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Summary

This thesis extends techniques from digital circuit interconnect prediction (in particular

Rent’s rule) to analyse and predict interconnectedness in software, Chip-Multiprocessors

(CMP) and Networks-on-Chip (NoC). Since the birth of the microprocessor, transis-

tors have been getting cheaper, faster and more energy efficient, whereas global wires

have changed little. At the same time we are moving towards thousands of processing

cores on a chip, with software distributed across them. This new era of communication-

dominated computing is marked by local computation on a core being cheap, but with

global communication between cores and with external memory as expensive. Thus the

physical spatial position of software starts to become important. Indeed, it is shown that

unless physical locality in communication is exploited, the costs become untenable with

technology scaling.

In VLSI (Very Large Scale Integrated) circuits, the fractal connectivity of Rent’s rule is

a well known predictor of the physical locality of interconnect across many orders of

magnitude. It is shown how a generalised Rent’s rule can characterise and model both

spatial and temporal locality in software, and it is demonstrated that locality effects

can be exploited in Network-on-Chip design for fault tolerance. Evidence of Rentian

fractal scaling in software is examined across several benchmarks using multiple meth-

ods. Given Rentian scaling, many fundamental results are derived for future many-core

CMP architectures that relate number of cores, communication, on-chip memory and

the Rent’s exponent, including some surprising scaling requirements towards fine-grain

communication. It is also shown that existing models of an algorithm’s asymptotic time

and energy cost are inadequate to account for physical communication costs and local-

ity. A new analytical framework that utilises locality and its Rentian characterisation

is demonstrated on several example algorithms, and a study is made of the ‘embedding

problem’ for composing embeddings of algorithms together. Finally, in examining the

interplay of communication and massively parallel computation at larger scales, we look

at the mammalian brain as a proof-of-existence. We show that Rent’s rule also appears

to apply to neuronal systems, and that this relates to the allometric scaling of communi-

cation to computation.
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GLOSSARY

C.elegans . . . . . . . . . . . . Short for Caenorhabditis elegans, or the ‘nematode worm’. This is a model

organism often used in biology.

CMP . . . . . . . . . . . . . . . . . Chip Multiprocessor, consists of multiple processors on a single chip (or stacked

die).

Configuration Space Concept originally from Physics where configurations of objects correspond to

a position in a high-dimensional space. For example the configuration phase

space of a particle is the 6-dimensional position correponding to its 3-dimensional

spatial position and 3-dimensional momentum.

DSI . . . . . . . . . . . . . . . . . . . Diffusion Spectrum Imaging. A neuro-imaging technique that maps myelinated

axons by following the diffusion of water molecules as seen by MRI machines.

Grey Matter . . . . . . . . Grey matter corresponds mainly to neurons, their synapses and unmyelinated

axons. Computation occurs at neurons and synapses, so grey matter is represen-

tative of computation.

NoC . . . . . . . . . . . . . . . . . Network-on-Chip. These are communication-networks that allow the general

transport of data between different parts of a computer chip.

Rent’s Rule . . . . . . . . . . A power-law relationship between the I/O terminals at a boundary, and the

amount of logic inside the boundary.

VLSI . . . . . . . . . . . . . . . . . VLSI – Very Large Scale Integrated circuits – or commonly referred to as ‘com-

puter chips’, but with ‘very large’ numbers of devices/transistors on the chip.

White Matter . . . . . . . White matter corresponds mainly to myelinated axons. These axons are pro-

jections for long-distance communication between neurons and protected by a

white sheath of myelination, so white matter is representative of communication.





1
CHAPTER ONE

INTRODUCTION

1.1 Overview

We are entering an exciting new time in computing, where communication costs domi-

nate over the raw computational costs. Old assumptions and models of computational

complexity that assume cheap communication need to be seriously revisited in an era

when moving a word of data from one part of a chip to another can consume a hundred

times the energy of 32-bit arithmetic operations. This thesis argues that it is the com-

munication costs of algorithms, rather than their computation costs, that will dominate

future computing concerns. That, as we move to thousands of cores on a chip, the phys-

ical spatial locality of computation and data becomes critical to performance and cost.

However, there is very little in the way of theory, models or even characterisation of such

locality for Chip-Multiprocessors (CMP). This thesis adapts and extends the existing

theory and models of wire locality in VLSI circuits to the physical and temporal locality

of software running on CMPs. It aims to provide a new foundation for characterising,

modelling, predicting and exploiting the communication properties of software, which

as we show, exhibits Rentian fractal scaling. In doing so, it lays a new communication-

centric foundation for CMP software and hardware, and provides fundamental insights

into their continued technological scaling.

1.2 Main Contributions

Here, the main contributions of the thesis are listed. Those in bold are considered to be

particularly important contributions of the thesis.
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Arguments of how the communication costs of algorithms are becoming more important

than their computational costs:

• Demonstrating that non-local communication patterns such as uniformly-random

traffic, and transpose traffic lead to unacceptable growth in communication cost

with technology scaling.

• Showing how available external I/O bandwidth scales poorly per-core, implying

that data-independent parallelism is not scalable compared to data-interdependent

parallelism.

Examining Rent’s rule for the Network-on-Chip domain:

• A bandwidth version of Rent’s rule is introduced, with a corresponding hop-length

distribution for traffic that characterises the spatial locality of communication. Also,

the scaling behaviour of Networks-on-Chip traffic is determined from this model,

and the distribution of expected types of router operations is shown.

• To exploit this locality, a simple fault-tolerant router is introduced by a wrapper

that bypasses all router logic, but allows through-traffic to continue in the same

direction.

• New analytical methods employing the hop-length distributions, are demonstrated

to evaluate and compare router designs for fault-tolerance behaviour under Rentian,

exponential and random-traffic models. The traffic model is shown to make large

differences to the fault-tolerance of designs, and can affect the choice of a suitable

router.

Existing software benchmarks for CMP and single-threaded execution are examined to

see if they exhibit Rentian scaling:

• SPLASH-2 and Parsec benchmarks are rigorously analysed on a 32-node CMP sim-

ulator, with many shown to demonstrate Rentian scaling, with better fits compared

to other candidate distributions. Hop-length distributions, and average bandwidth

for these benchmarks are shown to be predicted well, compared to a null hypothesis

model.

• The dynamic-data-dependence graphs (DDDG) extracted from traces of the MiBench

single-threaded benchmarks are analysed for fractal dimensionality by box-counting,

where many are again shown to have fractal scaling.

• Applying Rentian analysis to the temporal domain, where the dynamic-data-dependence

graphs are analysed for physical Rentian scaling based on their instruction time, and
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shown to have Rentian scaling and clear evidence of this structure. Some evidence

is also shown that the inter-access time distribution is related to the Rent’s exponent

in the predicted manner.

• The dynamic-data-dependence graphs are analysed for topological Rentian scaling

and many are again shown to exhibit Rentian scaling.

New theorems are derived for Rent’s rule, extending it to more general domains:

• Proof of asymptotic equivalence between Rent’s rule and power-law distance distri-

butions in homogeneous d-dimensional vector space, thus generalising Rent’s rule

beyond the 2-D Manhattan metric domain of VLSI, to arbitrary finite-dimensional

vector spaces.

• Cost-universality as applied to distance distributions, where for a given head dis-

tribution, the optimal power-law tail exponent is shown to be the same under any

strictly increasing cost-function.

• That optimally embedding in any d-dimensional space is equivalent to embedding

in a configuration space – where scaling parameters become independent of dimen-

sionality. This allows Rent’s rule to be generalised by extending to arbitrary config-

uration spaces, including the Spatio-Temporal domain of CMP.

A model for the scaling characteristics of CMP based on the generalised Rent’s rule, using

Spatio-Temporal interconnects:

• Derivation of a Spatio-Temporal CMP model of communication on-chip, off-chip

and though a ‘Rentian’ memory that optimally minimises off-chip communication.

• Relations derived of how external I/O bandwidth scales with number of cores, on-

chip memory, granularity of communication and Rent’s exponent, which should

assist in the architectural exploration of CMP configurations.

• A comparison is made of caches to the perfect ‘Rentian memory’, which result in

bounds on the performance improvement that a scratchpad memory can feasibly

attain compared to caches.

• Scaling laws for optimum tradeoff between number of cores and memory, given I/O

limited performance and growth.

• A comparison of scaling characteristics of data-independent parallel algorithms ver-

sus data-interdependent parallel algorithms that obey Rent’s rule, showing relatively

large reductions in external I/O bandwidth at the thousand-core era by leveraging

interdependent parallelism.



22 1.3 Organisation

Asymptotic characterisation of communication in software:

• Demonstrating direct extraction of Rent’s parameters from sample algorithms: ma-

trix multiplication, sequential Fibonacci, Fast-Fourier Transform.

• The asymptotic cost of communication is derived for Rentian software, given the

Rent’s exponent and embedding domain.

• It is shown that, in software, optimal embeddings do not themselves compose to

form optimal embeddings, thus posing the question of whether Rentian scaling

properties can be practically preserved upon composition. This is resolved by prov-

ing that hierarchically composed/decomposed embeddings, although not optimal,

preserve Rentian scaling at only a (small) constant factor penalty compared to opti-

mal embeddings.

• A model of spatially distributed data accesses, showing how the power-law distri-

bution of memory-access can restore constant factor or logarithmic average access

costs, depending on the exponent.

Examining Rentian scaling in neuronal networks – as a natural parallel computing system

at scales beyond existing technology:

• Demonstrating that the human brain and the nematode worm have neuronal net-

works with Rentian scaling.

• Illustrating that small-world networks are fully compatible with fractal Rentian scal-

ing with a worked example.

• Deriving a relationship between Rentian scaling parameters within a brain, to pre-

dict the allometric scaling properties of white-matter versus grey-matter across a

range of mammalian brains, and showing that the parameters extracted for Rentian

scaling within the human brain correctly predict the allometric scaling properties

across mammalian brains.

1.3 Organisation

The research that comprises this thesis was not arrived at as a simple linear exploration.

New analysis lead to new insights, and old ones had to be revisited. Whilst every effort

has been made to make chapters have a consistent theme of exploration, this has come

at the expense of ordering. In particular, the concepts of spatio-temporal interconnect

are introduced in Chapter 5 and used in Chapter 7 for derivation of a Spatio-Temporal

Rentian model for CMP. However, this model is tested experimentally on benchmarks in

Chapter 5.
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Chapter 1 comprises this overview.

Chapter 2 argues that communication costs rather than purely computational ones will

start to dominate power, performance and other measures with technological scaling. It

shows how communication costs in the Chip Multiprocessor (CMP) domain are funda-

mentally different to those in the traditional parallel-computing domain, and that old

intuition and solutions from the parallel-computing domain lead to poor, unscalable so-

lutions for the CMP domain.

Chapter 3 discusses existing models of computation, of communication, and discusses

the role of the fractal scaling known as Rent’s rule in VLSI.

Chapter 4 argues for a bandwidth version of Rent’s rule for communication over a

Network-on-Chip, and examines its implications for Network-on-Chip design and fault-

tolerance.

Chapter 5 examines experimental evidence using multiple methodologies and shows that

many existing software benchmarks obey the fractal scaling of Rent’s rule.

Chapter 6 takes the theory of Rent’s rule beyond VLSI placement. It consists of theo-

rems showing that Rent’s rule is asymptotically equivalent to power-law-tailed distance

distributions. It shows that Rent’s rule applied to homogeneous spaces preserves an in-

variant in an equivalent configuration-space. Preserving this invariant allows a consistent

generalisation of Rent’s rule beyond homogeneous two- or three-dimensional spaces.

Chapter 7 utilises the generalisation from Chapter 6 to derive expressions for the scaling

characteristics of CMP, based on the number of cores, the Rent’s exponent of software,

the amount of on-chip memory, and the granularity of communication. Surprisingly as

the number of cores increases, there is pressure for inter-core communication to become

more fine-grained.

Chapter 8 demonstrates how one can calculate the asymptotic cost of communication

for sample algorithms by direct analysis, supplanting usual measures of computational

complexity. It introduces the ‘embedding problem’, whereby optimal embeddings do not
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themselves compose optimally, and gives a simple solution that allows algorithms to be

composable, and yet also preserve Rentian scaling. It then derives lower-bounds for the

spatial-communication component of memory accesses.

Chapter 9 looks at the brain as a proof-of-existence of parallel computing system at

scales beyond existing technology, and demonstrates that the human brain also obeys

Rent’s rule. Furthermore, it shows how Rentian scaling has been preserved across the

evolution of mammalian brains, as the allometric scaling of white matter to grey matter

across mammals can be predicted by the self-similar Rentian scaling within the human

brain. In the computing domain, this implies that Rentian scaling will likely continue to

govern communication in computation at far larger scales of integration.

Chapter 10 briefly concludes and discusses potential future work.

Appendix A contains plots of the SPLASH-2 and PARSEC benchmark applications show-

ing best-fits of Rentian and alternative models and a comparison of their predicted versus

actual hop-length distributions.

Appendix B comprises plots of box-counting fractal scaling behaviour for the MiBench

benchmark applications.

Appendix C comprises plots of physical Rentian scaling and their temporal-distance dis-

tributions for the MiBench benchmark applications.

Appendix D comprises plots of topological Rentian scaling and their temporal-distance

distributions for the MiBench benchmark applications.

Appendix E describes in more detail the model used to determine best-fit parameters

for the Spatio-Temporal Rentian model of a 32-core system, the results of which are in

Chapter 5 and Appendix A.

Appendix F lists source code for numerically evaluating the Spatio-Temporal Rentian

model for I/O bandwidth versus Rentian memory seen in Chapter 7.
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CHAPTER TWO

MOTIVATIONS:
COMMUNICATION VS.

COMPUTATION

For most of the history of computer science, computation has been ‘expensive’ and com-

munication practically ‘free’. This fundamental, and yet implicit assumption, underlies

our analysis of algorithms, and guides our intuition when constructing solutions to prob-

lems in Computer Science. Unfortunately, this assumption has been eroded with tech-

nological scaling as we can no longer ‘hide’ the underlying laws of physics. Indeed, the

tables have turned – as we shall show, it is now communication that has become ex-

pensive whilst computation is practically ‘free’. We shall show that looking forward, it

is the communication of algorithms rather than their computation that will become the

dominant factor in energy consumption, cost and performance metrics in the many-core

era.

2.1 Broken assumptions: no escape from Physics

The exponential growth of transistor density, as predicted by Moore’s law, has allowed

transistors to scale over the last 35 years from dimensions of 10,000nm (Intel 4004) to

45nm (current Intel and AMD processors). This dramatic growth in transistor density

has allowed processors to scale in complexity from the 2300 transistors of the Intel 4004,

to the 731 million transistors of the Intel Core i7 (including cache). During this period,

however, chip sizes have largely been unchanged at about 10-20mm on a side, depending

on cost. While transistors have been getting smaller and faster, the wires that connect

one region of the chip to another, have not scaled. Relative to transistors, they have

gotten exponentially worse in speed, power, and manufacturing cost.

In table 2.1 we see how technology scaling affects the relative cost of communication

versus computation. This table is adapted from a presentation given by Dally [34]. We

can see that communication is no longer inexpensive – thanks to decades of technological

scaling, even at the older 130nm scale, merely transferring 32-bits of data from one

27
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technology node 130nm CMOS 45nm CMOS

transfer 32b across-chip 20 ALU ops 57 ALU ops

transfer 32b off-chip 260 ALU ops 1300 ALU ops

Table 2.1: Comparing trends in energy consumption, adapted from Dally [34]

part of the chip to another consumes the equivalent of 20 ALU operations. Moreover,

at current scales of 45nm, it is even worse, and this disparity will continue to grow

exponentially with technological scaling. Furthermore, we see that in order to transfer

data off-chip, the costs become even steeper, with large transistors required to drive the

pins. To some extent, new technologies can help mitigate these, but as we shall see,

they do not halt the larger trend. What this means is that communication, both on-

chip and particularly off-chip, can be many orders of magnitude more expensive than

computation.

Computer Architects have done a remarkable job insulating software engineers from the

changes due to technological scaling. They have kept the illusion of ever faster serial-

processors alive until recently, when diminishing returns to instruction-level parallelism,

excessive power-consumption costs and slow on-chip interconnect, have resulted in aban-

doning this illusion, and forced software engineers to move to multi-core scaling. Whilst

computer scientists rush to cushion this blow, by trying to make parallel programming

easier, they need to be aware that more challenges from technological scaling are waiting

in stall, that they cannot be insulated against.

With continued technological scaling, we are transitioning into an era with thousands or

even millions of cores. With so many cores, one might even say that ‘processors are the

new transistors’. Software and instructions can no longer be thought of as operating in

some sort of Platonic realm. Software, and data, instead have a physical spatial position.

Instructions are actually executed at some physical position, and data needs to be stored

and retrieved from a physical position and transported to another physical position. This

has profound implications for the future of software design.

Suppose two algorithm designers Alice and Bob construct their own data-structure to

store and retrieve information. As there is too much data to fit on one core, it necessarily

spills over to the memory of surrounding cores (or even a neighbourhood of memories,

off-chip). This can be much like the binary tree traversal in figure 2.1. Here colours cor-

respond to the level of the tree. Although binary tree traversal is thought of as O (logN)

this is only the case if communication costs are ignored. A physical implementation nec-

essarily has the data reside somewhere, and this limits the spatial locality. If the nodes

are placed randomly but in the 2-D neighbourhood of the root node, then on average

each traversal of the tree takes time O
(√

N
)

, resulting in a total time of O
(√

N logN
)

.

If nodes are carefully placed in two dimensions (such as at the bottom of figure 2.1), then

the average distances between levels of the binary tree hierarchy grows exponentially, but

traversal takes time O
(√

N
)

. Thus even if Bob carefully produced an algorithm that has
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Figure 2.1: Algorithms and data-structures must be physically embedded in space (here the 2-D space on-

chip). Asymptotic tree traversal costs are shown for binary tree placements, assuming that traversal costs

are proportional to distance.

computational complexity O (logN), Alice could produce a poorer computational com-

plexity algorithm of O
(√

N
)

but focused on communication costs, and asymptotically

outperform Bob’s algorithm. Indeed, in general, Alice will do no worse than Bob by

focusing on communication complexity, but can also do better than Bob as here. We will

show in Chapter 8, that the asymptotic scaling of communication costs is at best equal

to the asymptotic scaling of computational costs, and can typically be worse. This may

mean that communication complexity may one day replace computational complexity as

the measure of asymptotic scaling in algorithms.

2.2 The many-core memory bandwidth wall

We noted (see Table 2.1) that communication power off-chip is not scaling with transistor

performance. Despite this, rather than using less I/O bandwidth, demand for I/O band-

width is growing, and technology is not keeping up. Figure (2.2) shows the estimated

growth for total chip I/O bandwidth based on ITRS predicted figures [59] for pin-count

in their ‘cost-performance balanced’ model and the predicted bandwidth growth of high-
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speed pins. We note that after 2017 the growth changes to a more conservative trend

as manufacturable solutions for these are not currently known. The rate of growth can

be shown by fitting a range of Rent’s bandwidth-exponents (Rent’s rule is discussed in

Chapter 3, and the bandwidth version explained in Chapter 4). These are estimated for

the years up to 2017, yielding exponents between 0.57 to 0.67, depending on pin-count

growth rates.

We should note that these numbers may not account for the power and thermal con-

straints that are also present on the system that may prevent pin counts and pin band-

width from growing as fast as this. Also, the size of I/O pads and drivers do not tend to

change much with each process generation, so the exponential growth in pin count may

have other costly repercussions for die size. Optical off-chip communication may help

improve available bandwidth, which is discussed further below, however it is unlikely to

be a panacea.

From the predicted I/O bandwidth (figure 2.2) we can derive the external memory band-

width per core (figure 2.3), available on average to each core. The transistor density
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doubles every technology generation and this has led some people to believe that the

number of cores could also double each process generation. However the ITRS deems

the number of cores doubling per two process generations to be more representative of

current power-limited design trends, and this is what is currently seen in the marketplace.

Both trends are shown, and we observe the exponential drop in available bandwidth that

can impose a significant bottleneck in performance. This shows that cores cannot feed

their bandwidth from external I/O and instead communication from other cores on-chip

is required to make up the shortfall. We also note that this external bandwidth has

considerably larger communication latencies and consumes more power than on-chip

communication. Indeed, a reason why cores cannot scale linearly with transistor growth

is because larger on-chip memories are needed to reduce latency and external I/O band-

width demands. In Chapter 7, we shall examine this in more detail.

Benia et al. [2] characterised the diverse PARSEC benchmark suite, which includes emerg-

ing applications in Recognition, Mining and Synthesis (RMS) that Intel have declared as

important future workloads [53]. They simulated on 1 to 16-core CMP models and

noted that each core has high bandwidth demands, with algorithms operating on large

working-sets that far exceed on-chip memory. They showed that the bandwidth demands

grow approximately linearly with the number of cores (or worse), so that an exponential

growth in cores means an exponentially growing demand in I/O bandwidth. As such

they also predict that the external I/O bandwidth of CMPs will be ‘their most severe

limitation of performance’.

There are interesting implications for systems and software programming. The notion

that if we had hundreds of cores that we would merely run hundreds of separate applica-

tions is not sensible, even if users wanted to do so, because their external communication

needs would be unlikely to scale. Algorithms which assume simple independent data-

parallel operations distributed across cores also effectively operate like entirely separate

cores that need their own allocation of I/O bandwidth. While a lot of focus in paral-

lelism so far has been on finding or specifying independence between data, especially

in loops, and exploiting this as data-level parallelism, we see that this strategy may not

be scalable to large numbers of cores due to these external I/O constraints. Instead we

need to exploit interdependence. In traditional multicore architectures, external mem-

ory is effectively employed as a large communication crossbar. Indeed, by using such an

approach, many algorithms can be factored into simple data-parallel operations with ex-

ternal memory taking care of communication complexities / interdependencies. In other

words, the strategy many are adopting is to push out interdependencies to memory. For

example, each computation stage of the Fast Fourier Transform is independent and data-

parallel, however the communication between stages is complex and (external) memory

is often used to act as the communication medium. Similar approaches are used for

matrix operations and many other algorithms. This factoring of algorithms into batch

jobs of independent computation which are glued together by (external) interdependent

memory operations is not scalable. Instead, to achieve scalability and locality, we believe
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that interdependence needs to be exploited on-chip with more local computation and

communication between cores required. In short, algorithms must exploit communica-

tion locality between cores and threads so as to avoid communicating off-chip, and to

minimise communication costs on-chip.

Stream processing goes part-way to addressing this by factoring stream-processing stages

into cores with explicit communication between them. That is, their interdependence is

explicitly mapped into a linear (one dimensional) or near-linear inter-core communica-

tion graph. However, with a growing number of cores, this block level partitioning only

goes so far. Additional techniques are needed for further utilisation of cores with efficient

inter-core communication.

For loops, software pipelining [82, 69] is an approach that essentially takes the depen-

dency graph of operations in a loop and distributes them across cores to form a pipeline

across multiple tiles. It is an effective technique for fine-grain parallelism.

Affine Partitioning [70, 71] is another approach that partitions algorithms with affine de-

pendencies, typically within nested loops. It does so by converting the affine dependency

structure into a set of linear equations and finding provably minimal communication so-

lutions. The solution results in an instruction sequence in space (across a mesh of tiles)

and in time (by cycle count) with a set of communication patterns. Software pipelining

can then further extend the parallelisation.

Not all parallelisation approaches, however, result in partitionings with better internal

versus external communication utilisation. Thread Level Speculation (TLS) [96] tech-

niques on loops rely on very high independence between blocks of loop iterations for

speedup, and thus appear very close to data-parallel in nature. They then allow for

some interdependencies by aborting and restarting threads upon encountering depen-

dency conflicts, with obvious penalties. Thus when operating on large datasets, such

TLS techniques may also be significantly limited by external I/O bandwidth.

As external bandwidth, power and latency constraints motivate us to further exploit

internal bandwidth, we envision that many more techniques will be developed for inter-

dependent communication and parallelism.

2.3 Networks-on-Chip and traffic patterns

On-chip communication has evolved along with technological scaling, with its chang-

ing nature of computation vs. communication costs. This is illustrated in figure 2.4.

Whereas, it used to be simple to merely link source and destination with a single wire

(top of figure), as clock frequencies increased, and the demand for wire bandwidth grew,

the quadratic RC delay of wires due to their resistance and capacitance per unit length,

became problematic. Repeaters were inserted to break up long wires, constraining wire

delay and power-consumption to grow linearly with distance. As wire bandwidth de-

mands grew even further, interconnect became pipelined, thus allowing multiple symbols
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Figure 2.4: Virtualisation of interconnect. From wires, to buffered wires, to registered wires, to Networks-

on-Chip.

to be in-flight at the same time without risk of inter-symbol interference. Now, the point-

to-point interconnect is giving way to a more general communication fabric – Networks-

on-Chip [35] with point-to-point circuits or packets. This is seen at the bottom of figure

2.4, where symbols can be routed by the network from multiple sources and destinations.

Wires can then be re-used by multiple pairs of source and host instead of just a dedicated

link. As one can see, the general trend has been to employ more computational resources

to better utilise the relatively exponentially growing cost of on-chip communication.

Some may argue that the current move towards parallel computing connected by a net-

work can merely utilise the High-Performance Computing (HPC) research conducted in

the 90s and adapt it to the on-chip domain. Because of the very different nature of on-

chip communication costs, this is absolutely not the case, and Chapter 3 addresses this

in more detail. Nonetheless, many Networks-on-Chip designs are evaluated and anal-

ysed using methods taken from the HPC domain that are inappropriate for the on-chip

domain. For example, let us look at the very commonly used uniformly-random traffic

and transpose traffic patterns that are employed to test designs.

Let us consider an array of tiles connected by a mesh network, where each tile generates

on average one unit of bandwidth. We want to consider the effects of technology scaling

on the NoC. As we move to newer process technologies, the clock frequencies of the

Processing Element (PE) and NoC may also increase, but not necessarily by the same
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Figure 2.5: Scaling behaviour of bandwidth per router for different traffic distributions. The scale is such

that, on average, one unit of bandwidth is generated per tile.

amount. For our analysis, we will optimistically assume that the NoC frequency scales

by the same amount as the PE frequency. However, one must also take into account

the scaling behaviour of the traffic over the NoC. Uniform random and transpose traffic

are commonly used to assess NoC designs, so it is instructive to look at the implications

of such traffic behaviour. Uniform random traffic occurs when each tile has an equal

probability of communicating with any other tile. Whereas transpose traffic has the tile

at position (x, y) communicate with that at (y, x).

Figure 2.5 shows the average bandwidth requirements per router with scaling. This

should not be confused with the bi-section bandwidth, which grows even faster. Here,

the amount of traffic generated by each tile is a single unit at all scales, and thus does not

include the further effects of clock frequency scaling. We can clearly see that for these

traffic patterns each router has exponentially growing needs, doubling per quadrupling

in tiles, so even if the router link bandwidth did scale with the PE frequency, the number

of links required between routers would need to grow exponentially to keep up. Each

new link corresponds to more physical wires per router, which translates to an expo-

nentially growing number of metal layers. Now, one might argue that different NoC

topologies, such as a hierarchical mesh, hypercube, or other complex topology, might be

able to handle this better. Indeed, in the HPC domain, at sizes insulated from the physics

of technological scaling, this strategy works very well. Unfortunately in the on-chip do-

main, regardless of the topology, different NoC topologies do not change the physical

distance data must travel, nor the quantity of extra physical wiring still needed to trans-

port the extra flow of data. Thus they cannot circumvent this exponentially growing
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need for metal layers and bandwidth. Indeed, another way of interpreting figure 2.5

is that the metal layers for NoC routing also need to double per quadrupling in tiles,

with corresponding power and performance implications. We have already discussed the

growing relative cost of on-chip communication – so we can see that a rapid exponen-

tial growth in traffic per core, on top of an exponential growth in the number of cores,

makes such non-local communication patterns extraordinarily expensive.

Clearly, such scaling behaviour is unacceptable, but it is a simple consequence of assum-

ing uniform random or transpose traffic patterns. Indeed, if logic cells in a VLSI design

were randomly placed, the amount of wiring and metal layers required would scale in a

similar fashion. The reason this behaviour does not occur in the VLSI domain is because

locality is exploited by placing connected cells close to each other, thus minimising wiring

and improving timing and performance. Indeed, also seen in figure 2.5 are plotted the

expected growth in bandwidth per router if Rentian locality is exploited instead, which

is in line with the regular growth in VLSI interconnect demands. Rentian locality will

be discussed more in Chapters 3 and 4. For small arrays, non-local traffic such as the

random-uniform model, might still be tolerable. However, as we move into hundreds or

thousands of tiles on a chip, the exponentially increasing cost of such non-local traffic

patterns makes it impractical, and thus exploiting locality in communication becomes

essential.

2.4 New interconnect technologies

A number of new interconnect technologies are on the horizon to potentially help tackle

these communication challenges [59]. These technologies are discussed is more detail be-

low. Unfortunately, the benefits of these technologies are not scalable, and so represent

only one-off improvements of up to a single order of magnitude, and with significant

costs in terms of manufacturing and integration. It is possible that other forms of in-

terconnect may arise in future, however, they are likely to be limited resources in much

the same way as existing interconnect is. Longer interconnect necessarily has a larger

cost in terms of propagation delay, interconnect ‘wiring’ cost, switching resources and

their associated energy consumption, than a shorter interconnect does. Thus, we believe

that there will continue to be an incentive to reduce communication costs by exploiting

locality, regardless of any future interconnect technology breakthroughs.

2.4.1 Optical

For off-chip communication, optical interconnect is a promising candidate to existing

solutions, although with some challenges still ahead [59]. It is likely to reduce power

consumption, in a one-off fashion, by up to an order of magnitude. We shall focus,

however, on on-chip optical interconnect.
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We should also point out that optical interconnect necessarily runs as a circuit-switched

medium. Although the energy consumed for transmission is largely independent of dis-

tance, longer circuits take up more switching resources than shorter circuits, preventing

the rest of the system from utilising these switching resources. Thus there is a resource

cost (and associated power cost) for longer interconnects compared to short ones. More-

over, optical ring resonators are relatively bulky units that can only steer either individ-

ual wavelengths or bundles of wavelengths together as a set. Unlike an electronic switch

which can steer traffic from multiple sources in an arbitrary fashion to multiple desti-

nations, the optical version needs time to warm or cool so as to match the target set

of wavelengths, and then can only steer that set of wavelengths whilst leaving the other

sets of wavelengths untouched. This greatly restricts the flexibility of optical intercon-

nect, compared to electronic ones. The waveguides that serve as the equivalent of ‘wires’

for an on-chip interconnect, are necessarily wide (1 − 4µm) as they must support the

relatively large wavelengths of photons compared to electrons. By using high refractive

index waveguides it is possible to use smaller width waveguides (e.g. 1µm) but neces-

sarily at the expense of a slower speed of light (e.g. ~1/3) in that medium [50]. These

width constraints mean that optical interconnect does not actually scale along with new

technology nodes – their size remains constrained to top-level global interconnect.

One of the primary motivations for utilising on-chip interconnect is to try to reduce

interconnect power-consumption, however recent work by Dokania and Apsel has chal-

lenged the view that on-chip optical interconnect could achieve this goal [38], even with

off-chip light sources that are merely modulated on-chip. After taking into account the

energy needed for the thermal regulation of these on-chip modulators, they found that

any energy savings over traditional wire-based interconnect are effectively nullified.

2.4.2 LVDS transmission lines

Low-voltage differential signalling is already used for off-chip communication, however

they are not, as yet, utilised on-chip. Recent work by Ito and Mineyama et al. [58,

75] constructed current-mode on-chip LVDS transmission lines with carefully designed

passive equalisation. They demonstrated an order of magnitude reduction in energy

consumption, and improvement in latency. Their 90nm CMOS implementation of length

5mm, was capable of just over 10 Gbps. We should note, however, that the interconnect,

transmitters and receivers take up a large amount of area – and that this area does not

shrink with technology scaling. The LVDS wires themselves take up a very large width

of 20µm including spacing, making them suitable only for top-level global interconnect.

This compares poorly to the current 0.14 − 2.0µm global interconnect pitch width at

the 45nm technology node [59]. Compared to optical, Mineyama shows that [75] it

consumes even less power at these distances. This may make them a considerably more

attractive option than on-chip optical communication. Nonetheless, much like optical,

the benefits are likely to be one-off – they do not improve much with technology scaling.
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2.4.3 Carbon Nanotubes

Carbon Nanotubes are also being seriously considered for integration [59], although they

currently pose a number of manufacturing challenges. They have superior conductivity

for longer length interconnects compared to current copper interconnect, as well as excel-

lent thermal conductivity and do not suffer from electromigration concerns. Their likely

power benefits, however, are small and one-off. They are merely a replacement material

for copper interconnect, as they are still electrical wires with resistance and capacitance,

even if not made of metal.

2.4.4 Surface plasmon resonance

Surface plasmon resonance avoids the large wavelength width requirements of photonic

interconnect, potentially allowing a much higher density of interconnect and even replac-

ing shorter, intermediate levels of on-chip interconnect. In this technology, electromag-

netic waves propagate along the boundary of metal and a dielectric medium. By tuning

the frequency of light to match the resonant frequency of plasmons, the light energy

can effectively be converted into a resonant plasmon that propagates along the surface,

whereupon encountering an irregularity it can be scattered back into light. A lot of work

has gone into manufacturing the small flawless interfaces needed for this form of com-

munication. Unfortunately recent theoretical work by Marklund et al. [74] has shown

that even with a flawless interconnect, this form of propagation may have even worse

scaling characteristics at nanometre scales than ordinary wires, as the damping length

varies according to the fourth power of wavelength.

2.5 Summary

In short, thanks to technological scaling, communication is becoming exponentially more

expensive than computation. Moreover, non-local communication patterns will become

prohibitively expensive as we move to many cores on a chip, since data and executing in-

structions have physical positions on the chip. Instead, we desire to minimise the cost of

communication by exploiting as much communication locality as possible. The problem

is, there is not much understanding of communication locality, particularly physical spa-

tial locality, in software. We qualitatively know that temporal locality is important for

cache behaviour, but what are at its foundations, and what can we expect in software?

How can we quantitatively model locality or predict it? This thesis aims to address these

fundamental questions for the new era of communication-centric computation.
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CHAPTER THREE

BACKGROUND

There has been abundant prior work in trying to model or characterise communication,

primarily in the context of how communication affects other measures such as time com-

plexity (performance) in computation, or area in digital circuitry. Here we discuss these

and their limitations, before delving into the more practical VLSI wiring characterisation

known as Rent’s rule.

3.1 High-performance computing

Parallel processing has been around for a long time, and much research has already been

done in trying to extract ever more performance out of them. Generations of high per-

formance parallel computers have been built using a collection of individual single-chip

processors coupled to a standard network interface or customised router, and linked

together by a communication topology such as a hypercube. These routers have tradi-

tionally been slow and bulky compared to the delay of links between them. Although

the absolute cost of communication can be high, the physical scales at which commu-

nication takes place is large (dedicated router chips orders of magnitude bigger than

individual area-constrained on-chip routers), where the cost and delay is dominated by

the routers themselves and their communication with the processor, rather than the ac-

tual transmission of data over the links, that are typically transmission lines / cables. This

means that the topological distance, i.e. the number of router hops between two nodes,

dominates cost over actual physical distance. The high performance parallel processing

domain therefore admits very high dimensional and complex topologies that can greatly

reduce its communication costs and improve performance. Indeed, high-dimensional

hyper-cubes are popular due to their ability to easily embed other problems [48].

At the scale of individual NoC routers on a chip, however, there is considerably greater

cost in connecting them into high dimensional topologies. Thus the intuition gained from

39
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the parallel computing community of building complex routers or non-local topologies

needs to be treated carefully and skeptically. Primary concerns about load-balancing

of computation and traffic do not necessarily apply in the CMP domain, where power

constraints are more dominant.

3.2 Existing models of parallelism and communication

There have been a number of models of computation with which parallel algorithms

have been studied. For the most part, however, these have been mainly applicable for the

High Performance Computing domain. Apart from Billardi’s work on D-BSP, these mod-

els typically do not account for the energy and delay costs of moving data that increase

with its physical distance, although Valiant makes his Multi-BSP model highly param-

eterisable so that these attributes can, in theory, be incorporated by choosing suitable

parameters. Moreover, these models have nothing to say about the expected properties

of communication locality, whether in physical space, or in time.

3.2.1 PRAM model

The PRAM model [42] is a parallel version of the RAM computation model. It is widely

adopted by algorithm designers to analyse the performance of algorithms, however it is

also a very simple model that assumes an infinite number of processors, and that mem-

ory is uniformly accessible in constant time, regardless of how it is shared, and has no

resource contention. As such it assumes ideal communication, and does not account for

the non-uniform communication costs of real systems, or their memory access costs. It

works best in the domain where communication and synchronisation costs are negligible

compared to computational costs.

3.2.2 BSP model

The Bulk Synchronous Parallel model (BSP) model of Valiant [106] was introduced in

1990 and is also widely used for algorithm analysis. This model is considerably more

realistic. It consists of a set of p processor-memory pairs, a communication network with

a throughput-related parameter g (time interval between consecutive messages), and a

synchronisation mechanism between them with latency L. Valiant envisioned parallel

algorithm execution to proceed in supersteps. Each superstep consists of three successive

stages:

1. Parallel computation – where each processor performs computations only on its

own local data

2. Communication – where processors exchange data with other processors
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3. Barrier synchronisation – where each processor waits until all the other processors

have finished

The parameter g is set so that for h messages of size one, it takes time hg on the processor

to deliver it. Note that it does not capture any locality in the communication, where one

set of processors may take a longer or shorter time to communicate than another. The

BSP model allows analysis of the time-complexity of algorithms, but not their physical

communication costs. The analysis consists of determining the cost of each superstep,

as the sum of the largest computation time of the processors, the longest communica-

tion time of them, plus the synchronisation latency. The total time cost of the parallel

algorithm is then given by the sum of the superstep costs needed to perform it.

Valiant also introduces the notion of parallel slackness, whereby algorithms designed for

the PRAM model can be run at only a constant factor penalty compared to the PRAM

model, but on the BSP model. This works provided there are sufficiently large numbers of

parallel PRAM processors to be simulated for each BSP processor. Essentially, it consists

of multithreading to hide the latencies of communication and barrier synchronisation,

in order to achieve near-ideal throughput. However, as was discussed in Chapter 2,

modern CMPs are severely I/O bandwidth constrained rather than simply I/O latency

constrained, thus such a technique would not be a panacea for modern CMP.

3.2.3 LogP model

Similar to the BSP model, the LogP model [32], introduced in 1993, also tries to cap-

ture some elements of the communication overhead. The LogP model consists of four

parameters: L – maximum latency of communication, o – processor overhead of com-

munication during which it cannot do other computation, g – minimum interval between

consecutive messages, and P – the number of processors. Unlike the BSP model it does

not constrain computation, communication and synchronisation into separate phases.

Furthermore, any synchronisation required is achieved through communication. How-

ever, as in the BSP model, communication costs are uniform between the processors, and

so do not capture any locality.

3.2.4 D-BSP model

The Decomposable-BSP model of Torre et al. [105], introduced in 1996, extends the BSP

to have decomposable clusters – whereby supersteps only communicate and synchronise

within their own cluster. They allow for the synchronisation and communication opera-

tions to be faster with smaller clusters, thus capturing some locality information. Bilardi

et al. [13] expanded on this, and defined a more restricted recursive version of D-BSP so

that it forms a binary decomposition tree of possible clusters. At each level of cluster size,

a separate parameter for the time-interval between consecutive messages gh and barrier

synchronisation latency Lh is defined.
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This model, finally, encapsulates some information about communication locality. Al-

though it is not necessarily tied to the physical constraints of, say, the two-dimensional

CMP surface – parameters can be chosen so that it reflects these constraints, by having

the latency L increase exponentially with higher levels of the hierarchy. Like previous

models, this one is primarily concerned with asymptotic time, rather than more recent

concerns of cost such as energy consumption. Also, as this model was constructed for

the HPC domain where there is abundant attached local memory (per processor node),

it does not model the very large time and energy costs of external I/O communication to

reach external memory versus local memory or on-chip memory. Nor does it model the

demands of multiple cores on a constrained external I/O bandwidth.

