then it also holds on the remain-
ing queue after the top level is removed. The five conditions
arise from the invariant clauses (aside from Lengths, which
is satisfied by the invariant on the remaining queue).

• rt Ordered requires that the new top right record be or-
dered with respect to the next right record. Both the
possible next right records are ordered with respect to
the original top right record by the antecedent condi-
tion. If no swap occurs it is satisfied. If a swap occurs
at the top, the new record is BELOW the one formerly
on the right, and the transitivity of BELOW assures the
requirement is met.

• lt Tagged requires that if a swap occurs at the top,
the record ending up on the left must be ordered with
respect to the record one level lower on the right (if
nonempty). This follows from the antecedent con-
dition, by pair Ordered or rt Ordered, depending on
whether or not the lower records are swapped.

• pair Ordered requires the top pair to be ordered, and
this is satisfied by the definition of Compare and swap
and the antecedent.

• lt UnTagged requires that if no swap occurs at the top,
then the top left record must have a later timestamp than
all the records lower in the queue on either side with
the same key. This follows immediately from the same
invariant clause in the antecedent of the implication.

• rt Tagged requires the record ending up on the right to
be tagged, and this follows immediately from the defi-
nition of Compare and swap.

Theorem (1b) is proved by a case split on the structure of
rr. If it is [ ], by Lengths so is ll, and the result is imme-
diate. In the other case we split the proof into requirements
on the heads of the list and the rest, with the latter solved
by theorem (2). The argument for the separate requirements
parallels those for theorem (2), with the added premises that
the new record is not tagged, and has a later timestamp than
any record with the same key already in the queue.

The next theorem assures that the top right record is the
Least with respect to the BELOW ordering.

` Invariant (ll, (r : rr))⇒ Least r(ll, rr) (3)

Since the right side is ordered, and record pairs at each level
are ordered, the result follows by the transitivity of BELOW.

Theorem (1c) combines the results from theorems (2) and
(3), and the definition of Extract.

The proofs of all theorems have been completed using the
HOL system. The informal proof sketches presented above
outline the reasoning behind the mechanical proofs, and re-
flect the sequence of proof steps (tactics) applied. We sub-
mit that the formal proof lends a very high assurance of the
validity of the proof. Such assurance cannot replace peer re-
view in evaluating results, but has been effective in discov-
ering omissions in informal proofs developed prior to and
along with the formal proof. The invariant was strengthened
in response to each omission, and the final definition was
marked version number five. This demonstrates the practical
advantage of machine-checked proof, even when the subject
is a relatively simple system.

We observe that the result verifies the abstract algorithm.
The results can be applied to the verification of a concrete
design by incorporating limits on the number of records, thus
constraining both insert and extract operations, and defining
an abstraction from the loaded cells of a queue implemen-
tation to the list pair representation. This remains as future
work.

6 Clocked digital implementation of
the tagged up/down sorter

A naı̈ve two step clocked digital design is presented in fig-
ure 8. Values are shifted in and compared in the first cycle
and if the comparison requires it, a swap is performed on the
next cycle. However, this may be reduced to a single cycle
process by redirecting the inputs and outputs of the latches
rather than swapping the values between the latches (see fig-
ure 9).

6.1 Controlling the single cycle design
The two crossbars are controlled by x which maps An to the
left and Bn to the right if x = true, otherwise An maps
to the right and Bn to the left. Insertion and extraction are
controlled by insert and extract signals which are mutually

6



exclusive. An insert or extract is performed by pulsing the
appropriate control line high (see figure 10) which clocks
the required latches for An, Bn and x on the falling edge.
ac, atc, bc and btc control the clocking of the (An, atn) and
(Bn, btn) latches. If x = true then the left value is in A so
ac and atc will be clocked if insert is pulsed. If x = false
then the right value is in A so ac and atc will be clocked if
extract is pulsed; however, to force tagging of right hand
side values, atc will also be clocked if insert is pulsed and
the OR gate arrangement into atn will set the tag bit. Thus,
the tag is set on the following cycle. The corresponding logic
is required for B, but with ¬x.

compare
& control

latch

mux

mux

Input Output

n+1l n+1r

ln rn

Ln Rn

t=1
d
k

d
k
t

k

where:
key
tag
data

k
t
d

=
=
=

dkt d k

t d k d k

Figure 8. Two stage tagged up/down sorting element
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atc
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btc
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ln rn
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at n btn

t k k t

d k t d k t

d k td k t

OutputInput

Figure 9. Single stage tagged up/down sorting element

insert

extract

tc tl

point at which
value is inserted

point at which
value is inserted

Key:

point at which
value is extracted

point at which
value is extracted

tc = time for comparison
tl = time for control logic

N.B. insert and extract must be non-overlapping

Figure 10. Example timing for the single stage tagged up/down sorter
to perform two inserts followed by two extracts

