
Conquering the Complexity Mountain: Full-stack
Computer Architecture teaching with FPGAs

A. Theodore Markettos, Simon W. Moore, Brian D. Jones, Roy Spliet, Vlad A. Gavrila
Computer Laboratory, University of Cambridge, UK

theo.markettos@cl.cam.ac.uk

Abstract—Modern computer systems are exceedingly complex,
and increasingly so. This makes it challenging for students with
no background in computer systems to climb the mountain of
40 years of design, particularly within a constrained teaching
timetable. Through the medium of FPGAs, we have designed
an 8-week course to take students from basic digital electronics
through to processor design, modern software tools, applications,
system-on-chip integration and electronics manufacturing. We
recount our experiences with rapidly bringing students up to
speed with the modern world of computing systems, and some of
the lessons we, as course designers, were taught by the process.

I. INTRODUCTION
“All problems in computer science can be solved by another

layer of indirection, except for the problem of too many layers
of indirection”. David Wheeler’s aphorism has never been truer
today, where we take for granted many layers of abstraction
from cloud computing that ‘just happens’ (somewhere, some-
how) to consumer products that sit atop vast piles of standards,
commoditised components, and decades of evolution under
market pressures.

For a student, who has only had some limited experience
with software development, this can be a daunting mountain
to climb. They have not had the experience their professors
might, of living through evolution as it happens and accepting
developments one by one. Even ask someone in industry and
they might reminisce about System/360, VAX, DOS, Windows
95 or XP, based on whatever date they came into the business
– and anything before their time is taken for granted.

The Raspberry Pi, a cheap ‘simplified’ computer for teach-
ing is anything but simple. It has a 25mm2 system-on-chip [1]
in a 40 nm process, approximately 50 million gates [2]. It runs
an operating system kernel with 17 million lines of code [3].
While you can do simple things with it, there is a lot of
complexity hidden behind the scenes.

This means that a course designed to teach modern com-
puter architecture must teach the many abstractions that go
up to make modern systems, treading a fine line between
oversimplifying and providing so much detail that it becomes
overwhelming.

We have designed a course with these principles in mind,
taking students with minimal hardware knowledge into modern
systems design in a short period.

II. BACKGROUND
This course was designed for second-year university stu-

dents who are studying exclusively Computer Science (CS).
Students arrive at university with diverse backgrounds and

the course is structured so that they need have no prior experi-
ence with CS before admission. While complete beginners are
rare, many will have ad-hoc CS experience rather than formal

Fig. 1. Our teaching board running a student’s code (courtesy Jamie Wood)

education. Such experience is frequently at the application
level - designing mobile apps or websites - rather than systems-
level programming or hardware.

The first year course is intended to build foundations of CS:
there are courses in functional programming, object-oriented
progamming, algorithms, mathematics and operating systems.
They are also taught elementary digital electronics: the use
of logic gates, clocked logic, state machines, and a small
amount of transistor behaviour. The most complex structures
they are exposed to are shift registers, RAMs and elementary
programmable logic (PALs).

In designing the ‘ECAD and Architecture’ course, the
objective was to introduce the second year students to modern
programmable hardware (FPGAs), to the ‘Electronic CAD’
(ECAD) tools used to design for it (Altera’s Quartus II suite),
and to modern computer architecture. The class has about 100
students, and the course consists of 24 hours of laboratory
sessions over an 8 week teaching period. It is concurrent with
a ‘Computer Design’ course consisting of 18 hours of lectures.
Each week we ran two 3-hour afternoon laboratory sessions,
with a student expected to attend one session or perform
equivalent work at home. Experienced staff and PhD students
are present at the laboratory sessions to help out with problems.