3.2.5 Multi-BSP model

More recently, in 2008, Valiant updated his BSP bridging model specifically for the CMP

domain [107]. Valiant shows that with different parameters, his Multi-BSP model en-

compasses the PRAM, D-BSP, and other models. Like the D-BSP model, this model

assumes a number of levels of hierarchy for a CMP, with corresponding clustering of

cores, memory, bandwidth cost and latency penalty. At each level of hierarchy, the

model assumes there is a cost gh for bandwidth and a cost Lh for latency, similar to

the D-BSP model. He then introduces a memory term for each level of the hierarchy, that

restricts the size of the problem that can be tackled at each level, as communication is

assumed to occur through slots in the shared memory. By allowing for a full hierarchy,

this Multi-BSP model contains multiple hierarchical levels of communication delay from

neighbouring nodes, to distant nodes on chip, and even to off-chip external memory.

Although it manages to capture a good deal of locality by its hierarchy, it does not cap-

ture the direct physical nature of locality. For example, there are parallel algorithms that

rely on a 2-D communication with its neighbours, such as Conway’s Game of Life and

systolic matrix multiplication. In the case of Valiant’s model, there are necessarily physi-

cally neighbouring nodes on a 2-D CMP that can only communicate by traversing up and

down through the entire hierarchy, rather than simply directly as physical neighbours.

Nonetheless, this is a significant improvement in capturing information about locality,

compared to previous approaches. Unfortunately, this model is also primarily concerned

with analysing and optimising asymptotic time complexity, rather than, for example, the

energy consumption of communication induced by the algorithm.

3.2.6 A note on Amdahl’s law

Amdahl’s law is often brought up when discussing limits to parallelism [56]. It should be

made clear that the tradeoffs posed between faster ‘serial’ processing and wider parallel

processing are actually based on coarse-grain parallelism such as tasks and threads, and

only as the problem is constructed. Advocates of the need for faster ‘serial’ processors

may be forgetting that largely, these processors are faster because they utilise Instruction
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Level Parallelism (ILP), deeper pipelining, memory parallelism and some speculative par-

allelism – which are simply different fine-grained forms of parallelism. They may not

be inherently faster at executing serial code, so much as they are better at extracting

such fine-grained parallelism on the fly. In a sea of processors, the internal computation

involved in extracting this parallelism can be offloaded to other simpler cores, and this

fine-grained instruction level parallelism distributed amongst a neighbourhood of cores.

Indeed Taylor shows how a Scalar Operand Network [103] can distribute operands, for

ILP, in an array of processors such as MIT’s RAW project.

The correct application of Amdahl’s law would be to characterise the strictly serial com-

ponent of an algorithm than cannot be sped up by pipelining, or with fine-grained par-

allelism, or speculation, and thus would have little advantage to be executed on a spe-

cialised, fast ‘serial processor’. In short, arguments misusing Amdahl’s law, demonstrate

not so much the limits of parallelism itself, but of the coarse-grained task or thread-level

parallelism that most software engineers currently refer to as ‘parallelism’.

3.3 Communication complexity approaches

Aside from parallel computing and algorithms work done in the HPC domain, some

theory has also been developed for analysing communication costs.

3.3.1 Yao’s two-party and multi-party models

Yao [113] studied the minimum amount of communication needed between two parties,

say Alice and Bob, in order to compute a function together, where both parties have mu-

tually exclusive parts of the function input data. In this model, the parties are assumed

to have infinite computing resources at their disposal, and that the cost of communica-

tion between Alice and Bob is fixed. The communication complexity of a protocol is

given by the maximum number of bits transferred between Alice and Bob to solve the

function under arbitrary inputs. The communication complexity of the problem is then

the lowest computational complexity over all possible protocols. Although some appli-

cation was made to evaluating boolean functions, and extended to partitions of boolean

circuits (where communication is across a divide between parts of a single boolean cir-

cuit), it doesn’t account for the cost of communication increasing by distance. Nor does

it consider the physical embedding of communication problems. Furthermore, even for

boolean circuit evaluation, it is in general an NP-complete problem to determine the

communication complexity for arbitrary functions (as it contains boolean satisfiability

as a sub-problem). Thus, characterising realistically sized circuits for communication

complexity is largely impractical.
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3.3.2 Thompson’s area-time complexity

Thompson [104] developed VLSI models where wires take up area and take time accord-

ing to their length. He examined the tradeoff between VLSI area and computation time

and showed that there were lower bounds to Area-Time-squared complexity (AT 2). Un-

fortunately, the model is rather dated. It assumes that area taken up by wiring directly

comes at the expense of logic area, because wiring and logic occupy the same plane.

However VLSI no longer resembles this – modern VLSI have multiple metal layers al-

lowing wires to reside on separate planes and not directly interfere with logic area. That

is, there are separate communication and computation resources in VLSI - as there are

on CMP. Also, Thomspon assumed that wire delays vary according to the logarithm of

length, which was an appropriate model at the technology scales of the time. Unfor-

tunately, with technology scaling we have moved closer to the underlying physics, with

delay linearly proportional to distance. This is something that Chazelle and Monier ad-

dressed [24] by enforcing linear communication time, however their model still assumes

that wiring is in the same plane as logic. Thus, although there is a large body of literature

with Area-Time optimal algorithms proven, these do not actually help in characterising

the communication costs or performance for modern VLSI, or in CMP.

3.3.3 Leiserson’s layout analysis

Similarly to Thompson, Leiserson examined the area versus interconnect tradeoff, but

utilised the theory of graph separators to analyse connectivity [67]. Graph separator

theory bears some resemblance to topological Rentian bi-partitioning, described later, as

it relates the minimum number of edges that need to be removed to partition a graph

into two equally-sized regions, to the total number of nodes in that graph. For some

simple types of graphs such as planar graphs, k-dimensional meshes, cube-connected-

cycles and other restricted graphs, separator theorems are employed to asymptotically

determine their area of layout. We should point out again, however, that these results

assume a single resource of both logic and wiring, whereas modern VLSI have separate

interconnect resources consisting of multiple planes of metal wiring. Thus they do not

help in characterising the actual communication costs for modern VLSI, or in CMP.

Moreover, they only apply to graphs that have known separator results.

3.3.4 Bilardi’s analysis

Bilardi and Preparata considered the theoretical impact of fundamental physical limi-

tations to parallel computation – in particular the speed of light and the finite size of

devices [14, 15, 87]. Indeed, these constraints of bounded communication speed and of

physical separation of computation and storage due to the finite size of devices, also lies

at the heart of this thesis. They also note that under these constraints, highly complex
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topologies such as binary trees or cube-connected cycles, cannot do any better in asymp-

totic latency compared to a simple mesh structure. Their analysis mainly consists of the

upper and lower bounds in simulating the PRAM model and higher-node versions of its

own model. They are primarily concerned with data-locality, as the farther away mem-

ory is located, the longer it takes to access. They demonstrate super-linear improvements

in performance with the number of nodes, due to increased memory access locality as

well as parallelism. However, their memory access patterns may not capture the true

nature of software locality. Its relevance is discussed more in Chapter 8.

3.3.5 Fox’s analysis

Some work by Fox [43] tried to analytically characterise the overhead of communication

compared to computation for high performance computing machines with a hypercube

and mesh topology. He primarily examined stencil operations regarding the system of

partial differential equations that govern neighbour forces in a 2-D crystal lattice, but

also looked at matrix multiplication and the Fourier transform. In particular, for matrix

multiply he determined by a decomposition analysis that it has an ‘information dimen-

sion’ of two. Its relevance is discussed more in Chapter 8.

3.4 Rentian scaling

In the 1950s whilst working at IBM, Rent discovered empirically that the number of

terminals for packages followed a power-law relationship to the number of gates within

the package, that was not explicitly designed for. This emergent scaling property was

first described by Landman and Russo in 1971 [64], and was denoted as Rent’s Rule. It

takes the general form:

T = kGp

where T is the number of terminals, G is the number of gates, p is the power-law expo-

nent between 0 and 1, and k is a constant of proportionality that has later been inter-

preted as the average number of terminals per gate [29].

Although it started as a simple scaling relationship for the number of pins on a device

package, Landman and Russo [64] remarkably showed that this behaviour was also

present in the internal scaling of logic within integrated circuits, at a continuum of scales.

That is, Rent’s rule is a self-similar property of circuits. Moreover they found that the

Rent’s exponent is characteristic of the type of circuitry present – with an exponent of

0.5 for regular structures like static-RAM, to higher values of 0.75 for random logic.

Donath in 1979 showed that the self-similarity of Rent’s rule within circuits, has direct

implications for the average wirelength of the circuits [39], namely that for p > 1
2
, the
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average wirelength would grow as Θ
(

Gp− 1
2

)

and the total length of wire needed for the

entire circuit would grow as Θ
(

Gp+ 1
2

)

. Later, Donath showed that Rent’s rule actually

predicts a power-law wire-length distribution for p > 1
2

[40] of the form Pr (L) ∝ L2p−3,

and validated it on actual designs.

Since then, Rentian scaling properties, and their associated wire-length distributions have

been experimentally validated on many real designs and with multiple partitioning tech-

niques [98].

3.4.1 Regions I, II and III

There is a considerably lower cross-sectional density of connections between VLSI chips

than there is within a VLSI chip. This is because pins are necessarily orders of magni-

tude larger than local on-chip interconnect. What this means is that near the chip-scale,

the Rentian relationship between terminals and gates diverges considerably from the re-

lationship at lower scales, as the region is no longer self-similar. For example, at the

chip level, partitioning the design into two results in a common high-density count of

terminals at the partition, but this is entirely dissimilar to the low-density count of pins

around the rest of their boundaries. This expected drop-off in power-law scaling at the

highest scales is called Region II, with the main power-law scaling behaviour of Rent’s

rule denoted as Region I. An example for a VLSI benchmark circuit can be seen in figure

3.1(modified after Stroobandt’s paper [97]), where we can clearly see a drop-off in the

otherwise power-law behaviour, at the top levels of the chip hierarchy.

Stroobandt also showed that in certain cases, a Region III phenomena can appear [97]

that diverges from Region I at low scales. This is due to the properties of the building

blocks used to create the circuit – as these gates have a small, fixed number of terminals,

they effectively constrain the allowable interconnection complexity at these low scales.

Such behaviour is dependent on the property of the library of gates allowed in a design.

3.4.2 Application

Rent’s rule has been found to be abundantly useful in the analysis of large circuits in

VLSI [98]. As well as its original use for predicting pin counts, it is used to predict

wire length distributions [40], and even for estimating critical paths in complex circuits

even for future technology nodes [20]. Rent’s rule has been found to apply across vastly

different scales, from only tens of gates to multi-million gate designs and beyond.

More recently, Rent’s rule has been derived from first principles using basic assumptions

[29]. This means that it is not just an empirical observation, but can arise from something

more fundamental and can even be more generally applicable. Christie and Stroobandt

[29] suggest that Rent’s rule arises naturally as a result of the locality of connections –

that is blocks are placed/mapped with consideration as to how they need to connect to

each other so as to not create undue wiring.
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Figure 3.1: Example of Rentian scaling on a benchmark VLSI circuit. This figure is modified after

Stroobandt’s original paper [97]. Note the presence of a Region II near the chip-level scale. The aver-

age behaviour of Blocks (i.e. gates) to Terminals is a power-law in the main Region I.

3.4.3 Topological vs. Physical Rentian scaling

Logic circuits can be represented as graphs, with nodes representing gates, and edges

representing wires. More generally, wires may actually connect to multiple destinations,

and thus are represented as hyper-edges. Rent’s rule can be determined and applied in

two different ways – topologically or physically. In a physical analysis, a contiguous

region of logic is taken and the number of gates/nodes counted within it. The number

of nets that connect from within the region to outside the region are then counted as

terminals. By taking multiple regions of varying sizes, the physical Rent’s parameters can

be estimated. In the VLSI community, because logic is mapped to physical positions by a

placement algorithm, this is typically referred to as the Rent’s parameters by placement.

For our purposes, we choose to instead refer to this as the physical Rent’s exponent, as

the position of nodes is not necessarily due to such a placement algorithm, as we shall

see later.

As the circuit can be represented by the graph/hyper-graph, we can also topologically

determine a Rent’s exponent by partitioning the graph into topological regions/clusters.

Although a number of approaches are available [99], a simple one to describe is min-cut

bi-partitioning. In figure 3.2 we see a simple graph on the left. This is partitioned into

two roughly-equal sized sets of nodes such that there is a minimum number of edges

from one partition to the other. In figure 3.2 this top-level partitioning is shown in green.
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Figure 3.2: Two levels of min-cut bi-partitioning (green, then red) applied to a sample graph.

This can be applied recursively, and we see in figure 3.2, another level of partitioning

is shown in red. Min-cut is known to be an NP-complete problem, so practically this

is performed by heuristic approaches. To determine the Rentian scaling, at each level

of the partitioning hierarchy we can count the number of nodes, and the number of

edges that crosses a higher-level partition. For example, in figure 3.2, at the second level

of partitioning, there are (counting clockwise) 4, 4, 4 and 3 gates, with 4, 3, 4 and 5

terminals respectively.

The topological and physical Rent’s exponents can actually be different [109]. In VLSI,

the physical Rent’s exponent is determined not only by the connectivity properties of the

circuit, but also by their physical placement onto the chip. A poor placement leads to a

higher physical Rent’s exponent than a good placement, and a random placement leads

to a limiting-case physical Rent’s exponent of one.

3.4.4 A-priori wire estimation

Following on from Donath’s original derivation of wire-length distributions, a number of

improved results have since been derived. Due to assumptions in Donath’s average wire-

length derivation regarding hierarchical partitioning, it turned out his predictions were

off by about a factor of two [39, 40]. Donath’s wire distribution derivation also assumed

an infinitely large circuit, so that the power-law distribution continued to unbounded

lengths. Real chips, of course, have a maximum wire-length constrained by the die size.

Later derivations were able to take these factors into account and better predict the

wire-length behaviour at scales near the chip’s side-length [98, 29]. Whereas previous

approaches utilised a hierarchical partitioning analysis, a stochastic approach introduced

by Davis demonstrated better predictions by treating connectivity as a stochastic function

of occupation probabilities [36]. Further extensions were later made into the optical

domain [84], and into 3-D stacked die [60, 116] amongst other areas.

3.4.5 Fractal dimensionality

A number of people have noted that Rent’s rule can be considered a measure of the

fractal dimensionality of the communication graph [41, 83, 43, 84, 99]. Although their
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reasoning is arrived at largely independent, their arguments are essentially identical – the

edges crossing the boundary of a region can be thought of as measuring the surface area

of an object, whilst the number of nodes inside the region can be thought of as counting

the volume of that object. The Rent’s exponent can then be thought of as the scaling ratio

between the surface-area to the volume. For simple d-dimensional meshes, one can easily

see that this indeed produces a matching Rent’s exponent of p = d−1
d

. More simply this

is just: p = 1− 1
d
. Stroobandt gives further arguments as to what properties a measure of

fractal dimensionality should be expected to possess, and how these properties eliminate

other potential candidates, but that are all satisfied by this measure alone [99].

3.5 Summary

Although a number of approaches exist for understanding the communication properties

of high-performance parallel computers and digital circuits, none of these models is ap-

propriate for describing the expected locality and costs of communication for the CMP

domain, and indeed many of them make assumptions that are invalid for current VLSI

technologies. Perhaps the most interesting model of locality is Rent’s rule, which rather

than merely being an analytical model of asymptotic complexity, also produces quantita-

tive predictions of the expected locality of wiring that have been validated on many real

designs. However, the prior work in Rent’s rule does not consider how it might be ap-

plicable to chip-multiprocessors in either the communication characteristics of software

running on it, or for the networks-on-chip that connects the cores together.





4
CHAPTER FOUR

RENTIAN LOCALITY FOR

NETWORKS-ON-CHIP

Various tiled architectures exist ranging from Chip Multi-Processors (CMPs) to arrays

of programmable logic or even to heterogeneous arrays that include custom-IP blocks.

If one were to replace the wiring between these blocks with packets over a NoC, then

it is important to determine what the properties of this traffic might be. Indeed, this

knowledge should aid us in the analysis and development of improved NoC routers.

In this chapter, the importance of traffic distribution models is shown in the analysis of

NoCs. A case for a Rent’s-based model is made and its implications explored. The rea-

sons why Rentian-behaviour might be expected are discussed, and a bandwidth version

of Rent’s rule is derived. From this, a hop-length distribution, the NoC equivalent of

a wire-length distribution, is constructed and explored for scaling and traffic implica-

tions. To better explore the differences caused by using alternative locality models, fault

tolerance design is used as a case-study. Firstly, an example semi-random task graph

is mapped using simulated annealing for optimisation. The result is used to generate

comparable best-fit Rent’s and exponential hop-length distributions. The expected dis-

tribution of traffic types under Rent’s rule is then analysed, and the observations are used

to design a new fault-tolerant router. The three hop-length distributions: Rent’s, expo-

nential and uniform random, are applied in the analysis of this fault-tolerant router. It

is shown how the choice of traffic model makes a significant difference to the impact of

faults on routability and in the quantity of congestion around faults. Rent’s distributions

are shown to result in considerably better fault-tolerance characteristics than uniform

random traffic in these analyses.

51
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4.1 Extending Rent’s Rule for NoC

4.1.1 Argument

Future massively parallel CMP will execute applications with enormous amounts of par-

allelism. CMPs are very different from multi-chip multiprocessors due to the much

higher-bandwidth and lower-latency communication channels available between cores

on chip, enabling fine-grain parallelism [81].

As was discussed in Chapter 2, the currently used models of uniform random, transpose

and other non-local traffic patterns have unacceptable scaling behaviour for CMP and

are not sustainable. For scaling to continue, it is essential that locality be exploited, the

question then is characterising how much is actually available, and in what form we

might expect to find it.

Software in CMPs is mapped to physical locations, with data flowing along paths from

one core to another. This combination of fine-grain parallelism and data-flows is anal-

ogous to circuits in VLSI. Indeed, the MIT RAW project uses the term software circuits

to describe such mappings [101], explicitly noting the similarity to VLSI-like place-and-

route. The difference with VLSI is that software circuits use processors instead of dedi-

cated logic blocks, and use a NoC instead of inter-block wires. Indeed, one could trans-

form data-flows in one domain to the other, interchanging dedicated logic blocks with

processors, and wires with a NoC.

If software circuits are anything like hardware circuits, then it is interesting to explore

whether they follow similar laws, such as Rent’s rule. To re-iterate, for VLSI designs,

Rent’s rule relates the number of terminals in a boundary, to the number of blocks within

that boundary by a power-law relation:

T = kGp

Where T is the number of terminals, G is the number of blocks (gates), k is the average

number of terminals for each block, and p is the Rent’s exponent.

We shall refer to this as the classical-version of Rent’s rule, as it applies to its traditional

domain of logic design.

In the following sections, we wish to show that a similar relationship can be applicable

to NoC bandwidth, and examine what that would mean for scaling.

4.1.2 Comparing VLSI with NoC

As shall be shown in section 4.1.3, for Rent’s rule to emerge, a certain type of bandwidth

locality is required to be present at multiple scales. The reasons why locality of tasks is

desirable for NoC are directly analogous to those for classical logic placement as can be



Chapter 4 Rentian locality for Networks-on-Chip 53

seen in Table 4.1. Just as it is typically undesirable to place two blocks on opposite ends

of the chip and wire them up, it is also undesirable to map two communicating tasks to

tiles at opposite ends. Indeed, for critical paths, it is desirable to place tasks as closely

together as possible.

The emergence of Rent’s rule, however, is dependent on the properties of the underly-

ing graph being mapped, the mapping algorithm’s objective, and the underlying physical

topology. The primary requirement for Rent’s rule is a certain type of locality at multiple

scales. This requires that the graph being mapped contains sufficient locality. For exam-

ple, complete graphs have no locality to exploit, and uniformly random graphs have very

little locality to exploit. The mapping algorithm must also favour this type of locality,

even if it is not an explicit objective, but rather an implicit one such as minimising critical

paths and congestion. Finally, the underlying physical topology needs to be structured

so that some form of multi-scale locality can exist. For example, a single central star

network does not lend itself to such locality, whereas a multi-scale star network does.

4.1.3 Derivation

Christie-Stroobandt based

To arrive at a Rent’s rule for bandwidth, we can follow a directly analogous derivation

to that of Christie and Stroobandt’s [29], but in place of Gates and Terminals we can use

Blocks and Bandwidth. For completeness, this is described below:

Let us consider a boundary with N blocks and external bandwidth B. Suppose a small

perturbation is made to the boundary such that ∆N additional blocks are included.

Without additional information we can only estimate that the additional blocks are likely

to require the same amount of communication per block as the original N blocks. Thus

we would expect the bandwidth to increase by:

∆B =

(

B

N

)

∆N.

Now let us suppose that some of this added bandwidth is actually internal, between the

original G blocks and the additional ∆N blocks. This internal bandwidth reduces the

external bandwidth seen on the new boundary, which we characterise by a parameter p,

where 0 ≤ p ≤ 1:

Domain to minimise Wires NoC

Delay Wire delay NoC latency (& congestion)

Congestion Wire-density Cross-sectional bandwidth

Power Wire buffering & length Hop-length & router

utilisation

Table 4.1: Factors in communication locality
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∆B = p

(

B

N

)

∆N.

If ∆B and ∆N are small in comparison to B and N , we can approximate this to a

differential equation:

dB

B
= p

dN

N
,

which yields the bandwidth version of Rent’s rule:

B = bNp,

where b is a constant of integration corresponding to the average bandwidth per tile.

We should note that the exponent here is different in value and meaning to the classical

Rent’s exponent, thus it is important to make a clear distinction between them. Let us

refer to the classical Rent’s exponent relating terminals to gates as the Rent’s terminal-

exponent, and for this new derivation as Rent’s bandwidth-exponent.

Now, consider a 2-D topology with four regions of equal block count. If these are

combined together, then let us define α to be the proportion of external bandwidth to

the four combined individual bandwidths:

α =
b (4N)p

4bNp

= 4p−1.

So α is independent of N , and thus independent of scale. Thus another way of interpret-

ing Rent’s rule is that at each scale, we would expect the amount of bandwidth locality

(characterised by α) to be the same.

Indeed, we can provide an alternate derivation of Rent’s rule with only the assumption

of multi-scale locality.

Multi-scale locality based

Let B (N) be a function describing the average external bandwidth for boundaries con-

taining N blocks. Suppose that for all N up to the size of the design, the following

condition holds:

B (4N)

B (N)
= 4α.

We shall call this the multi-scale locality constraint.

Applying repeatedly with n levels of hierarchy we have:
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Figure 4.1: Rentian scaling in different domains. In VLSI the Rent’s exponent characterises the locality

of external wires (green) to total wires (red and green) at each level of the hierarchy. In NoC, the wires

are replaced with packets, and the Rent’s exponent characterises the locality of packets at each level of the

hierarchy.

B (4nN)

B (N)
= (4α)n ,

In particular let us setN to one, and define x = 4n. SinceN and the particular boundaries

are arbitrary, let us assume this relation holds continuously, extending n to R
+:

B (x)

B (1)
= (4p)log4 x ,

then,

B (x) = B (1)xp,

which we recognise as:

B = bNp.

4.1.4 Comparison to classical Rent’s Rule

There is an important distinction to be made between the classical and bandwidth ver-

sions of Rent’s rule. In the classical version, the terminals and blocks in a design are

fixed, regardless of how they are used, and so the Rent’s terminal-exponent is also fixed.

In the bandwidth version, especially over a CMP, the bandwidths are not fixed and the

usage of the NoC can vary dramatically from one application to the next. Thus the

Rent’s bandwidth-exponent is actually dependent on the software/application currently
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running on top of it and may change accordingly. In both the classical and bandwidth

versions, the Rent’s exponent effectively characterises each level of the hierarchy. In

figure 4.1 we see one level of the hierarchy with four sub-blocks. For VLSI there are

terminals that connect within this level of the hierarchy (red), and those that connect

outside (green). Analogously there are packets that flow inside (red arrows) or flow

outside (green arrows). If this split between internal communication and external com-

munication is self-similar, i.e. if we find approximately the same split across a spectrum

of the hierarchy, then it follows the corresponding version of Rent’s rule.

The bandwidth-version of Rent’s Rule does not just apply to CMPs. For a VLSI design

consisting of many blocks wired together, if one replaced these wires with a NoC, then

the Rent’s terminal-exponent of the former may match the bandwidth-exponent of the

latter under certain conditions. This happens if the wire/terminal switching activity for

the original version is highly uniform, and independent of scale, then the number of

wires is directly proportional to the expected bandwidth, and the Rent’s rule for wires

automatically translates into the bandwidth version with identical exponent. This also

requires that long wires should have the same expected switching activity as short wires,

otherwise the rule may not follow, or a different exponent may result. Additionally,

this assumes a seamless transition from wires to NoC and neglects the effects that NoC

congestion, saturation and latency may have on bandwidth.

It should be noted that the classical version of Rent’s rule can be used to estimate band-

widths in VLSI by assuming a particular wire activity. However, this is quite distinct

from a bandwidth version of Rent’s rule itself. The emergence of both versions of Rent’s

rule arises from the type of placement optimisation used. In the classical domain, logic is

placed so as to reduce wiring, and the number of wires between blocks may correspond

reasonably well with the inter-block bandwidth requirements. In the bandwidth domain,

tasks are mapped so as to reduce communication. So they are optimising different at-

tributes, resulting in different Rent’s rule domains. For example, when using a NoC, the

amount of communication between two blocks does not correspond to the amount of

wiring between those two blocks. Indeed, there might not be any direct wiring between

communicating blocks, and even when there is, the use of wires is shared and wire ac-

tivity is application dependent. Thus one cannot merely use the classical Rent’s rule to

estimate such communication.

4.2 General Implications

4.2.1 Hop-length distributions

Just as the distribution of wire-lengths is of importance in the classical VLSI domain, so

is the distribution of hop-lengths in NoC. The effect that hop-length distribution has on

various analyses shall be demonstrated in later sections.
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Figure 4.2: Three distributions fitted to a semi-random task-graph.

The site function, giving the degeneracy of a physical length s, is:

D (s, L) =



























s (s (2L− s) + 1) 1 ≤ s ≤ L
2

4
3L
(

1 − L2
)

− 5
3s
(

1 − s2
)

+ 6Ls (L− s) L
2 ≤ s ≤ L

1
3 (2L− s+ 1) (2L− s) ∗ (2L− s− 1) L ≤ s ≤ 2L

0 s > 2L

And the occupation probability is:

Q (s) =
1

2s
[(1 + 2s(s− 1))p + (2s(s− 1) + 4s)p

−(2s(s− 1))p − (1 + 2s(s− 1) + 4s)p]

The proportion of total internal bandwidth for hop-length s is then:

F (s, H) =
H
∑

h=1

4H−h
(

4p(h−1)+1 − 4ph
)

Q (s)D
(

s, 2h
)

(4H − 4pH)
∑2h+1

m=1 Q (m)D (m, 2h)

Where there are 4H tiles arranged in a mesh with side-length L = 2H , and

p is the Rent’s exponent.

Figure 4.3: Equations describing Christie and Stroobandt’s equally optimised partitioning and placement

model [29]

Three hop-length distribution models are examined here. The first model is based on

Rent’s rule using Christie and Stroobandt’s equally optimised partitioning and placement

model (described in figure 4.3). The second assumes a uniform random model. The third

examines a semi-random generated task graph that was mapped by simulated annealing,

found to be close to exponential in distribution.
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scale is such that, on average, one unit of bandwidth is generated per tile.

4.2.2 Implications for scaling

We can utilise the model to estimate the scaling behaviour of traffic under Rent’s rule.

Using Christie and Stroobandt’s equally optimised partitioning and placement model, we

can calculate the average internal bandwidth per router. This is merely the weighted sum

of the hop-length distribution:

Bav =

∑2L
s=1 F (s, H) s
∑2L

s=1 F (s, H)

Figure 4.5 shows how this scales with the number of tiles. There are a number of assump-

tions going on here. Firstly, it is assumed that the amount of traffic generated by each

tile stays fixed with scale, and there is no scaling to account for increased clock frequen-
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cies. We note that a small change in Rent’s bandwidth-exponent can increase the average

traffic per router at large scales. For an exponent of 0.4, there is little change with scal-

ing, however an exponent of 0.7 leads to a many-fold increase. Higher exponents lead

to even greater increases with scaling, however, as seen in figure 4.4, this behaviour is

insignificant compared to the scaling of random uniform and transpose traffic patterns.

4.2.3 Prior work

The equivalent of VLSI placement in the CMP-domain is task-mapping. Interestingly,

some work has already been done by Hu et al. [57] regarding the impact of different

task-mappings on NoC energy consumption. Their aim was to optimise energy con-

sumption, and thus optimising locality wasn’t explicitly their goal. However, because

their NoC energy consumption model depended on the distance packets had to travel,

optimising locality implicitly became a goal. They took a Multimedia System (MMS)

consisting of an .h263 video encoder/decoder as well as an mp3 encoder/decoder, and

then partitioned the benchmark into 40 tasks that were then mapped to a 5x5 array

of tiles. Compared to random mappings (or rather the median result of 3000 random

mappings), they observed a 60.4% reduction in energy consumption, on average, for

sample video clips. As can be seen in figure 4.4, the Rentian model can directly be used

to predict the expected reduction of aggregate bandwidth for optimal versus random

mappings on a 5x5 tiled system. Hu’s energy model has power consumption increasing

linearly with packet distance, so the aggregate bandwidth becomes a reasonable proxy

to compare total dynamic energy consumption. Using the Rentian model, for a very

wide range of exponents of 0.4-0.9, we would expect reduction in aggregate bandwidth

of between 60-71%, and with the more likely higher Rent’s exponents of 0.7-0.9 we

would expect 60-66% in savings. Thus this purely analytical derivation agrees well with

Hu’s experimental results. As the size of the system increases, there is a rapid growth

in the predicted savings towards 100%. We should note that if this MMS design were

implemented in VLSI, the inefficient wiring of random placement would not be tolerated

for a commercial product. When replacing wires with packets, we would argue that this

inefficiency also should not be tolerated.

4.2.4 Hot-spots

So called ‘hot-spots’ occur where a computation or communication resource has signif-

icantly higher utilisation than average. This can be an argument for redistributing the

load of traffic and computation across the cores. In an era of increasing thermal con-

straints, ‘hot-spots’ in the resource-sense can literally turn into a ‘hot-spot’ problem in the

thermal sense. However, one must be very careful to distinguish between the variation in

power consumption from the total power consumption. By distributing tasks randomly,

we have already shown that the total power consumption rises dramatically with scale.

Thus applying this ‘fix’ may indeed cause power consumption to be more uniform but
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would also cause the entire system to be significantly hotter everywhere, defeating the

entire purpose of seeking uniformity and load-balancing in the first place. Certainly,

network congestion can affect performance, and therefore energy-performance, but this

means that the physical mapping of tasks needs to be handled more carefully, rather than

just randomly.

In discussing the concept of something being distributed vs. local, one must also be care-

ful to distinguish between physical locality and topological locality. In the topological

domain, hubs are high degree nodes, i.e. they are connected to many other nodes which

are topologically one hop away from it. Thus hubs have high topological locality, but

are problematic when it comes to actually physically placing them. For example, a hub

may have dozens of topological neighbours, but might only accommodate four physi-

cal neighbours, so it must necessarily have longer average links to communicate with its

topological neighbours. In general, high degree nodes are more ‘centralised’ but can lead

to poor physical locality, whereas topologically ‘distributed’ structures allow better phys-

ical locality. The argument for distributing resources should then focus on the topology

of the task-graph being mapped, rather than the mapping itself. Such a topology should

be restructured to be more distributed and balanced in the topological sense.

Concerning Rent’s rule, we should note that analogous concerns happen in VLSI, with

higher fan-outs and fan-ins for certain logic blocks or even gates. Whilst the occasional

presence of special hubs may lead to local perturbations in the locality from Rentian

statistics, they do not necessarily affect the average behaviour – indeed their rate of

occurrence are even predicted by VLSI Rentian models [114].

4.3 Applied to Fault Tolerance in NoC

In this section we first take a look at several distribution models describing locality,

and then apply them as a case-study to the design of a fault-tolerant router. Since the

probability of encountering a fault grows with the distance a packet must traverse, it is

shown how locality impacts internal router utilisation which can be exploited in router

design. It is then shown how the model of locality can have a significant impact on the

evaluation and comparison of competing router architectures.

4.3.1 Distributions Models

The Rent’s rule-based distribution

For the purposes of our NoC analysis, we shall restrict ourselves to a packet-based non-

hierarchical mesh of homogeneous tiles. We use Christie and Stroobandt’s equally op-

timised partitioning and placement model [29] which is described in figure 4.3. This

assumes a more optimal placement at the lowest scales than what may commonly be

found for gate-level place-and-route of large designs. In such designs, the impact of



Chapter 4 Rentian locality for Networks-on-Chip 61

moving a gate several gate-pitches away is small enough to be almost negligible, thus po-

tentially resulting in less sensitive placement at the lowest scale. For the NoC, the impact

of moving a task several tiles away can be quite significant in latency.

For this model of hop-distribution, we find that the first hop accounts for the bulk of

NoC traffic (75-90% for Rent’s exponents between 0.4 and 0.7). This means that com-

munication between neighbouring tiles is the primary contributor to NoC congestion and

power consumption when governed by Rent’s rule. If true, given the large cross-sectional

lengths and wiring density available for communication between neighbouring tiles, this

suggests that a separate low-latency communication path should perhaps be created for

this, without the latency and power overheads of packetisation and NoC routing. We

should note that when there is less optimal placement at the very lowest scale, the first

two hops account for the bulk of traffic instead.

Indeed, more recent work by Barrow-Williams et al. [9] has vindicated this as a strategy.

After our initial publication [45] suggesting this approach, they arrived at similar con-

clusions regarding cache-coherence and employed a separate neighbour-communication

path. Utilising this neighbour-communication path resulted in a significant reduction of

network traffic.

While this analysis assumes homogeneous tiles, we can also estimate the behaviour of

heterogeneous tiles. We note that a heterogeneous tile array may not be heterogeneous

at all scales. For example, we can consider a 2x2 array of heterogeneous tiles that is

then homogeneously tiled to a 16x16 area. In such cases, the placement of tasks is

only restricted at the lowest levels, likely resulting in a significant deviation from Rent’s

rule at these low-scales. In these cases, Christie and Stroobandt’s non-equally optimised

partitioning and placement model can be used to assign a separate Rent’s exponent for

that particular scale of heterogeneity.

The uniform random distribution

When each source is equally likely to send traffic to each destination, we have a uniform

random traffic distribution. This is a simple traffic model commonly used to evaluate

NoC. The resultant hop-distribution corresponds to the site function in figure 4.3. Ran-

dom mappings of task graphs also obey this hop-distribution. We see in figure 4.2 that

low hop-count interconnects are poorly weighted, whereas medium-sized interconnects,

of around half the side length, dominate.

The exponential distribution

The hop-distribution is a function of the mapping algorithm used and what it is trying to

optimise. If the mapping algorithm’s objective is insensitive to the bandwidth or latency

of communication, then it may very well produce a ‘random’ mapping from a commu-

nication perspective. For real applications, however, whether in the VLSI, SoC or CMP
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domains, communication is already a pressing system-level issue, and with further VLSI

scaling will only become more so. Whether a mapping algorithm is trying to optimise

for performance, or for power, locality in communication will become an implicit or

even explicit objective. However, depending on the application and mapping objective,

a Rent’s distribution does not necessarily result.

A semi-random task graph was generated by Task Graphs For Free [37]. The graph is

not completely random in that it is split into multiple stages, with random links from

each stage to the next or later stages. As these links between stages are random, there

is only limited opportunity to extract some locality. It should be noted that although

this tool is commonly used, it is questionable whether this approach generates realistic

task-graphs.

A graph with 250 tasks was generated and mapped to an 8x8 array of tiles. Each task

was randomly allocated a processor load, and each task edge randomly allocated a band-

width load. Simulated annealing was chosen for task graph mapping. The analysis by

Orsila et al. [51] on simulated annealing parameter-selection was utilised. The objective

function chosen for the task combines throughput and aggregate bandwidth, with the

primary objective being to maximise throughput by minimising worst case load.

ObjFn = NTasks ×NT iles × max
i∈tiles

{loadi} + AggBW

A minimum for the total ObjFn is sought by the simulated annealing. Here NT iles is

the number of tiles, and NTasks is the number of nodes in the task-graph. For each

tile, the load (loadi) is calculated to be the worst case of either the router load in each

routing direction, or the processor load. This is deemed to be more representative of

throughput measurement since a tile’s throughput can be processor-limited or router-

limited. The worst-case load out of all tiles is then deemed to be representative of the

inverse throughput of the entire mapped task-graph.

The aggregate bandwidth (AggBW ) measures the sum bandwidth of all tiles, and min-

imising this is a secondary objective. A decrease in worst-case-load can easily come at

the expense of an increase in aggregate bandwidth. However, it is still in the interests

of throughput maximisation for the annealer to reduce aggregate bandwidth since total

throughput can become bandwidth-limited due to congestion. This is similar to how a

VLSI place-and-route tool optimises critical timing paths, even at the expense of increas-

ing wire density.

The results from the annealing were then analysed to extract a Rent’s exponent and a

hop-distribution. A recursive partitioning was used to determine the Rent’s exponent,

and as can be seen by the fit in figure 4.6a, there is some evidence of Rent’s-like be-

haviour. However the exponent is very high at 0.89, which usually suggests that it is

close to a random graph. Random graphs generally exhibit poor locality and do not

obey Rent’s rule behaviour. Nevertheless, looking at the hop-length distributions in fig-

ure 4.6b we see evidence for some locality, though not of the Rent’s variety. For a Rent’s
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Figure 4.6: Rentian best-fit and resultant hop-distribution

distribution we may expect the hop-length distribution to approximate a power-law at

low values, leading to a linear relationship on a Log-Log scale. In figure 4.6b we instead

see an approximately linear relationship on a Log-Linear scale, thus indicating that it

may actually be closer to an exponential distribution.

An exponential distribution has a slower initial fall-off in frequency compared to a Rent’s

distribution and so there is more of an emphasis for lengths of several hops, but a much

smaller frequency for the single-hop, as can be seen in figure 4.2. This distribution’s

exponent is approximately -0.47.

Comparison of distributions

The extracted Rent’s and exponential model’s exponents now allow for some meaningful

comparison between these distribution models, and with the random distribution.

In fact, in figure 4.2 we can already observe the effect of traffic models on a design deci-

sion. In both the exponential and random models, the first hop accounts for a significant

portion of traffic, whereas this is not so for the random model. Thus having a separate

neighbour-to-neighbour communication path is most valuable for the Rent’s model, a

little less valuable for the exponential model, but not valuable for the random model.

4.4 A fault-tolerant router design

Locality is of key importance to fault-tolerance analysis and design, as the greater the

distance that packets need to travel, the more likely it is to encounter a fault. As we shall

see the type of locality model can affect the fault-tolerance properties of different router

designs. In this section we propose a fault-tolerant dimension-ordered router based on

what we’ve learnt about the distribution of traffic types in Section 4.4.1. This design
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Table 4.2: Suggested modes of operation for a fault-tolerant router

Operation Mode Turn-off/Ignore Fault-type Handled

Normal none fault-free

Through & Turn

traffic only

Storage, switching and

arbitration logic for Injection

and Termination, and PE

faulty PE or Injection /

Termination logic

Through traffic only All storage, switching and

arbitration router logic, and PE

faulty PE or bulk of router

logic

serves as one of the test-cases, demonstrating how different traffic distribution models

affect the analysis of designs.

Implications of traffic distributions

There are a number of important components within each tile. Existing tile-based ar-

chitectures typically have a Processing Element (PE) of some sort (whether a processor,

programmable-logic or custom IP block) that takes up the bulk of the tile area. Then

there is the router logic which we can break down into various elements such as storage,

injection, termination, arbitration, switching and signalling (including error-correction).

Packet-switched routers are typically dominated by storage, arbitration and switching

needs. If the probability of faults is approximately proportional to the area taken up,

then the most likely faulty component is the PE, followed by these other components.

Let us consider what happens if a tile has a faulty PE but a working router. The task that

would have been allocated to the PE must be remapped elsewhere. Since no tasks are

mapped to the faulty-PE tile, there are no Originating or Terminating packets for the tile

and any logic that handles these types of packets is superfluous. Indeed, the fault-tolerant

router should be designed to ignore these requests since such PE faults may be Byzantine

in nature.