The control equations for the one step control logic are
defined by (assuming that the flip-flops are negative edge-
triggered, i.e. they latch on the falling clock edge):

let x = control for crossbars:
(lout, rout) = if (x) then (lin, rin) else (rin, lin)

oldx = x latched on the falling edge of insert ∨ extract
An.key = key part of record in latch An
An.tag = tag part of An
Bn.key = key part of record in latch Bn
Bn.tag = tag part of Bn
insert = insertion control signal
extract = extraction control signal

N.B. insert ∧ extract = false

x = ((oldx ∧ (An.key = Bn.key))
∨ (An.key > Bn.key)
∨ (¬oldx ∧Bn.tag)
) ∧ ¬(oldx ∧An.tag) (1)

ac = (x ∧ insert) ∨ (¬x ∧ extract) (2)
bc = (¬x ∧ insert) ∨ (x ∧ extract) (3)
atc = insert ∨ (¬x ∧ extract) (4)
btc = insert ∨ (x ∧ extract) (5)

6.2 Discussion of the operation of the single
cycle design

First we consider the insert operation. The record to be in-
serted is presented at ln (see figure 9), the insert signal is
pulsed true and extract remains false. The latch used
to hold the record will depend upon the value of x which
is determined by the contents of (An, atn), (Bn, btn) and
oldx before the insert takes place. If, for example, we take
x = true (so the An and atn latches are holding the left
record) and perform an insert (so extract = false) then the
control equations (2) through (5) become:

ac = atc = btc = insert
bc = false

Thus, since x = true the new record (at ln) will be
placed on the inputs of An and atn which will be latched
into place on the falling edge of the insert signal by ac and
atc (the original record in (An, atn) being propagated to the
next sorting element). We can also see that latch Bn is not
clocked because bc remains false but that the tag bit is set
by the OR gate arrangement into btn and the clocking signal
btc.

On the falling edge of insert the current value of x =
true is transferred to the variable oldx and the next value of
x is calculated from (1):

x = ((An.k = Bn.k) ∨ (An.k > Bn.k)) ∧ ¬An.t
Thus, the crossbar only causes a swap (x goes from true

to false) if (An.k < Bn.k) ∨ atn which conforms with the
algorithm in section 4.2. Furthermore, it should be noted that
if a swap has occurred then (Bn, btn) has been remapped
from the right output (rn) to the left output (ln+1) and that
this record has been correctly tagged. Likewise, if we had
started with x = false then similar conformation would be
obtained.

Now consider the extract operation. If we start with
x = false (so the An and atn latches are holding the right
record and rn+1 is the input) then equations (2) through (5)
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become:
ac = atc = extract
bc = btc = false

Thus, rn+1 will be latched into An, and the tag bit atn
will be set, on the falling edge of extract. At this point the
value of oldx will be set to false resulting in the following
calculation of the next value for x:

x = (An.k > Bn.k) ∨ ¬Bn.t
It can be seen that the conditions for x to change from

false to true, thereby causing a swap, correspond with the
specification in section 4.2 (remembering that oldx = false
so Bn was mapped onto the left and An onto the right). Fur-
thermore, the value shifted in has correctly had its tag set.

6.3 Implementing the single cycle design

A single cycle implementation has been produced based
upon the schematic of figure 9 and the control equations in
section 6.1. Mentor Graphics’ GDT ECAD system was used
with ES2’s 1µm 2 layer metal CMOS technology files.

The size of the key and length of the sorting structure were
varied to assess scalability. Results showed that performance
remained virtually constant as the length grew, the only diffi-
culty being efficient distribution of insert and extract sig-
nals for very long structures. Performance decreases with
key size due to the comparators. However, careful compara-
tor design reduces this to O(log(key size)). Silicon area
grows almost linearly with the length and key size.

A detailed analog simulation was undertaken on a sorter
with 8-bits of key and data and a length of 8 (i.e. it can
sort up to 16 records). The automatically routed design,
using minimum size transistors, consumed a silicon area
of 5.7mm2 without pads. The cycle time is approximately
10ns. It is anticipated that a full custom implementation us-
ing dynamic logic would reduce the silicon area and improve
the cycle time.

7 Conclusions

We have presented the algorithm, formal proof of cor-
rectness and clocked digital implementation for the tagged
up/down sorter. The algorithm requires just n2 comparators
in order to sort n records. We have fulfilled our objectives
of single cycle insert and extract operations. Furthermore,
extract always removes the record with the least key, and in
the case of repeated keys FIFO ordering is maintained.

A formal verification of the operating properties of the
single cell design described in section 6.1 has been com-
pleted but is not presented. Future work will include extend-
ing this verification to an n-element sorter implementation.
We are also interested in exploring self-timed implementa-
tions of the tagged up/down sorter.
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