In our department we choose not to grade practical work
in favour of encouraging collaboration and learning from the
experience. However all students are expected to complete the
work and they are penalised if they do not. Thus the course
must be designed so that all students can achieve the goals,
which are assessed by an oral interview and demonstration.
The goals are not thus objectives in themselves but a structure
for their learning.978-1-4673-8584-8/16/$31.00 c©2016 IEEE



III. COURSE DESIGN
Allied with the Computer Design lectures, we wished to

introduce students to a number of concepts:
Hardware description languages
Large scale logic design Modern EDA tools
Logic simulation Test-driven development
Behavioural modelling Processor architecture
Assembly programming C programming
Modern compiler/assembler
toolchains

Unix development environ-
ment

System-on-chip construction Whole-system evaluation
Relationship to mainstream architectures like x86

In addition, as a byproduct of our approach, we also intro-
duced students to modern hardware manufacturing techniques
though this did not form a formal part of the course. In doing
so we also challenged the view that computer scientists are
downstream ‘consumers’ of electronics from large tech firms,
that it is possible to design your own.

Constraints on our course design included the restricted
timetable, concurrency with the lecture course meaing material
could not be used before being lectured, the assessment
requirement requiring exercises that students of all abilities
could complete, and the need for a primarily bring-your-own-
device (BYOD) environment to support students working at
home on their own laptops with varied hardware and software
(and encourage students to explore beyond the course).

IV. FPGA BOARD SELECTION
The original motivation for redesigning the course was that

the class size had grown such that we had insufficient hardware
to run our previous course. This used Terasic tPad boards,
consisting of a DE2-115 board with an Altera Cyclone IV
FPGA and a touchscreen display that are no longer sold.

One feature of this course is we believe each student should
have their own board that they can take home and keep for the
academic year. This means they can do development in their
own time, not having to rely entirely on class hours. They
do not have to share equipment that would have to remain
in the lab. They can also usefully overlap FPGA build times
with other activities. By keeping the board beyond their course
submission they are encouraged to explore further than the
taught materials.

We looked for other low-cost FPGA boards of a compara-
ble rôle. We were particularly attracted by Terasic’s DE1-SoC
board, which combined a Cyclone V FPGA that has an ARM
processor onboard. The ARM processor can run Linux and
has a good collection of ‘hard’ peripherals (Ethernet, USB, SD
card) that are necessary for modern computing but awkward
to build in FPGA. The ARM and FPGA fabrics each have
dedicated on-chip memory, while sharing a cache-coherent
memory interconnect between ARM and FPGA. The FPGA
can be used standlone, or the ARM used standalone, or the
ARM can be used with FPGA-built hardware plugged into
its memory map to build innovative peripherals. The board is
competetively priced and in a small form factor that students
can carry around. Thanks to a generous contribution from
Altera we were able to purchase 130 DE1-SoC boards.

V. ADD-ON HARDWARE DEVELOPMENT
During FPGA board selection we identified a gap in the

marketplace. Many ‘beginner’ boards contain small FPGAs
that limit scope of what may be achieved. Boards with larger

FPGAs have peripherals that are often very complex making
them a daunting prospect for students. USB, for example,
appears to the naı̈ve to be simple, but is highly complex with
data rates ranging from 1.5Mb/s to 10Gb/s, complex protocols
and a frequent need to deal with bugs in devices.

Additionally, the simpler devices provided on many boards
(VGA output, PS/2 keyboard) typically require external hard-
ware that students lack (keyboards are now USB, most students
use laptops and don’t have their own monitors) and cannot be
easily carried around. Other boards were not portable enough.

The DE1-SoC lacks such simple onboard input/output
(I/O): there are switches and LEDs, but not much more that
can be used without either a complex hardware/software stack
or external hardware plugged in. After surveying the market
for possible other options we decided that we could build our
own add-on board containing simpler peripherals that we could
package with the DE1-SoC into a handheld unit.