The dominance of Through traffic in faulty-PE tiles has interesting implications for the

design of routers. If the only traffic that the router had to handle were Through traffic,

then it doesn’t need to redirect traffic, so a Switch isn’t needed, nor an Arbiter for man-

aging the Switch, and with simple flow-control, the Storage FIFO could be eliminated

as well. Indeed it no longer looks like a router, but instead becomes a pipelined inter-

connect. Surprisingly, perhaps, such an interconnect is sufficient to handle the bulk of

traffic that the router would need to handle. Of course, actually routing traffic is impor-

tant too, but this requires all the switching, storage and arbitration logic in the router.

Altogether this suggests that a layered approach should be taken to router fault-tolerant

design which is summarised in Table 4.2.

The three modes of operation vary from supporting only basic Through traffic, to sup-

porting both Through and Turning traffic, and to fault-free operation supporting all

types of traffic. It should be noted that one may still need to route around faulty tiles
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Figure 4.7: Plot of tiles unreachable from a source tile due to faults

if the links between tiles are also faulty. However, error-correction, whether applied at

every tile, or every N hops, or end-to-end, may be used in conjunction with this strategy

to further reduce the probability of failure. Previous work has also shown how a grace-

fully degrading NoC router [63] can maintain some functionality with some faults in the

arbiters, switches and allocation, but it does not consider an even deeper fault-tolerance

mode that lets traffic go through by effectively bypassing the router altogether.

Figure 4.7 illustrates how a through-mode can improve fault tolerance compared to reg-

ular dimension-ordered routing. Here four different routing strategies are shown and

how they affect a node’s reachability. Grey nodes indicate an unreachable node from the

source. We can see that XY has worse reachability than an adaptable XY-YX routing

algorithm, with the whole left side of the array unreachable. The redundancy in paths

offered to the XY-YX routing algorithms allow the system-level mapping to statically

choose a fault-free path. Note that we do not use any adaptive routing here, and so

packets are still guaranteed to arrive in-order. Recall that we have assumed that the type

of fault is statically covered, with the system-level providing for some adaptability to

detect and cover the fault. The through-mode routers fare much better, especially com-

pared to the regular XY routing algorithm. The one node that is unreachable by the

XY-YX-thru router is because both possible turn points have faults there.
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Design @90nm Dimensions(µm)

Original router 497x495.6

With through-mode 510.2x509.6

area increase 5.6%

Table 4.3: Original & through-mode areas. These results were produced by collaborator Banerjee and

not the author.

Area estimation

Let us now assume we add a through-only mode for the XY and XY-YX routers. In order

to provide through-mode support, additional wrapper logic needs to be placed around

the existing router. This results in additional area, and consequently more places for

faults to occur. Thus an assessment of such a router needs estimates of the area penalty

imposed by through-mode support.

To gain a first-order estimate of areas, a Virtual-Channel (VC) wormhole router [76]

was modified to include the bypass muxing and logic, as well as the additional buffering

needed for a single flit per direction. For flow-control, the input flit for each port is stored

and immediately sent to the output of the adjacent port on the following cycle. A credit-

based flow control is used based on the free FIFO entries available at the destination

router’s input port per virtual channel. The sent packet’s VC is used to decrement the

credit before forwarding this information back to the previous router. This implicit credit

reservation ensures that the faulty router is always guaranteed to be able to send a flit, if

it has one waiting. At this point the router acts as a pipelined interconnect, with some

flow control.

In this way, only a single flit per port needs to be stored for this path, rather than one

flit per VC per port. Also, full throughput can still be obtained for each VC without

interruption as long as the FIFO size is larger than the round-trip latency of credit and

flit propagation. This means that a router with FIFO depth of four can still theoretically

source traffic through a single faulty router at full throughput. However, this round-

trip latency means that the source router may be stalled for longer, and thus may reach

saturation with less traffic than if without the faulty router(s). If two or more neighbour-

ing routers are acting in through-mode, and the FIFOs are not large enough to hide the

credit-latency, then this can also cause a latency impact for congested VC channels.

For simplicity, the configuration of router mode was assumed to be static and setup by

a scan-chain of two configuration registers per router. The full control logic, however,

was not implemented, as the goal was merely to obtain reasonable area estimates. The

author asked Banerjee for assistance in estimating this area, and Banerjee was entirely

responsible for producing the area estimation. The results after synthesis, and placement

are summarised in Table 4.3. The author notes that a potential future optimisation in

area should be possible by removing the dedicated through-mode flit storage and using

part of the regular router FIFO storage instead.
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4.4.1 Router-activity distributions

Let us examine a simple dimension-ordered router. We can identify four main types of

traffic that result in different router activity:

• Originating – A tile may inject a new packet

• Terminating – A tile may be the final destination for the packet and thus remove it

• Turning – A tile may switch from X-routing to Y-routing or vice-versa

• Through – A tile may let traffic pass through without changing its direction

Let us look at the distributions of bandwidths from router to router. Here, Turning and

Through packets take up bandwidth on both the incoming and outgoing edges of the

router, whereas the Originating and Terminating packets take up bandwidth on only

one edge. So we will assign a weight of a half on Originating and Terminating steps.

For a route of Manhattan hop length L, it is easy to show that the average number of

Through hops is:

L− 2 +
1

L

The fractional term accounts for the additional Through hops for the routes without any

turns. Similarly, the average number of Turn hops is:

1 − 1

L

The distributions for the expected router bandwidth with Rent’s exponents ranging from

0.4 to 0.7 are illustrated in figure 4.8 for 64 to 16K tiles. The relative proportion of

Turning traffic stays fairly constant for each value of p. This is fairly unsurprising since

we have deliberately assumed a minimal number of turns. It is interesting to note that

for small p there is very little Through or Turning traffic. This is because, as noted

in Section 4.3.1, the traffic mainly consists of neighbour-to-neighbour communication,

thus accounting for the dominance of Originating and Terminating packets. For large p,

however, Through traffic rapidly dominates with exponential increases in tile-size. The

proportion of Turn traffic, however, does not grow. This means that at large scales,

a dimension-ordered router is predominantly letting traffic through from one side to

the other. We should note that for the uniform random model, we would expect that

Through traffic would dominate at all these scales, whereas in this model it only domi-

nates at larger scales with higher Rent’s exponents. Under this Rent’s model, each router

is relatively busy terminating and injecting packets, especially at lower Rent’s exponents,

instead of forwarding packets.
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Figure 4.8: Expected distribution of router traffic for a working tile, for systems with Rent’s exponent

ranging from 0.4 to 0.7

4.4.2 Fault tolerance analyses

It is desirable to minimise the impact of faults on the system level performance, power

and yield/cost. While there are a lot of different types of fault, whether static manu-

facturing faults, electromigration, signal integrity and timing faults due to parametric

variation, for our purposes we shall assume that there is a predetermined static cover of

these faults while the device is turned on. We are interested in comparing, to a first-order

approximation, the impact of faults for some NoC fault-tolerance approaches.

We are not as interested in whether or not a task graph can feasibly be mapped to an

array of faulty tiles and routers. This is because even with simple XY routing, there is a

trivially findable subset of tiles that are capable of talking to every other tile in this subset.

This subset may be relatively small, but it means that a task graph can still feasibly be

mapped. Importantly, however, its performance may be severely crippled as a result, thus

we are more interested in the system-level impact than mappability.
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4.4.2.1 Unreachability analysis

When a task graph is mapped to an array of tiles, each task is assigned to a particular

tile. The logical links between tasks then need to be routed from a physical source tile

to a physical destination tile. Obviously if the logical link resides entirely in the same

physical tile, then no such routing is needed. We shall ignore these and focus on the

actually routed logical links, which we shall refer to as task-links. In the presence of

router faults, some of these task-links may not have a reachable destination from the

source. We shall refer to such links here as unreachable task-links.

One way of estimating the impact of faults at the system-level is to determine the fraction

of task-links that are unreachable. Each unreachable task-link would require the remap-

ping of either the source or destination task to another tile. If there are a large number

of these, we would expect the incremental remapping process to be computationally ex-

pensive, and that the resultant mapping would incur penalties in the system’s objective

function, whether it be in power or performance.

As was shown earlier in figure 4.7, faults in the various routers can result in significantly

many unreachable nodes. The through-mode routers can also result in unreachability,

and of course when the through-mode path fails, then the fault behaviour resembles the

non-through-mode counterpart. The through-mode wrapper adds additional logic which

we must add to the probability of failure. Although it is possible for the bypass path to

be faulty whilst the core logic is not, for now we will use a pessimistic bound and assume

that if any of the wrapper is faulty, then the whole router is considered to be faulty.

Given the small area overhead, this assumption should only have a negligible effect on

the final results.

Let us now analyse the fraction of task-links that are likely to be unreachable for these

dimension-ordered routers. We shall assume that all the task-links that have been mapped

are between pairs of functioning tiles. Tasks that are mapped to non-functioning tiles or

tiles with non-functioning routers will need to be remapped regardless of the behaviour

of the router. As this is independent of the choice of router, this influence on task-links

and remapping is not considered in this analysis.

Let fnorm be the fault rate for the normal router. We shall not estimate this value but

instead use it as a parameter with which we can explore fault-rate sensitivity.

For an XY router, consider a path of m hops. Then the probability of the task-link being

unreachable is:

fXY (m) = 1 − (1 − fnorm)m−1 .

For the XY-YX router, we need to separately consider turning and non-turning paths.

The probability that an m hop path has no turn is simply:
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pnoturn (m) =
1

m
.

While turning paths have redundancy, non-turning paths do not and so need to be fac-

tored into the fault calculation:

fXY 2 (m) =
1

m
fXY (m) +

m− 1

m
fXY (m)2 .

Let us now examine the Through-Mode routers.

Let θ be the fractional area overhead of the wrapper logic.

Then for a simple Poisson fault distribution [54], the probability of a through-mode

failure is estimated by:

fthru = 1 − (1 − fnorm)θ .

And the probability of a turn failure is given by:

fturn = 1 − (1 − fnorm)θ+1 .

Then the probability that a path of m hops fails for an XY-router with through-mode is:

fXY T (m) =
1

m

(

1 − (1 − fthru)
m−1)+

m− 1

m

(

1 − (1 − fturn) (1 − fthru)
m−2) .

Finally, for an XY-YX router with through-mode, we have:

fXY 2T (m) =
1

m

(

1 − (1 − fthru)
m−1)+

m− 1

m

(

1 − (1 − fturn) (1 − fthru)
m−2)2

For small fnormwe can approximate these to:

fXY (m) ≈ (m− 1) fnorm

fXY (m) ≈ m− 1

m
fnorm +

m− 1

m
(m− 1)2 f 2

norm

fXY T (m) ≈ m− 1

m
θfnorm +

m− 1

m
(1 + (m− 1) θ) fnorm

fXY 2T (m) ≈ m− 1

m
θfnorm +

m− 1

m
(1 + (m− 1) θ)2 f 2

norm
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Figure 4.9: Plots of task-link unreachability for three hop-length distributions

Here we can see that the XY-Through router has faults dominated by the second term.

In the XY-YX-Through router, parts of the this term are squared, leading to a very large

reduction for low values of m. As hop-frequencies tend to zero as m grows, then it is the

low-hop faults that are the most important here.

Now we are in a position to use hop-distributions to determine the expected fraction of

task-links that are unreachable and that thus need task-remapping. We do so by merely

taking the weighted sum over the hop-distribution.

Figure 4.9 shows the results for the three distributions: a Rent’s rule-based, an expo-

nential, and a uniform random distribution, as well as a comparison between the three

on just the XY-router. As can be seen, the distribution makes a significant impact on

the expected fraction of unreachable task-links. Taking the example of the XY-router,

which consistently performs the worst, the uniform random distribution results in about

about a 4x increase compared to the Rent’s distribution. We can also see that relative

comparisons can also be affected. For example, the Random distribution suggests that

XY-with-through is approximately twice as good as the XY-YX routing for large fault-

rates, whereas in the other distributions this relative gap is certainly not as large.

Looking at the more realistic Rent’s and exponential distributions, we see that the abso-

lute frequency of unreachable task-links induced by faults is considerably smaller, even
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Router Rent Exp Rand

XY 0.88% 1.6% 4.2%

XY2 0.27% 0.46% 0.91%

XYT 0.29% 0.50% 0.96%

XY2T 0.017% 0.029% 0.052%

Table 4.4: Unreachable task-links due to router faults, at a 1% fault rate for non-through-mode routers.

with large fault-rates in the regular router. Looking at Table 4.4, we see that at a 1%

fault rate in the non-through router, the XY-YX-through-mode router has almost two or-

ders of magnitude less impact than that of the plain XY router. However, it is interesting

to note that even the XY router is expected to impact less than 1% of mapped links for

the Rent’s Distribution. This suggests that even a 1% fault rate in the XY routers may

potentially be accommodated by system-level task remapping, although the same may

not hold for the Random distribution at 4.2%.

Induced congestion analysis

We can also use the hop-distribution to calculate the impact of a single fault on the

congestion of surrounding tiles. Let us compare this for our Through-Mode fault model

to another approach which involves turning upon encountering faults [26, 79]. Lets refer

to this strategy as Turn-Mode fault-tolerance. For paths along a single dimension, one

turn at a fault is insufficient, and so a second turn is forced immediately after the first

one, to route around the fault. Alternate models use fault-rings or convex fault-regions

which direct traffic around it [25], which can potentially result in even more congestion,

since all the traffic encountering faults, are forced to route around a ring or fixed path

surrounding the faults.

For the Through-Mode model, it can be shown that the expected increase in traffic at a

node is given by:

R (x, y) =











R1 x = 0 ∧ y = 0,

R2 (|x| + |y|) x 6= 0 ∧ y 6= 0,

R3 (|x| + |y|) otherwise

R1 = −
2L
∑

k=1

(

1 − 1

k

)

F (k)

R2 (d) =
F (d)

4d
+

2L
∑

k=d+1

F (k)

2k

R3 (d) = −
2L
∑

k=d+1

(

k − d− 1

2k

)

F (k)

Where a value of one corresponds to all the traffic that would have been handled by the

faulty router (including terminating and originating traffic). For the dimension-ordered
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Figure 4.10: Collateral effects of a fault on router activity. The fault is located at the middle, and the shade

indicates the change in activity of surrounding routers due to re-routing of paths that should have gone

through the faulty router.

approach, a numerical solution was run by computing the difference between routes

with the fault and without the fault, weighted by the hop-distribution. These two are

compared in figure 4.10. Here, the shades correspond to the percentage change in total

router activity compared to the average router activity. It does not differentiate between

the different router directions. The lighter regions correspond to a reduction in traffic,

and naturally the faulty through-mode router handles less traffic. However, this plot does

not count the traffic that should have originated and terminated from the router, as this

can no longer be handled by either and must be addressed by a system-level remapping.

The intensity of the faulty turn-mode router corresponds to this traffic, and so is different

between the three distributions.

We note that for the turn-mode routers, all three distributions result in more router ac-

tivity immediately surrounding the fault, but the impact is quite localised. The through-

mode router however has less marked router activity around the fault but results in

slightly increased router activity over a larger area. It also results in reduced router ac-

tivity along the axes of the faulty router. This is because when switching a task-link’s

routing from XY to YX, all the intermediate routers along the X axis also experience

less traffic.

We can also see significant differences between the three distributions. The random distri-

bution results in marked congestion around the Turn-mode router and under-utilisation

in routers along the axis of the Through-mode router. The exponential distribution ap-
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pears to be somewhere in the middle between the random and Rent’s type distributions.

Both the spatial distribution and quantity of congestion impact the system’s ability to

compensate by remapping. The impact of the faulty Through-mode router on the sur-

rounding tiles extends considerably far in the Random model (9% even at the corners of

the array), and this may make such a router less desirable than the localised congestion

of the Turn-mode router. In the Rent’s distributions, however, the influence is far less (at

most 4.5% around the fault, dropping rapidly to just 0.05% at the corners of the array),

making it more congestion-friendly than the Turn-mode router (which is 15% around

the fault). This means that under the Rent’s distribution, the Through-mode router is

clearly superior, whereas this is not so under the Random distribution. Thus the choice

of distribution makes a significant impact on the selection of router designs.

4.5 Conclusions

In this chapter, in noting the similarities between task mapping on CMP with place-and-

route on VLSI, a Rent’s Rule connectivity model was explored. In addition, two deriva-

tions were given for a bandwidth version of Rent’s Rule that can be applied to NoC.

The conditions under which Rent’s Rule is applicable, particularly for the System-level

mapping of tasks in CMP architectures, was elaborated on. It was also noted that the

Rent’s bandwidth-exponent can vary from one application to next, especially for CMP

architectures. Assuming the law to hold, one can estimate the future requirements of

NoC with scaling, and this was shown to be sensitive to the Rent’s bandwidth-exponent

of the application. However, it was shown that unlike the unacceptable scaling trends

of uniform random and transpose traffic models, a Rentian scaling of NoC bandwidth

fares considerably better, in line with normal VLSI trends.

It was then shown how Rent’s rule results in a distribution of hop-lengths. Two other

hop-lengths were also examined, one representative of uniformly random traffic, and

an exponential distribution that appears more representative for a semi-random graph

mapped using simulated annealing.

Under Rent’s rule, the distribution of traffic types that a dimension-ordered router has

to handle, was analysed. This showed that the dominant router activity was in routing

packets from one side and forwarding it to the opposite side. A through-mode that

bypasses the router logic was thus explored as a fault-tolerance mechanism. For a modest

area increase, it was qualitatively shown that this would allow improved reachability,

however a quantitative analysis was desirable to assess its system-level impact.

Two analyses were introduced that made use of the hop-distribution, one that calculates

the number of unreachable task-links caused by faults, and another that calculates the

expected congestion impact due to a fault. The different hop-length distributions were

shown to produce markedly different results in these analyses, with the Rent’s distribu-

tion performing much better than the uniform random distribution. When comparing
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the congestion impact of faults in the through-mode router versus a turn-based fault-

tolerant router, it was shown that the choice of distribution made a significant impact.

Under the Rent’s distribution, the through-mode router was clearly better, but this was

not so under the random distribution.





5
CHAPTER FIVE

EXPERIMENTAL

EVIDENCE FOR

RENT’S RULE

This chapter examines evidence for Rent’s rule already applying in software. Although

arguments were made in Chapter 2 as to why one might expect such locality, in this

chapter multiple techniques are used to detect the presence of Rentian locality, and es-

tablish how significant it is. This is actually quite a difficult task as the size of even

simulated many-core systems are quite small, and the Rentian behaviour is more likely

to be pronounced at larger scales.

In an ideal testing case one would already have a thousand cores in a message-passing

system, running software optimised for locality with which to evaluate Rentian predic-

tions. It should be noted that for VLSI, Rent’s rule was first observed empirically by Rent

at IBM in the 1960s, but it wasn’t until 1971 that Landman and Russo [64] showed that

this held in a self-similar manner for the internal partitions of a 13,000 node logic cir-

cuit. Then in 1981 Donath showed how this could predict length distributions [40]. By

this stage digital circuits already had an appreciable size with which to fully test Rentian

predictions.

Despite the lack of an ideal platform, this chapter tackles the quantification with two

main approaches. Firstly it looks at simulated shared-memory many-core CMP systems

with a variety of benchmarks. This is an approach first taken by Heirman et al. [52]

who claimed to see such topological Rentian behaviour. This chapter first examine Heir-

man’s results, and then expands on them by performing more rigorous tests for physical

Rentian behaviour (versus Heirman’s topological Rentian tests) in a 32-core simulated

CMP system. Secondly, this chapter examines the more fundamental inter-connectivity

of instructions in single-threaded programs to determine whether they exhibit the frac-

tal connectivity that would be a basis for Rentian scaling. It employs a graph version

of box-counting [95], a technique from the Physics/Network Science community, which

can allow one to measure the fractal dimensionality of the data-dependency graph. It

then directly examines the topological and physical Rentian scaling of such graphs – by

basically treating the executed instructions much like logic gates in a circuit, and seeing

77
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if such a circuit would obey Rent’s rule.

5.1 Other work: Heirman et al.

After our original paper [45] arguing for the existence of a bandwidth version of Rent’s

rule in CMP, illuminating work by Heirman et al. [52] examined this hypothesis on a

cycle-accurate Virtutech Simics [73] simulator. Their setup involved 16, 32 and 64 core

shared-memory CMPs using the SPLASH-2 [1] suite of parallel benchmarks.

We had originally expected that Rentian behaviour would become clearer only with a

larger numbers of cores, and mainly on a message-passing architecture, where appli-

cations were written with some effort to minimise communication costs. Nonetheless,

rather surprisingly, Heirman concluded that even with the implicit communication via

shared memory on CMPs with as few as 16 nodes, there was evidence of Rentian scaling

in bandwidth. What is remarkable is that this used actual NoC traffic, running un-

der a distributed directory-based cache-coherency architecture, including non-coherence

misses and other (conflict, capacity and cold) misses. In private correspondence with the

author, it was revealed that locality of mapping from address space to core was main-

tained by allocating memory on a first-touch basis in blocks of one VM page of 8KB. In

this way, the node that first writes to an unallocated page hosts this page, by mapping

the virtual page to a free physical page with an address that puts it on this node. This al-

lows some locality to be preserved even in a distributed directory-based cache coherence

scheme where address-ranges are simply interleaved amongst the physical cores. How-

ever, it is not clear how practical such a scheme is on a general-purpose commercial CMP,

especially if there are load-balancing concerns on a highly-contested memory page. We

speculate that a more intelligent memory manager could allocate pages based on both

physical locality and load-balancing concerns.

Unfortunately, as shall be shown in section 5.2, some of Heirman’s conclusions of Ren-

tian scaling for these benchmarks may have been a little premature. The appearance of

power-law scaling was not rigorously tested against other potential hypotheses. Indeed,

Heirman himself remarked [52] that the optimality of a particular partitioning would

change over the duration of the algorithm, with some locality seen at one stage being

non-local at another stage, particularly with the FFT (Fast Fourier Transform) bench-

mark. Given that the FFT is known to be an algorithm with poor locality [43], it was

surprising that they extracted relatively low Rent’s exponents for the FFT benchmarks

(ranging from 0.59 to 0.74), whereas one might theoretically expect an exponent closer

to unity (see Chapter 8).

Heirman et al. also showed that Rentian exponents could vary at different phases of

the benchmark’s computation. This is important to elaborate on, as we certainly do

not claim that the Rent’s parameters (and consequently the amount of communication

or locality) would be uniform throughout any benchmark. They also showed that the
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optimal partitioning for one phase of the benchmark may not be as optimal for another

phase of the benchmark. They created a metric that they called ‘suitability’ that mea-

sured the optimality of imposing a single partitioning that is optimal at one time, to all

others times. Some benchmarks, such as barnes, exhibited a high ‘suitability’ throughout

its execution, whereas others such as fft4M (a 4-million point FFT) and cholesky, had

poorer ‘suitabilities’.

5.2 Evidence in simulated CMP experiments

In our own investigations into CMP, we wanted to improve the robustness of our method-

ology compared to previous work, by comparing the Rentian model to other candidate

null-hypotheses. Also, whereas Heirman concentrated at the NoC level on the topologi-

cal Rentian scaling, we were primarily interested in the physical1 Rentian scaling of data

flows at the software-level and the corresponding predictions of hop-length distributions.

For this we utilised some existing traces from Barrow-Williams et al. [8]. They employed

the Virtutech’s Simics simulator platform to construct cycle-accurate traces of SPLASH-2

[1] and Parsec [6] benchmarks for a simulated 32-core x86 CMP. The simulated cores

were each in-order with single issue pipelines much like Intel’s Larrabee CMP project

[93] and each had a private L1 cache and a large shared L2 cache. The traces for each

core logged all reads and writes to memory addresses at a particular cycle time. In this

way, one could directly determine the amount of implicit communication between cores

via the shared memory system. For the SPLASH-2 benchmark, the threads were mapped

very simply – with one thread allocated per core. Thus the flows can also be thought

of as inter-thread data-flows as well as inter-core flows. This is slightly different from

Heirman’s work which examined all NoC flows, including cache directory/coherence

traffic, as this only examines the fundamental algorithm data-flows, and is at a word-

level granularity rather than cache-line level. These traces covered the entire benchmark’s

execution, including any initialisation phases.

We explored the presence of physical Rentian scaling in these traces by employing sim-

ulated annealing to embed the cores so as to minimise aggregate communication costs.

Incidentally, this also allows one to choose multiple NoC topologies to explore the effect

of topology on communication costs, which we also examined, but we do not report

these results here.

For our 2D mesh, the cores were embedded in an 6x6 arrangement with empty cores at

the four corners - the area of which, on a real CMP, could be utilised for other function-

ality.

1Please see Chapter 3 for further discussion on the differences between topological and physical Rentian scaling.



80 5.2 Evidence in simulated CMP experiments

5.2.1 Caution: the uniform-traffic model

One needs to be particularly careful of the uniform distribution at small scales such as

the 32 nodes here, because on a log-log plot, it can appear to scale as a power-law dis-

tribution with Rent’s exponent p < 1. This is because for Ntot total cores, N cores being

considered, k constant and B external-bandwidth for the N nodes, it scales according to:

B = k.N (Ntot −N) ,

so in the log-log domain:

logB = log k + logN + log (Ntot −N) ,

yielding:

∂ logB

∂ logN
= 1 − N

Ntot −N
.

This is quite linear in behaviour for N ≪ Ntot. Furthermore, an extremal fit made with

two points at N = Ntot/2 and N = 1 would yield a slope of:

∆ logB

∆ logN
= 1 − log 2

logNtot − log 2
.

For Ntot = 32, this yields a minimum power-law slope of 0.75. By including more interim

points, the best-fit slope starts to increase, but there are only a small number of interim

points for Ntot = 32. For 1024 points, this minimum slope is 0.89. The picture is clearer

in figure 5.1 with Ntot = 1024. A network of this size has a best-fit unweighted slope of

0.91, agreeing with the minimum prediction, however weighing the data-points to adjust

for the smaller variance of larger regions, leads to a reduced slope of 0.774. One notes

that along the x-axis there are far more data-points at higher values than at lower values,

so another approach is to equally weigh each portion of the log-scaled x-axis so that each

portion has a proportional influence on the fit, leading to an equal x-weighted slope of

0.954. For Ntot = 32, the canneal benchmark which is uniform, has a best-fit weighted

slope of just 0.796 (see figure 5.2).

The reason why the uniform distribution poses a problem is that it actually does behave

as an approximate power-law distribution, but with exponent p ∼ 1. Indeed, a uniform

distribution is actually a limiting case of the spatio-temporal Rentian model2, with p→ 1.

The biggest danger lies in the sensitivity of p, because a model with p = 0.8 has very

different locality properties to one with p = 1. This makes the uniform model a special

case that should be explicitly tested against. To guard against this with so few nodes,

it means we need to include so-called Region II effects (see Background Chapter 3) by

fitting against a proper Rentian model, rather than just a simple power-law.
2Please see Chapter 7 for more details of this model
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Figure 5.1: Example of ‘fake’ power-law appearance in scaling with uniform traffic for 1024 and 1Mi

nodes

5.2.2 Methodology

First, we employed a hand-crafted simulated annealing algorithm to find a good mapping

of cores. All it can do is shuffle the mapping of the 32 cores in space. If a core needs to

communicate with another core h hops away with bandwidth B it contributes hB to the

aggregate bandwidth (and to NoC dynamic energy consumption as per Banerjee et al.

[7]). The simulated annealing tries to minimise the aggregate bandwidth thus optimising

for locality. This objective function is as good as any other to define ‘optimal locality’

(see the Chapter 6 for a discussion of cost-universality).

Each node was taken as a seed node, and then all the nodes surrounding the seed node

up to a distance L were used to form a boxed region. The bandwidth of communica-

tion from inside the box to outside the box was plotted against the number of nodes

within the box. This allows one to determine the physical rather than purely topologi-

cal Rentian exponent. We fit the results in the log-log domain using a range of possible

functions, but with two free parameters each, and recorded their RMS error. Both the

Rentian and uniform models have two free parameters. For the Rentian model this is

the average bandwidth and the Rent’s exponent, so for the uniform model we proposed

two generalised versions. One is the uniform distribution with total number of nodes

allowed to vary as a free parameter, and the other extends the uniform model retaining

information about the total number of nodes, but adding a free parameter to make it

a full second-order polynomial. The first model, importantly, has an actual hop-length

distribution associated with it, which we make use of for comparing predictions.

The non-linear least-squares fits were done using a Levenberg-Marquardt algorithm

adapted from Price et al. [88]. The candidate fitting models were:

1. A simple power-law of form: λx−µ, which is what is typically used for fitting Rent’s

exponents
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2. A uniform distribution of form: λx (µ− x). This essentially models a region of b

nodes communicating with each other, where the bandwidth between each pair of

nodes is uniform.

3. A modified uniform distribution of form: λx (n− x)+µ, where n is already fixed at

the number of nodes in the system.

4. An exponential of form: λeµx

5. A logarithmic of form: λ log (x) + µ

6. Polynomials of form: (λx+ µ)k for k = 1..3

7. A Spatio-Temporal Rentian distribution with average bandwidth a, and Rent’s ex-

ponent b, with a topology of n nodes given. (This model is described in Chapter 7

and Appendix E)

As another Rentian model to compare to, we would have liked to have used Christie and

Stroobandt’s equally optimised and partitioned Rentian model [29] as well, but could

not determine how to adapt it to a system with nodes that are not a power of four.

For each pair of communicating cores, we assumed that the variation of bandwidth was

normally distributed.

For average bandwidth b of communication between each pair of communicating nodes,

and standard deviation σ, we can define a relative variation of:

ǫ = σ/b,

and for T independent links of communication going from within the box to outside the

box, we would expect a total variance of:

σ2
N = Tσ2,

with a relative variation of:

ǫN = ǫ/
√
T .

In the logarithmic domain, this translates to a range of values of:

log bN = log (Tb (1 ± ǫN ))

= log T + log b+ log (1 ± ǫN ) .

For small ǫN , we have:
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|log (1 ± ǫN)| ≈ ǫN

= ǫ/
√
T

≈ ǫ

√

b

bN
.

Thus we assume that the standard-deviation in log-space of a box with N nodes scales

according to 1/
√
bN . We use this to scale the sum-of-squares non-linear regression by

weighting according to relative expected variance.

5.2.3 Results

In the VLSI domain, the appropriateness of a Rentian model is examined by comparing

how well it predicts the wire-length distribution and average wire-length, based on fits

of the Rentian parameters on examples and benchmark circuits. Our equivalent here

in the CMP domain is to examine how well it predicts the hop-length distribution and

aggregate bandwidth (the total distance-weighted bandwidth) for the 2-D mesh NoC

topology.

Figure 5.2 shows a small selection of benchmark results, deliberately chosen to showcase

a variety of behaviour – for a comprehensive set please consult Appendix A. The left-

hand-side consist of physical Rentian fits and the right-hand side consist of the resultant

predicted and actual hop-length distributions.

Just focusing on the Rentian fits, the RMS error for each fit function can be seen in figure

5.3. We note that because there is variation in the bandwidth for any given number of

nodes (cores), the minimal achievable RMS error is constrained by the variation of the

data itself. Thus we can remove the variance in data to obtain another comparison of

RMS fit seen in figure 5.4. Both variances are important as a high data-variance can also

indicate that the model is generally a poor fit, whereas we would also like to compare

the relative scale of RMS error between the candidate fit functions without including

data-variance.

From these we see that many of the alternative candidate functions are poor fits. The

log-law and the power-law distributions did well for many benchmarks, however the

uniform and Spatio-Temporal Rentian distributions were consistently the best fitting.

Remarkably, this makes the uniform distribution the best null-hypothesis out of all the

candidate fit functions, including the regular power-law fit. For the generalised uniform

and Spatio-Temporal Rentian distributions, these also have associated hop-length distri-

butions, thus allowing another form of cross-evaluation.

Given the Rentian parameter fits, the hop-length predictions were compared to the ac-

tual hop-length distribution, and returning back to figure 5.2 we can see these in the

right-hand-side plots. Here, while freqmine subjectively has an almost equally poor Ren-

tian prediction compared to the uniform model, water_nsq is very close, and canneal
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Figure 5.2: A small selection of Rentian fits for benchmarks running on a 32-node CMP simulator, and

their resultant predicted hop-distributions. While freqmine has an almost equally poor Rentian prediction

compared to the uniform model, water_nsq is very close, and canneal has a limiting-case behaviour of

uniform traffic in the Rentian model (p ≈ 1 implying no locality). For a comprehensive set please see

Appendix A.

has a limiting-case behaviour of uniform traffic in the Rentian model (p ≈ 1 implying

no locality). More objectively, we can determine the RMS error of these hop-length

predictions and these are shown for the entire benchmark in figure 5.5. Although the

Spatio-Temporal Rentian model has a smaller RMS error in almost all the benchmarks

compared to the generalised uniform, for many it is quite comparable. For ferret, both

models have very high RMS errors, whilst for some like canneal, fft and swaptions,

both models have very low errors. The latter case corresponds to the limiting Rentian
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Figure 5.3: RMS error (including data’s variance) of BW versus node fits

model of uniform traffic (i.e. p ≈ 1). As an interesting point for comparison, we also

added a direct exponential fit for the hop-distribution and measured the RMS error from

that. Note that unlike the uniform and Spatio-Temporal Rentian models, this is not

even a prediction, but merely a least-squares fit. We note that the predictions from the

Spatio-Temporal Rentian model still manage to outperform the exponential fits for most

benchmarks.

We can also compare the predictions for aggregate bandwidth. Table 5.1 shows the pre-

dicted versus actual aggregate bandwidth for the benchmark applications. Aggregate

bandwidth here corresponds to the total distance-weighted cost of communication. For

the Rentian prediction it takes the hop-length distribution and weighs it by the hop-

distance and then multiplies it by the number of nodes and Rent’s parameter for average

bandwidth per core (also from the Rentian fit). As can be seen, for most of the bench-

marks, the estimated aggregate bandwidth is also quite close (within ±5%) to the actual

value. When it comes to predicting communication energy consumption, there is dy-

namic energy consumed that is proportional to the link distance covered [7], as well as a

component based on router utilisation. Thus accurate predictions of both the aggregate

bandwidth and hop-distribution should allow prediction of NoC energy consumption as

well. We should note that in a Rentian model, although most of the traffic may be local,

the energy consumption is most affected by the tail of the distribution, since costs are

weighted according to traversal distance.
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Figure 5.4: RMS error (excluding data’s variance) of BW versus node fits

5.2.4 Discussion

For a model with only two free parameters it is quite remarkable how close the actual

versus predicted hop-distributions are. After-all it is not the hop-distribution itself that is

being fit, but rather the Rent’s exponent and average bandwidth. We should further note

that the average bandwidth has no bearing on the hop-distribution since it is normalised

out. Thus there is really only one free parameter for the hop-distribution, namely the

Rent’s exponent that is determined separately.

It is also important to note that these results do not necessarily rule out Rentian be-

haviour on some benchmarks – instead they show that for some it is hard to differentiate

between the Rentian model and an alternative one, making it more unlikely. Benchmarks

where it is safe to say it is unlikely to be Rentian are ferret, freqmine, water.spa, and

x264. Note that there are special cases dedup, ferret and x264 which involve more than

one thread per core, where we would expect the unconstrained (semi-random) mapping

of threads to introduce greater non-locality. Indeed, Barrow-Williams et al. [8] demon-

strated that there is greater locality in these benchmarks when examining the thread-to-

thread communication rather than the core-to-core communication, so that it is possible

that a constrained communication-optimised thread mapping would lead to Rentian be-

haviour.

The benchmarks which appear to be uniform-traffic also have Rentian locality of p ≈ 1.

These are dedup, canneal, fft, and swaptions (of which dedup is a special case as dis-
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Figure 5.5: Hop-distribution RMS prediction errors (based on Bandwidth vs. Nodes scaling fits)

cussed above). Benchmarks which appear to follow the Rentian model with p < 1

are barnes, blackscholes, bodytrack, facesim, fluidanimate, fmm, streamcluster, radix,

water.nsq, volrend. Those benchmarks which may be Rentian but which have almost

equally good predictions as the generalised uniform models are: cholesky, raytrace, ra-

diosity and vips.

The best-fit spatio-temporal and spatial Rent’s exponents are listed in table 5.2 along

with a judgement of whether it is likely to be Rentian. The criteria chosen was that the

hop-length distribution RMS error should be less than 0.05 and should outperform the

uniform model by at least 2:1. Also, where the normalised RMS error of the Rentian fit

was at the higher end (3.0 or more), or if the aggregate BW prediction error was more

than 5%, it was downgraded in category.

The spatial Rent’s exponents are calculated from the spatio-temporal ones by pspatial =

max
{

2 − 1
pST

, 1
2

}

, where the spatial rent’s exponent are necessarily at least 0.5 for a

2-dimensional spatial topology. For more details of the spatio-temporal model please

consult Chapter 7.

Looking through the exponents, the uniform-random benchmarks clearly stand out with

near unity Rent’s exponents. We also note the special case of fluidanimate, where the

spatio-temporal Rent’s exponent of about zero implies that it is one-dimensional in its

communication structure, like a linear dependence chain.



88 5.3 Evidence in dynamic data-dependency-graphs

Benchmark Actual

Aggregate BW

Rentian

predicted

%

Rentian

error

Modified

Uniform

Predicted

%

Uniform

error

barnes 1746786 1748633 0.11% 1897779 8.64%

blackscholes 11884 11458 -3.58% 18971 59.63%

bodytrack 3656176 3893234 6.48% 4283584 17.16%

canneal 8442467 8454134 0.14% 8474101 0.37%

cholesky 5274672 5266977 -0.15% 6300917 19.46%

dedup* 36443085 37009511 1.55% 37986386 4.23%

facesim 56118910 59181378 5.46% 65678526 17.03%

ferret* 11188999 13236903 18.30% 19684363 75.93%

fft 239193 239379 0.08% 240576 0.58%

fluidanimate 2354296 2168705 -7.88% 4173220 77.26%

fmm 1274182 1260237 -1.09% 1643574 28.99%

freqmine 14312190 15458636 8.01% 16494845 15.25%

lu 808769 778992 -3.68% 967681 19.65%

ocean 421679 419407 -0.54% 471679 11.86%

radiosity 14858580 14744439 -0.77% 15464948 4.08%

radix 186723 184412 -1.24% 223855 19.89%

raytrace 1022003 1051469 2.88% 1078492 5.53%

streamcluster 6193909 6354654 2.60% 7703215 24.37%

swaptions 20044115 20125571 0.41% 20450646 2.03%

vips 42144523 43722867 3.75% 47894675 13.64%

volrend 463263 487414 5.21% 554583 19.71%

water.nsq 753212 721876 -4.16% 843360 11.97%

water.spa 447880 460296 2.77% 507438 13.30%

x264* 23880716 25617844 7.27% 27584094 15.51%

Table 5.1: Predicted vs. actual aggregate bandwidth. Asterisks denote benchmarks with more threads than

cores, and unconstrained thread mapping to cores.

5.3 Evidence in dynamic data-dependency-graphs

5.3.1 Earlier work on fractal properties in software

Some previous work [31] has shown that in an object-oriented system, the static net-

work of classes where edges represent relationships between the classes, exhibits fractal

behaviour, and that the dimensionality may even be a good metric as to the complexity of

the software system. There has been some speculation as to whether program behaviour

exhibits fractal properties [77], however as far as we are aware, prior to our first paper

[45], there had been no work demonstrating that the dynamic graph of operations in soft-

ware actually exhibits fractal behaviour. The dimensionality of such fractal behaviour

would be of interest in understanding the intrinsic complexity of communication within

the software.

At different scales, the dimensionality is a measure of the complexity of communication
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Benchmark Likely to be Rentian? ST p̂ Spatial p̂

barnes Yes 0.91 0.90

blackscholes Yes, but with borderline RMS error 0.36 0.50 (min)

bodytrack Yes, but high variance 0.89 0.88

canneal Uniform (p ≈ 1) 1.00 1.00

cholesky Unclear (hop dist RMS higher) 0.81 0.76

dedup* Uniform (p ≈ 1) 0.97 0.97

facesim Perhaps, but high variance 0.88 0.87

ferret* No (unconstrained thread mapping) 0.51 0.50 (min)

fft Uniform (p ≈ 1) 0.99 0.99

fluidanimate Perhaps, but high variance, and with p = 0 -0.03 0.50 (min)

fmm Unclear (hop dist RMS higher) 0.71 0.58

freqmine No 0.91 0.90

lu Unclear (hop dist RMS higher) 0.76 0.69

ocean Yes 0.87 0.85

radiosity Unclear (almost uniform?) 0.94 0.94

radix Yes 0.79 0.73

raytrace Unclear (almost uniform?) 0.97 0.97

streamcluster Yes 0.78 0.72

swaptions Uniform (p ≈ 1) 0.98 0.98

vips Unclear (high variance, low RMS hop dist ratio) 0.90 0.89

volrend Yes 0.86 0.83

water.nsq Yes 0.83 0.80

water.spa No 0.89 0.88

x264* No (unconstrained thread mapping) 0.91 0.91

Table 5.2: Categorisation of benchmarks, and their estimated Rent’s exponents. Asterisks denote bench-

marks with more threads than cores, and unconstrained thread mapping to cores.

between operations, between blocks of operations, functions and higher level assemblies

of code. In a CMP-setting this fractal dimensionality places constraints on the commu-

nication complexity between cores regardless of the level of the software mapping.

There have also been clues as to the fractal nature of communication if we look in

the temporal domain. A number of observations have been made [108] that the time-

evolution of traffic appears to exhibit long-range self-similar traffic that can be charac-

terised by a Hurst parameter. However, since this also involves an interaction of software

with the network, this does not comprise definitive evidence that the graph underlying

software communication is fractal in nature.

5.3.2 Fractal behaviour in software

We were primarily interested in the intrinsic structure of communication of executing

software instructions and what it means for CMPs. Thus we avoided explicitly structured

multi-threaded applications, and instead decided to use the dynamic data-dependency

graphs of single-threaded applications. Much like VLSI networks consist of logic gates
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Figure 5.6: Example of a Data-Dependency Graph

connected via wires, we can also view the data-flow in software as instructions connected

via registers/memory/NoC. These graphs can be mapped to both multicore or single-

core architectures, so we are interested in the properties and limitations imposed by

them for communication. By extracting such a data-dependency graph in a benchmark

application, one can determine whether fractal connectivity properties are present that

would imply Rentian scaling.

In figure 5.6 we see an example of such a graph. with nodes representing instructions

and edges representing word-sized communication. Typically instructions will have two

inputs (or more for complex instructions) and one output that could fan out to multi-

ple other instructions. Such abstracted graphs of computation capture information flow

between executed instructions, and thus optimistically contain all the control informa-

tion in advance. This is equivalent to a perfect oracle expanding the program graph into

exactly the graph that needs to be executed without any speculative operations. While

this is fine for certain statically-fixed algorithm graphs, such as the fixed butterfly-graphs

in FFTs, this is unrealistic for algorithms with highly non-predictable graph expansions.

Nonetheless, assuming this implicit ‘perfect oracle’, provides at least a minimal bound of

communication required for executing without it. We address this assumption in section

5.4, where we instead examine the connectivity of actual instructions without the need

for a perfect oracle.

5.3.3 Box-counting dimension

Box-counting is a methodology used for analysing fractal dimensionality. It involves a

length or ‘yardstick’ of box that tiles the set. For example to measure the dimensionality
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(a) Box-counting of 1D graph (lengths 1-3)

(b) Box-counting of 2D graph (length 1) (c) Box-counting of 2D graph (length 2)

Figure 5.7: Box-counting of example 1D and 2D graphs.

of a region, one can cover it with boxes of a certain side-length. As the length of the boxes

shrinks, the number of boxes scales asymptotically according to some exponent. That

exponent corresponds to the box-counting dimension. For a two-dimensional object, like

a filled circle, the number of boxes will scale according to Θ (L−2) for box side-length L,

however for fractal objects the exponent will be a non-integer – i.e. fractal dimensional.

Song et al. extended the idea of box-counting to the network domain by coming up with

an analogue to ‘box-length’. In their definition, a box of length L contains nodes which

are all at most (L− 1) hops away from one another. The box count is then given by the

minimal number of boxes of length L that can tile the entire network. Note that this

may include boxes that are of smaller ‘lengths’, what matters is that they are tiled and

cover the entire network. Song et al. [95] showed that the scaling behaviour wasn’t as

sensitive to finding the actual minimum, which is computationally very demanding (NP),

and instead that the exponent could be extracted even with randomly chosen nodes as

seed nodes. Figure 5.7 shows an example of how box-counting works on a linear chain

(a) with four boxes of length two, three of length three and two of length four. With large

chains, the asymptotic scaling behaviour would be of Θ (L−1). In figure 5.7(b) and (c)

we see it applied to a 2-D graph with lengths two and three respectively. Note that this

serves to illustrate the general technique of box-counting. In practise, the incremental

box-counting of Concas et al. [31] is used, which is more efficient by merging candidate

boxes together, whilst being observed to still preserve the scaling exponent.



92 5.3 Evidence in dynamic data-dependency-graphs

5.3.4 Methodology

We constructed a tool using Pin [72] to instrument x86 applications running under

Linux. This was used to construct the dynamic data dependency graphs of operations

over the trace. In order to ensure that the initialisation steps were skipped and the im-

portant part measured, we introduced a trigger within each benchmark application to

start capture.

A suite was constructed, mainly comprising of the MiBench benchmark suite [46], plus

a few additional algorithms. Together this comprised a wide variety of algorithm types

including multimedia, scientific computing, graph methods, encryption, compression,

and networking domains.

To look for and measure the possible fractal behaviour, we utilised Concas et al.’s [31]

approach of incremental box-counting. In their approach, a box of length L is one that

contains nodes that are at most (L− 1) hops away from every other node in the box.

The algorithm tiles the graph with boxes of length L and then counts how many there

are. It starts with every node belonging to its own box. For each box length iteration,

it randomly selects seed boxes and greedily merges with neighbouring boxes so long

as the resulting box has maximal length L, and until there are no more box merging

opportunities. The box length is then incremented and the previous box allocation is

used as an input for the next iteration. To give an example, in a 3D mesh, the number

of nodes in the boxes will tend to grow by the cube of L, and thus the number of boxes

will be tend to shrink according to L3. By plotting the number of boxes to box length on

a Log-Log scale, one can then see if such behaviour is indeed exhibited, and if so, what

the dimensionality is.

When merging two candidate boxes, ensuring that all the internal nodes of the two

boxes are at most (L− 1) hops away from every other node can become computationally

expensive. Because of this, we only used 100,000 graph nodes for our analysis. Even

achieving this required some optimisations of the former algorithm [31], as calculating or

storing a non-sparse 100k x 100k matrix of distances between nodes was not practical.

We did this by utilising the properties of the fractal graph, namely that for each box,

the boundary nodes should be small compared to the number of internal nodes. As we

were only interesting in calculating the maximal distances between the nodes of merging

boxes, we noted that there are internal nodes which are discardable. For two internal

nodes X and Y in a box B, if X has greater or equal distance than Y to each of B’s

boundary nodes, then X dominates Y, and we can discard Y if we keep X. This reduces

the storage and computational requirements considerably. These optimisations do not

affect the correctness of the algorithm. For graphs that do not exhibit fractal properties,

it is possible that the storage and computational requirements are not tractable. Indeed,

we discovered that the graphs of some benchmarks could not be analysed with even

10,000 node graphs, whereas others had no problem scaling to millions of nodes.
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5.3.5 Results

We start by examining the results for a known non-fractal dimensional graph. Looking

at Fig 5.8, we see that a uniform-random graph, of the form of Erdös-Rènyi, exhibits a

rapidly accelerating decrease in box counts with box-length, and is certainly not fractal

[91]. This is because most nodes are only a short distance from other nodes, and so upon

merging nodes into boxes, the connectivity of the boxes is very high. We could not run

a large random graph to completion, due to the performance issues discussed in section

5.3.4, so only a 1,500 node random graph was used here for illustration.

To validate the dimensionality extraction, we also tried a linear graph (consisting of a

simple uni-directional chain), also seen in Fig 5.8, noting that it does exhibit dimensional-

ity very close to one. There are some artifacts at the very lowest and largest box sizes, and

this has to do with the random samplings and isolation. Ideally, the box count should be

the minimum possible number of maximally-packed boxes for a particular side-length.

So for a one-dimensional graph of ten nodes, a side-length of two should yield five boxes.

However, random seed selection means that some pairs will be merged on either side of a

lone node, orphaning that node, and increasing the box count. With incremental merg-

ing, this isolating behaviour tends to be preserved, until large box-lengths where there

are very few boxes left over. This behaviour is seen through most of the plots, and in

order to extract a linear fit for the central portion, we ignore box lengths lower than

four and box counts lower than sixteen, as these appear to be the values at which these

artifacts appear for most plots. We apply a least-squares fit over this region to find the

slope. Many benchmarks exhibit very clear fractal behaviour.

The results for the benchmark suite are presented in Appendix B, although we present

some select ones here. For the lame benchmark (figure 5.9b) that performs MP3 encod-

ing, we observe a fairly good fractal relationship over the region with dimensionality of

about 2.6. A similar behaviour and dimensionality is seen for the HTML typesetting

benchmark typeset (figure 5.9a), while rijndael (figure 5.9c) has a dimensionality very

close to three. Several highly sequential benchmarks such as CRC32, adpcmenc and

bitcount (figure 5.9f) were observed to be quite linear in their behaviour. Whereas we

note that qsort (figure 5.9e) does not appear fractal in its scaling behaviour. This makes

sense since a binary tree is not a fixed dimensional graph – with n entries it can only be

embedded with edge length O (1) in a hypercube of dimension O (log n). The tiff2rgba

benchmark (figure 5.9d) appears to have different scales exhibiting different near-linear

fits, possibly hinting at multi-fractal behaviour.

A couple of benchmark graphs did not complete box-counting analysis, because of very

high inter-connectivity. We were initially surprised that tiff2bw, a benchmark that con-

verts an image from colour into black and white, behaved like this, but a closer look

revealed that a lookup table (LUT) was being used for the conversion, and that this

was causing every pixel conversion to reference these values, resulting in very high con-

nectivity. In practise, a CMP implementation should create local copies of the LUT or
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Figure 5.8: Box-counting measure comparing a Random Erdös-Rènyi graph to a linear graph, each with

1500 nodes

substitute them with in-place calculations, thereby eliminating these large hubs, however

we did not manually or automatically transform the graphs in this way – potential future

work that we believe may be worth investigating. This only highlights that an algorithm’s

communication concerns motivate us to alter them for the CMP domain. Analysis of the

dynamic data dependency graph may be one way to pinpoint suitable targets.

5.3.6 Dimensionality of communication vs. parallelism

It should be emphasised that low dimensionality does not necessarily indicate lack of

parallelism, and nor does high dimensionality necessarily indicate lots of available paral-

lelism. Indeed high dimensionality may indicate that communication will be a bottleneck

constraining parallel speed-up.

To give two examples: if a node launches ten strictly sequential graphs, the resultant

graph would still be 1D, but there would be an available parallelism of ten. Conversely,

if a 3D graph of operations were linked together such that there is a sequential depen-

dency from one to the next, then the graph would still not provide an opportunity for

parallelism, even though the dimensionality of communication is three – it can only be

embedded within the one dimension of time. This is because data dependencies must

observe temporal ordering, whereas they are unconstrained in the spatial dimensions.

5.4 Rentian analysis of dynamic-data-dependency graphs

We can take the dynamic data-dependence-graphs of Section 5.3 and apply the tools

of topological (partitioning) and physical (placement) Rentian analysis. We can then
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(a) Box-counting measure of the Typeset benchmark
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(b) Box-counting measure of the Lame benchmark
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(c) Box-counting measure of the Rijndael (aes) benchmark
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(d) Box counting measure of the tiff2rgba benchmark may suggests

possible multi-fractal behaviour, whereby the dimensionalities are

heterogeneous at different scales.
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(e) Box counting of the quick-sort benchmark doesn’t appear fractal
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Figure 5.9: A selection of box-counting plots from the MiBench benchmark suite. For a complete set,

please refer to Appendix B.
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Figure 5.10: Temporal Interconnect

examine the scaling of nodes to edges for Rentian behaviour as well as predictions for

distance-distributions, but in the temporal domain.

5.4.1 Temporal communication and approximate distributions

When mapping operand graphs, we are mapping them both in space and in time. Not

only is there a spatial distance, but also a temporal distance, and much like longer spatial

distances consume more resources, so too do longer temporal distances. In figure 5.10

we see an example graph on the left that has a natural spatial embedding for four cores,

with short spatial and temporal communication lengths between them. A layer of the

example graph is embedded into a single core on the right. The embedding eliminates

spatial communication but comes at the cost of increased temporal-distances. Every

temporal link requires memory for storage, a limited on-chip resource which is used up

for the duration (length) of the link. Rather than provide a uniform performance cost

per memory access, the memory hierarchy is a statistical attempt at minimising costs.

For short range communication, register files are used, followed by L1, L2 and L3 cache

respectively, and then external memory or even virtual memory. With greater temporal

distance, there is a greater resource and performance cost, thus it is also important here

to minimise temporal communication distances.

In our communication-centric paradigm3 it helps to re-examine what services memory is

providing. On the one extreme it acts as a wire in time, directly connecting data from

one time to another, and on another extreme it can be used to logically act as a lookup

table, possibly replacing whole functions. Both extremes are accommodated by the view

of memory as acting as a switch that routes data from one moment in time to the next.

Thus the concepts of memory and the NoC may not be so fundamentally different after

all. We can view memory as routing primarily in time, and the NoC as routing primarily

in space, but really they act together to route data in space-time.

Under the constraint of minimising distances, it might be reasonable to expect Rentian

approximate power-law distributions in the temporal distances. We were pleased to find

3see Chapter 2 for more details
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that Hartstein et al. [49], did indeed observe a power-law distribution for the inter-

access times of cache-lines, much to their surprise, as they had expected an exponential

distribution. They constructed analytical cache models based on this distribution and

showed that it could reasonably model and predict cache behaviour (upon varying cache

architecture). They also showed that by assuming a power-law, they could explain the

empirically observed but unsatisfactorily explained scaling law for cache misses, which

they relate to the power-law exponent of cache line accesses for the application. How-

ever, they did not have a satisfactory explanation as to why such a power-law behaviour

was present in the first place.

We should note, however, that their results are based on the distance of cache line ac-

cesses, whereas our analysis looks at the individual links of operands between executed

instructions. The power-law distribution of operand-distances does not automatically

follow from such a distribution in cache lines, or vice-versa, as a cache line combines

many words of data and thus also involves address-locality within the cache line as well.

It would be interesting to establish that power-law temporal-distance distributions do

exist at the operand scale as well.

Recently, Clauset et al. [30] examined phenomenon previously claimed to be governed

by a power-law probability distribution, and demonstrated that with a more robust sta-

tistical analysis, that many of these were not likely to have been drawn from a perfect

power-law distribution afterall. They recommended the use of Maximum Likelihood Es-

timation (MLE) for parameter estimation and then the use of the Kolmogorov-Smirnov

test and likelihood ratios to determine the goodness-of-fit against other probability distri-

butions. For our distance distributions, we do not make the claim that there is an under-

lying power-law distribution, from which the data-set represents independently drawn

samples. Indeed, because of the nature of repeated loop execution, there are many links

with ‘magic’ lengths that violate any independence. This can result in a certain large dis-

tance L being favoured by orders of magnitude compared to distance L+ 1, even though

at each scale (with logarithmic binning) the trend is roughly power-law in nature. Thus

a strict application of the Kolmogorov-Smirnov test will rule out any smoothly-varying

candidate distribution such as the power-law, exponential, log-normal, etc. However,

Clauset et al. also point out that the importance of whether or not it perfectly fits a

power-law distribution depends on how the distribution is used. They distinguish, for

example, between the scientist trying to construct models of how a perfect power-law

emerges, versus the engineer who needs a reasonable approximate model with which to

make decisions. In our case, we are less concerned with whether or not it perfectly fits,

indeed we already know that it cannot fit perfectly, however this should not stop us from

applying it as a simple and useful approximate model. For similar arguments, we would

expect the distance distribution of VLSI circuits to also fail Clauset’s criteria, and yet

Rentian wire-length distribution models yield useful predictions.
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5.4.2 Physical (embedded) analysis

Instead of trying to find an optimal embedding for the instructions by simulated anneal-

ing, we can simply use the instruction sequence as an existing embedding. This also

avoids the problem of needing an ‘oracle’ for the graph, since we are simply taking what

is dynamically generated by executing the instructions as-is.

Plots for the entire MiBench benchmark suite are shown in Appendix C, however a

selection chosen for their diverse behaviour is also presented in figure 5.11. They show

the scaling behaviour for 2 million instructions of their data-dependency graphs. The

meaning of ‘placement’ here is the actual instruction execution position in time – so the

first instruction has position one and the last has instruction position two-million. The

communication graph is then segmented approximately equally in time into eight regions

starting from segment 1, and ending at segment 8, and these are labelled separately

within each plot. The Rentian scaling properties of ‘terminals’ (cut hyper-edges) to nodes

(instructions) is shown on the left. The scaling of the distance distribution of accesses is

shown on the right hand side.

All plots are in log-log form for power-law fitting. Distance distribution frequencies are

logarithmically binned. A shallower distance distribution slope implies less locality, as it

means there is more communication at further distances. For Rentian distributions, there

is a limiting value in the slope of −1 which corresponds to infinitely large dimensionality

in the communication graph’s connectivity. One-dimensional graphs (serial communica-

tion) are a limiting-case, with distance distribution slope of −2 before the model breaks

down allowing steeper slopes. For the Rentian plots on the left, one should note that

there are different sizes in the sample points. Here, the size of the cross corresponds to

the degeneracy (number of identical samples) at that sample point. We should note that

all fits are over the entire data-range, and therefore may include Region II effects that

may alter the values of the slopes.

The selection of benchmarks in figure 5.11 was deliberately chosen to showcase a wide

variety of different behaviours, however many of benchmarks typically exhibited ap-

proximately Rentian behaviour, as seen in Appendix C. Looking at adpcmenc, we can

see that it has a fairly flat Rentian scaling exponent (close to zero), making it look like a

linear-chain in its communication structure, with only on the order of tens of words of

data being communicated even at large scales of the hierarchy. The corresponding dis-

tance distribution starts off looking approximately power-law but is truncated very early

at a link distance of under a hundred instructions, and with frequencies higher than one.

This also indicates a simple sequential structure with dependencies between stages of at

most 100 cycles. In comparison, typeset has a steeper Rentian scaling exponent and is

not truncated early in its distance distribution. We can also see some variation in ex-

ponent for each of the eight regions of time. In the fft benchmark we can see several

separate heterogeneous scaling behaviours. Importantly, the steepness of the fft slopes

on the left-hand scaling graph gets steeper with the number of nodes instead of being
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Figure 5.11: A small selection of Rentian fits and their temporal-distance distributions. For a complete set

please refer to Appendix C.
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Figure 5.12: Heterogeneity in the lame benchmark across different times. Two main Rentian scaling

distributions can be seen with corresponding effects on their distance distributions.
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Figure 5.13: Abrupt change in scaling behaviour for rijndael

approximately linear in the log-log domain. This indicates it is non-Rentian in its scaling

behaviour, and indeed we would expect this for the fft4. The corresponding distance-

distributions are also more scattered, with poor locality for some of the regions. Finally

in the tiff2bw benchmark, we see a clear violation of approximate power-law distance

distributions, as well as poor Rentian scaling.

Taking a close look a the lame benchmark, shown in figure 5.12, we can clearly see two

heterogeneous phases of execution – an almost linear phase like in adpcmenc, as well as

a more complex phase with higher Rent’s exponent and lower associated distance distri-

bution slopes. The presence of heterogeneity is not, in itself, surprising, as Heirman et al.

[52] has already identified how the Rent’s parameters can change with different phases

of a program’s execution. What is remarkable is that we can identify these structures

at all. Taking a step back, one may ask why the data-points in this figure aren’t simply

scattered and indeed why they aren’t merely random, instead of exhibiting differentiable

structures, particularly Rentian structure?

Looking at rijndael in figure 5.13, we see that after about a few thousand instructions,

4See Chapter 8 for more details
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Algorithm 5.1 Example of one-dimensional communication structure, but with a higher-dimensional sub-

structure (in matrixMultiply).

R = matrixIdentity

while (exponent != 0) do

if (exponent & 1)

R = matrixMultiply(R, X)

fi

X = matrixMultiply(X, X)

exponent = exponent >‌> 1

endwhile

the slope abruptly changes to be flat. This indicates a near one-dimensional communica-

tion structure. It helps to understand how this might occur with an example. Suppose we

had a fixed size matrix multiplication and repeated the operation back to back, say for

exponentiation. Then at the higher-level scale this consists of forwarding matrix multi-

plication results onto the next matrix multiplication operation as seen in Algorithm 5.1.

This results in only linear communication needs at this level of the hierarchy, which is

different from the scaling behaviour within the matrix multiplication. We would expect

larger matrix multiplies to push out the transition point to the right (i.e. more instruc-

tions before linear scaling behaviour takes over).

For a Rentian network that is optimally embedded in one dimension (in this case ‘time’),

one would expect the exponents to be related. For Rent’s exponent p and distance distri-

bution exponent −µ we would expect p+ µ ≈ 2. A plot across the benchmark segments

are shown in figure 5.14. The ten percent error bars are shown for the sum, and it does

appear that most benchmarks are within 10% of the Rentian model. Benchmarks with

truncated distributions (marked here by circles), indicate a likely Rent’s exponent of zero

at larger scales, and are unlikely to obey this relationship in exponents. As a form of

evidence, the plot here is certainly suggestive of this Rentian relationship, but it is not

definitive – a tighter fit to the expected curve would be much more desirable. In prac-

tise, this depends on the optimality of the algorithm’s embedding of instructions so as

to minimise temporal communication. Unlike in VLSI, whereby a placement tool can

freely shuffle gates around for its optimisation goals, algorithm designers are not neces-

sarily motivated to optimise an implementation’s temporal communication and compil-

ers currently optimise at the fine-grain scale of tens to hundreds of instructions. Unless

compilers (or programmers) can better work at optimising at a higher level, this may

pose a limitation on the temporal Rentian model’s predictive ability. However, given

existing scaling trends, we believe that there will be increasing motivation to optimise at

such a level. Distance distribution exponents below the line, should move up to the line

at larger scales. Exponents above the line are sub-optimal and should be structured to

move towards the line.
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Figure 5.14: Relating the Rent’s exponent to the distance distribution exponent. For a Rentian network

that is optimally embedded in 1-dimension (in this case ‘time’), then we expect the Rent’s exponent p and

distance distribution exponent −µ to be related by p+µ ≈ 2. The ten percent error bars are shown for the

sum.

5.4.3 Topological analysis

The topological approach treats the graph in the abstract, much like the fractal box-

counting analysis earlier. A selection of plots for MiBench benchmark applications are

shown in figure 5.15, with the entire benchmark suite results available in Appendix D.

They show the scaling behaviour for 2 million instructions of their data-dependency

graphs. The ‘partitioning’ here uses hMetis [62] which tries to find a min-cut bisection of

the communication graph using hyper-edges. This is done recursively for sixteen levels

forming 65,536 partitions. The top three levels of bisection form eight regions which

are labelled segment 1 to segment 8, which although tend to correspond to eight near-

contiguous temporal segments, may not necessarily do so. These labels are shown within

each plot. The Rentian scaling properties of ‘terminals’ (cut hyper-edges) to nodes (in-

structions) is shown on the left. The scaling of the distance distribution of accesses is

shown on the right hand side.

The distance distribution here, as in the physical analysis in section 5.4.2, uses the ac-

tual instruction time distances but utilising the partitioning found by hMetis rather than

partitioning by time. We should perhaps note that the min-cut problem is actually NP-

complete, and hMetis is using heuristic approaches and annealing to achieve its result.

As such hMetis is not guaranteed to find a minimal partitioning. One would hope that

it could do better than the existing embedding of instructions in time from the previous

chapter, but this is not necessarily the case.

All plots are in log-log form for power-law fitting, similarly to section 5.4.2, with identi-

cal plot attributes. We should again note that all fits are over the entire data-range, and
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therefore may include Region II effects that may alter the values of the slopes.

Again, for many of these plots we do see evidence of Rentian scaling. Comparing the

selection in figure 5.15 to the previous physical Rentian analysis, we can note some

differences. Although typeset is not affected much, the spread of slopes and distance

distributions is markedly narrower (reduced from a range of size 0.081 to 0.020), along

with the distance distribution slopes (from a range of 0.25 down to 0.094). For tiff2bw

the behaviour is also clearer, with less variance). This could be because the tool is free

to choose the partitioning and so can separate out other behaviour. For the fft we note a

change in behaviour - it now appears to be Rentian with near constant slopes. However,

one has to remember that there is an implicit context at work here – the topological

partitioning is done recursively in a tree-like manner, and without regard to temporal

ordering dependencies. The Rentian-like scaling property seen on the left-hand-side,

then, is for communication that is embedded in a high-dimensional binary tree substrate

rather than, say, a 2-D mesh with uni-directional time. This highlights the importance of

also doing a physical Rentian analysis.

Looking in figure 5.15 at the benchmark lame for 1 million cycles, we see that there is

a wide scattering of points, and it does not follow a simple Rentian scaling. However,

if we look closer, we see that there are actually several Rentian scaling structures being

presented at once. Again we find for lame a heterogeneous system with modules that

have different Rentian parameters (i.e. multi-fractal) in its behaviour. Indeed we can use

the top-level partitioning of hMetis to separate out these modules, as shown in figure

5.15. In the lame benchmark we see that whereas in the physical Rentian analysis we

could see only two heterogeneous regimes, in the topological one there appears to be

three (region 7 in black is separate from the other two main scaling trends in red and

yellow). The partitioning tool appears to have found a communication structure that

was not exposed in the physical Rentian analysis, possibly because this structure was

embedded (by the programmer) inside a different algorithm’s loop-body. This analysis

suggests that it could be perhaps be separated into another spatial region.

5.5 Conclusion

Using multiple methodologies, this chapter examined and tested existing software for

evidence of Rentian scaling. In addition to Heirman’s work on characterising Rentian

behaviour for CMP systems, this chapter more rigorously examined evidence for it by

comparing against other null-hypotheses in the physically placed domain. Across the

SPLASH-2 and Parsec benchmarks, good agreement with Rentian behaviour was ob-

served on a wide variety of benchmarks. It becomes easier to distinguish between Ren-

tian scaling and other null hypotheses as the size of the system increases, and with only

32 nodes this makes it a challenge. For a number of benchmarks, there wasn’t sufficient

evidence of Rentian behaviour compared to other null hypotheses, and in some cases

the Rentian model was rather unlikely. However, even for those benchmarks deemed
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Figure 5.15: Selection of benchmarks chosen for comparison with the physical analysis.
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unlikely to be Rentian, the spatio-temporal Rentian model was observed to be the best-

fitting model for the growth of bandwidth versus nodes in almost all the benchmark

applications. Moreover, the Rentian model had remarkably good predictions for the

resultant hop-length distributions and aggregate bandwidth for most benchmark appli-

cations. This indicates that the simple model is indeed useful for predicting and charac-

terising the hop-distribution using only one free parameter, and the aggregate bandwidth

with only two free parameters. This lends further credence to the Rentian model as a

characterisation and modelling tool.

To investigate the more fundamental communication structure of software, dynamic

data-dependence graphs were extracted from single-threaded benchmark applications.

With several techniques – box-counting from the Network Science community, and

physical and topological Rentian analysis, it was seen that many benchmark applica-

tions appear to exhibit fractal scaling properties, and the temporal-distance distributions

were also seen to be approximately power-law. Instead of random or non-power-law

distributed scaling structures for terminals versus nodes, clear heterogeneous Rentian

structures were clearly visible in the analysis corresponding to different phases of the

program execution, or to different min-cut partitioning found by an automated tool.

Furthermore, for the physical Rentian analysis, the distance distribution exponent and

Rent’s exponent, were predicted by theory to sum to two. We saw that most benchmarks

were within 10% of this predicted behaviour in exponent sum.

This all indicates that the Rentian model, although not universal, is a simple, practical

model that is useful for characterisation and applies to a wide variety of algorithms.





6
CHAPTER SIX

GENERALISING

RENT’S RULE

Although in Chapter 4 it was examined how Rent’s rule could be generalised to the

NoC domain of bandwidth, the argument focused on the interchangeability of hardware

blocks with software blocks. This implies individual software tasks being specifically

localised on certain cores, and acting more as a software circuit – like the PicoChip

architecture [85]. More generally, however, it is not just software tasks that are being

mapped in space, but also their individual instructions are embedded both in space and

in time.

One would desire, then, a more complete model that unifies the concept of NoC and

memory into a single Spatio-Temporal Rentian model for the CMP domain. This is

where there is both a spatial component, say an N ×N 2-D mesh, as well as a temporal

component of memory and execution time – extending many orders of magnitude further

into time, but only in one direction – forward.

Existing Rentian models from the VLSI domain deal primarily with planar logic that can

be connected in any direction, rather than software which has constraints in the temporal

dimension. Some extension to 3D stacked die also exist [60, 116] but they capture neither

the unbounded extent nor the uni-directionality of the temporal dimension. Nor do they

give an adequate account of how the relative costs of moving in one dimension versus

another affect the embedding, as moving information purely in time can be much cheaper

than moving it in space (and time). Furthermore, we would also like a model to support

a 3-D stacked CMP (say an N ×N ×M mesh) along with the fourth dimension of time.

In order to achieve this goal, one actually needs to better understand Rent’s rule, and

generalise its principles much farther than existing theory. To do so, in this chapter it

is first proven that there is an equivalence between asymptotically power-law tailed dis-

tance distributions and asymptotic Rentian behaviour. Moreover, this proof is done in a

general d-dimensional vector space, rather than just the 2-D Manhattan metric of VLSI.

Previously Donath and others [40] have shown that Rent’s rule leads to approximate

107
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power-law distance distributions for VLSI, but not the other way around, and not with

this generality. This asymptotic equivalence is quite remarkable in itself. It is then proven

that the problem of finding optimal distributions for mappings in a d-dimensional do-

main is equivalent to an optimisation problem in a configuration-space. It is shown that

the particular power-law tails for the d-dimensional embedding, produce power-law tails

in the equivalent configuration-space with an invariant exponent, independent of the

original embedding dimensionality. Leveraging this invariant power-law tail exponent

allows generalisation to arbitrary embedding domains, including for software running

on a CMP, and perhaps even physical human-interaction networks as will be illustrated.

6.1 The principle of cost universality

It would be useful to be able to meaningfully compare two length distributions f (l) and

g (l) for optimality of communication. Here, the concept of a length distribution is gen-

eral. For example, the length distribution in a manufacturing context may correspond

to actual physical wire length, and for a network-on-chip may correspond to what pro-

portion of traffic goes a particular distance. The total cost incurred by a distribution is

equal to the sum of the cost of each link. If link cost varies by distance we can utilise

a cost function c (l) and the total cost C over a length distribution f , up to maximum

length Lmax, as:

C (f) =

Lmax
ˆ

0

f (l) c (l) dl.

We allow f to also be a discrete probability distribution, by way of Kronecker delta

functions.

Definition 6.1. We define the relation f ≻c g to mean f is more optimal than g over cost

function c i.e. C (f) < C (g), where C (f) =
´ Lmax

0
f (l) c (l) dl.

It is reasonable to assume that the cost function c (l) strictly increases with distance (or

hop count in the case of topological networks). This monotonicity, in practice, is not an

important restriction to represent real monotonic cost functions, as it still allows the rate

of monotonic increase to be arbitrarily small.

Under certain conditions shown below, f is more optimal than g regardless of the specifics

of the cost function as long as cost is strictly increasing. We remove the subscript on the

optimality relation to denote that it is independent of cost function. i.e:

f ≻ g.

Definition 6.2. We define the relation f ≻ g to mean f is more optimal than g over all

strictly increasing cost functions c iff ∀c ∈ C1∧∀l ≥ 0, 0 ≤ c (l) <∞∧c′ (l) > 0 : f ≻c g.
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Lemma 6.3. For probability distributions f and g with cumulative distributions F and

G respectively, if ∀l ∈ [0, Lmax] , G (l) ≥ F (l), where Lmax is the maximum length of the

system, then f ≻ g.

Proof. First we can examine the difference in costs incurred for two probability distri-

butions as:

C (f) − C (g) =

Lmax
ˆ

0

(f (l) − g (l)) c (l) dl.

As by definition F (0) = G (0) = 0 and F (Lmax) = G (Lmax) = 1, then integrating by

parts we have:

C (f) − C (g) = [(F (l) −G (l)) c (l)]Lmax

0 −
Lmax
ˆ

0

(F (l) −G (l)) c′ (l) dl

= 0 −
Lmax
ˆ

0

(F (l) −G (l)) c′ (l) dl

=

Lmax
ˆ

0

(G (l) − F (l)) c′ (l) dl.

This is an integral of a positive function, therefore the result is positive.

Definition 6.4. A family of distribution functions {fk} is said to be ‘cost universal’ if any

two members can be strictly ordered as fj ≻ fk or fk ≻ fj , independent of cost-function.

Lemma 6.5. The family of distributions {fµ} with common head-distribution and con-

tinuous power-law tail distribution from some starting length ltail and with exponent

µ > 1 is ‘cost universal’.

Proof. Let G and H be arbitrary members with power-law exponents µg and µh respec-

tively where µh > µg > 1, then:

G (l) =











B (ltail) + λ

(

1 −
(

l
ltail

)1−µg

)

, l ≥ ltail

B (l) , otherwise

for some normalisation parameter λ, and similarly for H, for some common c.d.f. head

distribution B (including B ≡ 0).

We know that ∀x, y ∈ R
+:
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log x > log y ⇒ x > y

So that for l ≥ ltail:

H (l) −G (l) > 0 ⇔
(

l

ltail

)1−µg

−
(

l

ltail

)1−µh

> 0

log

(

(

l

ltail

)1−µg

)

− log

(

(

l

ltail

)1−µh

)

= ((1 − µg) − (1 − µh)) log

(

l

ltail

)

= (µh − µg) log

(

l

ltail

)

> 0

⇒ H (l) > G (l)

As any two members can be ordered irrespective of any strictly monotonically increasing

cost-function, the set is cost-universal.

A similar result can be shown for discrete power-law distributions.

6.2 Proving asymptotic equivalence of Rent’s rule and power-law dis-

tance distributions

Let us start with a normed vector space M in d dimensions with distance metric d (X, Y ).

A d-dimensional object Z, which resides in the vector space, is convex iff for any two

points P1 and P2 inside Z, every point along the geodesic from P1 to P2 is also in Z.

Let us choose an arbitrary convex shape Z, such that the longest geodesic inside Z is of

exactly unit length. Let VZ be the d-dimensional volume of Z. For an example, see figure

6.1 for a two dimensional Euclidean vector space.

Suppose we have an edge E of fixed length L which can be anywhere homogeneously in

the d-dimensional vector space, and in any orientation. Let each position and orientation

be uniformly probable, but with lengths obeying a prior distribution. Let us denote the

start of the edge by P1 and the end of the edge by P2, then for a fixed start point the

configuration space1 of possible end points is given by BL = m (P1 | d (P2, P1) = L, P2),

where m () is a function that measures the hyper-volume of the set of points satisfying

the constraints. Let mZ (P ) ≡ m (P ∈ Z, P2 ∈M | d (P2, P ) = L, ) = VZ .BL is the 2d− 1

dimensional volume of configuration space of possibilities for P being inside of Z, for all

1Concept originally from Physics where configurations of objects correspond to a position in the high-dimensional space. For

example the configuration phase space of a particle is the 6-dimensional position corresponding to its 3-dimensional spatial position

and 3-dimensional momentum.



Chapter 6 Generalising Rent’s rule 111

Figure 6.1: Example of an arbitrary convex shape in 2-D

values of P2. So mZ (P1) = VZ .BL and likewise, the configuration volume of possibilities

for P2 being inside of Z, irrespective of P1, is mZ (P2) = VZ .BL. However the configura-

tion volume for both P1 and P2 being in Z simultaneously are further constrained by the

edge length L, as:

mZ (P1, P2) ≡ m (P1 ∈ Z, P2 ∈ Z | d (P1, P2) = L)

We note that the configuration volume of orientations BL, grows with L, whereas it is

desirable that each orientation is equally probable with total probability equal to one.

So we contract the space to normalise as:

InternalEdgesZ (L) =
1

BL

mZ (P1, P2)

Let us denote the dimensionless, volume-renormalised function:

φZ (L) ≡ 1

VZBL
mZ (P1, P2)

We note that all edges incident with the volume of Z must have at least one point on the

inside (either P1 or P2), but must not double count edges when both points are inside (P1

and P2). These incident edges include both internal edges and terminals.

IncidentEdgesZ (L) ≡ 1

BL

(mZ (P1) +mZ (P2) −mZ (P1, P2))

= 2VZ − VZφZ (L)

= VZ (2 − φZ (L))

Whereas terminals are those edges which are incident only with the surface of Z and thus

must further exclude all internal edges:
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TerminalsZ (L) ≡ 1

BL

(mZ (P1) +mZ (P2) − 2mZ (P1, P2))

= 2VZ − 2mZ (P1, P2|L)

= 2VZ (1 − φZ (L))

For convenience, let us define θ (x) = (1 − φZ (x)). An intuitive way of thinking about

φ (x) is to think of a stick of length x and to count all the possible combination of position

and orientation of that stick that manage to fit inside shape Z. Each combination of

position and orientation is equally likely, and we normalise so that at infinitesimal length,

where all possible orientations and positions in Z fits inside shape Z, then φ (0) = 1. As

we shall see shortly, the function θ (x) has some interesting properties that we can employ

in later proofs.

6.2.1 Lemmas proving properties of θ (L)

In this section, we wish to prove particular properties of θ (L) that will be essential in

later proofs:

1. θ (0) = 0

2. θ (L) = 1, L > 1

3. 0 < L1 < L2 ⇒ θ (L1) ≤ θ (L2)

4. limL→0+
θ(L)
L

= Υ, which is a finite positive constant

5. ∃δ > 0, s.t.θ (L) ∈ C1 (0, δ), whereC1 (0, δ) is the set of all functions with continuous

derivative in the interval (0, δ).

We start by remapping the product space of Z × Z into the space of Z × S × Λ where

S = {x | |x| = 1} denotes a set of orientations, and Λ a set of edge lengths. In particular:

(X, Y ) →
(

X,
Y −X

|Y −X| , |Y −X|
)

Let: η = 1
|S||VZ |

Let ~NB (Y ) be the normal vector for Y ∈ ∂Z, where ∂Z is the the boundary of Z.

Let us also define the identity function:

δZ (X, ǫ) =















1 if X ∈ Z

1 − 1
ǫ
|X − P (X)| if 0 < |X − P (X)| < ǫ

0 otherwise

where P (X) is the projection of X onto the closest point on the surface ∂Z.
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Let:

δZ (X) ≡ lim
ǫ→0

δZ (X, ǫ)

=







1 if X ∈ Z

0 otherwise

We can write:

φ (L) = lim
ǫ1,ǫ2→0

η

ˆ

S

ˆ

M

δZ (X, ǫ1) δZ (X + L~r, ǫ2) dXd~r

= η

ˆ

S

ˆ

Z

δZ (X + L~r) dXd~r

Let ~F (X, ~r, ǫ) ≡ ~rδZ (X + L ~r, ǫ) is a continuous vector field.