We wished to allow students to design hardware for useful
devices without delving into too much complexity. We selected
a number of devices for them to drive:
Serial output frequently requires high performance hard se-
rializer/deserializer (SERDES) blocks. To reduce complexity
and add a visual component, we included some LEDs capable
of 24b colour individually controlled via a serial protocol
(the Shenzhen Worldsemi WS2812B branded by Adafruit as
‘NeoPixels’). Whilst it is possible to use software-based bit
bashing to produce a valid serial stream, a simple Verilog serial
output module makes timing reliable.
Rotary shaft encoder requires debouncing and state ma-
chines.
Serial input was explored as both a teaching goal and a board-
design necessity. Push buttons and a joystick were connected
to a shift register chip which was used to serialise the 13-bit
input over a restricted number of wires. Verilog on the FPGA
could parallel-load the shift register and read out its inputs.
Touch screen to add a display. This is more complex but we
can provide code to provide a VGA-like raster scan for the
LCD and an I2C interface for the touch controller.
I2C EEPROM with temperature sensor was included to
hold any necessary per-board calibration data for the touch
screen, but also the temperature sensor allows real-world
sensing applications.

After some user interface mockups, we decided to design
a board to sit on the back of the DE1-SoC and be like a
Gameboy-style handheld games console (figure 1). This is a
form factor students are likely familiar with and comfortable
to hold. We added a small navigation joystick as well as push
buttons in the X/Y/A/B style favoured by games. The two
rotary shaft encoders are sited above the buttons and at the top
is the screen. Around one rotary encoder is a ring of 12 tri-
colour addressable LEDs, two notches of the encoder relating
to each LED. Each rotary dial also has a centre-click position
- this provides a ‘find and select’ behaviour.

By asking students to write hardware to drive these inputs
and outputs, we could both introduce them to hardware design
principles and give them components they could use in later
application programming.

VI. HARDWARE MANUFACTURING
The decision to design and manufacture our own I/O board

was a reluctant one. Reluctant because manufacturing added
quite a lot of uncertainty and risk to the project – we started



design in July and we had to deliver the course in October;
we could change the course content but the dates were fixed.

After deciding to build a custom PCB in volume of 150
(to allow for production wastage, class growth and boards
for development and test), a major headache was sourcing
the components. While it’s possible to source components
like liquid crystal displays (LCDs) in single units in the UK,
finding a vendor who would sell 150 at acceptable prices
and in our constrained timeframe was difficult. In the end
we found a Chinese supplier (buydisplay.com) with a good
range and prices who said they could ship within our schedule
(two weeks). Similarly the tri-colour LEDs were not available
in volume in the UK (we needed about 2000) so we found
suppliers on AliExpress. Ordering from these sources was
challenging to our university accounting practices which were
not designed for agile parts sourcing.

The dependencies within the project being complex, it
made for pressure on the tight timescales. For instance, we
did not have time for samples of mechanical parts like knobs
to be shipped from the US to test in our UI mockups so we
3D printed approximate copies to try out. We could then order
production volumes without having seen samples.

Having identified (and while sourcing) parts, including
from traditional suppliers such as Farnell, Mouser and Digikey
(direct shipped from the US), we designed a PCB that would
sit on the back of the DE1-SoC to take the I/O and connect
by ribbon cable to a general purpose I/O (GPIO) port. We
made two prototypes before the production version to adjust
our design and fix various bugs.

One challenge was that 150 is an awkward volume. It is
large enough that the time spent retroactively fixing bugs on
the board becomes uncomfortable (5 mins per board × 150 is
painful for one person, and we don’t have a factory of staff
to parallelise this), but the volume is not large enough to start
building small batches, optimise the production process, and
then ramp up volumes as bugs are ironed out.

On the other hand we did consider how to optimise
the assembly process to take the least time. We designed a
sandwich of two pieces of plastic we laser-cut to hold the
display in front of the PCB and act as front panel. As we
have in-house laser cutting facilities we could rapidly adjust
the plastic design to accelerate assembly times. Having done
so, we laser cut assembly jigs so that the layer stack could be
rapidly built upside down and then all screwed together.

The PCBs were etched and assembled in Ireland using an
outside manufacturer from parts we had supplied. We then
organised an afternoon for students to assemble the boards
they would be using for the labs. After some initial training
in the assembly line we had built, approximately 10 student
volunteers assembled 130 boards in about 3 hours. Students
showed a keen interest in how manufacturing is organised and
the steps required to minimise production time. After testing,
the successful boards were made available to students as they
progressed through the exercises, and we reworked test failures
to fix production issues.

VII. EXERCISE DESIGN
Having set the hardware design and production in motion,

in parallel we considered how to design the exercises.
As students had no background in hardware systems or

embedded development, we adopted a bottom-up approach.
Starting from elementary digital electronics, we gradually built

up through the complexity stack.

A. On-line SystemVerilog tutor
Some years ago we realised that lecture courses are not

a good medium for introducing students to programming
languages, particularly those with unfamiliar concepts like
hardware description languages (HDLs) e.g. SystemVerilog.
Lectures are good at introducing concepts, but not good at
explaining syntax or how to link those concepts together. In a
previous project [4] we designed an on-line tutor that instructs
students in how to write SystemVerilog and how to use it to
describe hardware. Built into the tutor are exercises where the
students’ code is run in a Verilog simulator and the outputs
checked against a good solution. The outputs are represented
visually (for example, waveforms or state transition diagrams)
and, if not correct, advice is given as to what problems need
to be addressed. Students work through exercises involving
combinational and sequential logic, the students checking their
SystemVerilog as they go.

Instead of introducing HDL design through lectures, we
prescribed the tutor as the first exercise in our course. After
this it is remarkable that, across the aptitude range, they hit
the ground running and are able to write valid code: bugs
tend to be in describing the wrong hardware rather than
invalid semantics. We no longer tend to see fundamental
problems such as confusing hardware module instantiation
with software function calls, though syntactical misconceptions
such as confusing vectors with multi-bit data types still occur.

VIII. VIRTUAL MACHINES
With foundations from the web-based tutor, we transition

students to a development environment on their laptop. There
are a number of logistical challenges in doing so.

First is that EDA tools are not intended for classroom
use, or for use on mobile devices. Typically they demand
workstation-class desktop machines with large monitors. Ad-
ditionally newer FPGAs typically require more RAM to syn-
thesise (eg 6GiB for the Cyclone V against 1.5GiB for the
Cyclone IV). A key driver in the development of our exercises
was to minimise build times. A previous lab had 20-30 minute
build times, which are quick for FPGA builds in industry
(multi-hour builds are the norm). We found this destroyed
productivity and interest: in past surveys some students said
they had been put off the hardware industry as a result.

Students’ laptops are often designed for portability over
performance. Students are also cost-conscious. While many
students have good specification laptops (Apple MacBook Pro
and similar), our baseline for development was an inexpensive
Core i3 machine as might be sold in a supermarket. The
gulf between commercial tools hungry for machine resources,
restricted-resources laptops owned by students, and the wish
to deliver a good teaching experience, remains an ongoing
tension.

Additionally, EDA tools are complex to install and
platform-sensitve, but we cannot mandate the operating system
students run on their laptop. To avoid this problem we config-
ured the tools in an Ubuntu image in a VirtualBox virtual
machine and distributed this to students. Inside the virtual
machine we installed the Quartus II FPGA synthesis tool, the
ModelSim Verilog simulator, the GCC toolchain for RISC-V,
and the SDL libraries for our device simulator.

For students without a suitable laptop we had a small
number of Ubuntu-based workstations in the classroom for



students to work on. While the machines were of a reasonable
specification, the network-based fileserver architecture we had
to use severely limited performance: operations could be 8×
slower with files and tools coming from the fileserver. EDA
tools are designed for fast disc and plenty of RAM rather than
disc kilometres away over a campus LAN.