By the Gauss–Ostrogradsky theorem:
ˆ

Z

∇ • ~F (X, ~r, ǫ) dX =

ˆ

∂Z

~F (X, ~r, ǫ) • ~NB (X) dX

=

ˆ

∂Z

δZ (X + L ~r, ǫ)~r • ~NB (X) dX

But we also have that:

ˆ

Z

∇ • ~F (X, ~r, ǫ) dX =

ˆ

Z

~r • ∇δZ (X + L ~r, ǫ) dX

=

ˆ

Z

∇~rδZ (X + L ~r, ǫ) dX

Then:

φ′ (L) = lim
ǫ1,ǫ2→0

η

ˆ

S

ˆ

M

δZ (X, ǫ1)
∂

∂L
[δZ (X + L~r, ǫ2)] dXd~r

= lim
ǫ2→0

η

ˆ

S

ˆ

Z

∇~rδZ (X + L~r, ǫ2) dXd~r

= lim
ǫ2→0

η

ˆ

S

ˆ

∂Z

δZ (X + L ~r, ǫ2)~r • ~NB (X) dXd~r

= η

ˆ

S

ˆ

∂Z

δZ (X + L~r)~r • ~NB (X) dXd~r

Let:



114 6.2 Proving asymptotic equivalence of Rent’s rule and power-law distance distributions

T (Y, L, ǫ) ≡ {~x | |~x| = 1, Y + L~x − ǫ (Y + L~x − P (Y + L~x)) ∈ ∂Z}

and:

T (Y, L) ≡ {~x | |~x| = 1, Y + L~x ∈ ∂Z}

Then:

φ′′ (L) = lim
ǫ2→0

η

ˆ

S

ˆ

∂Z

∂

∂L
[δZ (X + L ~r, ǫ2)]~r • ~NB (X) dXd~r

= lim
ǫ2→0

η

ˆ

∂Z

ˆ

S

∇~rδZ (X + L~r, ǫ2)~r • ~NB (X) d~rdX

= lim
ǫ2→0

η

ˆ

∂Z

ǫ2
ˆ

0

ˆ

T (X,L,ǫ)

− 1

ǫ2
|X + L~r − P (X + L~r)|~r • ~NB (X) d~rdǫdX

= η

ˆ

∂Z

ˆ

T (X,L)

(

−~r • ~NB (X + L~r)
)(

~r • ~NB (X)
)

d~rdX

The following lemma merely proves that a stick of length zero has a configuration volume

of terminals that fills the entire shape Z.

Lemma 6.6. That θ (0) = 0

Proof. By evaluation:

θ (0) = 1 − φ (0)

= 1 − η

ˆ

S

ˆ

Z

δZ (X) dXd~r

= 1 − 1

|S| |VZ |

ˆ

S

|VZ | d~r

= 1 − 1

|S| |VZ |
|S| |VZ|

= 0

The following lemma merely proves that a stick of greater than unit length has no con-

figuration volume of terminals.
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Lemma 6.7. That θ (L) = 1 for L > 1

Proof. We note that for L > 1, φ (L) = 0 trivially as by definition there are no lengths

that can fit in Z over unit length (the maximum length), so θ (L) = 1 − φ (L) = 1.

The following lemma merely proves that as longer sticks have at best the same configu-

ration volume of terminals than shorter sticks.

Lemma 6.8. That 0 < L1 < L2 ⇒ θ (L1) ≤ θ (L2)

Proof. Following on from Lemma 6.7, this is equivalent to establishing that ∀L ∈ (0, 1),

θ′ (L) ≥ 0. Given:

θ′ (L) = −φ′ (L) = −η
ˆ

S

ˆ

∂Z

δZ (Y + L~r)
(

~NB (Y) •~r
)

dYd~r

We know that as Y is at the boundary of Z, then by convexity of Z, all points:
{

Y + L~r | ~NB (Y) •~r > 0
}

must lie outside Z. Therefore restricting X = Y + Lr̃ to those points inside Z, we have:

∀X ∈ Z,Y ∈ ∂Z :
(

~NB (Y) •
−−−−−→
(X −Y)

)

≤ 0.

This similarly implies that within the integral bounds for L > 0, that:

−δZ (Y + L~r)
(

~NB (Y) •~r
)

≥ 0.

Integration over the bounds proves for L > 0: θ′ (L) ≥ 0, yielding our desired result:

0 < L1 < L2 ⇒ θ (L1) ≤ θ (L2)

The following lemma proves that the configuration volume of terminals varies linearly

with the length at infinitesimal scales.

Lemma 6.9. That limL→0+
θ(L)
L

= Υ, for some Υ > 0

Proof. First let us establish that 0 < θ (0+) < ∞. We do this by taking the limit as L

approaches zero.

φ′ (0) = limL→0+ η

ˆ

∂Z

ˆ

S

−δZ (Y + L~r)
(

~NB (Y) •~r
)

d~rdY

= −η
ˆ

∂Z

ˆ

W (Y )

(

~NB (Y) •~r
)

d~rdY
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Where:

W (Y) = {~x | NB (Y) • ~x > 0, |~x| = 1}

This is because as L approaches zero, the delta region is positive only for vectors of r

leading to the interior of Z.

If for all unit vectors ~u we have:

κ =

ˆ

r∈{~x||~x|=1, ~u•~x>0}

(~u •~r) d~r

We know that κ > 0 as we are guaranteed by the non-empty integral region to only be

taking a positive value.

Then φ′ (0) = −κ
|S||VZ |

´

∂Z
dY = −κ|∂Z|

|S||VZ | , and θ′ (L) = −φ′ (L)

Thus establishing that:

0 < θ′
(

0+
)

=
κ |∂Z|
|S| |VZ |

<∞

We then define Υ ≡ κ|∂Z|
|S||VZ | = θ′ (0+).

The following lemma proves continuity properties, namely that there aren’t any disconti-

nuities in the configuration volume of terminals, or its differential, in some finite positive

region of lengths near zero.

Lemma 6.10. That ∃δ > 0, s.t. θ (L) ∈ C1 (0, δ)

Proof. This is equivalent to proving that |φ′′ (L)| < ∞ for some region L ∈ (0, ǫ). That

is, the double differential is finite, and hence that θ′ (L) is continuous.

|φ′′ (L)| =

∣

∣

∣

∣

∣

∣

∣

η

ˆ

∂Z

ˆ

T (Y,L)

(−NB (Y + L~r) •~r) (NB (Y) •~r) d~rdY

∣

∣

∣

∣

∣

∣

∣

≤ η

ˆ

∂Z

ˆ

T (Y,L)

|(−NB (Y + Lr) •~r) (NB (Y) •~r)| d~rdY

≤ η

ˆ

∂Z

ˆ

T (Y,L)

d~rdY

= η

ˆ

∂Z

|T (Y, L)| dY

But |T (Y, L)| is ordinarily the length of the (d− 2)-dimensional curve along the bound-

ary ∂Z that is distance L from Y. However, in certain circumstances this can blow

up to a (d− 1)-dimensional surface. For example, consider a 3D cone, the tip of the
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cone is equidistant from an entire 2D surface instead of just 1D curves. As we are deal-

ing with a restricted region of maximum length δ, we can choose a small δ such that

we do not have this problem. We do this by noting that any finite (d− 1)-dimensional

sub-region of the convex boundary ∂Z that has constant curvature, that curvature must

be finite, otherwise VZ would not be convex. Let the minimum such radius of curva-

ture in all constant-curvature segments of ∂Z be given by ρmin, then we merely need

to choose 0 < δ < ρmin. We are then guaranteed that only (d− 2)-dimensional curves

are encountered at each point of Y ∈ ∂Z. This thus yields a finite φ′′ (L) in the region

L ∈ (0, δ). Combined with previous results (Lemmas 6.6, 6.8, 6.9), this implies that:

∃δ > 0, s.t. θ (L) ∈ C1 (0, δ).

6.2.2 Rent’s rule from continuous power-law tails

The following theorem proves that a continuous power-law tailed length distribution

with exponent between 1 and 2, asymptotically follows Rent’s rule with a related expo-

nent.

Theorem 6.11. That for a length-distribution with a continuous power-law tail of ex-

ponent 1 < µ < 2, the scaling of terminals crossing arbitrary shape Z in arbitrary d-

dimensional normed vector space M , asymptotically grows according to Rent’s rule with

Rent’s exponent p = 1 − µ−1
d

.

Proof. We know that if we were to scale the shape Z by s in R
d, it would result in the

configuration space increasing by sd:

TZ (L, s) = 2VZs
dθZ

(

L

s

)

Then for a global probability distribution of lengths h (L) we have number of terminals

T (s) given by:

T (s) ≡
∞̂

0

h (L)T (L, s) dL

= 2VZs
d

∞̂

0

h (L) θ

(

L

s

)

dL (6.1)

= 2VZs
d

∞̂

0

sh (ys) θ (y) dy

= 2VZs
d+1

∞̂

0

h (ys) θ (y) dy

For a power-law tailed distribution h (x) =







γ (x) , x < L0

λx−µ , x ≥ L0



118 6.2 Proving asymptotic equivalence of Rent’s rule and power-law distance distributions

with
´ L0

0
γ (x) dx = Γ < 1

Note that this constraint is quite loose and admits Dirac-deltas in the head of the distri-

bution.

T (s) = 2VZs
d+1







L0/s
ˆ

0

γ (ys) θ (y) dy +

∞̂

L0/s

λy−µs−µθ (y)dy







= 2VZs
d+1−µ






sµ

L0/s
ˆ

0

γ (ys) θ (y)dy + λ

∞̂

L0/s

y−µθ (y) dy







= 2VZs
d+1−µ

(

P (s, L0) + λQ

(

L0

s

))

Where:

P (s, L0) ≡ sµ
L0/s
ˆ

0

γ (ys) θ (y)dy ≤ sµ
L0/s
ˆ

0

γ (ys) θ

(

L0

s

)

dy

= sµ−1θ

(

L0

s

)

L0
ˆ

0

γ (x) dx

= sµ−1θ

(

L0

s

)

Γ

Using Lemma 6.8 (positive monotonicity of θ (y)) in the first inequality step.

And we also define:

Q (x) ≡
∞̂

x

y−µθ (y) dy

We know that limx→0+
θ(x)
x

= const. Therefore:

lim
s→∞

∣

∣

∣

∣

P (s, L0)

sµ−2

∣

∣

∣

∣

≤ lim
s→∞

∣

∣

∣

∣

∣

θ
(

L0

s

)

(

L0

s

) L0Γ

∣

∣

∣

∣

∣

= θ′ (0)L0Γ = const (6.2)

But then for µ < 2, we have lims→∞ P (s, L0) = 0

By Lemma 6.10, we know that θ (y) is C1 (0, δ) for some δ > 0, and by Lemma 6.9, we

also know that limy→0
θ(y)
y

= Υ.

Let us denote E (y) = θ′ (y) − Υ. So ∀ǫ > 0, ∃δ′ < δ s.t. ∀y ∈ (0, δ′) : |E (y)| < ǫ.
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Now:

Q (0) −Q(δ′) =

δ′
ˆ

0

y−µθ (y)dy

=
y1−µ

1 − µ
θ (y)

∣

∣

∣

∣

δ′

0

−
δ′
ˆ

0

y1−µ

1 − µ
θ′ (y)dy

=
δ′1−µ

1 − µ
θ (δ′) +

δ′
ˆ

0

y1−µ

µ− 1
(Υ + E (y)) dy

Now each of these terms is finite provided 1 < µ < 2, resulting in Q (0) − Q (δ′) being

finite. As E (y) < ǫ:

|Q (0) −Q (δ′)| =

∣

∣

∣

∣

∣

∣

δ′1−µ

1 − µ
θ (δ′) +

δ′
ˆ

0

y1−µ

µ− 1
(Υ + E (y)) dy

∣

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

δ′1−µ

1 − µ
θ (δ′)

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

δ′
ˆ

0

y1−µ

µ− 1
(Υ + E (y)) dy

∣

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

δ′1−µ

1 − µ
θ (δ′)

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

δ′
ˆ

0

y1−µ

µ− 1
(Υ + ǫ) dy

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

δ′2−µ

1 − µ

(

θ (δ′)

δ′

)∣

∣

∣

∣

+

∣

∣

∣

∣

(Υ + ǫ)
δ′2−µ

(µ− 1) (2 − µ)

∣

∣

∣

∣

Noting that limδ→0
θ(δ)
δ

= Υ, then each of these terms converges to zero:

lim
δ→0

|Q (0) −Q (δ)| = 0

Thus for:

T (s) = 2VZs
d+1−µ

(

P (s, L0) + λQ

(

L0

s

))

For L0 ≪ s, we have P (s, L0) → 0, and Q
(

L0

s

)

→ Q (0) which is a constant we denote

ζ :

T (s) = 2VZζs
d+1−µ

(

λ+O

(

(

L0

s

)2−µ
))

≈ 2VZζλs
d+1−µ

Where O
(

(

L0

s

)2−µ
)

is the order of the error term.
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Or asymptotically:

lim
s→∞

T (s)

sd+1−µ = 2VZζλ

This is the same form as Rent’s Rule. Let us compare with the usual parameters of Rent’s

Rule:

T = kNp = k
(

VZs
d
)p

Now equating exponents:

p.d = d+ 1 − µ

µ = (1 − p) d+ 1

p = 1 − µ− 1

d
(6.3)

and constant:

k = 2ζλV 1−p
Z

As the scaling derivation is valid for 1 < µ < 2, these relationships are likewise only valid

for:

1 − 1

d
< p < 1

6.2.3 Rent’s rule from discrete power-law tails

The following theorem proves that a discrete power-law tailed length distribution with

exponent between 1 and 2, asymptotically follows Rent’s rule with a related exponent.

Theorem 6.12. That for a length-distribution with a discrete power-law tail of exponent

1 < µ < 2, the scaling of terminals crossing arbitrary convex shape Z in arbitrary d-

dimensional normed vector space M , asymptotically grows according to Rent’s rule with

Rent’s exponent p = 1 − µ−1
d

.

Proof. Here we have h (x) =







γ (x) , x < L0
∑

k λx
−µδ (x− ϕk) , x ≥ L0

For some discrete distribution spacing ϕ.

We have:

T (s) = 2VZs
d

∞̂

0

h (L) θ

(

L

s

)

dL
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We know by definition of Dirac-delta that:

(k+ 1
2)ϕ
ˆ

(k− 1
2)ϕ

f (x) δ (x− ϕk) g (x) dx =
1

ϕ
f (ϕk) g (ϕk)

Suppose ∀x, f ′ (x) ≤ 0, and g′ (x) ≥ 0, then let:

fmax ≡ sup
x∈(ϕ(k− 1

2),ϕ(k+
1
2))

{f (x)} = f

(

ϕ

(

k − 1

2

))

gmax ≡ sup
x∈(ϕ(k− 1

2),ϕ(k+
1
2))

{g (x)} = g

(

ϕ

(

k +
1

2

))

This allows us to remove the Dirac-deltas with a simpler integral bound:

(k+ 1
2)ϕ
ˆ

(k− 1
2)ϕ

f (x) δ (x− ϕk) g (x) dx ≤
(k+ 1

2)ϕ
ˆ

(k− 1
2)ϕ

fmaxδ (x− ϕk) gmaxdx

= fmaxgmax

=
1

ϕ

(k+ 1
2)ϕ
ˆ

(k− 1
2)ϕ

fmaxgmaxdx

≤ 1

ϕ

(k+ 1
2)ϕ
ˆ

(k− 1
2)ϕ

f (x− ϕ) g (x+ ϕ) dx

In particular for f (x) = x−µ and g (x) = θ
(

x
s

)

, over the entire tail of the integral we then

have:

W (s, L0) ≡ 1

s

∞̂

L0

h (x) θ
(x

s

)

dx

=
1

s

∞̂

L0

∑

k

λx−µδ (x− ϕk) θ
(x

s

)

dx

≤ 1

s

∞̂

L0

λ (x− ϕ)−µ θ

(

x+ ϕ

s

)

dx

Let ys = x− ϕ, then:
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W (s, L0) ≤
∞̂

(L0−ϕ)/s

λ (ys)−µ θ

(

y +
2ϕ

s

)

dy

= s−µλ

∞̂

(L0−ϕ)/s

y−µθ

(

y +
2ϕ

s

)

dy

We can also similarly say, using the minimum values in the range, that:

W (s, L0) ≥ s−µλ

∞̂

(L0+ϕ)/s

y−µθ

(

y − 2ϕ

s

)

dy

So that:
∞̂

(L0+ϕ)/s

y−µθ

(

y − 2ϕ

s

)

dy ≤ sµ

λ
W (s, L0) ≤

∞̂

(L0−ϕ)/s

y−µθ

(

y +
2ϕ

s

)

dy (6.4)

Let

Q (s, L0) ≡
sµ

λ
W (s, L0)

Then we have:

T (s) = 2VZs
d+1





L0/s
ˆ

0

γ (ys) θ (y) dy +W (s, L0)





= 2VZs
d+1−µ (P (s, L0) + λQ (s, L0))

We can treat P (s, L0), the terminal contribution from the head distribution γ in an

identical way to the continuous version in theorem 6.11. So for µ < 2, we have

lims→∞ P (s, L0) = 0

We have from eqn 6.4:
∞̂

(L0+ϕ)/s

y−µθ

(

y − 2ϕ

s

)

dy ≤ Q (s, L0) ≤
∞̂

(L0−ϕ)/s

y−µθ

(

y +
2ϕ

s

)

dy (6.5)

We want to know the behaviour of lims→∞Q (s, L0) . To do this, let us generalise the

form above.

For x ≥ 2ϕ/s we know by positive monotonicity of θ (x) that:

θ

(

y − 2ϕ

s1 (x)

)

≤ θ (x) ≤ θ

(

y +
2ϕ

s2 (x)

)

For any s1 (x) > 0 and s2 (x) > 0. Thus:

∞̂

x

y−µθ

(

y − 2ϕ

s1 (x)

)

dy ≤
∞̂

x

y−µθ (x) dy ≤
∞̂

x

y−µθ

(

y +
2ϕ

s2 (x)

)

dy
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Equating bounds with eqn 6.5 we have:

(L0 + ϕ)

s1 (x)
= x

∴ s1 (x) =
(L0 + ϕ)

x

Similarly:

s2 (x) =
(L0 − ϕ)

x

This means that:

lim
s→∞

∞̂

(L0+ϕ)/s

y−µθ

(

y − 2ϕ

s

)

dy = lim
x→0+

∞̂

x

y−µθ

(

y − 2ϕ

L0 + ϕ
x

)

dy

and

lim
s→∞

∞̂

(L0−ϕ)/s

y−µθ

(

y +
2ϕ

s

)

dy = lim
x→0+

∞̂

x

y−µθ

(

y +
2ϕ

L0 − ϕ
x

)

dy

Now, we want to show that: limx→0+

∣

∣

∣

´∞
x
y−µθ

(

y − 2ϕ
s1(x)

)

dy −
´∞
x
y−µθ (x) dy

∣

∣

∣
= 0

And that: limx→0+

∣

∣

∣

´∞
x
y−µθ

(

y + 2ϕ
s2(x)

)

dy −
´∞
x
y−µθ (x) dy

∣

∣

∣
= 0

These limits are two particular cases α = − 2ϕ
L0+ϕ

and α = 2ϕ
L0−ϕ of the general relationship,

which we define:
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∆ (α, µ) ≡

∣

∣

∣

∣

∣

∣

lim
x→0+

∞̂

x

y−µ (θ (y + αx) − θ (y)) dy

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

lim
x→0+

∞̂

0

y−µ (θ (y + αx) − θ (y)) dy − lim
x→0+

x
ˆ

0

y−µ (θ (y + αx) − θ (y)) dy

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

∞̂

0

y−µ
(

lim
x→0+

(

θ (y + αx) − θ (y)

x

)

x

)

dy

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

lim
x→0+

x
ˆ

0

y−µ (θ (y + αx) − θ (y)) dy

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∞̂

0

y−µ
(

α lim
x→0+

θ′ (y)x

)

dy

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

lim
x→0+

x
ˆ

0

y−µ (θ (y + αx) − θ (y)) dy

∣

∣

∣

∣

∣

∣

= 0 +

∣

∣

∣

∣

∣

∣

lim
x→0+

x
ˆ

0

y−µ (θ (y + αx) − θ (y)) dy

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

lim
x→0+

x
ˆ

0

y−µ

(

α sup
y∈(0,x)

{θ′ (y)}x
)

dy

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

lim
x→0+

α
x1−µ

µ− 1
x sup
y∈(0,x)

{θ′ (y)}
∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

α lim
x→0+

x2−µ

µ− 1
sup
y∈(0,δ)

{θ′ (y)}
∣

∣

∣

∣

∣

, ∀δ > x

For 1 < µ < 2: this has limit 0 as we know by Lemma 6.10 that θ′ (y) is continuous and

finite in some region (0, δ).

∴ lim
s→∞

Q (s, L0) =

∞̂

0

y−µθ (y) dy

= Q (0)

Again, for L0 ≪ s, we have P (s, L0) → 0, and Q (s, L0) → Q (0) which is a constant we

denote ζ :

T (s) = 2VZζs
d+1−µ

(

λ+O

(

(

L0

s

)2−µ
))

≈ 2VZζλs
d+1−µ

Where O
(

(

L0

s

)2−µ
)

is the order of the error term.

Or asymptotically:
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lim
s→∞

T (s)

sd+1−µ = 2VZζλ

Thus provided L0 > ϕ, the discrete version is also finite and converges to the same con-

stant factor as the continuous solution’s. In general, we can extend the head distribution

to be the same as the tail distribution, which allows us to choose L0 arbitrarily, so this

constraint is unimportant.

Note that this discrete length distribution is not the same as saying there is a discrete grid

of points that edges must be ‘snapped’ to. Continuous placement and orientations are

allowed for the discrete lengths in this formalism. However it is also possible to show

that the discrete grid version converges to the continuous case in the limit of very large

scales, by showing that the discrete version of θ (x, s) converges to the continuous version

at large scales.

6.2.4 Rent’s rule from finite distribution lengths

The following theorem proves that a finite, discrete length distribution also follows Rent’s

rule but only with a special, fixed Rent’s exponent.

Theorem 6.13. That for a finite-length discrete distribution (where largest length is at

most Lmax <∞), the scaling of terminals crossing arbitrary convex shape Z in arbitrary

d-dimensional normed vector space M , asymptotically grows according to Rent’s rule

with Rent’s exponent p = 1 − 1
d
.

Proof. We start with h (x) = δ (L1 − x), where δ is the Dirac delta function and L1 ≤
Lmax. Then:

T (s) = 2VZs
d

∞̂

L0

δ (L1 − L) θ

(

L

s

)

dL

= 2VZs
dθ

(

L1

s

)

In particular for s≫ L1

T (s) ≅ 2VZs
dΥ
L1

s
= 2VZs

d−1ΥL1

Or rather:

lim
s→∞

T (s)

sd−1
= 2VZΥL1

Thus equating to Rent’s equation:
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pd = d− 1

p = 1 − 1

d

Which is the expected Rent’s exponent for a d-dimensional network embedded in d di-

mensions, with fixed interconnection lengths. By linearity of T w.r.t h, any finite combi-

nation of fixed lengths produces a finite sum of these integrals, and thus also produces

this limiting case Rent’s exponent.

Looking again at equation 6.3, we should note here that there is a phase-transition that

occurs for power-law tailed distributions with exponent µ:

p = 1 − µ− 1

d
.

As the power-law exponent µ approaches the limit of 2 for the power-law domain, the

Rent’s exponent converges to 1− 1
d
, which is the case of a finite length distribution. Indeed

it can be shown that for µ > 2 that the Rent’s exponent still converges to a limiting case

of 1 − 1
d
, which is an attribute actually observed in VLSI designs [109].

6.2.5 Uniqueness of exact solutions

The following theorem shows that for a particular (exact) terminal distribution function,

there is at most one exact distance distribution that generates it.

We have from eqn 6.1:

T (s) ≡ 2VZs
d

∞̂

0

h (L) θ

(

L

s

)

dL

Theorem 6.14. For any given T (s) there is at most one exact distance distribution solu-

tion h (L).

Proof. For a given T (s), let us suppose there exist two distance distribution solutions:

h1 (x) , h2 (x). where h1 6= h2. Then there exists a non-zero function:

g (x) = h1 (x) − h2 (x)

If g is not zero, then it must have a region where it is always positive or always negative.

Let the very first domain be (a, b) from the y-axis. If b is +∞ then we choose another

value for b where a < b <∞.

If g satisfies:

∀s > 0 :

∞̂

0

g (L) θ

(

L

s

)

dL = 0 (6.6)
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Then −g also satisfies this, so without loss of generality we can assume that g is positive

in the domain (a, b):

∀x ∈ (a, b) : g (x) ≥ 0

and
b
ˆ

a

g (x) dx > 0

This constraint allows us to also handle Dirac-deltas inside the region.

As it is the first domain we can extend that:

∀x ∈ (0, a) : g (x) = 0

Now θ (y) is a strictly monotonically increasing function for y ∈ (0, 1), and ∀y > 1 :

f (y) = 1

Let η (y) = θ (2y) − θ (y).

Then:

η (0) = 0

∀y ∈ (0, 1) : η (y) > 0

and

∀y ≥ 1 : η (y) = 0

This is because ∀y ∈ (0, 1) , δ > 0 : θ (y) < θ (y + δ)

If eqn 6.6 is true for all positive s, then it is true for s1 = 2
b

and s2 = 1
b
, and:

∞̂

0

g (L) θ

(

L

s1

)

dL−
∞̂

0

g (L) θ

(

L

s2

)

dL = 0 − 0 = 0

⇒
∞̂

0

g (L) η

(

L

b

)

dL = 0

⇒
b
ˆ

a

g (L) η

(

L

b

)

dL = 0

But we know η
(

L
b

)

is strictly positive in the region (a, b) and g (L) is also positive, which

results in a non-zero integral, thus is a contradiction.
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We must be careful about interpreting what this means, as this uniqueness-property is for

exact T (s). In general, for asymptotic Rentian behaviour of fixed Rentian parameters,

there are many possible specific T (s) and corresponding h (L) with specific head and tail

distributions. However, it is the tail of the length distribution that is most important

for determining Rentian behaviour, and it is also the tail of the length distribution that

dominates in cost (for a linearly or super-linearly growing cost function). This means

that the minimum power-law tail exponent is favoured as the size of the system grows,

dominating over any deviation due to the head distribution.

6.2.6 Internal Edge Length Distribution

Given a global edge distribution, for a given region size we can determine the expected

number and distribution of internal edge lengths. This is merely:

I (L) = VZs
dφ

(

L

s

)

h (L)

Thus there is a cut-off according to φ
(

L
s

)

of the power-law tail comprising h (L). For

simple shapes, such as boxes, this cut-off is polynomial. Regardless of the shape, it is also

strict at L = s as φ (1) = 0. In Network Science, exponential cut-offs in the power-law

distribution are commonly ‘reported’ [30], however this is certainly not the behaviour

here.

6.3 Fractal embeddings into arbitrary spaces

The problem with the classical Rent’s Rule is that it deals with a homogeneous distribu-

tion of resources and costs. We suggest that there is something more fundamental than

Rent’s Rule. That Rent’s rule is actually a homogeneous instance of a more general law

governing embeddings of fractal dimensional graphs. Our proof of the equivalence of

power-law tailed length distributions and Rent’s rule in a homogeneous system leads us

to consider that the particulars of the graph being embedded do not matter for Rentian

behaviour to emerge – instead any graphs stochastically chosen from the same power-law

tailed length distribution should exhibit similar Rentian behaviour.

6.3.1 Invariant property of embeddings

The following lemma shows that length distribution optimisation in a d-dimensional

space, is equivalent to optimisation in a configuration-space, subject to maintaining the

graph property constraints.

Lemma 6.15. Finding the optimal length distribution in a continuous d-dimensional

space is equivalent to finding an optimal configuration-space distribution with translated

cost-function cV (V ) = c
(

aV 1/d
)

for some constant a.
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Proof. The optimal length distribution f (l) is such that the total cost C is minimised,

under cost function c (l), subject to maintaining the graph properties:

C =

ˆ ∞

0

f (l) c (l) dl

Instead of expressing by length, we can simply express these in terms of the volume of

d-dimensional space reachable:

V = ald,

for some constant a. We identify this to also be the configuration volume of possible

links reachable within cost c (l) from each node.

By simple change of variable we have:

C =

ˆ ∞

0

f (l) c (l) dl

=

ˆ ∞

0

f (l (V )) c (l (V ))
∂l

∂V
.dV

=

ˆ ∞

0

f
(

aV 1/d
)

c
(

aV 1/d
) a

d
V 1/d−1dV

=

ˆ ∞

0

(a

d
V 1/d−1f

(

aV 1/d
)

)

c
(

aV 1/d
)

dV

If we define the translated cost function to be: cV (V ) ≡ c
(

aV 1/d
)

Then the equivalent minimisation problem is to find a distribution fV (V ) subject to

graph property constraints, that minimises:

C =

ˆ ∞

0

fV (V ) cV (V ) dV

Lemma 6.16. That an embedding in d-dimensional space with a power-law-tailed length

distribution of exponent µ = (1 − p) d + 1 occurs iff there is also a power-law tailed

distribution in the configuration-space for each node, with exponent µV = 2 − p, that is

independent of the dimensionality d.

Proof. For a d-dimensional space with optimal continuous distance distribution under

cost function c (l) of:

f (l) =







λl−µ , l ≥ ltail

γ (l) , l < ltail

From Lemma 6.15, the optimisation problem is equivalent to optimising in configuration-

space under translated cost function cV (V ) = c
(

aV 1/d
)

, with solution:
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fV (V ) =
a

d
V 1/d−1f

(

aV 1/d
)

then we have:

fV (V ) =







αV 1/d−1−µ/d , V ≥ aldtail
a
d
V 1/d−1γ

(

aV 1/d
)

, V < aldtail

for some constant α. Thus fV (V ) has a negative power-law tail exponent µV of:

µV = 1 +
µ− 1

d
= 2 − p

This is independent of the original embedding dimension d. We can similarly show for

the discrete power-law distribution.

Among other things, this also means we can take a power-law tailed embedding in a do

dimensional space and exponent µo, and we can translate the embedding into a de < do
dimensional space, with appropriate cost-function into another power-law tailed distri-

bution with exponent:

µe =
de
do

(µo − 1) + 1

What this means is that Rentian behaviour, more fundamentally, can be described as a

power-law tail in a configuration-space fV (V ), and optimal embeddings into a partic-

ular space are equivalent to translating the distribution according to the minimal-cost-

mapping of volume to lengths in the embedded space. This also implies that pe = po, that

is the Rent’s exponent under an optimal remapping from one embedding space to an-

other, is unchanged. If, as per prior work [99], we express p according to some intrinsic

dimensionality fD:

p = 1 − 1

fD

Then in the tail for some λV :

fV (V ) = λV V
p−2 (6.7)

= λV V
− 1

fD
−1

This distribution, with a cost function, is invariant under embedding. Indeed we can

generalise by assuming it is invariant under any embedding space (including ones with

heterogeneous costs and edge distributions). We also note that for the discrete power-law

distribution, we do not need a separate head-distribution – we can just use the power-

law distribution to describe a system uniformly at all scales with Rentian property, noting
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that the set of complete discrete power-law distributions is also ‘cost-universal’. There

are two slightly different generalisations – a local Rentian law, or a global Rentian law.

A local Rentian law has the power-law tail surrounding each node separately, acting on

the configuration space of connections to that node, so that each node has an equal dis-

tribution of connectivity. A global Rentian law operates globally, on all connections at

once. It acts on the configuration space of every node to every other node, and in inho-

mogeneous systems can result in remote nodes having fewer connections than average.

By acting on the N × Vlocal configuration spaces, the configuration space volume Vglobal
is expanded by the number of nodes in the system, and needs to be normalised back by

contracting by N – the number of nodes in the system. Thus the normalised configura-

tion volume Vnorm = Vglobal/N . The local Rentian law needs to be used carefully as it

can give globally contradictory results. This is because node A may assign a connection

probability to node B that is not the same as node B’s connection probability to node

A. If connections are directional, this doesn’t necessarily result in a contradiction, as one

direction may have a different probability to the other direction. However, it is hard to

see how real embeddings operate like this if direction is unimportant. The global Ren-

tian law, however, can lead to boundary or remote edges with fewer connections – which

intuitively one could see happening as nodes with lower average connectivity get pushed

out to make way for better locality for the rest of the nodes in the middle.

We can also extend the cost model to include the originating node, so that at cost zero,

the only node reachable is itself. This allows us to avoid the singularity at the head of

the distribution by always guaranteeing that the initial volume starts at one. A simple

continuous power-law distribution can be used thereafter at all scales.

6.4 Conclusion

This chapter has proven some new fundamental results concerning Rent’s rule. Pre-

viously the analytical tools for Rent’s rule had been restricted to the discrete 2-D (or

3-D) lattice of VLSI with rectangular bounding region. In this chapter, it has been

expanded to continuous d-dimensional vector spaces with arbitrary metric and arbi-

trary convex bounding shape and shown to be asymptotically equivalent to a power-law

tailed distance distribution (whether continuous or discrete). Furthermore, the problem

of optimally embedding a graph in a particular d-dimensional space, under a partic-

ular cost-function has been shown to be equivalent to embeddings in a dimensionless

configuration-space, with an equivalent cost-function. Due to cost-universality over

the family of power-law distributions, the asymptotic power-law tailed exponent in

configuration-space is preserved independent of the particulars of the embedding space.

By preserving this invariant, it allows one to generalise Rent’s rule to new embedding

spaces – including inhomogeneous ones and, importantly, the CMP domain where the

time dimension extends in only one direction and is infinite, whilst the spatial dimensions

are finite. Indeed, this is utilised in Chapter 7 for further analysis.
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6.4.1 An intuitive example: human-interaction networks

To illustrate just how general and how far from the VLSI domain we can now take the

Rentian model, let us look at an intuitive example – modelling the human interaction

network in physical space. In this case, the interaction cost might be the total time

spent (including the time spent earning the monetary cost) of going from one point to

another. These costs are inhomogeneous with distance as there is walking, car, rail, and

air transportation. We note that the distribution of people is inhomogeneous – there can

be large rural regions with low population density, as well as high density city centres.

Thus the volume of links between nodes (people) reachable within a given cost would

likely be very inhomogeneous. Like the CMP scenario, the Rentian embedding should

also be spatio-temporal, describing links both in space and in time. This would allow

the expected frequency of contact between people to also be captured. For an approx-

imately homogeneous population distribution we would then expect an approximately

power-law distance distribution and approximately power-law temporal distribution in

interaction times. Indeed, such spatial behaviour is observed by Brockmann et al. [17]

In their study, they examined data for US bank-notes that were voluntarily logged by

recipients and found power-law scaling of µ ≈ 1.6 spatially (in 2-D), and they suggest

power-law scaling in the underlying inter-wait times as well. The asymptotic equivalence

of Rent’s rule and power-law distance distributions in a homogeneous space, that has

been shown in this chapter, certainly suggests that human travel may at least spatially be

Rentian, however it would be even more interesting to see if it is actually Rentian in a

spatio-temporal sense.

Although Brockmann et al. produced a fitting Lévy-flight model (power-law distributed

random walk) that assumes homogeneity, the generalised Rentian model could then pro-

duce far more detailed predictions by adjusting for population inhomogeneities, as well

as by earning power – as that skews the cost calculation. The model may even be able

to predict the effect of lowering or raising, for example, air transportation costs on the

quantity of air travel, or of adding new routes. It would be very interesting to see if the

human interaction network is actually Rentian in nature, and whether such predictions

would be accurate.
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CHAPTER SEVEN

SPATIO-TEMPORAL

RENTIAN MODEL: CMP
SCALING IMPLICATIONS

7.1 The many-core memory bandwidth wall

Assuming software in a CMP follows a spatio-temporal Rent’s rule, this chapter exam-

ines the scaling implications and tradeoffs for future CMP in terms of their external I/O

bandwidth, on-chip memory, on-chip communication, coarseness of inter-tile communi-

cation, and sensitivity (or lack thereof) to NoC topology.

Chapter 2 examined some of the motivations for needing locality in a CMP setting,

including that parallel execution that exploits data independence, results in scaling prob-

lems for external I/O bandwidth. So if data independence is a problem, can data inter-

dependence and its locality save the day? In the following subsections, an ideal Rentian

many-core system that fully exploits the available locality is analytically examined. Per-

haps surprisingly, although the scaling is considerably better, the memory-wall is still a

crippling problem.

7.1.1 The spatio-temporal Rentian model

The Generalised Rentian results from Chapter 6 show that Rent’s rule is asymptotically

equivalent to a power-law tailed distribution in a cost-ordered configuration-space. We

can choose our configuration space, then, to see how Rent’s rule generally affects CMP

architectures. Computation on a CMP or superscalar processor consists of both spatial

as well as temporal communication costs. There is a cost for moving data in time.

Physically, this comprises moving the data into and out of local storage (such as a register

file) as well as the power consumption taken up by the added memory. The quantity

of memory needed also increases linearly with the length of the temporal interconnect.

Memory is also expensive in terms of basic manufacturing cost for the area it takes up on-

chip, thus the temporal interconnect necessarily incurs an area cost as well. Additionally,

133
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Figure 7.1: Simple Spatio-Temporal view of a 64-core tiled CMP. Information flows both spatially and

temporally. The cores for one moment in time are shown here. One of these cores (green) has a communi-

cation link to a future instruction on another core.

off-chip memory accounts for a significant proportion of embedded system power cost

[59] including for memory refresh.

For our purposes we will use the full power-law distribution starting at a volume of one

(to represent the configuration volume of the originating tile), as it is self-similar at each

scale of the hierarchy, making the analysis simpler. The asymptotic behaviour here is not

affected by having alternate head distributions, instead of the complete power-law.

In figure 7.1 is an illustration of the spatio-temporal model. Here, the 64-cores (8x8)

form a 3-D vertical column extending up in time, in which instructions are embedded.

However, unlike placement in 2-D VLSI, instructions can only communicate with fu-

ture instructions, and are constrained in how quickly they can communicate with their

neighbours. In this illustration, we see an instruction embedded in one core (green) com-

municating with an instruction on another core at a future time-point. In this model,

we are not concerned with whether this communication is explicit (e.g. message-passing

based) or implicit (e.g. shared memory based). At the time of the data being produced

(green core), it may not even know exactly when or where it will be consumed.

Let the cost of a unit of temporal communication be cT and for spatial communication
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be cS. Depending on the speed of spatial communication, it may take many temporal

time steps before an allowable spatial step. Assuming that the communication statistics

are stationary (independent of time), at least for the duration of the phase of execution

being considered, we can examine just a single temporal layer of communication (seen

as a 2D cross-section in figure 7.1). For this layer, there is a corresponding configuration

volume of allowed edges with associated costs. We need to normalise this configuration

volume to be per-node. For example, there are 64 possible links that extend exactly

one unit in the temporal dimension but no units in the spatial dimension. So this is a

configuration volume of 64 links with cost cT , and a normalised configuration volume

of one. Similarly there is a configuration volume of 64-links for communication exactly

T steps in time, and no steps in space, with cost TcT . For side-length S = 8, there are

also 4S (S − 1) = 224 links that extend exactly one spatial unit and, say, five temporal

units with cost 5cT + cS, and this has a normalised volume of 224/64 = 7/2. Note

that there may be many possible paths of equal cost for each of these spatio-temporal

links, but the actual paths are abstracted away for the Rentian analysis – what matters

here is whether or not a link is allowed, and how much it costs. In this fashion we can

construct volumes of allowable links, and order the configuration space according to

increasing cost. At smaller cost scales, the accessible normalised configuration volume

V (c), which is the total normalised volume with cost less than or equal to c, may grow

according to cost c, in a 3-D fashion i.e. V ∼ Θ (c3), because for increasing cost, there is

a reachable volume of links growing in both space and time. However at large costs, the

accessible normalised configuration volume is constrained to grow along one dimension

(time) alone, thus V = Θ (c).

While the Manhattan-metric is being used for a tile-based NoC topology, we also note

that this analysis can easily be adapted to arbitrary NoC topologies including binary-

trees, fat-trees, butterfly-networks, etc... However, if the spatial costs are largely due to

physical movement of data over links (with cost proportional to spatial distance), then

the accessible configuration volume is still constrained to grow at best in a 3-D manner at

small cost scales, instead of the exponential growth normally due to trees or butterflies.

This restriction is key – as it is not the NoC topology that matters so much as the actual

physical communication costs. The result of using a more complex topology may lead to

even higher embedding costs than the simple 2-D mesh.