One pitfall with distributing the tools in a VM is that
we had to support the VM software on several versions of
Windows, Mac and Linux, and using some advanced features
of the VM (USB port passthrough, screen resize). While there
was initially some frantic debugging as early-adopter students
encountered problems, we rapidly grew our knowledge and
adjusted the instructions before the next group reached them.

IX. SIMULATION ENVIRONMENT AND TEST-DRIVEN
DEVELOPMENT

In the lectures and exercises we introduced a strong focus
on test-driven development (TDD). This was for a number of
reasons. From our perspective, we wanted to build in slack
into the timetable so that unexpected hardware manufacture
delays could be accommodated. From the user experience point
of view, test-driven development reduces the reliance on long
build times and greatly increases productivity. Finally TDD is
commonplace in industry for the latter reason, so introducing it
is worthwhile training for students. Therefore we endeavoured
to provide test frameworks and simulated components so that
students could do their design mostly in simulation.

Once a student was set up with their VM or class worksta-
tion, we tested this out by introducing them to the ModelSim
simulator. This was acheived by taking an exercise they had
already solved in the on-line tutor and transferring it to
ModelSim, guiding them through the using the GUI. This
bridged the gap from the on-line tutor, where the simulator
is hidden, to using a commercial tool.

Throughout our exercises we used marginal ‘sticky notes’
to explain concepts not relevant to the main thread, but which
might be of interest to those who want to go deeper. This
enabled us to give directions to other materials and further
exploration, without confusing the main text.

X. HDL FOR HARDWARE PERIPHERALS
We then introduced students to some of the peripherals on

the add-on board, namely the rotary shaft encoder and the shift
register used to read buttons and other I/O.

This was intended to introduce several concepts, notably
debouncing, synchronisation and modular development. A
testbench was provided and students given scripts to execute
their code against the testbench. Students had to first build a
debouncer and check it against the testbench, then use the de-
bouncer in a controller to interpret the quadrature code emitted
by the rotary encoder. The testbenches were carefully designed
to check anomalous behaviour such as bouncing inputs and
partial movements. Discussion with students indicated this
was a good way of making them think about how to take
a specification and implement a real-world state machine.

Another exercise asked students to write a controller for
the 16-bit shift register on the add-on board, to read the
inputs which it multiplexed onto a single wire. In this case
we provided model Verilog of the physical shift register
component (a pair of 74HC165s) and asked them to write a
module that provided its inputs and outputs. The model could
then be replaced later with pins to the real chips. This exercise
was made optional in the interests of time.

Open Simple Soft Compiler
ARM Cortex A9 �

NIOS II Unmodifiable �
Thacker’s Tiny Computer � Too simple �

RISC-V based � � � �

TABLE I. PROCESSOR CANDIDATES

XI. RISC-V PROCESSOR IN SIMULATION
Since we wished to teach computer architecture, we re-

quired a processor to teach. We considered several alternatives
(table I), including the hard ARM core inside the DE1-SoC;
Altera’s NIOS-II soft core; Thacker’s Tiny Computer (TTC), a
simple processor used in previous labs; and a soft core based
on the RISC-V architecture. Our criteria were a core where
students might view the source code, understand and modify
it; and one with a modern toolchain including C compiler.

The ARM and NIOS II source code is not accessible to
students, while the TTC has a restrictive instruction set and
no C compiler. RISC-V, an architecture growing in popularity
in the academic community, has a classical RISC instruction
set, GCC compiler support and available soft cores.

After looking for soft cores we chosen the Yarvi (‘Yet
Another RISC-V Implementation’ [5]) as a relatively compact
core that implements the RV32I intruction set, the minimal
required for a RISC-V. It is GPL licensed and has about 500
lines of SystemVerilog, running at 75MHz on a Cyclone V.

Yarvi has internal data and instruction memories. We
substantially expanded it by increasing these to 4KiB each and
adding memory-mapped Avalon slave ports to allow another
CPU to view and change these memories (loading core into
the Yarvi was previously only possible at compile time). We
also added an Avalon memory-mapped master port to allow
the Yarvi to access external memory and I/O, and a pipeline
stall to allow multi-cycle memory accesses. Finally instruction
tracing support was added to see the progress of instructions
through the pipeline.

After initial Computer Design lectures where students were
taught the basics of computer architecture, a lecture was ded-
icated to showing the Yarvi source code and walked through
each section. This took students’ knowledge of SystemVerilog
from earlier exercises, the previous material on architecture,
and linked it together by showing a real processor they would
use.

A. Toolchain and exercises
In their VM we had already pre-configured the RISC-V

GCC toolchain and standard Unix tools such as ‘make’. The
Yarvi simulation environment was comprised of several parts:
• The Yarvi Verilog code itself
• Scripts to simulate the Yarvi code in Modelsim and

display instruction traces
• Framework assembler and C programs including linker

scripts and stack setup to run with no operating system
• Makefiles to build assembler or C programs using the

RISC-V GCC tools
• Scripts to convert GCC outputs into memory formats that

Modelsim (and later Quartus) could understand
We gave students the simulation environment and explained

how to build and run assembly code and execute it in Yarvi in
Modelsim. Since some students were unfamiliar with the Unix
environment, understanding and using all the different parts
proved to be challenging. In addition this was most students
first introduction to both C and assembly coding.



We set a number of exercises to build up gradually from
a framework we provided. Firstly we gave them code to put
in the shell that makes a simple output ‘DEBUG PRINT’ in
the instruction trace, by writing to a magic I/O address. This
enabled very simple output of values in a simulated processor
with no external I/O.

Secondly to introduce them to assembly code, we asked
them to write a 32-bit division algorithm based on some high-
level pseudocode and a provided test framework. When their
division code did not work, students had to use the instruction
trace to debug their program’s behaviour.

Finally we introduced the concept of linking, and how to
call assembler from C, including use of calling conventions.
We asked them to modify their division code slightly to make
a ‘remainder’ function. Then we provided a naı̈ve algorithm
for finding prime numbers by trial division, and asked them to
implement the algorithm using their remainder function. This
turned out to highlight various bugs in their assembly code (a
common one was not implementing calling conventions).

B. Applications with emulated peripherals
Following our test-driven development focus, we then

wanted to ask them to write code to read the inputs and drive
the display of the add-on board, but do so in a simulation
environment. For this reason we wrote a Modelsim library
that connected to the simulated Yarvi’s memory interface,
sending Avalon reads and writes over a TCP connection.
Another application connected to the TCP port and emulated
external peripherals to the Yarvi, popping up a window to
show the LCD contents and taking keyboard input instead of
rotary dials and buttons. Combined with the slow simulation of
Verilog, this is not quick but does allow practical application
development without the larger overheads of synthesis.

Drawing this all together, the final simulation exercise was
to implement an application in the emulated environment,
using the Yarvi core, I/O, C and assembler. The baseline
application was Etch-A-Sketch, where simply a pixel can be
plotted based on the X and Y coordinates read from the dial
inputs, and a button to clear the screen. An optional exercise
was to implement something more complex – we suggested
Pong, but we also saw Space Invaders and Flappy Birds.

A considerable challenge to complex applications was the
4KiB of instruction memory (an arbitrary limit we didn’t
consider) and the slow speed of the emulated system. This
caused them to think carefully about code size and about
efficiency: for instance only redrawing the pixels that were
necessary, not the whole screen.

A working application was one of the two compulsory
oral assessments of the course. As part of the assessment
we asked them questions about Verilog (troubleshooting some
intentionally-miswritten code), the Yarvi split instruction/data
memories and their impact on software such as operating
systems, and to calculate the complexity of their division
routine using the instruction trace. This aimed to consolidate
their architectural knowledge so far, from HDL to processor
architecture and real-world software complexity.