7.1.2 Summary of Key Results

For the convenience of the reader, here is a summary of the main results from derivations

in this chapter (further, less important, results are embedded in the rest of the chapter):

1. The spatial Rent’s exponent p′ is related to the spatio-temporal Rent’s exponent

p > 1
2

of software by:

p′ = 2 − 1

p



136 7.1 The many-core memory bandwidth wall

2. For P cores in a 2D mesh, and sufficiently large Rentian memory of size M words

per core, total I/O bandwidth requirements Btot scale according to:

Btot ∝Mp′−1P p′

[

Btot ≈
(

p

1 − p

)(

η

p

) 1
p

Mp′−1P p′

]

3. The asymptotic result (2) is unaffected by the communication topology of the cores

(i.e. mesh, tree, etc..), provided there is sufficient on-chip memory

4. The asymptotic result (2) is unaffected by the fineness or coarseness of spatial com-

munication, provided there is sufficient on-chip memory

5. However, result (4) may eventually be impractical as a rapidly growing amount of

memory is needed per core to remain in this asymptotic region. The size of the

‘critical region’ of memory sizes M < Mcrit, where spatial locality is still being

exploited and asymptotic result (2) does not hold, grows for spatial communication

coarseness factor ψ, and the number of cores P according to:

Mcrit ≈ O

(

ψpP
3
2
p

pζ (2 − p)

)

Thus as the number of cores increases, spatial communication must become more

fine-grain, with ψ scaling with order:

O
(

M
1
pP− 3

2

)

So that to remain in the asymptotic region of (2) requires τ , the average interval of

a core communicating a word of data to another core, to scale by:

τ ∼ Ω
(

M
1−p

p P− 3
2
(1−p)

)

6. That for a real cache of size Mcache versus an ideal Rentian memory of size Mrentian,

the effective Rentian memory scales asymptotically independent of cache architec-

ture, according to:

Mrentian ∝Mp
cache

with the bandwidth scaling behaviour of:

Btot ∝Mp−1
cacheP

p′

(Note the replacement of the spatial Rentian exponent with the larger spatio-temporal

version instead)

7. With area a scaling, and with I/O bandwidth scaling by (Rentian) exponent β < p′,

in the external I/O-limited case, the optimal number of cores c scales according to

(for a system with Rentian memory):

c ∝∼ a1−p′+β
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and for a cache-based memory system by:

c ∝∼ a(1−p+β)/(1−p+p′)

Some of these derivations are quite surprising, particularly that on-chip topology and

coarse-grain communication don’t affect the asymptotic scaling of I/O bandwidth pro-

vided sufficient memory is on-chip. It is also interesting that even a full exploitation of

spatio-temporal locality with an idealised ‘perfect memory’ is still not sufficient to tackle

the I/O bandwidth scaling problem, although it certainly helps to constrain the on-chip

memory growth.

7.2 Rentian many-core architecture

If we treat software as exhibiting Rentian locality in space and time, then we can analyse

the effect of scaling the number of cores and memory on I/O bandwidth requirements.

The Tilera architecture, based on the RAW platform [111, 101, 102], is probably the

closest current architecture to supporting Rentian behaviour, as spatio-temporal inter-

connect can be explicitly allocated by the software, and instructions can be mapped/scheduled

in space-time so as to minimise this spatio-temporal communication. The following sec-

tion examines the spatio-temporal model in more detail for a 2-D mesh of processors.

This is the spatio-temporal Rentian model used in Chapter 5.

7.2.1 Configuration-space analysis for the 2-D mesh

Let us consider a model where moving data in time costs cT and moving data in space-

alone costs cS. Let us define a relative cost parameter θ = cS/cT . This means that a

movement of data in one unit of space and time (because spatial data movement is not

instantaneous) costs cS + cT is equivalent to (θ + 1) movements in time-alone. We would

expect that θ could be quite large in the case of CMP – so, for convenience, let us assume

that θ is approximated by the nearest integer value.

We are interested, then, in the volume V of configuration space that is reachable within a

cost c. Let s be the number of equivalent temporal-only steps, i.e. s = c/cT , which is an

integer value. So we can instead define V (s) as the volume of configuration space that is

reachable within s equivalent temporal-only steps. However, we also need to restrict the

speed of communication. Let us simply have each spatial-step require ρ temporal-steps

as well.

We wish to determine the number of valid spatio-temporal links of a given cost. Christie

and Stroobandt have previously derived a result for D (lS, L) – the number of spatial-

only links of length lS in a square mesh of side-length L [29] under a Manhattan-metric.

Their result assumed that two nodes A and B with link A ↔ B should only count the

link once. However, for our purposes because it involves communication in time, we
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have: A→ B′ and B → A′ where prime denotes a future version of the node. Thus in the

spatio-temporal domain, we need to double their result, and also account for temporal-

only communication where lS = 0. This is shown below:

D (lS, L) ≡



























L2 , lS = 0

2
3
lS (l2S − 1 + 6L (L− lS)) , 1 ≤ lS < L

2
3
(2L− lS + 1) (2L− lS) (2L− lS − 1) , L ≤ lS ≤ 2L

0 otherwise

We can now calculate the volume of reachable (re-normalised) configuration-space with

exactly cost scT as:

V∆ (s) ≡ 1

L2

⌊s/(θ+ρ)⌋
∑

k=0

D (k, L)

We notice that the relative cost of spatial communication θ and the slowness of spatial

communication ρ appear together as a sum. As θ is likely to be much larger then ρ, let

us merely define ψ = θ + ρ noting that ψ ∼ θ. Then:

V∆ (s) =
1

L2

⌊s/ψ⌋
∑

k=0

D (k, L)

Let us the define Q (r, L) to be the non-normalised volume reachable at distance r by:

Q (r, L) ≡
r
∑

k=0

D (k, L)

=







































1
6
(6L2 − 2r − 4Lr + 12L2r − r2 − 12Lr2

+12L2r2 + 2r3 − 8Lr3 + r4) , 0 ≤ r < L

1
6
(−4L+ 4L2 + 16L3 − 10L4 + 2r − 4Lr − 24L2r

+32L3r + r2 + 12Lr2 − 24L2r2 − 2r3 + 8Lr3 − r4) , L ≤ r < 2L

L4 , r ≥ 2L

Then the normalised volume reachable at distance r is:

V∆ (s) =
1

L2
Q

(⌊

s

ψ

⌋

, L

)

(7.1)

Let Vmax be the maximum configuration volume – essentially constrained by the problem-

size or phase of execution. The total volume of configuration-space within cost scT
(including cost 0 – just the original node itself) is then:
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V (s) = min

{

Vmax,

s
∑

r=0

V∆ (r)

}

= min

{

Vmax,
1

L2

s
∑

r=0

Q

(⌊

r

ψ

⌋

, L

)

}

= min







Vmax,
1

L2
(s mod ψ)Q

(⌊

s

ψ

⌋

, L

)

+
ψ

L2

⌊s/ψ⌋−1
∑

r=0

Q (r, L)







Let us define R (q, L) to be the non-normalised volume reachable within distance less

than or equal to q:

R (q, L) ≡
q
∑

r=0

Q (r, L)

=



















































1
30

(120L− 90L2 − 6q − 20Lq + 70L2q − 5q2 − 50Lq2

+60L2q2 + 5q3 − 40Lq3 + 20L2q3 + 5q4 − 10Lq4 + q5) , 0 ≤ q < L

1
30

(108L− 100L2 + 60L3 − 50L4 + 12L5 + 6q − 20Lq

−60L2q + 160L3q − 50L4q + 5q2 + 30Lq2 − 120L2q2

+80L3q2 − 5q3 + 40Lq3 − 40L2q3 − 5q4 + 10Lq4 − q5) , L ≤ q < 2L

1
3
(12L− 12L2 + 2L3 + 3L4 − 2L5 + 3L4q) , q ≥ 2L

Removing the floor-function, we have a reasonable continuous interpolation as:

V (s) ≈ min

{

ψ

L2
R

(

s

ψ
, L

)

, Vmax

}

Noting that this is exact for s a multiple of ψ.

We also note that for s ≥ 2ψL that V∆ (s) = 0, and so let Vcrit = V (2ψL).

Then for s ≥ 2ψL:

V (s) = min
{

Vcrit + (s− 2ψL)L2, Vmax
}

Where Vcrit = 1
3
(12L−1 − 12 + 2L+ 3L2 + 4L3)ψ

If we normalise the analysis to have one link per node, on average, to a future instruc-

tion, then for P = L2 cores, we have P links in total. We are going to use a complete

continuous power-law distribution, so let us first calculate the normalisation factor η (i.e.

λV in eqn 6.7):

η (1 − p)

ˆ Vmax

1

vp−2dv = 1
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Where p is the spatio-temporal Rent’s exponent. Thus η = 1

(1−V p−1
max)

. If Vmax = ∞, we

just have η = 1. We can then determine the total expected number of links with cost scT

as:

E (s) = L2η (1 − p)

V (s)
ˆ

V (s−1)

vp−2dv

= L2η
(

(V (s− 1))p−1 − (V (s))p−1)

7.2.2 Separating Spatial and Temporal components

Although interconnect is allocated in a spatio-temporal manner, we are interested in

the total number of expected links with particular temporal length or particular spatial

length.

To do this, we need to project out the spatial and temporal components from those

spatio-temporal links.

For spatio-temporal cost distance scT there is a volume V∆ (s) of which the proportion

of links that have spatial distance lS ≤ s
ψ

is:

fS (s, lS) =
D (lS, L)

Q
(⌊

s
ψ

⌋

, L
)

For spatio-temporal cost distance scT there is a volume V∆ (s) of which the proportion

of links that have temporal distance lT ≤ s is:

fT (s, lT ) =
D
(⌊

s−lT
ψ

⌋

, L
)

Q
(⌊

s
ψ

⌋

, L
)

Then the total expectation of links with spatial distance lS within Vmax is:

ES (lS) =

∞
∑

s=ψlS

fS (s, lS)E (s)

= L2η
∞
∑

s=ψlS

D (lS, L)

Q (s, L)

(

(V (s− 1))p−1 − (V (s))p−1)

= L2η
∞
∑

k=lS

D (lS, L)

Q (k, L)

(

(

ψR (k − 1, L)

L2

)p−1

−
(

ψR (k, L)

L2

)p−1
)

= ηψp−1L4−2p
∞
∑

k=lS

D (lS, L)

Q (k, L)

(

(R (k − 1, L))p−1 − (R (k, L))p−1)

Of this, we can separate out the component where k ≥ 2L, past the critical volume Vcrit
where each node can reach any other node:
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∞
∑

k=2L

D (lS, L)

Q (k, L)

(

(V (k − 1))p−1 − (V (k))p−1) =
D (lS, L)

L4

(

V p−1
crit − V p−1

max

)

yielding:

ES (lS) =
ηψp−1

L2p−4
D (lS, L)

(

(

V p−1
crit − V p−1

max

)

L4
+

2L−1
∑

k=lS

(

(R (k − 1, L))p−1 − (R (k, L))p−1)

Q (k, L)

)

We note that upon normalising the expected number of links into a distance-distribution,

that the constant terms at the front vanish. This means that the approximate distance

distribution is independent of ψ – the cost of spatial-communication. Instead, the distri-

bution is dependent on p and L alone. So the 2-D spatial Rentian distance distribution is

independent of the coarseness of communication, although the quantity of communica-

tion can certainly vary with ψ. We also should note that as p increases, the proportion of

links to other nodes, independent of spatial position, grows. This is because V p−1
crit starts

to dominate over the rest of the distance-dependent terms. Indeed, as p approaches unity,

the total distribution approaches D (lS, L), which is the uniform distribution.

Similarly, the total expectation of links with temporal distance lT is (if within Vmax):

ET (lT ) =
∞
∑

s=lT

fT (s, lT )E (s)

= L2η
∞
∑

s=lT

D
(⌊

s−lT
ψ

⌋

, L
)

Q
(⌊

s
ψ

⌋

, L
)

(

(V (s− 1))p−1 − (V (s))p−1)

≈ L2η

∞
∑

k=⌊lT /ψ⌋

D
(

k −
⌊

lT
ψ

⌋

, L
)

Q (k, L)

(

(V (kψ))p−1 − (V ((k + 1)ψ))p−1)

= ηL2

∞
∑

k=⌊lT /ψ⌋

D
(

k −
⌊

lT
ψ

⌋

, L
)

Q (k, L)

(

(

ψ

L2
R (kψ)

)p−1

−
(

ψ

L2
R ((k + 1)ψ)

)p−1
)

= η
ψp−1

L2p−4

∞
∑

k=⌊lT /ψ⌋

D
(

k −
⌊

lT
ψ

⌋

, L
)

Q (k, L)

(

(R (kψ))p−1 − (R ((k + 1)ψ))p−1)

= η
ψp−1

L2p−4

2L
∑

m=0

D (m, L)

Q
(

m+
⌊

lT
ψ

⌋

, L
)

(

(R (mψ + lT ))p−1 − (R (mψ + lT + ψ))p−1)

Beyond the critical volume Vcrit the behaviour is one-dimensional and we have for lT ≫
2ψL:
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ET (lT ) ≈ ηL2
∞
∑

k=⌊lT /ψ⌋

D
(

k −
⌊

lT
ψ

⌋

, L
)

L4
(
(

Vcrit + (k − 1 − 2L)ψL2
)p−1

−
(

Vcrit + (k − 2L)ψL2
)p−1

)

≈ ηL2L−4
2L
∑

m=0

D (m, L) ((Vcrit + (m− 1 − 2L+
lT
ψ

)ψL2)p−1

−(Vcrit + (m− 2L+
lT
ψ

)ψL2)p−1)

≈ ηL2L−4
(

L4
)

(

(

Vcrit + (lT − ψ)L2
)p−1 −

(

Vcrit + lTL
2
)p−1

)

≈ ηL2
(

(

(lT − ψ)L2
)p−1 −

(

lTL
2
)p−1

)

≈ ηψp−1L2p

(

(

lT
ψ

− 1

)p−1

−
(

lT
ψ

)p−1
)

≈ ηψp−1L2p (1 − p)

(

lT
ψ

)p−2

= ηψL2p (1 − p) (lT )p−2

So the temporal distance distribution varies asymptotically by O
(

(lT )p−2), which is ex-

actly what we’d expect for a simple one-dimensional embedding of a Rentian system.

This is an asymptotic form, and the temporal-distance distribution is more complicated

at smaller time-scales, due to the availability of spatial locality. Interestingly, for a given

temporal distance lT the total number of links varies by O (P p) for P = L2 cores, instead

of by O (P ), demonstrating the effect of Rentian sharing between cores – as there is more

spatial communication to reduce temporal communication.

Note that many of these derivations utilise sums up to configuration volume Vmax – a

finite number of embedded instructions with a particular Rentian exponent. We would

expect the configuration volume to be constrained by the number of instructions needed

to tackle a particular problem-size / data-set, in a single phase of program execution.

However, for large problem-size, the deviation in statistics from an ‘infinite’ volume are

small (of order V p−1
max for Vmax ≫ 1), thus we may as well use the limiting case Vmax → ∞

for asymptotic derivations.

7.3 Rentian memory and external I/O bandwidth

Here, we derive results that relate the amount of memory per core to the external I/O

bandwidth. We note that transportation of data in time necessarily takes up memory.

The amount of memory required is proportional to its temporal distance. For example,

if all N tiles produced an item of data that was merely consumed the next cycle, and this

behaviour occurred every cycle, then it would merely need memory N . If instead, it was
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Figure 7.2: Illustrating how long temporal-interconnects go off-chip, thereby inducing external I/O. Here

the nodes are instructions, and the arrows between them represent data-flow, with a large temporal gap

between nodes represented by ellipses. This example is with a single core, but there can be many cores

in parallel, with data flowing to other instructions in the same core, or to other cores, and via external

memory.

consumed every T cycles, then it would need memory NT . Figure 7.2 helps illustrate the

general strategy of subsequent derivations. If we exclude the initial fetching of data from

external memory, then we can think of external I/O events as occurring when a temporal

interconnect crosses into external memory. Each temporal interconnect that goes off-

chip takes up a single word of output I/O going off-chip to external memory and a single

word of input I/O coming back, however we will just count them as one I/O word.

There is limited capacity for on-chip temporal interconnect (on-chip memory), and the

surplus is effectively offloaded to external working memory. So, unless the working-set

is small enough to fit in on-chip memory, there is necessarily a partition by external I/O

into temporal interconnect that resides entirely on-chip, and that which goes off-chip.

However, some partitionings can be better that others. A good partitioning, for a given

total on-chip memory, should best allocate the temporal interconnect on-chip so as to

minimise the number of crossings into external memory.

Let us call this idealised perfect on-chip memory a Rentian Memory. The name, as we

shall see later, is because such a memory follows Rentian scaling, much like VLSI wires

do. Such a memory is certainly not representative of caches, which will be handled

later on, but it may be possible for a well-managed scratchpad memory to be close in

performance to a Rentian Memory.

When considering this memory, we must narrow our focus to the temporal component

of the spatio-temporal interconnect. Let λk be the expected number of links that are of

exactly temporal length k (irrespective of the spatial-length component), and let lk be the

proportion of links of temporal length k that stay on-chip. i.e.

∀k, 0 ≤ lk ≤ 1

For convenience let us define: uk = lkλk
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We can characterise the amount of per-core external I/O bandwidth B as being the sum

of the number of wires that don’t fit in memory, that is:

B =
∑

k

(1 − lk)λk = 1 −
∑

k

lkλk = 1 −
∑

k

uk

Note that this is bandwidth in one direction, we should multiply by two to account

for both outgoing and incoming communication. The amount of memory M needed to

accommodate the on-chip temporal interconnects depends on their lengths:

M =
∑

k

ukk

For a given value of M > 0, to minimise B one needs to maximise
∑

uk under the

constraint: 0 ≤ uk ≤ λk and of M above.

Lemma 7.1. The solution that minimises external I/O bandwidth B for on-chip memory

M =
∑

k ukk occurs when {uk} = {λ1, ..., λs−1, β, 0, ..., 0} where us = β for some s,

0 < β ≤ λs. Thus a greedy allocation from shortest temporal interconnect to longest is

optimal.

Proof. Assume the solution is not so, then without loss of generality, we can choose the

last non-zero entry to be s with value ls > 0. There must exist an entry 0 ≤ ur < λr,

s.t. r < s. Let δr = λr − ur, then we can increase ur by δ = max
{

δr,
r
s
ls
}

and decrease

us by s
r
δ. But this decreases B by s−r

r
δ > 0, which implies the original solution was not

minimal, and is thus a contradiction

All this means is that with limited memory storage on chip, to minimise overflow to

external memory I/O, only the shortest temporal interconnects should be stored on chip

(i.e. the ones with the greatest temporal locality).

7.3.1 Many-core scaling

Lemma 7.2. A spatio-temporal embedding with Rent’s exponent p leads to a spatial

Rent’s exponent of p′ = max
{

2 − 1
p
, 1 − 1

d

}

for spatial embedding dimension d.

Proof. For a fractal-dimensional computation graph of dimension fD embedded in some

space we expect:

p = 1 − 1

fD

However, when viewing just the spatial-embedding, we are contracting along the tempo-

ral dimension. Thus we are reducing fD > 2 by one, yielding:
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p′ = 1 − 1

fD − 1

=
fD − 2

fD − 1

= 2 − fD
fD − 1

= 2 − 1

p

However, we know that p′ is constrained to be at a minimum equal to 1 − 1
d

for spatial

embedding dimension d [109]. Thus yielding p′ = max
{

2 − 1
p
, 1 − 1

d

}

.

Now we can properly tackle the problem of how external I/O bandwidth scales given

memory size, number of cores, and the Rent’s exponent of the algorithm.

Theorem 7.3. Let P be the number of cores, and M the memory per core. Then, at large

problem-sizes, a Rentian many-core processor exhibits the following scaling for total

external I/O bandwidth:

Btot ∝Mp′−1P p′ (7.2)

for Rentian spatial exponent p′ as per Lemma 7.2.

Proof. We will first start with any topology of cores such that each core can reach any

other core within S spatio-temporal steps, and has longest spatial length L. To minimise

cost, a generalised Rentian embedding is given by the configuration-space with:

λk = η

Vk
ˆ

Vk−1

vp−2dv

where λk is the proportion of wires with spatio-temporal cost distance k, p is the Rent’s

exponent, Vk is the number of nodes within cost distance ck, where ck is the mono-

tonically increasing set of unique cost distances in the topology, and η is a constant

normalisation factor for the distribution.

Regardless of topology (that is at least 2D), we can assume that after some small multiple

of L spatio-temporal steps, each spatial node reaches every other spatial node, and so

the volume V increases by P per step thereafter. We want to examine behaviour for

V ≫ Vcrit, so let us choose S ≫ L spatio-temporal steps as an appropriate distance with

respective configuration volume VS ≫ Vcrit and memory MS.

Let us define k (V ) as the spatio-temporal cost distance for volume V ≥ VS:
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k (V ) =

⌊

V − VS
P

⌋

+ S

Then the temporal distances for a spatio-temporal cost distance k has a range [k − ψL, k]

which can be simply approximated by k as ψL≪ S ≤ k.

We are interested in the behaviour of M for large Vcutoff, which we set as the configuration

volume cut-off for the partition between on-chip temporal interconnect and off-chip tem-

poral interconnect. We employ a greedy-strategy of on-chip memory allocation, which is

I/O bandwidth optimal as per Lemma 7.1. Let lk be the proportion of links of temporal

length k that stay on-chip, and let us define: uk = lkλk. Then:

M =
∑

k

ukk = MS +

∞
∑

k=S

ukk

≈ MS + η

ˆ Vcutoff

VS

vp−2k (v) dv

≈ MS + η

ˆ Vcutoff

VS

vp−2

(

v − VS
P

+ S

)

dv

= MS + η
V p

cutoff − V p
S

pP
+ η (SP − VS)

V p−1
cutoff − V p−1

S

(p− 1)P

For V p ≫ V p
S :

M ≈MS +
η

pP
V p

cutoff

With asymptotic behaviour:

logM ≈ p log Vcutoff + log
η

pP

Let us then characterise the external I/O bandwidth B per core at large Vcutoff:

B = 1 −
∑

k

uk

≈ η

ˆ ∞

Vcutoff

vp−2.dv

= η
V p−1

cutoff

1 − p

Then for large Vcutoff:

logB ≈ (p− 1) log Vcutoff + log
η

(1 − p)
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We then have:

logB ≈
(

1 − 1

p

)(

logM − log
η

pP

)

+ log
η

(1 − p)

=

(

1 − 1

p

)(

logM + logP + log
p

η

)

+ log
η

(1 − p)
(7.3)

Then at large M we necessarily have large V and hence:

∂ logB

∂ logM
= 1 − 1

p

And we also have at large M :

∂ logB

∂ logP
= 1 − 1

p

As B is the I/O bandwidth per core, to arrive at the total bandwidth Btot = C.B then:

∂ logBtot

∂ logP
= 2 − 1

p

This means that the total I/O bandwidth scales according to:

Btot ∝ P 2− 1
p

At first appearances this might seem to be different from an expected Rentian behaviour

of Btot ∝ P p. However, we need to remember that this is the purely spatial, rather than

spatio-temporal scaling behaviour. From Lemma 7.2 we can then write:

B ∝ (MC)p
′−1 (7.4)

with constant of proportionality from eqn 7.3 of order ~
(

p
1−p

)(

η
p

)
1
p

, i.e.

Btot ≈
(

p

1 − p

)(

η

p

)
1
p

Mp′−1P p′

Or more directly, from eqn (7.4):

Btot ∝Mp′−1P p′
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Figure 7.3: Numerical evaluation of model illustrating how external I/O bandwidth scales with the number

of cores and the memory per core for a 2-D mesh CMP. Note that this is asymptotic behaviour with an

unbounded ‘working-set’ size, and excluding ‘compulsory misses’ where new data is fetched into on-chip

memory for the very first time. An I/O bandwidth of one, here, equates to one read/write access per

instruction.

This characterises the scaling of external I/O bandwidth with respect to on-chip mem-

ory per core, and the number of cores. The spatio-temporal Rentian model can be di-

rectly numerically evaluated from the configuration-space description, and source code

is shown in Appendix F for this. An example from a numerical evaluation of the gener-

alised Rentian model and 2-D mesh topology is given in figure 7.3 with p = 0.8 and thus

p′ = 0.75. The slopes in the tail region when fit with a least squares linear regression yield

−0.25 ± 0.02% as expected. The slopes across cores is 0.75 ± 0.03%, also as expected.

One can see how in the head region, the availability of other cores allows fine-grain spa-

tial locality to be exploited, which once used up, leads to the limiting-case behaviour of

temporal-only locality. Note that this derivation didn’t make any assumptions about the

spatial topology of the CMP. Depending on the spatial topology, the head-region may be

extended outwards, and thus transition to asymptotic tail behaviour at larger memory

sizes. Note that figure 7.3 assumes that ψ = 1, that is very fine-grain communication

between cores. We will cover the dependence on the cost of communication in the next

section.

7.3.2 Accounting for costly spatial communication

The previous derivations assumed extremely fine-grain spatial communication, implicitly

assuming that it is as cheap as on-chip temporal communication. This is a rather unre-

alistic assumption to make given how very little energy it takes to move data in time (by
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merely storing it) versus in space. We define a cost ratio ψ ∈ N
∗ to be the equivalent

temporal cost it takes to move data one unit in space plus the minimum number of units

in time (to an adjacent core). So one way to think of parameter ψ is that it describes

how coarse grain the spatial communication is. To minimise cost, a generalised Rentian

embedding is given by:

λ̃k = α

Vk
∑

V=Vk−1+1

V p−2

and

λk =

2N
∑

s=0

κk,sλ̃k+θs

where λ̃k is the proportion of wires with spatio-temporal cost distance k, λk is the pro-

portion of wires with temporal distance k, and κk,s is the proportion of spatio-temporal

cost distance (k + ψs) that has temporal distance k.

In a 2-D mesh, for the first ψ−1 steps, there are only temporal steps which do not spread

spatially to other cores, but after the ψth step there are nodes that are one spatial step

away. To calculate λk we must sum up all the bits with just temporal distance k from λ̃.

For the special case of ψ = 1 we have λk = λ̃k as earlier. At 2ψN spatio-temporal steps,

each spatial node reaches every other spatial node, and so the volume V increases by P

per step thereafter. This also means that κk,s is in a region where there is no more spatial

growth and thus the proportions affecting λk do not change with k. We denote this with

κk,s = κs, ∀k ≥ 2ψN . Let us characterise this ‘tail’ region of the distribution.

Our derivation follows similarly to section 7.3.1, with:

B = 1 −
∑

k

uk

= −us +
∞
∑

k=s+1

λk

≈ α

ˆ ∞

V

2N
∑

s=0

κk,s (v + ψs)p−2 .dv

= α
2N
∑

s=0

κs

ˆ ∞

V

(v + ψs)p−2 .dv

= α

2N
∑

s=0

κs
(V + ψs)p−1

1 − p

For V ≫ 2ψN we have:
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B ≈ α

2N
∑

s=0

κs
V p−1

1 − p

= α
V p−1

1 − p

2N
∑

s=0

κs

= α
V p−1

1 − p
(7.5)

So that the behaviour for large V is unaffected as:

logB = (p− 1) log V + log
α

(1 − p)

For M there is a larger Mcrit, but as we are only interested in the asymptotic behaviour

at large M , we can again approximate by:

logM ≈ p log V + log
α

pP

Leading us to the same solution as in section 7.3.1 with:

Btot ∝Mp′−1P p′

Given the solution at P = 1 is independent of ψ, the same constant of proportionality

applies, and is unaffected by ψ.

We are also interested in the behaviour of Mcrit, the point where the system transitions

as it runs out of spatial locality to exploit. We know that both Bcrit and Mcrit are related

by Vcrit. Let us label Mcrit0, Bcrit0 and Vcrit0 as the base case of ψ = 1. We then have, as a

result of the ψ expansion:

Vcrit = ψVcrit0

Thus substituting into eqn 7.5:

Bcrit = ψp−1Bcrit0

and as from eqn (7.4):

Bcrit

Bcrit0
≈
(

Mcrit

Mcrit0

)p′−1

this yields:
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Mcrit ≈ ψ
p−1

p′−1Mcrit0

= ψpMcrit0

The analytic expression for Mcrit0 as a function of p and P is rather lengthy but it is of

order O

(

ηP
3
2

p

p

)

. We leave it as an exercise to work out by calculating Vcrit0, then Bcrit0

and then approximating Mcrit0.

Although we have introduced the relative-cost parameter ψ, this does not imply that the

rate of spatial communication is inversely proportional to ψ. A value of ψ = 100 does

not mean there is a hundred times less spatial communication than at ψ = 1. Indeed, we

can show that the quantity of spatial communication approximately scales by ψ1−p.

We can think about the Rentian summation in section 7.3.1 as like an inverted square

pyramid that grows from its tip and then extends to a maximum area. We can relate the

area of the cross section to the volume according to a function A (V ). The proportion

of external communication for a given volume is then f (V ) = A(V )−1
A(V )

. The cost factor ψ

effectively stretches the pyramidal shape by that factor, so that we instead use: f
(

V
ψ

)

Then the bandwidth emanating from the core (excluding memory-effects) is given by:

B = η

∞
∑

V=1

f

(

V

ψ

)

V p−2

≈ η

ˆ ∞

1

f

(

V

ψ

)

V p−2dV

= η

ˆ ∞

1/ψ

f (W ) (Wψ)p−2 ψdW

= ηψp−1

ˆ ∞

1/ψ

f (W )W p−2dW

But we know that f (V ) = 0 for V ≤ 1 as A (V ) = 1, so:

B ≈ ψp−1

ˆ ∞

1

αf (W )W p−2dW

= ψp−1κ

The constant κ is necessarily less than 1, since f (W ) < 1, but as the number of cores

becomes large, κ ∼ 1, so that B ∼ ψp−1. If on average a core communicates one word

with its neighbours every τ cycles then ψ ∼ τ
1

1−p . Thus the maximum τ that can be

supported whilst still in the asymptotic region scales approximately as:

τmax ∼
(

M

Mcrit0

)
1−p

p
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Figure 7.4: Numerical evaluation of impact of coarser-grain spatial-communication parameter ψ. An I/O

bandwidth per-core of one, here, equates to one read/write access per instruction.

So for 106 words of Rentian storage per core (say 4MB), and Mcrit0 ∼ 10 (reasonable for

a 256-core system as seen in figures 7.3 and 7.4 with ψ = 1), and p = 0.8, then ψ ∼ 2×106

and τmax ∼ 20, i.e. one would want each core to communicate a word with another core

at least every ~20 cycles, otherwise the I/O bandwidth would grow dramatically as seen

in figure 7.4 with the higher ψ values. In this figure we can see how the parameter ψ

affects the ability to exploit spatial locality at low memory sizes – with a rapid drop in

I/O bandwidth seen as locality finally gets exploited at that scale. This reduction in I/O

bandwidth from the head of a distribution compared to the extrapolated asymptotic tail

is due to spatial locality and becomes considerably larger with the number of cores as

seen in figure 7.3 for 1024 and 4096 cores. We also note that in figure 7.4, while the

asymptotic result is independent of ψ (the effective cost of spatial communication), the

width of the head region is affected by it. A larger ψ effectively pushes out the region

where spatial locality can be exploited, and hence where the asymptotic tail behaviour

is valid. For larger numbers of cores, this means that an efficient spatial communication

topology, with fine-grain communication is desired to maintain this asymptotic scaling

with memory.

In figure 7.5 we see how the cost parameter ψ of one million, and a corresponding τ ∼ 20,

pushes out the region where spatial-locality is exploited, compared to figure 7.3 with a

ψ of one. Here, the asymptotic tail doesn’t start until the order of 105 − 106 words,

depending on the number of cores.

An important observation to make is that although by having sufficient memory one can

hide the performance effect of coarse-grain spatial communication, this strategy runs

out of steam as the number of cores increases, thus also requiring finer grain commu-
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Figure 7.5: Numerical evaluation of model illustrating how external I/O bandwidth scales with the number

of cores and the memory per core for a 2-D mesh CMP. Note that this is asymptotic behaviour with an

unbounded ‘working-set’ size, and excluding ‘compulsory misses’ where new data is fetched into on-chip

memory for the very first time. An I/O bandwidth of one, here, equates to one read/write access per

instruction.

nication in order to place performance back into the asymptotic tail region. This is

a surprising result. The ψ scaling required to stay in the asymptotic region approxi-

mately follows Ω
(

M
1
pP− 3

2

)

. As one moves to very large numbers of cores, software

must become increasingly fine grained in exploiting inter-core dependencies, as τ scales

by Ω
(

M
1−p

p P− 3
2
(1−p)

)

. For p = 0.8 this is Ω (M0.25P−0.3), so increasing by 16x cores

without increasing the amount of memory per core requires ~0.43x finer-grain τ (aver-

age cycles per word of spatial communication). One can imagine that ultimately this

could keep happening until τ ∼ 1 with very large penalties for moving out of the asymp-

totic tail. At this point, the only way to constrain I/O bandwidth would be to increase

memory.

7.3.3 Alternate Topologies

Interestingly, in the derivation in section 7.3.1, in the asymptotic region there is no de-

pendence on the topology of the many-core system. The internal details of the topology

are effectively hidden from external I/O bandwidth provided the memory exceeds the

critical threshold. However, this critical threshold depends on the topology, and is re-

lated to the temporal length required for each node to be reachable from every other node

(2ψN in the case of the 2D mesh). Whilst, as discussed earlier in section 7.1.1, a more

highly connected topology is unlikely to reduce this critical threshold if communication

is dominated by 2-D distance traversal costs, a more loosely connected topology can cer-
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tainly result in an increase of the critical threshold (such as having a 1-D communication

topology). Also, a stacked-die solution which is governed by 3-D distance traversal costs

would result in a lower critical threshold, and better spatial distance distributions than

the 2-D physical case.

7.3.4 Real caches versus Rentian memory

The memory model we used was very ideal in that it optimally minimises the external

I/O bandwidth by knowing precisely which items to store on-chip and which to offload

for long-term storage. Although scratch pad memories may be able to function close

to an ideal Rentian memory, most current architectures use caches which operate on

a statistical basis. Hartstein et al. [49] observed that the time distribution between

cache-line access for large complex workloads behaved as a power-law, and Hartstein

et al. derived analytical expressions for the performance of caches [49]. They showed

that this explains the well known ‘
√

2 law’ [28] whereby every doubling of cache size

reduces the miss-rate only by about
√

2. They derived models for direct, set-associative

and fully associative cache models, and validated them on a number of benchmarks with

very large datasets to show that it accurately modeled cache scaling behaviour. Among

other things, they showed that the asymptotic exponent was largely independent of cache

architecture, meaning that the benefits of a direct-mapped versus fully-associative version

were a one-off constant in terms of its asymptotic scaling (much like a well implemented

algorithm may have a smaller constant factor for its asymptotic scaling than a poorer

implementation).

There is an important difference to note between Hartstein’s power-law distribution and

the Rentian one – while theirs governs cache-lines, the Rentian one governs individual

words. Going from one to the other requires an understanding of Address-Space lo-

cality. However, we can take two extremes of Address-Space locality, and show that

they produce the same asymptotic tail exponent. For one extreme, we can assume no

address-locality, so that each word that is used effectively resides on its own cache line.

This means that the inter-access distribution of cache-lines would be identical to the

inter-access distribution of words. At the other extreme, we can assume that there is

full-locality, so that accesses are done as a bundle – where each access of any word

in the cache-line, is immediately followed by accesses to the rest of the words in that

cache-line. Recall that each word must still be accessed with the Rentian power-law dis-

tribution, but what is happening is that the accesses for multiple words are all bundled

together in a correlated fashion. This results in a higher frequency of accesses to the

same cache-line at small temporal distances, but still results in exactly the same asymp-

totic power-law exponent for the larger temporal distances. Given both of these extremes

have the same power-law exponent for cache-line temporal distances as the Rentian one

does, it strongly suggests that this holds in general (although it is not a formal proof).

Another way of understanding Address-Space locality is to pose it as another embedding
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problem, much in the same way as instructions are embedded, so is data. The ordinary

address-space model allows the entire address-space to be accessed randomly with no dif-

ference in penalty. That is, there is nothing special about the particular address-location

– any other location could serve just as well for storing the data, etc... This makes

the address-space effectively indistinguishable (here, fully-connected at equal cost) from

an access-locality standpoint (even if for convenience we use a linear address space).

The cache-line however changes this by effectively adding a fully-connected cluster –

the length of the cache-line, where accesses are cheaper. Multiple levels of caching with

growing cache-line sizes creates a hierarchy of cost scales. However, because the length

of the cache-lines are still finite, the configuration volume available for cheaper-accesses

is likewise small, and the asymptotic behaviour remains the same. This is similar to how

in the Rentian CMP model above, spatial locality is at first exploited leading to a steeper

head distribution, but quickly runs out and leads to exactly the same asymptotic tail

exponent.

This leads one to conclude that we would expect the exponent for the cache-line inter-

access time distribution to be the same as the word inter-access time distribution, namely

µ = 2−p. Using Hartstein’s results we would then expect cache-misses to scale according

to Mp−1 which is slightly different from the perfect Rentian model of Mp′−1 for memory

size M . In general, the performance gap of a cache compared to a perfect memory is

expected to scale as being Θ
(

Mp−p′) times less efficient. Alternatively, the equivalent

Rentian memory for a cache memory scales according to Θ
(

M
p−1

p′−1

)

= Θ (Mp). Another

way of stating this is that the efficiency of a cache in minimising cache-misses, compared

to an ideal scratchpad memory, scales according to Θ (Mp), that is a Rentian Memory of

only size ∼ Mp would do just as well. The analysis here helps give an upper-bound to

the performance gap with a scratchpad memory, since no memory can do as well as the

ideal Rentian one.

In figure 7.6 and figure 7.7 we can see the effect of both exploiting spatial locality and

of Rentian memories versus caches. The top two curves show the effect of not exploit-

ing spatial-locality between cores for both a Rentian memory and cache-based memory,

whilst the bottom two curves show how exploiting spatial locality amongst the 1024

cores leads to a significant benefit, but with asymptotically the same slopes as the top two

curves. We can see here that for Rentian exponent of p = 0.8, leveraging the available

spatial-locality is equivalent in benefit to over a thousand-fold increase in on-chip cache

memory, in terms of external I/O bandwidth reduction. The cache behaviour shown here

is a best-case model (for external I/O bandwidth) of cache-line size equal to one word, so

that each word is its own cache-line and is fully-associative. This means that it doesn’t

fetch any words it doesn’t use, and matches the Rentian model at M = 1. Depending

on address-locality, for larger cache-line sizes of S words, the bandwidth may be offset

by a constant multiplicative factor increase of up to S, making it worse still. However,

from a cache-line miss perspective rather than a raw word-based I/O bandwidth mea-

sure, the address-locality reduces the number of cache-line misses of both the cache and
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Figure 7.6: Numerical evaluation of model at ψ = 1, demonstrating the effect of using Rentian Memory

vs. Cache model, and of interdependent vs. independent cores. An I/O bandwidth per-core of one, here,

equates to one read/write access per instruction.

the equivalent Rentian model by the same multiplicative factor. Here, the equivalent

Rentian model would optimally embed entire cache-lines of data instead of words of

data. What this means is that regardless of cache-line size, the cache model has abso-

lutely poorer performance and asymptotically poorer scaling than the Rentian model in

both external I/O bandwidth and in cache-line misses. We also note in figure 7.7 how in

the head region (at lower memory sizes), the I/O bandwidth for Rentian interdependent

cores matches that of independent cores. This is because they are not exploiting spatial

locality in this region, as it is too infrequent/costly, and hence behave like independent

cores effectively communicating via off-chip memory. Here, caches are modelled as being

equivalent in performance to correspondingly smaller Rentian memories of size Mp. So,

in the asymptotic tail region, we see that the transition region for caches, where spatial

locality is exploited, occurs later than for the ideal Rentian memories due to this relative

inefficiency of the caches.

7.3.5 Area & bandwidth constrained many-core scaling

Supposing CMPs are in the external I/O bandwidth-limited domain, one can ask how

best to utilise the doubling of transistors every process generation for performance. For

a fixed Btot, one would need to trade off according to:

M ∝ P
p′

1−p′ ,

for an idealised Rentian memory of M per core.
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Figure 7.7: Numerical evaluation of model at ψ = 106, demonstrating the effect of using Rentian Memory

vs. Cache model, and of interdependent vs. independent cores. An I/O bandwidth per-core of one, here,

equates to one read/write access per instruction.

This means for an example of p′ = 0.75, upon doubling the number of cores, the memory

per core would need to increase eight-fold in order to maintain the same total external

I/O bandwidth, resulting in a sixteen-fold total increase in on-chip memory. Thankfully,

with technology scaling, the bandwidth available is also growing (see Chapter 2), albeit

more slowly. Nonetheless, the power consumption to support this growth in bandwidth

could be crippling. Here we explore the cores/memory tradeoff for a limited-growth in

bandwidth with scaling.