XII. FPGA IMPLEMENTATION
Having completed the first stage, we then moved into

FPGA implementation of their systems. This was intentionally
shorter than the simulation stages, to reduce the impact of
synthesis times on their experience.

First, we provided a walkthrough of the Quartus synthesis
tool using a simple LED flasher. This was intended to explain
the many detailed concepts of FPGA synthesis, from pin
assignments, synthesis, timing analysis, programming, down-
load, and optionally inspecting the generated floorplan.

Once working, we asked students to import their rotary
controller and shift register driver and test outputting them on
LEDs, purely in logic at this stage. Since the contents of the
FPGA are small at this point, synthesis times are quick.

A. System-on-chip design
We then introduced Altera’s Qsys tool. While many courses

stop at Verilog-level implementations, this was intended to
show higher-level tools for building a system-on-chip (SoC)
and using library parts. Using the simple rotary encoder, shift
register driver, and a 7-segment LED converter, students build
Qsys components from them. We then showed how Qsys
makes it easy to plug these components together, and the type-
checking it provides.

B. The Yarvi SoC
Finally, we joined the parts by building Yarvi into an SoC.

The FPGA SoC-building process can be quite error prone.
We discovered in previous labs that, if you give 100 students
a set of instructions to build an SoC, some percentage will
make mistakes: omitting steps, inverting resets, using incorrect
clocks. The design of the tools sometimes does not help, hiding
away critical settings in obscure dialogues. Build times are
long, so a mistake can cost many hours. When a mistake is
made, often it is very hard to debug and requires much skill and
experience on the part of teaching staff. As one past student
said ‘this trains the staff more than the students’.

For this reason we provided a pre-built project with parts of
the Yarvi SoC already installed. This included the Yarvi SoC,
a video memory made from block RAMs, an LCD controller
to DMA and generate pixels with appropriate timing, and a
simple LED PIO. To this students were asked to add the rotary
controller and shift register Qsys components they already
made, and to install their application software into the Yarvi
memory. They then build their FPGA and test it on their board.
The end result is running Etch-A-Sketch, Pong or another game
on hardware/software stack where they worked at all layers.

The final oral assessment had students demonstrate their
system, and then answer questions on FPGA place and route
and timing analysis. A final summing up question asked how
a many-core Yarvi system might differ from a multicore x86
system, and discuss their behaviour (with particular respect to
caching, coherency, and fluidity of memory placement).

XIII. EVALUATION
After a last-minute supplier change for accounting reasons,

the add-on boards were manufactured in good time. Students
were interested to learn about manufacturing techniques and
how designs could be optimised for manufacture. We discov-
ered some manufacturing failures: yield of the multi-colour
LEDs on the board was low because a failure of one in the
ring causes the others to fail, and we did not have equipment to
repeatably test touch screens. Students really appreciated the
work we had put into designing the hardware and packaging.

The SystemVerilog tutor was remarkably trouble-free: stu-
dents were able to get up to speed in writing HDL with no
major problems. One downside of the test-driven development
model is that the tests are never fully comprehensive, and it is



Int
ere

st

Orga
nis

ati
on

Lea
rni

ng
gu

ide Staf
f0

10

20

30

40

HighLow

Su
rv

ey
re

sp
on

de
nt

s

Lev
el

Brea
dth Pac

e

Too muchToo little

Fig. 2. Student survey results

possible to short-circuit the requirements with a solution that
passes the tests.

When students moved on to assembler, many found transi-
tioning from Boolean logic gates to two-dimensional arrays of
bits (shifting and masking) challenging. It might have been
useful to include a primer on bit manipulation. Many of
them made a good attempt at writing division in assembler,
however some would have appreciated more time spent on
this approach.

The FPGA part was remarkably trouble-free – in fact
students criticised it for being too easy. That is in marked
contrast to previous years where FPGA build times were the
primary complaint and students could waste weeks debugging.

The results of the end-of-course survey are presented in
figure 2, which suggests we mostly achieved our goals. 97%
of students completed their assessment successfully.

XIV. CONCLUSION
We delivered a challenging Computer Architecture prac-

tical course to 100 students, of entirely new material, in 24
hours of laboratory time.

As part of this effort we designed and fabricated new
teaching boards, involving globalised sourcing and modern
manufacturing methods, and involved students in this process.

Students began the course with basic knowledge of digital
logic gates and sequential circuits. We taught them up through
the layers of abstraction, beginning with teaching SystemVer-
ilog using an interactive web tutor. Having gained a good
understand of HDL, they designed controllers for physical
components such as rotary encoders and shift registers.

We then introduced them to the Yarvi RISC-V processor
in simulation. We used this to teach assembly programming,
including use of modern tools (GCC) and the Unix environ-
ment, and expressing algorithms in assembler. They were then
taught how to interwork assembler and C.

To encourage test-driven development and to speed up
application writing, we built an emulator of the peripherals on
our FPGA board. This enabled students to develop applications
while the processor was simulated and memory traffic was sent
to simulated peripherals.

Subsequently, we taught students how to use FPGA tools
and how to compile their Verilog for FPGA. We also showed
them how to turn their Verilog into modular system-on-chip
components. Having provided them with processor installed
in a framework to take away some of the tricky debugging
issues, they then added their components to the FPGA project.
After synthesising their design they were able to test their
applications on the processor running in FPGA.

As a result they created a project equivalent in complexity
to a 1980s arcade game, from the gate level to the application.

We navigated a number of obstacles and learnt numerous
lessons along the way. We learnt that medium-scale volume
hardware manufacturing is possible in a UK university setting
but there are a number of pitfalls, in particular relating to
accounting practices. In-house laser cutting and 3D printing
solved design problems we could not if we outsourced. While
we had no ability to hire assembly staff, it was fortuitous that
we could involve students in the process and it became part
of the learning experience.

Initial language learning, particularly for languages with
unfamiliar paradigms like hardware description, works much
better with an online tutor than by lecture or by simple exer-
cises. Test-driven development allows not only rapid feedback
of success, but also allows decoupling layers such as hardware
and software design. This enables software to be perfected
before time-consuming hardware tasks.

Deploying the exercises in a heterogenous bring-your-
own-device and workstation-based environment had numerous
pitfalls, but none which were insurmountable. EDA tools are
not intended for portable use, and there are many technical
obstacles they bring up in both access and performance, and
this guided many of our decisions. This achieved the goal of
most students being able to take their board home and work
wherever and whenever was convenient for them.

Some students can find rapid progression through the layers
challenging, but were able to make progress nonetheless and
with minimal support outside of contact hours. 97% completed
their assignments and received credit.

We have published our lab material at
www.cl.cam.ac.uk/teaching/1516/ECAD+Arch/

ACKNOWLEDGEMENTS
We would like to thank Altera for generously supporting

our teaching effort, funding summer interns and hardware do-
nations. The Yarvi processor was originally written by Tommy
Thorn and Paul J. Fox did some of our initial adaptations. We
also thank all students who gave us comments and feedback
during the labs.

REFERENCES
[1] “Raspberry Pi Zero extreme teardown.” [Online]. Available: https:

//www.youtube.com/watch?v=HH5cFqc9OcM
[2] “Standard cell libraries: TSMC.” [Online]. Available: http://www.

europractice-ic.com/libraries TSMC.php
[3] “Linux v4.5 statistics.” [Online]. Available: https://www.linuxcounter.

net/statistics/kernel
[4] S. Moore and K. Taylor, “An intelligent interactive online tutor for

computer languages,” in 25th Annual International Conference of the
British Computer Society’s Specialist Group on Artificial Intelligence
(SGAI), 2005.

[5] T. Thorn, “YARVI - Yet Another RISC-V Implementation.” [Online].
Available: https://github.com/tommythorn/yarvi