Let ρ be the amortised area for each memory word, and let σ be the logic area for each

core (including amortised routing networks). Let M be the memory-per-core, P the

number of cores, and A the total area. Then we model total area A as:

A = ρMP + σP

Let us start with values A0, M0 and P0 where this is a base case that is known to hold.

Let us then define multipliers:

a ≡ A/A0

m ≡ M/M0

c ≡ P/P0

This gives us:
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aA0 = mcρM0P0 + cσP0

aρM0P0 + aσP0 = mcρM0P0 + cσP0

(a−mc) ρM0 = σ (c− a)

c− a

a−mc
=

ρM0

σ

Let 0 < γ < 1 be the current proportion of area that is core logic, then:

γ =
σ

ρM0 + σ

and

c− a

a−mc
=

1

γ
− 1

c− a+ a−mc

a−mc
=

1

γ
a−mc

c−mc
= γ

Suppose the total I/O bandwidth scales by aβ , then we have:

aβ = mp′−1cp
′

Given a and γ we can then numerically solve for m and c. For the asymptotic behaviour

we have:

β log a = (p′ − 1) logm+ p′ log c

and:

a = c ((1 − γ)m+ γ)

thus, assuming m grows with a, for large a we have:

log a ≈ log c+ logm+ log (1 − γ) (7.6)

Substituting for m yields:

log c ≈ (1 − p′ + β) log a− (1 − p′) log (1 − γ)

i.e.
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c ∝∼ a1−p′+β

and

m ∝∼ ap
′−β

To satisfy the assumption that m is growing with a we require that β < p′. This then

relates the growth in the number of cores to the area given the spatial Rentian scaling

and external I/O bandwidth scaling factors. We notice that when bandwidth growth

can keep up with the spatial Rent’s exponent, then the number of cores scales linearly

with area, as expected. A numerical evaluation shows reasonably close agreement - for

example with p′ = 0.75 and β = 0.6, the scaling exponent over a range of 106 cores is

0.861 versus an expected 0.85.

Using the high-end ITRS bandwidth growth1, we have β = 0.67 and choosing p′ =

0.75 means that for every doubling of transistors, we expect cores to grow by 1.9x and

memory to grow by 1.06x, indicating that locality allows good scaling. For higher values

of p′, where it approaches unity (little to no locality), the number of cores grows by 1.6x

and Rentian memory by 1.26x. This is more in line with the ITRS predicted doubling of

cores every two processor generations.

If we replace the ideal Rentian memory with caches instead we substitute the memory

scaling exponent from p′ to p:

β log a = (p− 1) logm+ p′ log c

Substituting for m into eqn 7.6 yields:

log c ≈ (1 − p+ β)

p′ − p+ 1
log a− (1 − p′)

p′ − p + 1
log (1 − γ)

c ∝∼ a(1−p+β)/(1−p+p′)

and:

m ∝ a(p′−β)/(1−p+p′)

For p′ = 0.75, then p = 0.8 yielding cores growing by 1.8x (instead of 1.9x) and cache

per core (amortised) grows by approximately the same 1.06x. As p′ approaches unity,

1See Chapter 2, figure (2.2)
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so does p, therefore the scaling for poor-locality algorithms is the same for caches as it is

for Rentian memory, namely:

c ∝ aβ

and:

m ∝ a1−β

In this case, the number of cores can only grow if there is an increase in external I/O

bandwidth. This means that applications that have large working sets, but are written

to exploit parallelism through data independence rather than data interdependence can,

ironically enough, only run on fewer cores as they are constrained by I/O bandwidth.

Algorithms that employ large data interdependence amongst cores, on the other hand,

may be more complicated but allow for better scaling of the number of cores, for the

given I/O bandwidth constraints.

GPUs have small working sets and high data parallelism, but at the same time, the I/O

bandwidth grows approximately linearly with raw computational power. High-end desk-

top single-GPU cards already consume almost 400W at peak, it is not clear how much

further they can keep pushing the thermal envelope. Given the growing disparity be-

tween communication energy and computational energy, if computational performance

requires an almost linear increase in communication, it implies that future GPUs will

proportionally spend growing amounts of their energy budget on communication, with

computational performance scaling poorly to maintain their thermal profile.

7.3.6 Shortcomings of the model

An important shortcoming of the spatio-temporal Rentian model is that it only covers

data locality, and does not model instruction locality and the bandwidth needed to feed

it instructions. Indeed to maximally exploit data locality, there is an implicit assump-

tion that instructions can be embedded anywhere. One can then ask – if instructions

can be embedded anywhere, does that mean the movement of instructions themselves

is uniform or non-local? Thankfully, this is not necessarily the case. A way to tackle

this question, however, is to consider coarse-grain multi-scale embedding, whereby the

embedding problem is hierarchical – occurring at multiple scales, as it does in VLSI. This

means that the instruction information would only need to move at the level of its hier-

archy, which can preserve asymptotic Rentian scaling of I/O bandwidth for instructions

as well. Indeed, this type of embedding approach is discussed next, in Chapter 8.
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7.4 Conclusion

This chapter looked at the implications of Rentian software as applied to a CMP model.

It uses a spatio-temporal Rentian model for the analysis, that allows an examination

of how external I/O bandwidth is affected by the number of cores, their exploitation

of spatial locality, the temporal coarseness of inter-core communication, the quantity

of on-chip idealised-memory per core as well as expected behaviour for caches. For

a doubling of transistor area as per Moore’s law, it also explored how to balance the

tradeoff between on-chip memory and cores in an I/O-limited scaling model. An idealised

on-chip memory was introduced, called Rentian Memory, that is ‘perfect’ in the sense

that it minimises the external I/O bandwidth of misses, was still shown to exhibit the

power-law scaling ‘miss’ behaviour of caches, albeit with a better scaling exponent.

Based on this spatio-temporal Rentian model, it is possible to project the scalability

requirements for future CMP applications. They should:

• exploit parallelism through data interdependence rather than data independence

• accomplish their goal with algorithms that have lower complexity of communica-

tion – i.e. lower Rent’s exponents (e.g. using wavelets if possible, instead of large

FFTs)

• ultimately, need to become fine-grained in their communication between cores

From a hardware standpoint, this means that architectures which support such exploita-

tion of locality, such as Tilera and Picochip will better support Rentian scaling as the

number of cores grows, than those of the current x86 many-core architectures from Intel

or AMD.





8
CHAPTER EIGHT

EFFECT OF LOCALITY ON

ASYMPTOTIC

COMPLEXITY

This chapter covers the analysis of asymptotic communication costs in algorithms. In-

deed, it is shown how these communication costs can dominate over traditional com-

putational complexity. The direct calculation of Rentian parameters is demonstrated on

some example algorithms using first-principles.

The embedding problem is discussed, with an example showing how optimal embeddings

do not compose to form another optimal embedding. However, it is then shown that

optimal embeddings don’t need to compose in order to achieve asymptotically Rentian

scaling. Hierarchical composition is introduced, instead, demonstrating that random

or worst-case links at each level of hierarchy still preserves Rentian scaling, but with a

constant factor overhead. This makes Rentian embeddings practically composable for a

CMP-system, at a constant-factor cost of optimality.

Finally, we consider the costs of asymptotic costs of accessing memory. As data has a

physical position, in order to write to or retrieve data, there is always some implicit

spatial communication involved. Lower bounds are shown for this cost, as it relates to

the Rentian exponent – and under certain conditions, the memory access cost can be

O (1). As an example, it is shown how this affects the cost-analysis of very large dense

matrix multiplications.

8.1 Direct Rentian analysis of algorithms

Although Rent’s rule was observed in the 1950s, it has since then predominantly been

applied to the analysis of large existing VLSI graphs, and experimentally determined by

partitioning and placement. Little work has been done in analysing Rentian behaviour

directly on structures or algorithms. This is perhaps a little surprising, however it is un-

likely to have been of practical value in the VLSI domain, as final VLSI graphs are easily

analysed by partitioning and placement. In moving our analysis to software, however,

163
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the first-principles analysis of algorithms becomes important in determining their com-

munication scaling properties, as the actual computation and communication graph is

generated as the software runs. We give some sample ab-initio characterisations below.

8.1.1 Scaling behaviour of trees

For any k-ary tree structure, the minimal terminal scaling law is given by:

T = Θ
(

G1
)

i.e. the Rent’s exponent p = 1 with unbounded dimensionality. Where G is the number

of nodes in a region, and T is the number of edges connecting nodes from inside the

region to nodes outside the region.

Proof. We show that for any connected set of G interior nodes:

T = (k − 1)G+ 2

By induction: we start with one node that has (k + 1) edges consisting of one parent edge

and k child edges, satisfies the case of G = 1. For any connected set S of G = n nodes,

connecting another node X results in the connecting edge being subtracted from both S

and X, and leaves k dangling edges from X, resulting in an increase of edges by (k − 1).

This satisfies the case of G = n+ 1. Since any connected set of nodes can be constructed

starting from the base case, by incrementally adding nodes, this completes the proof.

8.1.2 Iterative Fibonacci sequence

The iterative Fibonacci algorithm has the dependence:

fk = fk−1 + fk−2

The interior computation has a recurrence pattern that consists of two input edges

(fk−2, fk−1) and two output edges (fk−1, fk). Any contiguous chain of this recurrence

pattern results in:

T = 4

i.e.

p = 0
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This yields a dimensionality of one, which is also trivially observable from the simple

dependence chain.

We note that a recursive form of the Fibonacci calculation (without re-use of calculated

results) would result in a binary tree, and thus have Rent’s exponent p = 1.

8.1.3 Matrix multiplication

The N ×N matrix multiplication algorithm, denoted MM (N ×N), can be decomposed

into eight MM
(

N
2
× N

2

)

multiplications, which then involve point-additions at that level

of hierarchy.

The matrix multiplication has ∼ 2N3 operations (multiplication and addition) and 3N2

terminals (inputs and output). This leads to:

G = 2N3

T = 3N2

implying that:

T =
3

22/3
G2/3

So that:

p =
2

3

and

dim = 3

This implies that communication for matrix multiplication is O (1) provided it is embed-

ded in a growing three-dimensional substrate. Indeed, we know that systolic arrays with

a 2D topology, plus one dimension of time, works for this [22, 67]. Cannon utilised

a 2-D torus topology, but noted that a 2-D mesh is also easily capable of simulating a

2-D toroid version with constant penalty. Leiserson considered a 2-D hexagonal [67]

topology for streaming the matrix multiplication from the edges of the systolic array. In

general, however, the matrices may already reside in on-chip memory as part of a larger

computation.

Similarly, LU decomposition and other common matrix operations are known for systolic

arrays with O (1) link length and O (N) steps [67], and also yield a simple exponent of

p = 2
3
.
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8.1.4 Handling memory accesses

We should note that the count of terminals is based on the number of unique edges

coming out of a boundary, connected to instructions within the boundary. For exam-

ple, two blocks of code may access the same memory location. Both accesses result in

spatio-temporal interconnect – however, when considering the combined two blocks (at

larger instruction counts), these contribute only one terminal at that boundary. For ran-

dom accesses, then, the distribution of accesses can also determine how many terminals

are at the boundary of combined random accesses. Thus the distribution and locality

of memory accesses directly affects the count of terminals, and their Rentian scaling –

which is precisely what we want. For data-driven memory access patterns, this means

that the Rent’s exponent can vary not only based on the underlying algorithm, but also

on how the data drives the algorithm. For example, an arithmetic or Huffman com-

pression algorithm generates and accesses entries in a data-structure based on the input

data stream, and hence the scaling behaviour of Terminals to Instructions depends on

the characteristics of the data-stream being compressed, as well as the algorithm.

8.1.5 Fourier transforms

The interior scaling behaviour of a Fourier transform involves a hierarchy of butterflies.

If we compose based on a sub-tree of butterflies, we have for a butterfly of width N , a

depth of log2N . Henceforth we denote logN to mean log2N . Thus:

G = N logN

T = 2N

if:

log T = p logG+ κ

for N = 2, we have G = 2 and T = 4, so κ = 2− p2, where p2 is the value of p for N = 2.

logN + 1 = p (logN + log logN) + 2 − p2

p =
logN − 1 + p2

logN + log logN

As
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dim =
1

1 − p

=
logN − 1 + p2

log logN − 1 + p2

= Θ

(

logN

log logN

)

We note that this compares well with the trivial lower bound of the dilation λ, given

by the ratio of graph diameters. We note that the FFT comprises N logN nodes with a

graph diameter of 2 logN , thus:

λ =
(N logN)1/dim

2 logN

Keeping the desired dilation λ constant and taking logarithms results in:

log λ =
1

dim
(logN + log logN) − log logN − 1

dim =
logN + log logN

log λ+ log logN + 1

= Θ

(

logN

log logN

)

8.1.6 Related work

The closest work was by Fox [43] regarding analytical derivations of the communication

overhead in high-performance parallel computing domain. He showed that the cost of

matrix multiplication (on a mesh) is N3/2. There are two crucial differences between his

work and this. First of all, he considers the 2-D domain of the data, rather than the

spatio-temporal domain of the computational data-dependency graph. Incidentally, he

also uses the term ‘space-time’, however in his definition space refers to the data itself

rather than actual physical space. Secondly, his cost metric for communication is based

on the number of transactions crossing the boundary, rather than the physical distance it

must travel. This certainly makes sense for a parallel computing environment, although

it does not for CMP. Also, he does not consider a hierarchical decomposition, although

he notes that in VLSI, that Rent’s rule implies that the system is self-similar across scales

or ‘grain size’ as he terms it, and discusses the behaviour upon varying the ‘grain size’.

For these reasons, his dimensionality for matrix multiplication is two, rather than three

as in here.

Fox also considers embeddings of the FFT onto the hypercube (rather than the 2-D

mesh). From his analysis of communication versus computation in the hypercube topol-

ogy, and as the hypercube has dimensionality of log2 P for P processors, he suggests
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Figure 8.1: Optimal embeddings don’t compose. An optimal spatial embedding of N × N square matrix

multiplication leads to a systolic array with torus topology, however optimal embedding for the transpose

operation has different needs. Transpose within the torus results in non-local links of Manhattan-metric

length 2 (N − 1), thus growing as O (N). The matrix multiply can be folded along the diagonal to produce

an O (1) cost transpose operation, with further O (1) dilation of matrix multiply links. (It can even be

folded again to reform a square placement.) However as there are N3 communication operations using

these links, this can actually make total cost worse.

that the N-point FFT has an information dimension of O (log2N). The Rentian analysis

shows that it is actually a little less than this.

8.2 The ‘embedding problem’

Real VLSI designs have the benefit of a near-complete network description before tools

try to optimally embed it into silicon. Although designers partition their designs into

modules and blocks, for the most part, the placement tools have abundant freedom to

shuffle gates around within a region. This means there is a large amount of implicit

information in the placement. For example, for N gates with N positions, there are N !

possible configurations, of which the VLSI embedding is a carefully chosen one. Instruc-

tions in software also have implicit position (their instruction address), however, in terms

of optimising their spatio-temporal embedding, there is less freedom to move these in-

structions around. The VLSI equivalent would be a design consisting of many so called

hard-IP blocks, which have fixed placement already within the block.
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Algorithms and functions are designed in a modular fashion, and they should compose

easily, without specific placement optimisations needed that ‘bleed’ across from one algo-

rithm to the next one. For example, let us take matrix multiplication, followed by either

another matrix multiply or by a matrix transposition. The square matrix multiplication

Z = XY has a very simple, optimal embedding solution across multiple cores given by

Cannon [22] and seen in figure 8.1. This consists of only neighbour communication be-

tween nodes in a 2-D toroid (shown as black links) where the row terms of X are passed

along rows, and the column terms of Y passed down columns. We see here how a 2-D

mesh simulates a 2-D toroid with only a constant factor penalty, by folding and interleav-

ing the torus into the 2D mesh. The transpose operation is essentially a communication

operation (here shown as red links). If each node contains a sub-matrix, it merely needs

to perform the transpose operation on that sub-matrix, and then swap the result with its

corresponding transpose node’s. There is a trivial embedding for transposition (seen at

the bottom of figure 8.1), which simply places each node next to its transpose partner,

resulting in only neighbour communication as they swap them. The ‘embedding prob-

lem’ is that these two parts of the algorithm have very different embeddings, and optimal

communication in both does not result in optimal communication across them. That

is, their embeddings do not compose optimally. We can see that in the N × N matrix

multiply, that the transposition operation (seen in red) results in non-local communica-

tion. In general, the worst-case link distance grows by O (S) for sidelength S ≤ N of the

computation. In contrast, if we were to follow the matrix multiplication with another

matrix multiplication, for example in exponentiation, then their embeddings can match,

and there is O (1) local communication from one matrix multiplication to the next.

One may instead wish to construct a combined ‘matrix-multiply and transpose’ oper-

ation, by optimally embedding the combined networks. One approach for this is to

spatially fold the matrix multiplication so that transposition is also a local operation.

This is seen on the right in figure 8.1. We note that now the black links for matrix mul-

tiplication are longer, however it can be shown that these grow by an average constant

factor κ = 3
2
, and so are still O (1) regardless of the sidelength S of the computation.

Noting the potential inconvenience of a triangular embedding, it is also possible to fold

the corners again (almost like origami) so that it reforms a square profile. Again, this

maintains O (1) asymptotic local communication. However, there are very different costs

involved in the two algorithms. The matrix multiply consists of N3 communication op-

erations, and so the total cost grows to ∼ 2κN3 (where the factor of 2 is due to the

torus topology). The transposition operation has communication cost ∼ N compared

to the operation on the regular torus topology of ∼ SN2. So the total communication

cost has changed from (2N3 + SN2) to (3N3 +N). However, we know that S ≤ N ,

and typically S can be much smaller than N , thus folding the topology to make trans-

position local, actually increases total communication costs. Indeed, the non-locality

of the matrix transpose doesn’t actually go away simply because another O (1) embed-

ding is produced, but rather, it causes the matrix multiplication to have a less efficient
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embedding that makes total costs increase.

We should note that the diagonal symmetry property of transposition on matrices is

a particularly special property that was employed in this example to combine the em-

beddings. In general, when composing embeddings from two algorithms, there is no

such property that can be leveraged. What the above example shows, however, is that

even when such a special property can be employed to make a combined embedding, it

can actually make matters worse. Moreover, in practise, we would like the embeddings

themselves to compose easily – that is we would like to describe an embedding for an

algorithm once, without needing special cases for combinations with other algorithms

such as matrix-multiply with transpose.

As the embeddings of two algorithms will generally compose to produce non-local com-

munication between them, it suggests that such non-local communication is practically

unavoidable and that perhaps Rentian scaling is unlikely to emerge. As we shall see next,

this is not actually the case.

8.2.1 Solution: hierarchical composition/decomposition

It is important to remember that Rentian locality does not mean that there are no long

interconnects. Instead, Rentian locality only constrains the amount of non-local inter-

connect. Moreover, Rentian scaling is governed by the Rent’s exponent as an asymptotic

behaviour – small constant factors in cost are less important than the power-law be-

haviour itself.

What this means is that optimal embedding is not a prerequisite to Rentian scaling.

Indeed, as we have seen with composition of matrix-multiplication and transposition,

combining embeddings to minimise communication costs may not actually confer real or

significant advantages. Instead, we need to manage the amount of non-locality. A clue

to solving the embedding problem lies with Donath’s original derivation of wire-length

distributions and average length. Donath’s original predictions for wirelengths turned

out to be correct in terms of its power-law exponent, but was off by a constant-term

factor of about two. The reason is that Donath considered Rent’s rule in a hierarchically

partitioned manner, and assumed non-local random connectivity, to connect sub-blocks

at each scale of the hierarchy. What is important to note is that this is still actually

consistent with Rentian scaling and only resulted in a constant factor increase in the wire-

length distribution, preserving the distribution’s power-law exponent, and preserving

Rentian scaling properties. This means that Rentian scaling can accommodate random

non-local connections, with only a constant factor penalty, provided the non-locality is

constrained to that physical scale of the hierarchy.

This allows us to approach the embedding problem with a divide-and-conquer strategy

loosely based on Donath’s original derivation, adapted for characteristics of the soft-

ware domain versus VLSI. We do this by hierarchically decomposing the spatio-temporal

graph of an algorithm, with constraints on the amount of merging code allowed at each
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Figure 8.2: Decomposition of Matrix Multiply function into smaller Matrix Multiplies (denoted by X).

Merge logic (additions), and sub-partitions can be placed randomly within each level of the hierarchy.

Spatio-temporal interconnect may be non-local, but the non-locality is constrained to the physical domain

of that partition.

level. Donath did not have to deal with the presence of merging code, but only with

spatial partitionings.

Let us then quantify the asymptotic cost of communication for a hierarchically decom-

posable algorithm. We partition the parent problem into s child sub-problems with

problem-size reduction r. For example, an N × N square matrix multiply can be de-

composed into eight matrix multiplies of size N
2
× N

2
, so s = 8 and r = 2. This can

be seen in figure 8.2, where the matrix multiplication is split into four quadrants which

are calculated separately (in eight blue boxes) and then merged together (in green). We

can also see the physical consequence of this partitioning on a CMP in figure 8.3. Here,

we can see again the eight sub-matrix multiplications arranged in both time and space,

along with the thin merge logic. Another level of decomposition is also shown in the

figure consisting of smaller matrix multiplies and corresponding merge logic. We should

note that although decomposition is discussed here and below, the same argument can

also be made for self-similar composition as well.

Let G (N) be the number of instructions (gates) required to accomplish the computation.

This is the traditional ‘computational complexity’ of the problem. For many algorithms

we have asymptotically that this is Θ (Nγ), and for these we can define:

G (N) = gNγ

for some constant g. In the case of matrix multiplication γ = 3. Note that γ = log s
log r

for Rentian partitioning, as the bulk of the instructions should be in the s children of

problem size N
r

.
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Figure 8.3: Hierarchical decomposition of an algorithm (matrix multiply) into space and time. Green

indicates merge logic, blue indicates a lower-level of the hierarchy. An additional level of decomposition is

shown for one blue box.

The child sub-solutions may need further merging computation to form the parent so-

lution. With Rentian scaling, it necessarily also involves interconnect at that level as

otherwise there would be too many terminals at the parent boundary. The number of

merge instructions is: G (N) − sG
(

N
r

)

. Let us assume the number of I/Os for problem

size N follows Rent’s rule:

T (N) ≡ k (G (N))p

For matrix multiplication we have two inputs of size N2 and one output of size N2, so

p = 2
3

(given γ = 3) and k = 3g−p.

There are sT
(

N
r

)

terminals due to sub-problems that need to be wired up, and we will

assume that asymptotically there are at most mT (N) internal and external terminals

(inputs and outputs) of merge instructions, for some constant m ≥ 0. This also ensures

an asymptotically small contribution of merge instructions compared to the childrens’

instruction count. In the case of matrix-multiply m = 1.

These terminals need to be wired up to each other and to the parent terminals. Follow-

ing Donath, given an average fanout for the region, then the average wiring per terminal

is α = Fanout
1+Fanout

which is a minimum of 1/2 for simple edges (one source and one des-
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tination), and is at most one (for high-fanout), regardless of the connectivity. So this

factor is tightly constrained as 1
2
≤ α < 1, and so does not contribute to the asymptotic

complexity terms. Then the total number of interconnects is given by:

I (N) ≡ α

(

(1 +m)T (N) + sT

(

N

r

))

The average cost of interconnect at this level of hierarchy is something that can be directly

estimated given a cost function and a distribution of distances. In the simple case of

cost being linearly proportional to distance, and for uniform-random links or worst-case

links, the cost is simply proportional to the side-length of the volume of instructions.

So for a d-dimensional spatio-temporal embedding, we would expect the average cost of

interconnect to be proportional to:

c (N) ∝ (G (N))1/d

However, this is only up to the spatio-temporal size of the system with P cores with

volume Vcrit ∝ P . Thereafter, the embedding volume growth is one-dimensional, so that

for a Manhattan metric let us define:

c (N) =







(G (N))1/d , G (N) ≤ ζP

(ζP )1/d + G(N)
ζP

− 1 , G (N) > ζP

In general, however, we can calculate the total communication cost C (N) of the algo-

rithm as being the sum of the costs of the sub-problems, plus the cost of interconnects at

that level of the hierarchy so that:

C (N) = sC

(

N

r

)

+ I (N) c (N)

= sC

(

N

r

)

+ α

(

(1 +m)T (N) + sT

(

N

r

))

c (N)

In the region G (N) ≤ ζP we have:

C (N) = sC

(

N

r

)

+ α

(

(1 +m)T (N) + sT

(

N

r

))

(G (N))1/d (8.1)

We can hierarchically decompose until we reach a base case with H levels of hierarchy

so that rH = N , and sH = N log s/ log r:
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C (N) =

H−1
∑

h=0

shαk

(

(1 +m)

(

G

(

N

rh

))p

+ s

(

G

(

N

rh+1

))p)(

G

(

N

rh

))1/d

=
H
∑

h′=1

sH−h′αk
(

(1 +m)
(

G
(

rh
′

))p

+ s
(

G
(

rh
′−1
))p)(

G
(

rh
′

))1/d

= αksH
H
∑

h′=1

s−h
′

(

(1 +m)
(

grγh
′

)p

+ s
(

grγ(h
′−1)
)p)(

grγh
′

)1/d

= αksHgp+1/d
H
∑

h′=1

s−h
′

rγ(p+1/d)h′
(

(1 +m) + sr−γp
)

= αksHgp+1/d
(

(1 +m) + sr−γp
)

H
∑

h′=1

(

s−1rγ(p+1/d)
)h′

= αksHgp+1/d
(

(1 +m) + sr−γp
)

(

(

s−1rγ(p+1/d)
)H+1 −

(

s−1rγ(p+1/d)
)

(s−1rγ(p+1/d)) − 1

)

= αkgp+1/d
(

(1 +m) + sr−γp
)

(

(

Nγ(p+1/d) −N log s/ log r
) rγ(p+1/d)

rγ(p+1/d) − s

)

For p > 1 − 1/d and G (N) ≤ ζP , we then have:

C (N) = Θ
(

(G (N))p+1/d
)

and this has average spatio-temporal cost of:

Θ
(

(G (N))p+1/d−1
)

This asymptotic scaling behaviour is precisely what we would expect with optimally-

embedded Rentian scaling. We should also point out that the asymptotic total commu-

nication cost here can do no better than the computational complexity, and is typically

worse. This also makes intuitive sense if we consider that the computational complexity

essentially counts instructions, whereas the communication cost counts the distanced-

weighted edges between instructions (which at a minimum grows proportionally to the

number of instructions).

For cost at G (Ncrit) = ζP we have:

C (Ncrit) = αkgp+1/d
(

(1 +m) + sr−γp
)

((

(

ζP

g

)(p+1/d)

−
(

ζP

g

)
log s

γ log r

)

rγ(p+1/d)

rγ(p+1/d) − s

)

For the region G (N) > ζP we have:
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C (N) = C (Ncrit) +
αk

ζP
sH

H
∑

h′=Hcrit+1

s−h
′

(

(1 +m)
(

G
(

rh
′

))p

+ s
(

G
(

rh
′−1
))p)

×
(

G
(

rh
′

)

+ (ζP )1+1/d − ζP
)

With asymptotic total spatio-temporal interconnect cost as G (N) ≫ ζP of:

Θ

(

(G (N))p+1

P

)

and an average spatio-temporal cost of:

Θ

(

(G (N))p

P

)

In the case of matrix multiply, we see that as it grows, it can no longer fit into the fixed

number of cores and d = 1 (temporal dimension only). We then have for the matrix mul-

tiplication problem, an average interconnection cost at large scales of Θ
(

N3( 2
3
+1−1)/P

)

=

Θ
(

N2

P

)

and total spatio-temporal cost of Θ
(

N5

P

)

. This total spatio-temporal cost can be

interpreted as the total communication energy consumption for the algorithm (in both

spatial communication and memory storage costs).

8.2.2 Interdependent composition/decomposition

Although in the preceding example of matrix multiplication, we decomposed the prob-

lem into independent sub-problems, we can also choose to decompose into interdepen-

dent sub-problems with communication occurring between them throughout their exe-

cution. There is no assumption made in the derivation that requires independence, but it

merely makes the analysis simpler.

For example, we can hierarchically decompose a systolic-array implementation of the

matrix-multiplication problem. This time we decompose into eight sub-problems with

spatio-temporal volume G (N) = 2N3, with dimensions 2N × N × N where the factor

of two accounts for a single add and a single multiply per systolic array node. There

are in general T (N) = 8N2 terminals for the sub-problems: 3N2 data inputs including

the previous partial solution, 3N2 data outputs including the current partial solution,

and 2N2 items being shuffled to and from neighbours. There are no merge instructions,

as merging additions take place within the systolic construct, so m = 0. Plugging these

into eqn 8.1 now results in exactly the same asymptotic scaling behaviour, but with

interdependent partitions, instead of independent partitions into sub-problems.

We should note that in some ways, this decomposition analysis of computation and

communication has some rudimentary similarity to the D-BSP and Multi-BSP models dis-

cussed in Chapter 3, as there is a recursive decomposition of the algorithm into localised
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regions in those as well. However, in actuality there are many fundamental differences.

Firstly, the decomposition occurs in a hierarchy of space-and-time, rather than with the

supersteps in the space of processors. The decomposition here, is also not necessarily a

binary one, and crucially, unlike the D-BSP and Multi-BSP models, this decomposition

fully permits communication at all times across the decomposition boundary – as long

as they are counted as ‘terminals’. So whereas the systolic-array implementation of Ma-

trix Multiply cannot be analysed in the D-BSP and Multi-BSP models, it can be analysed

here.

8.2.3 Analysing non-Rentian algorithms: FFT

We can also apply this to non-Rentian systems, such as the FFT. By partitioning the algo-

rithm into independent sub-FFTs and plugging into eqn 8.1, we get altogether different

behaviour, with an asymptotic cost of Θ
(

N1+1/d (logN)1/d
)

. Although this is not as bad

as a completely random embedding with cost Θ
(

(N logN)1+1/d
)

, as some locality can

be leveraged, it is still only better off by a factor of (logN)1/d, which makes it behave

close to a random embedding. We note that as the size of the problem increases, the

number of cores runs out and d becomes 1, yielding an asymptotic spatio-temporal cost

of Θ
(

N2 logN
P

)

. For the case of a single processor P = 1 this is a cost of Θ (N2 logN).

This has a simple interpretation – as the computational time is Θ (N logN) and the stor-

age requirements are Θ (N), so that the total temporal communication cost is merely the

product of these.

8.2.4 Sorting

We note that tree-based sorting algorithms that take time O (n log n) in a RAM model,

would actually take time O
(

n1+1/dS
)

upon accounting for communication costs in a dS-

dimensional substrate. Lang et al. developed a 2-D sort algorithm that takes O (
√
n)

time-steps if each element n has its own processor [65]. This approach maps to the CMP

domain as well.

8.3 Spatial communication cost of memory accesses

Although in Chapter 7 we discussed the cost of temporal interconnect as being propor-

tional to the temporal distance traversed due to, say, the power consumption of retaining

data, another measure concerns the purely spatial communication cost of accessing the

data. As was shown in Chapter 2, because data necessarily takes up physical space,

accessing an entry requires traversing the physical space, thus incurring a spatial com-

munication cost. As per Chapter 7, the minimum aggregate cost is achieved by greedily

allocating temporal interconnect according to access frequency, as per the Rentian Mem-

ory model. So short temporal interconnects should be located close to the accessor, and
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long temporal interconnects should be located more remotely. We have for a temporal

distance distribution f (t) the storage space taken up by temporal interconnect of up to

distance τ as:

M (τ) ≡
τ
ˆ

0

tf (t) dt

If the density of storage is uniform in dS physical dimensions of space, then the spatial

cost of access CT (T ) is given by:

CT (τ) ≡ Θ
(

(M (τ))1/dS

)

The average spatial memory access cost C̄T is then given by:

C̄T ≡
τmax
ˆ

0

f (t) (M (t))1/dS dt

For example, in the single-core case, if we have a temporal Rentian behaviour for t ≥ tmin

of:

f (t) = λtp−2

then:

M (τ) =
λ

p
(τ p − tpmin)

we can also relate the temporal distance τ to the amount of memory needed for all

temporal interconnect up to τ as:

τ (M) =
(p

λ
M + tpmin

)1/p

Now, we have:

CT (τ) ∝ (τ p − tpmin)
1/dS

then:

C̄T =























Ω

(

t

“

1+ 1
dS

”

p−1

max

)

, p > dS

dS+1

Ω (log tmax) , p = dS

dS+1

Ω (1) , p < dS

dS+1
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or, alternatively let Mmax be the amount of memory needed for the algorithm, then:

C̄T =



















Ω

(

M
1+ 1

dS
− 1

p

max

)

, p > dS

dS+1

Ω (logMmax) , p = dS

dS+1

Ω (1) , p < dS

dS+1

These are lower-bounds as this is derived for an optimal cost memory model – the Ren-

tian memory of Chapter 7. Real memories and caches are likely to do worse than this. We

note that even though memories are spatially distributed, if the distribution of temporal

accesses has exponent below a critical threshold, the average access cost can potentially

be reduced to O (1). This occurs when the Rentian dimensionality of the algorithm being

executed is less than the spatio-temporal embedding dimension d = (dS + 1). However,

if the Rent’s exponent is higher, the average costs grow according to the longest temporal

distances or memory footprint.

For uniform memory accesses, we have another special-case of p = 1, and thus tmax ∝
Mmax. This yields an average spatial access cost Ω

(

M
1/dS
max

)

. We note that this is the same

as shown in Chapter 2 for the binary tree traversal for dS = 2. This also means that if

the access pattern has sufficient locality, we can leverage locality by moving frequent

accesses closer to the accessor, and potentially recover O (1) average access costs, making

it appear as though it were a uniform memory. In the case of the binary tree traversal,

moving frequently accessed items closer to the root would potentially lead to such a

reduction in average access cost.

If we recall the dense matrix multiplication problem MM (N ×N) we know that p = 2
3
.

Now, for a fixed number of cores P , surrounded by a pool of memory in dS = 2 spatial

dimensions, as the size of the matrix multiply N grows, the spatial communication costs

of memory accesses would be expected to grow on average by Ω (logN). This leads

to total access costs of Ω (N3 logN). However, if the operation was surrounded by a

pool of memory in dS = 3 spatial dimensions, then we have average access cost Ω (1)

and a total access cost of Ω (N3), which is what a PRAM or BSP model with uniform

memory access, would also yield. Indeed, work by Aggarwal et al. on the special-case

of uniprocessor matrix multiplication with a polynomial memory access cost also noted

these three regions of behaviour [4]. The result presented here, however, is more general

in that it applies to any algorithm with Rentian locality.

Bilardi and Preparata also considered the access-costs of physical distance traversal for

a uniform mesh of three or less dimensions [14, 15, 87]. However, they were primar-

ily concerned with the time complexity of simulating PRAMs and other meshes with a

higher number of processors. In their model, however, no memory-access parallelism

(per processor) was allowed. They noted that memory access parallelism would increase

the storage requirements of handling multiple requests, and thus potentially physically

dilate the actual memory – making it even more remote. However, this is a little mislead-

ing, as the storage requirements of memory access parallelism do not necessarily have
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to grow in direct proportion to the amount of memory, but can grow at a considerably

slower pace. For example, a tree-like memory access structure (for example, with a depth

of log logN) embedded in two or three dimensions, can at a constant-factor slow-down,

provide a logarithmically growing amount of storage for memory-access parallelism.

Also, without a theory of access-pattern as the Rentian ones presented here, Bilardi and

Preparata consider only a particular synthetic access pattern that lacks the tighter locality

properties of the Rentian model.

8.4 Conclusion

This chapter demonstrated how one can extract Rent’s exponents by direct algorithm

analysis, and how these can then be utilised to determine the scaling costs of communi-

cation.

In previous chapters, the Rentian scaling was found in experiments where embeddings

were assumed to be optimal or near-optimal due to simulated annealing. The problem

is that optimal or near-optimal embeddings compose sub-optimally. The key insight

here was that one can still maintain Rentian scaling with only a constant factor penalty,

even if one relaxes the optimality constraint. Indeed, by merely composing self-similar

algorithm embeddings in a hierarchical fashion, Rentian scaling properties are retained,

and consequently the associated analytical results from Chapter 7. It was further shown

how to derive the asymptotic communication costs of algorithms from such a hierarchical

analysis.

Finally, lower-bounds were derived for the spatial-communication component of mem-

ory accesses. It was shown that this lower-bound undergoes transitions at critical Rent’s

exponents, based on their temporal locality and the physical dimensionality of the mem-

ory.





9
CHAPTER NINE

RENTIAN SCALING IN

NEURONAL NETWORKS

As we integrate even larger quantities of logic into new computational systems with in-

creasing parallelism, we must tackle the growing challenges of rigid power-consumption,

thermal and noise constraints. Thus it is inspiring that evolution has already tackled

these problems and given us a highly-parallel system as a proof of existence – the brain.

As Sarpeshkar has pointed out [92], the human brain is remarkably energy efficient, con-

suming only 12W of energy for the order of 3.6 × 1015 synaptic operations per second,

which in terms of operations per second per Joule, is up to seven orders of magnitude

more efficient than existing processors1.

In brains, as in VLSI, there is a significant cost to communication. Basser derived cable

equations for myelinated axons [10], and showed how nodal and myelin capacitance

per unit length affect the signal propagation. Moreover this capacitance needs to be

charged and discharged with a minimum potential voltage required at the destination,

similarly to VLSI technology, with signalling costs growing according to length. Thus

it is informative for the continued technological evolution of electronic computational

systems, to understand what natural evolution has already done to tackle communica-

tion. Indeed, Sarpheshkar’s pioneering work noted that for the sake of energy efficiency,

information should be coded as a hybrid of analog and digital signalling, and distributed

among multiple paths to combat noise [92]. As the human brain consumes about 20%

of the total energy whilst accounting for only 2% of the mass in the human body, with a

large proportion of that cost being to build and maintain connections between neurons

[5, 80], there is abundant incentive for natural evolution to minimise communication.

One may ask, therefore, whether or not Rentian scaling has been employed by brains

to achieve its desired functionality whilst keeping communication costs down, or if evo-

lution has perhaps come up with an alternative solution that allows it to diverge from

Rentian behaviour.
1Note that Sarpeshkar’s comparison is dated to a high performance processor from 1998

181
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9.1 Clarifying the collaboration

As the following work is the result of a very close collaborative effort, it is important to

be clear about the manner in which it arose, and the division of efforts.

The initial inspiration for applying Rent’s rule to the human brain came from attending

a talk by Professor Steve Furber who discussed their project of a real-time neuronal net-

work simulator and its interconnection network called SpiNNaker [44]. Afterwards, in

a meeting in March 2007 with Professor Furber and my own supervisor, Dr Moore, we

speculated further as to whether or not the human brain might obey Rent’s rule. After the

meeting, I derived allometric scaling results (see section 9.3) showing that if brains ac-

tually did obey Rentian behaviour then there should be an observable power-law scaling

relationship between the volume of white and grey matter, and that this exponent should

lie within a certain expected range. I decided to compile statistics for a range of brain

sizes to investigate if this was indeed the case, and instead found publications [115, 19]

already showing that there was a very clear power-law scaling relationship across mam-

malian brains, and that there didn’t seem to be particularly good explanations as to why

this was the case for both the neocortex and the cerebellum. I concluded that Rentian

scaling was a distinct possibility, but I lacked expertise in the area or datasets to test it

directly. After attending a fascinating Networks and Neuroscience Symposium in March

2008, I contacted Professor Ed Bullmore. He was interested in this idea and connected

it to Herbert Simon’s notion [94] that all information processing systems (Brains and

Computers) will have common emergent properties - such as hierarchy and modularity.

His exceptionally talented PhD student Danielle Bassett was very keen to take a lead and

collaborate together on this. I wanted to test for physical Rentian scaling in particular,

and to see if the exponent matched the allometric scaling of Bush and Allman [19], based

on my derivations. I also wanted to try box-counting to measure fractal dimensionality.

They suggested a number of datasets, and I detailed methodology on how to exam-

ine these for Rentian behaviour within a brain, and we taught each other many things

about our respective fields. Soon after commencing, we found some work by Beiu and

Ibrahim [12], examining the possibility of Rent’s rule applying to brains. They proposed

an ‘alternative interpretation’ of Rent’s rule that they claimed it does follow. However,

their analysis had fundamental flaws, that my own allometric derivations had already

addressed.

My own physical Rentian-analysis computing environment was not suitable for these

datasets, but Bassett took up the lead by quickly adapting, and improving on the method-

ology I had outlined, into her own Matlab environment. On my end, I adapted my fractal

box-counting and topological Rentian environments for these datasets. We interpreted

the results of each of these together, and concluded that we were indeed seeing evidence

of Rentian behaviour. Dr Bassett performed further analyses on modular hierarchical

decomposition, building upon Newman’s spectral optimisation algorithm [78], which I

do not claim any credit for, and is not presented here. Bassett also came up with the
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methodology of fitting to other two-parameter-fits to test the relative goodness-of-fit of

the power-law. I also refined the allometric scaling derivations to account for varying

neuronal complexity, thanks to her input about their properties. We were a little sur-

prised that the theory actually worked, and certainly pleased, when we found that the

Rent’s exponent for the human brain datasets gave a good prediction for the allometric

scaling exponent of white versus grey matter across mammalian brains.

Dr Bassett took the lead and wrote the bulk of the final paper, with sections written by

me as joint first-author, and with a lot of back-and-forth in refining it together. Excited

about our findings, we initially submitted to Nature in July 2009, but did not receive

a positive response from them. In cross-disciplinary work such as this, that brings in

knowledge from entirely separate fields, we had to also resolve differences in what is

accepted knowledge in their respective fields – such as the assertion in the Network

Science community that ‘small world’ networks [110] do not exhibit fractal scaling [91],

whereas VLSI deals with datasets that are known to be both small world and have fractal

scaling [21, 97]. After a lengthy period of submissions, reviews and revisions, we were

accepted by PLoS Computational Biology in March, and published in April 2010. In

the interim period, two papers [90, 86] in particular came out that took a little bit of

our thunder, examining topological Rentian scaling (in c.elegans), versus our focus on

physical Rentian scaling, that we added as ‘prior work’ and discussed in our final version,

however we feel that our work here, is a significant contribution to the field.

This chapter focuses on my own contributions to this work, dealing more specifically

with the Rentian properties observed and predicted allometric scaling. For a more de-

tailed discussion of the neuroscience behind it, and on the complementary work on char-

acterisation of hierarchical modularity, please refer to our paper [33].

9.2 Datasets and their limitations

The C.elegans dataset consisted of previously published data from Kaiser et al. and

Chloe et al. [61, 27, 112]. This combines the complete spatial position information of

each neuron, along with their network connectivity. Here, wherever there is a synapse

connection between any two neurons, whether electrical or chemical, this is represented

by an edge in the network. Altogether there are 277 nodes and 2105 edges. We should

note that because the neurons innervate an entire organism, they are not homogeneously

distributed, with approximately 131 nodes making up the ‘head’ and the remaining dis-

persed over the rest of the organism.

Complete neuronal wiring maps of the human brain are unlikely to become available

anytime in the immediate future, thus we necessarily needed to use coarse-grain maps

that detailed the wiring at the most global scales. The datasets used were the most fine-

grained maps of connectivity available. For these human neocortical datasets, two forms

of network measurement were used based on Diffusion Spectrum Imaging (DSI), and
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Magnetic Resonance Imaging (MRI). For the MRI dataset [11], 259 healthy subjects

were scanned by MRI, with grey-matter cortical thickness measurements taken in 104

regions according to a fixed parcellation of the neocortex, namely the Brodmann areas.

Lerch et al. [68] had found that correlations in grey-matter neocortical thickness across

subjects resulted in similar results to previously obtained connectivity maps (starting

from a single seed area) using an explicit connectivity mapping technique – Diffusion

Tensor Imaging (DTI). The implication is that this technique may be a faster, simpler

method of building reasonably reliable global connectivity maps of neocortical regions.

This dataset consists of 104 nodes and 1606 edges.

The DSI approach actually utilises MRI technology but in a different manner. It measures

the diffusion of water molecules in a 3D volume. By analysing and following this dif-

fusion vector of water along axons (with surrounding myelin sheaths acting as diffusion

barriers), it is possible to map their connectivity. However correctly ‘following’ voxels

of diffusion can be problematic due to resolution constraints, as there may be multiple

candidate neighbouring voxels to follow. This means that longer axons in a complex

tract may be harder to follow, with a resultant lower probability. The heuristic utilised

by the dataset authors [47] progressively builds the connectivity matrix by adding con-

nections to a backbone minimum spanning tree, starting with the highest probabilities,

until reaching average degree four. We should note that this may ordinarily lead to some

bias of shorter connections over longer connections. Although Haggmann et al. tried

to apply a distance bias correction in their preprocessing, it is still a matter of debate as

to what the correct method is for this [47], and such a bias may still be present. In this

dataset, the entire neocortex was parcellated into 998 cortical regions, and five subjects

were scanned to build the dataset, with one subject scanned twice.

For comparison, a VLSI circuit was also analysed. This is the s953 benchmark circuit

[16], with 440 gates and 772 edges. Note that to maintain consistency and due to limi-

tations with the DSI and MRI datasets, edges were used to denote connectivity, instead

of hyper-edges.

9.3 Allometric scaling

The self-similarity of Rent’s rule governs not only the internal characteristics of VLSI

circuits, but also the scaling characteristics as these circuits grow in size [99]. Thus,

if Rent’s rule did hold for the brain, we might expect a similar relationship across a

range of different brain sizes, as allometric scaling. For our derivation, we first need

to define the number of connections in a cross-sectional area as a function of the white

matter volume, and second, to determine the number of processing elements in the whole

system as a function of the grey-matter volume.

In VLSIs, the wiring of the circuit is located in multiple layers above the logic of the

circuit. Thus, the area of the logic-limited circuit is equal to the area of the logic, V = G.
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In the human brain, however, the white matter tracts are embedded in the same space

as the ‘logic’ or grey matter. The ‘wiring’ of the white matter tracts can cause the ‘logic’

or grey matter segments to be farther apart from each other. Thus, the volume of the

system is given as V = W + G, which for a homogeneous distribution of axons within

grey-matter, is an increase to just G of (W +G)/G or (1 +W/G). This stretching further

causes an increase in the white matter volume, W , by increasing axon length. Since

axon length is a one dimensional linear term, the dilated white matter is larger than the

undilated white matter by a stretching constant µ given by the cube root of the total

increase:

µ = 3
√

1 +W/G. (9.1)

Over the scale of the mammalian white matter, this dilation effect is very small. Even

if W varies as widely as W ∼ (0, G], µ will vary as µ ∼ (1, 1.26]. In log10 space, this

variation in µ becomes log10(µ) ∼ (0, 0.1] which is a small perturbation of log(W ), over

the range of mammalian white matter values. Thus, it is possible to approximate the

dilated white matter volume Wdilated by the undilated white matter volume Wundilated.

Wdilated ∼Wundilated (9.2)

In the remainder of this derivation, the simple symbolW will be used to refer toWdilated ∼
Wundilated. Furthermore, this is a worst-case behaviour for dilation with interconnect uni-

formly distributed in grey-matter. If we could better separate the white matter from the

grey matter, then distances between grey-matter could be relatively undilated at lower-

levels of the hierarchy. To understand this, recall from Chapter 8, that to obey Rent’s

rule, it is merely sufficient to obey it with hierarchical decomposition (rather than uni-

formly). Indeed it can even support random or worst-case interconnect at each hier-

archical level with only a constant-factor penalty. This means that, if connected in a

more tree-like fashion, dilation need only occur for interconnect at that particular level

of hierarchy, with little or no dilation at the lower levels, but with relatively more dila-

tion at higher levels. This is somewhat analogous to the multi-layered approach of VLSI

interconnect, where there is a relatively undilated bottom logic layer with very little in-

terconnect to dilate logic, and multiple interconnect layers above it that tunnel into the

logic layer.

To determine the number of connections in the cross-sectional area, S, as a function of

the white matter volume, W , we first approximate the brain as a sphere and therefore

the cross-sectional area, A, of the brain as equivalent to the area of a circle:

A = πr2, (9.3)

where r is the radius of the sphere. We also know that the volume, W , of the sphere is

given by

W =
4

3
πr3, (9.4)

which can be rewritten as

r3 =
3

4π
W. (9.5)
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Substituting, we find that

A = π(
3

4π
W )2/3 = π1/3

(

3

4
W

)2/3

= C1W
2/3, (9.6)

where C1 = π1/3(3
4
)2/3 contains all constants independent of W .

We should point out that although a sphere was used in this derivation, any fixed three-

dimensional shape would also result in cross-sectional area growing by the 2/3 power of

volume. Thus other shapes may alter the constant C1, but not the exponent 2/3.

By definition, the number of connections within the cross-sectional area can be written

as

S = θA, (9.7)

where S is the number of synapses, θ is the number of synapses per unit area, and A is

the cross-sectional area. Bassett pointed out, that from prior anatomical data [3], the

number of synapses per unit volume is independent of white matter volume, W , and

therefore the number of synapses per unit area, θ, is also independent of W . So we can

now define θ to be

θ = C2. (9.8)

Substituting eqns 9.6 and 9.8 into eqn 9.7, we can write the number of synaptic connec-

tions S as a function of white matter volume, W :

S = θA = C1C2W
2/3 = C3W

2/3. (9.9)

where C3 = C1C2 = π1/3(3
4
)2/3θ.

To define a relationship between grey matter volume G and the number of processing ele-

ments N , we first recall that the number of neurons in the brain scales disproportionately

slowly with the grey matter volume as G2/3 while the number of synapses scales directly

with G [3]. Therefore, the number of synapses per neuron, or synaptic complexity of the

neurons, is increasing with brain volume. In computer circuits, we also have gates that

vary in complexity, and circuits can even be built up of macrocells that have very high

complexity. However, to perform the gate count needed for Rentian analysis in VLSIs,

we must count computing elements in comparable terms, typically of the simple 2-input

logic gate (NAND2). Thus, larger and more complex computing elements are counted

as multiple NAND2 gates. In order to work with the same counting statistics in the

human brain, we define a constant-complexity processing unit as using a fixed number

of synapses. Since the number of synapses scales with G, then so does the number of

constant-complexity computing units in the grey matter:

N = φG, (9.10)

where φ is the number of constant-complexity computing elements per unit volume.

Now we can rewrite the Rentian scaling relationship

S = kNp, (9.11)
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where k is the Rent coefficient and p is the Rent exponent, in terms of white matter W

and grey matter G volumes:

C3W
2/3 = k(φG)p, (9.12)

or

W = C4G
3p/2, (9.13)

where C4 is
(

kφp

C3

)3/2

= 4
3
√
π

(

kφp

θ

)3/2
.

Neglecting this constant, we can write the allometric scaling relationship more simply as

W ∼ G
3p
2 . Thus, the allometric scaling exponent a = 3p

2
should be multiplied by 2/3 to

find an estimate of the Rent exponent, p. Taking the Rent’s exponents from the MRI and

DSI datasets, we may therefore predict the expected allometric scaling between white

matter and grey matter.

The cross-sectional count of interconnect here is only for white matter, rather than grey

matter – which also contains some local interconnect. Because of the self-similarity of

Rent’s rule, the presence of local grey-matter interconnect does not necessarily affect

the scaling characteristics. An analogy can be made with VLSI. If one were to divide a

logic block and count the total number of wires cut, they would scale according to the

Rent’s exponent. However, the same behaviour would occur if one dropped all short

wires up to a certain length (say by removing the bottom two layers of metal in a VLSI).

Now counting only the wires bisected in the top layers of VLSI metal, the same asymp-

totic power-law exponent would be seen. Another analogy can be found by observing

that connections between gates aren’t even the smallest form of interconnect. Gates,

themselves are composed of many interconnected transistors. Here, the short local grey-

matter interconnect is treated analogously to the short, local poly-silicon interconnect

between transistors within gates, and the white-matter is treated analogously to the re-

maining metal-based interconnect. If one really were to properly partition a VLSI logic

block, then gates should also be chopped, and their internal interconnect (traditionally

poly-silicon) should be exposed. Nonetheless, we are content with operating at a gate-

granularity, rather than at a transistor-granularity. Moreover, we are far more interested

in the asymptotic scaling behaviour at large lengths, rather than at short lengths – as it is

these that dominate the total interconnect cost.

9.4 Methodology

For these datasets, analyses were performed to determine the presence of physical Ren-

tian scaling, topological Rentian scaling, and to determine a box-counting dimension of

the network. Most of these methodologies have already been explained in previous chap-

ters. Topological Rentian scaling was explained in Chapter 3. The fractal-dimensional

box-counting of Song et al. was covered in Chapter 5.

The most interesting analyses here are of the physical Rentian scaling. Unlike the gates

in VLSI, or software in a CMP, the physical position of network nodes and their con-
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nectivity are constrained by nature and evolution, rather than as an immediate solution

to an optimisation problem. Thus, unlike the traditional domain of Rentian analysis, it

is more important to establish that physical rather than the topological network obeys

Rent’s rule. Furthermore, it is the actual physical Rent’s exponent, rather than the topo-

logical Rent’s exponent, that is needed for characterising the connectivity properties of

these neuronal networks, and their resultant allometric scaling. Also, unlike in VLSI,

where gates are more or less homogeneously distributed, for neurological networks the

physical distribution of nodes can be more heterogeneous. In the case of C.elegans, in

particular, most of the neurons are located in concentrated regions at the far ends of

the organism, whilst the remaining neurons are interspersed between them, innervating

the rest of the organism. For the physical Rentian scaling analysis, the physical network

was covered by 5000 boxes of uniformly random sizes and uniformly random spatial

position, and the number of terminals (links connecting to nodes within the box) were

plotted against the number of nodes within the box.

9.4.1 Re-wired networks

Due to the physical and metabolic cost of interconnect, one may reasonably ask why

neuronal networks aren’t more minimally connected to reduce these costs. We thought it

would be interesting, therefore, to compare the actual Rentian scaling properties against

extremal cases of minimally re-wired and randomly re-wired versions of these datasets.

For the minimally re-wired set, the spatial information was used by Dr Bassett to first

build a minimal spanning tree to ensure connectivity, and the next shortest edge was

iteratively added until the total number of edges matched the original dataset. For the

randomly rewired networks, edges were randomly added until it matched the total of the

original dataset.

9.4.2 Non-power-law null hypotheses

With Rentian scaling, we would expect an approximately power-law distribution in the

number of terminals to the number of nodes. In order to assess its significance, it was

important to test it against other null hypotheses. To be fair we utilised other two-

parameter models, including logarithmic, exponential, and two-parameter polynomial

fits.

9.5 Small World vs. Rentian Fractality

There are important differences in fractal behaviour for Rentian scaling and box-counting

measures. Significantly, Rentian scaling is fully compatible with small-world networks,

whereas the box-counting method of Song et al. is not [95]. As many networks in-

cluding neuronal ones are likely to be small-world, it is important to elaborate on their
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differences. As described earlier, we estimated the topological dimension of the informa-

tion processing networks using both topological Rent exponents and box-counting. We

observed that fractal scaling was clearly visible in the Rentian analysis and less visible

in the box-counting plots. However, it is known that small-world properties affect the

scaling measured by a box-counting analysis. Work by Rozenfeld [91] discusses this, and

demonstrates that there is some compatibility between fractal box-counting dimension

and small-world topologies. However, even though the fractal topology of a network

might be seen at small scales, the small world nature means that there is a single box that

covers the entire network with side-length of order logN . This means that the small-

world behaviour rapidly dominates in box-counting, leading to a rapid cut-off of the

power-law behaviour.

Compared to box-counting, Rentian scaling looks at how the number of edges crossing a

boundary scales with the number of nodes inside it. In VLSI, Ozatkas has observed that

this can be thought of as relating the volume of logic inside the boundary, to the flow of

information (surface area) across that boundary in terms of edges [84, 83]. The Rentian

exponent is then given by the ratio of surface area scaling to volume scaling - and can

thus be related to the dimensionality of information flow scaling. One can easily show

that large d-dimensional meshes have Rent’s exponents of p = (d− 1) /d. Moreover, as

already noted in Chapter 3, we can define the Rentian information-flow dimension to be:

d = 1/ (1 − p)

Whereas the topological distance used for assessing small-world behaviour and in box-

counting analyses examines the number of hops from one node to another, it isn’t con-

cerned with the quantity of information flow between them. A single link may connect

two small world sub-networks, and thus allow only a small flow of information between

these two sub-networks whilst maintaining small-world behaviour. That is, the single

link is shared between all the nodes on one sub-network that want to communicate with

a node on the other sub-network. Although such a network may be small-world, one has

to wonder whether that single link is sufficient for all the information flows required for

solving real computational problems – certainly despite the desire to reduce wiring costs,

such connectivity patterns generally aren’t practical in VLSI. A Rentian analysis, how-

ever, is primarily concerned with the quantity and scaling of communication required,

rather than topological distance alone.

VLSI networks are known to obey both fractal Rentian behaviour and small-world

topologies [21, 97]. We should emphasise that these are mutually compatible attributes.

For VLSI, a clock tree, typically an H-tree [18], uniformly distributes clock timing in-

formation to disparate parts of the logic network, so that they can synchronise their

communication. H-trees are called thus because their basic structure consists of physical

links, in the 2D space of a VLSI chip, that look like the letter H. At each of the four ends

of the H, another H of half the size is attached at its middle, and so on, thus forming a

fractal tree of H’s. Clock trees are very expensive from both a manufacturing and power-
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Figure 9.1: Effect of adding links to network diameter and Rentian scaling. Note how the H-tree links

reduce network diameter leading to a Small-World network, and yet largely preserve the fractal Rentian

scaling properties of the underlying 2D mesh. In contrast, the random links disrupt the Rentian scaling.

consumption standpoint. The H-tree emerged as a way to achieve the goal of reducing

communication skew at leaf nodes (ensuring that the logic is globally synchronised as a

small-world), whilst keeping costs reasonable. We should point out that clock trees are

by no means the only cause for small-world topologies, and that the rest of the circuitry

may also exhibit small-world behaviour for other reasons.

In figure 9.1a we see the effect on network-diameter of adding multiple levels of an H-
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Tree versus adding random links to a 2-D mesh (not torus), resulting in a small-world

network for both types. Here, each level of the H-tree consists of four links to a central

node. In figure 9.1b we also see that the Rentian behaviour and exponent are only slightly

affected by the addition of an H-tree, whereas the random links lead to a large divergence

in the Rentian behaviour and exponent. Thus the nature of the small-world behaviour

is important in assessing its impact on Rentian scaling. In the case of random links,

the number of links cut by partitioning approximately grows by the number of nodes in

each partition, whereas in the case of the H-tree, the number of links cut is small and

approximately constant at each level of partitioning. This compares with the 2-D mesh,

where the number of links cut grows approximately by the square-root of the number of

nodes in each partition. Importantly, unlike the box-counting metric of Song [95] where

small-world properties dominate over any fractal connectivity, the small-world property

does not necessarily impact on the physical and topological measures of Rentian fractal

behaviour. It is also important to distinguish between the expected truncated power-law

distribution of physical link distances versus the potentially non-power-law nature of

topological distances, especially in small-world networks.

9.6 Results

Here we examine the results of topological Rentian partitioning, fractal box-counting

and physical Rentian scaling analyses. We then use the physical Rentian scaling results

to show how the predicted allometric scaling of the mammalian neocortex compares to

observations.

9.6.1 Topological properties

We observed good topological Rentian scaling in each of the datasets, with a clear Region

I as seen in figure 9.2. We note the general agreement between the DSI subjects in Region

I, despite deviations at the larger non-power-law Region II scale. We found that a power

law also provided a significantly better fit than other models as can be seen in figure

9.5B. The best-fit exponents pT are shown in table 9.1, along with the estimated fractal

dimensionalities D̂T (pT ) = 1/ (1 − pT ).

Given the excellent Rentian scaling seen in topological space, we decided that a box-

counting analysis was also appropriate for determining fractal dimensionality. We see in

figure 9.3 that unlike the box-counting results of software from Chapter 5, we certainly

do not see a clear power-law scaling behaviour. However, we should note that there

are far fewer nodes to work with than in Chapter 5, and recall that there are boundary

effects at both small box-sizes and small box-counts. Utilising a similar methodology



192 9.6 Results

0 1 2 3
0.5

1

1.5

2

log(partition size)

lo
g(

# 
of

 n
od

es
 in

 p
ar

tit
io

n)

VLSI

0 1 2 3
1

1.5

2

2.5

3

log(partition size)
lo

g(
# 

of
 n

od
es

 in
 p

ar
tit

io
n)

C. elegans

0 0.5 1 1.5 2
1.8

2

2.2

2.4

2.6

2.8

log(partition size)

lo
g(

# 
of

 n
od

es
 in

 p
ar

tit
io

n)

Human MRI

0 1 2 3
2

2.5

3

3.5

log(partition size)

lo
g(

# 
of

 n
od

es
 in

 p
ar

tit
io

n)
Human DSI

A B

DC

Figure 9.2: Topological Rentian scaling observed in datasets

Network Partitioning Box Counting

pT D̂T (pT ) DT

VLSI 0.73 ± 0.04 3.81 ± 1.04 4.02 ± 0.66

C. elegans 0.77 ± 0.06 4.42 ± 1.06 4.52 ± 0.49

Human MRI 0.75 ± 0.07 4.12±1.07 5.07 ± 1.58

Human DSI 1 0.78 ± 0.07 4.54 ± 1.07 4.68 ± 0.77

Human DSI 2 0.80 ± 0.06 5.06 ± 1.06 4.59 ± 0.76

Human DSI 3 0.77 ± 0.09 4.42 ± 1.08 4.56 ± 0.81

Human DSI 4 0.79 ± 0.06 4.97 ± 1.06 5.24 ± 0.39

Human DSI 5 0.79 ± 0.07 4.84 ± 1.07 4.60 ± 0.82

Human DSI 6 0.78 ± 0.08 4.73 ± 1.09 4.64 ± 0.76

Table 9.1: Topological Rentian scaling and box-counting dimensionality. Errors for pT and DT are 95%

confidence intervals.
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Figure 9.3: Box-counting measures on the topological and minimally-rewired datasets. For Human

dataset, the green dots are from MRI and the red are from DSI. The randomly-rewired dataset provided

too few points to be meaningful so are not shown here.

(a) Average distance between nodes (b) Dimension, estimated from topological Rent’s exponent, of net-

works

Figure 9.4: Comparison of observed, minimally rewired and randomly rewired network properties.

to Chapter 5, we ignore the first and last points, and measure the best-fit scaling of the

central points, to estimate a dimensionality. Remarkably, despite the lack of points, as

seen in table 9.1, there was good agreement in box-counting dimension and the estimated

dimensionality determined by topological Rentian scaling.
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Figure 9.5: Comparison of RMS errors in fit across multiple two-parameter models.

We can also compare the basic network properties of average physical distance and topo-

logical dimension between the observed, minimally-rewired and randomly-rewired net-

work, as seen in figure 9.4. Here distance is normalised by setting the average distance

of neighbouring nodes found in the dataset to be one. We note that the average distance

for the C.elegans dataset is much higher for the randomly rewired network due to the

larger inhomogeneities in the spatial distribution of nodes. We see in figure 9.4, that

the observed networks have properties that lie in-between the minimally wired and ran-

domly rewired networks, in terms of average distance and topological dimensionality.

As the size of the network increases, we would expect the random network to tend to

higher topological dimensionality, whereas the real network would largely maintain its

dimensionality, as would the minimally re-wired network.

9.6.2 Physical Rentian scaling

As seen in figure 9.6 we can also see a strong presence of physical Rentian scaling in

the biological datasets. The RMS errors for a variety of fits is shown in figure 9.5A,

where the power-law distribution is seen to have the lowest RMS fit out of the candidate

two-parameter functions.

For the case of the VLSI network, the gates were embedded in a 2-D region with a

simulated-annealing heuristic based on the TimberWolf algorithm. Unfortunately, the

results for the embedding of the VLSI network were not as optimal as has been previously

reported [100].

Examining the minimally re-wired networks in figure 9.7, we can see that the Rentian

behaviour is disrupted for C.elegans and dispersed for the other datasets. As was derived

in Chapter 6, we would expect a fixed length distribution (such as nearest neighbour)

to result in Rentian scaling of p = 1 − 1/dE for embedding dimension dE, but only in

the case of a homogeneous spatial distribution of nodes. The best-fit slopes are shown
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Figure 9.6: Observed physical Rentian scaling for the datasets

in table 9.2, and we observe that for VLSI and DSI datasets, they are close to their

expected theoretical values of 1/2 and 2/3 respectively (for a 2-D network embedded in 2-

D space, and a 3-D network embedded in 3-D space respectively). Compared to the DSI

dataset, the MRI dataset is considerably more dispersed, making slope estimation harder,

and yields a high exponent of 0.93. While the DSI and VLSI datasets have a largely

homogeneous distribution of nodes in space, the MRI and, in particular, the C.elegans

dataset have a heterogeneous distribution. It is understandable, therefore, that upon

minimally rewiring its network, the C.elegans dataset simply doesn’t appear to follow

any scaling relationship. We observe that in comparison to their minimally rewired

versions, the original four datasets in figure 9.6 have considerably tighter scaling, with a

non-trivial Rentian exponent, despite any heterogeneity in their spatial distribution. This

all points to a strong support of the Rentian-scaling hypothesis for these neurological

datasets.

Based on the physical Rentian exponents observed in the human dataset and assuming it

is representative, we can infer an expected allometric scaling exponent across all mam-

malian brains. We observe in figure 9.8, the data from Bush and Allman [19] that shows
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Figure 9.7: Scaling property of minimally re-wired networks. Rentian scaling is disrupted in C.elegans,

and dispersed in the VLSI and MRI datasets. The DSI dataset still exhibits relatively tight scaling but with

Rent’s exponent 0.68 which is close to the expected value of 2/3 for a 3-D network embedded in 3-D space.

a clear power-law scaling behaviour between white matter and grey matter in the neo-

cortex, across many orders of magnitude of mammalian brain sizes (logarithms being

in base-10 here). On top of it are plotted the expected scaling behaviour based on the

Rentian fits of the MRI and DSI datasets. We can see a very good agreement for the MRI

dataset, and a reasonably good agreement with the DSI one.

9.7 Prior work

Bieu et al. [12] also looked at the allometric scaling of white matter to grey matter, and

tried to relate this to Rent’s rule, however they appear to have misunderstood Rent’s

rule. They refer to the power-law relationship of white matter to grey matter volume as

implying the same power-law exponent for the number of connections vs. the number of

neurons (with an added linear term). They have effectively equated the volume of white

matter to the number of links, and volume of grey matter to the number of neurons.
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Network Nodes Edges Physical Topological

ρ DE p pT D̂T (pT )

Observed

VLSI 440 0.4% 2 0.901 ± 0.006 0.73 ± 0.04 3.81 ± 1.04

C. elegans 277 2.7% 2 0.74 ± 0.07 0.77 ± 0.06 4.42 ± 1.06

Human MRI 104 15% 3 0.828 ± 0.005 0.75 ± 0.07 4.12±1.07

Human DSI 1000 2.7% 3 0.782 ± 0.014 0.78 ± 0.07 4.54 ± 2.12

Randomly Rewired

VLSI 440 0.4% 2 0.927 ± 0.003 0.81 ± 0.06 5.26 ± 2.42

C. elegans 277 2.7% 2 0.805 ± 0.003 0.79 ± 0.05 4.75 ± 1.48

Human MRI 104 15% 3 0.874 ± 0.003 0.82 ± 0.06 5.55±1.06

Human DSI 1000 2.7% 3 0.925 ± 0.002 0.86 ± 0.05 7.14 ± 2.77

Minimally Rewired

VLSI 440 0.4% 2 0.509 ± 0.005 0.46 ± 0.06 1.85 ± 0.23

C. elegans 277 2.7% 2 N/A 0.43 ± 0.28 1.75 ± 1.69

Human MRI 104 15% 3 0.93 ± 0.01 0.59 ± 0.13 2.43 ± 1.13

Human DSI 1000 2.7% 3 0.68 ± 0.004 0.57 ± 0.11 2.32 ± 0.79

Table 9.2: Comparison of observed, randomly rewired and minimally rewired network properties. Errors

are 95% confidence intervals, except for the DSI dataset which includes both fit-error and variance between

subjects.

Figure 9.8: Allometric Scaling

What they have potentially neglected is a fundamental, well-known result in the appli-

cation of Rent’s rule, in that it results in a power-law growth in both the total number

of connections and in their average length [39], even though the most-prevalent inter-

connection is to immediate neighbours [40]. Instead, they have implicitly assumed that
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the average volume of a ‘connection’ remains constant, even as the neocortical volume

scales over six orders of magnitude. They, instead, propose using an ‘alternative interpre-

tation’ of Rent’s rule that merely considers the scaling of the total number of connections

(regardless of their length) as following a power-law as the number of nodes increases.

However, what they may not have realised is that the true utility of Rent’s rule lies in its

characterisation of the locality of these connections. This is important because in brains

as in VLSI, it is not merely the number of connections that matters, but the distribution

of lengths that is crucial in determining wiring costs – a property that is independent of

their ‘alternative interpretation’ of total connections alone. Their confusion may perhaps

lie with an earlier paper that introduces the alternative interpretation [66], which plugs

in the exponents fitted with this ‘alternative interpretation’ of total connections, rather

than of terminals, into length-distribution models that are wholly derived and based on

the accepted form of Rent’s rule. The original ‘alternative interpretation’ publication

then claims better predictive accuracy, despite violating the underlying assumptions of

the models these values are plugged into, to the extent that Donath’s model needs to be

‘renormalised’ to deal with negative numbers of predicted wires, and appears to provide

no justification as to why violating these assumptions is acceptable with Davis’ model.

We should further note that as of present, this ‘alternate form’ of Rent’s rule does not

appear to be utilised by other authors other than Bieu et al., and the original authors,

although it is cited by some others for altogether different reasons. Bieu et al. then claim

that the allometric power-law scaling of neocortical volumes (or as interpreted by them,

links and nodes – after accounting for a fixed proportion of white matter and grey matter

being interconnect) follows this ‘alternative interpretation’ of Rent’s rule as they believe

that it appears consistent with other types of computational networks such as Crossbars,

Cube-Connected-Cycles and Binary Hypercubes (even though these types of graphs are

actually known to not follow the accepted form of Rent’s rule). Unfortunately, this may

indicate misunderstandings by them, both of Rent’s rule and what its scaling implications

truly are [99].

Recent work by Partzsch et al. [86] also examined C.elegans for topological Rentian

scaling. They showed that its topological Rentian exponent was higher than shown here

(0.82), however they used an old spectral partitioning algorithm that, whilst in 1994

claimed to provide ‘the lowest possible p [Rent’s exponent]’ has since been supplanted

by more advanced approaches such as hMetis [62]. Indeed, hMetis was utilised by Reda

[90] in another recent paper examining topological Rentian scaling in biological systems.

Reda found that the topological Rent’s exponent in C.elegans was lower than Partzsch’s

result, and their result is consistent with both the physical Rent’s exponents reported

here (as well as the topological ones based on hMetis). To the best of our knowledge,

ours is the first work to report topological Rentian scaling in human neuronal networks

derived from neuroimaging. We also believe that ours is the first work to explore physical

Rentian scaling properties in neuronal networks.
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9.7.1 Allometric scaling derivations

A number of models have been developed by Prothero, Changizi, Zhang and Sejnowski

to try to explain the observed allometric scaling in white versus grey matter [89, 23,

115]. However, one of the main assumptions governing these models – that there are a

constant number of neurons per unit area of cortical surface, has recently been shown

to be unrealistic [55]. Moreover, the Changizi, Zhang and Sejnowski models produce

a near-perfect 4/3 scaling exponent between white matter and grey matter (the earlier

Prothero model produces an incorrect scaling exponent of close to one), and do not

allow for very different scaling exponents, such as is observed in the cerebellum [19]

and is likely to be seen in non-mammalian species. Unlike previous models, utilising

Rentian self-similarity allows us to cross-check the scaling properties within a brain with

the predicted allometric scaling across a range of mammalian species. Furthermore, it

allows for differences between the neocortex and cerebellum, and as Dr Bassett has noted

– even differences between classes of animals, such as for vertebrates and invertebrates.

9.8 Conclusion

It has been shown in this chapter, that the complete nervous systems of C.elegans, as well

as the top-level coarse-grained interconnect of human MRI and DSI neocortical datasets

exhibit both physical and topological Rentian scaling. Moreover, remarkably, the phys-

ical Rentian scaling observed within the human datasets yield good predictions for the

allometric scaling of white matter to grey matter across mammalian brains. Together,

this implies that natural evolution has employed Rentian scaling, both within brains and

across evolution, at scales of integration far beyond existing VLSI, as a means of achiev-

ing the desired functionality whilst minimising communication costs. For computational

systems, this further implies that the self-similarity of Rent’s rule is likely to continue to

govern both the scaling behaviour and internal communication properties of systems at

much larger scales than present today.
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CHAPTER TEN

CONCLUSIONS AND

FUTURE WORK

For most of the history of computing, transistors have been expensive, and wires have

been cheap. Correspondingly, when analysing costs in software the focus has been on

computational complexity, with the act of computing an instruction treated as impor-

tant, whereas the physical movement of data and instructions was of secondary impor-

tance. Thanks to technological scaling, we are entering an altogether different era, one

marked by on-chip and off-chip communication energy costs that are many orders of

magnitude larger than computational ones, and that will likely continue to get exponen-

tially worse. Crucially, at these technological scales, costs (be they in energy, latency,

congestion/wiring, area or performance) grow according to the physical distance of data

traversal, thus the old High Performance Computing tricks of using high-dimensional

topologies no longer works. Instead, the communication locality of algorithms must be

exploited and instructions and data carefully positioned in the two (for computer chips)

or three dimensions of physical space.

In a communication-centric era of CMPs with thousands of cores, it is thus crucial to

understand and exploit the locality of software. It has been shown here, that the theory

of locality in the VLSI domain of gates and wires, based on the fractal properties of

Rent’s rule, can be adapted and extended to the CMP domain of software instructions,

memory, processor cores and networks-on-chip. This thesis demonstrated experimental

evidence of both spatial and temporal Rentian locality, as well as fractal dimensional

properties, over a range of benchmarks applications (comprising PARSEC, SPLASH-2

and MiBench suites), with good predictions of hop-length distributions for the CMP

domain, and of the expected Rentian relationship between temporal-access times and

their Rent’s exponent.

In the Network-on-Chip domain, Rentian locality was shown to lead to considerably

better technological scaling in traffic – in line with ordinary VLSI growth trends, com-

pared to the unacceptably large growth of commonly used non-local (uniformly random

and transpose) traffic models. It was also demonstrated how the hop-length distribution

201



202

from the Rentian, exponential and uniform-random models could be used to analytically

assess alternate designs for properties such as the expected distribution of routing types

required, for fault-tolerance characterisation, and even for congestion analysis. Indeed,

the type of traffic model was shown to result in large differences for some of these prop-

erties, with the Rentian traffic model performing better under most measures, but not

all.

Early in the thesis, Rent’s rule was generalised from the VLSI domain of wires and gates,

to the Network-on-Chip domain of packets, however it was still desirable to generalise

beyond this to a domain where instructions, themselves, are placed both spatially across

many cores and temporally. Here, communication between such instructions are routed

not just spatially, but spatio-temporally, through both a NoC and on-chip/external mem-

ory. For this purpose, results were proven allowing Rent’s rule to be applied to arbitrary

finite-dimensional vector spaces, and then to configuration spaces, including the spatio-

temporal domain of software running on CMPs. In fact, it was this Spatio-Temporal

Rentian model for CMPs that was used to test for existing experimental evidence of

Rentian locality in multicore benchmarks.

The Rentian model of software locality was shown to have many interesting and sur-

prising implications for computer architecture and software. Employing interdependent

parallelism between cores results in greatly reduced external I/O bandwidth requirements

over the independent parallelism approaches such as simple vector-parallelism, thread-

level speculation or current practice of largely independent threaded-parallelism. At the

thousand-core era, and for sufficiently large working sets, this I/O reduction was shown

to be comparable to that of a thousand fold increase in on-chip memory. Surprisingly,

the model also showed an increasing need to move to finer-grain interdependent commu-

nication between cores to alleviate external I/O bandwidth demands. Under external-I/O

dominated constraints, it also gave results on how best to balance the chip area between

the number of cores and on-chip memory, with technological scaling. A model of a

‘perfect’ on-chip memory was also introduced, that placed an upper-bound on the per-

formance of any scratchpad memory. Surprisingly, even a perfect memory still showed

the power-law scaling ‘miss’ behaviour of caches, albeit with a better scaling exponent.

Moving from computer architecture to the software itself, it was shown that algorithms

may be analysed directly for Rentian parameters from first-principles, in addition to the

experimental characterisation seen earlier. However, there was a practical problem raised

about preserving Rentian scaling for software, in that optimally embedded algorithms

that are Rentian, may not themselves compose optimally, resulting in more non-local

communication, and thus potentially disrupting Rentian scaling. This strict optimality

turned out not to be practically important for Rentian scaling, as it was shown that algo-

rithms can be embedded in a composable/decomposable modular fashion, with random

or even worst-case communication at each local level of the hierarchy, whilst preserv-

ing the global Rentian scaling properties. This means that global Rentian properties

in software can be realised practically, in a modular, composable fashion. This thesis
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further examined how Rentian properties of an algorithm affect the lower bounds for

the spatial communication that is implicit in any memory accesses. Together with the

architectural analysis, the analytical Rentian models allow one to characterise the total

expected asymptotic cost of both spatial and temporal communication for algorithms,

including for memory accesses and external I/O.

Finally, in considering scales of parallel computation beyond existing technology, the

brain was examined as a proof-of-existence. It was shown that Rentian scaling is seen

in the complete nervous systems of the nematode worm, and for course-grain maps of

the human neocortex extracted by neuroimaging. Moreover, the Rentian scaling within

the human neocortex was shown to give good predictions for the allometric scaling of

white-matter to grey-matter across mammalian neocortices. For the computing domain,

this suggests that Rentian scaling is likely to continue to govern communication in com-

putation at far larger scales of integration than seen today.

10.1 Future Work

There are many promising directions that this research opens up. It is likely that many

more techniques from the VLSI arena could be adapted for the CMP software domain,

in areas of placement, routing and analysis, not just spatially but even temporally - such

as spatio-temporal Steiner trees for distributed and high fanout communication. We

saw evidence, in Chapter 5, of heterogeneous Rentian behaviour for the complex lame

benchmark, and although the analysis here assumed homogeneous Rentian behaviour,

the theory should be extendable to heterogeneous, time-varying Rent’s exponents corre-

sponding to different phases of execution, and even to scale-varying Rent’s exponents,

where different levels of the hierarchy may exhibit different Rent’s exponents.

The derivations for Chapter 7 assumed a simple scalar structure of processing in CMPs,

however, more general structures are easily accommodated such as for superscalar pro-

cessors, which allow extremely fine-grain communication between instructions on exe-

cution units within the same core. These could capture more detailed cost functions of

communication within core, versus inter-core. Further exploration could also be made

in quantitatively characterising cache models versus the ideal Rentian memory model.

Alternate cost models could be used to explore the impact of different network-on-chip

topologies. Together, these motivate a direct analytical exploration of many architectural

design decisions in a CMP.

Noting that the analysis of allometric scaling presented in Chapter 9 was solely for the

mammalian neocortex, it would be very interesting to validate the predicted allometric

scaling on the cerebellum as well, where it is known to have a different allometric scaling

exponent. Excitingly, the generalisation of Rent’s rule in Chapter 6 also opens up the pos-

sibility of exploring Rentian scaling in many non-computing or biological systems where

physical position matters, such as in human interaction networks (related to epidemic
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networks) as noted in that chapter, but also in genetic regulatory networks, transporta-

tion networks, consumption, supply-chain and organisational networks – among many

others. In short, it is hoped that this work will inspire others to also apply Rentian

locality to perhaps predict interactions in the physical world around them.



BIBLIOGRAPHY

[1] The SPLASH-2 programs: Characterization and methodological considerations.

ACM, 1995.

[2] The PARSEC Benchmark Suite: Characterization and Architectural Implications,

October 2008.

[3] M. Abeles. Corticonics: Neural Circuits of the Cerebral Cortex. Cambridge Uni-

versity Press, 1991.

[4] A. Aggarwal, B. Alpern, A. Chandra, and M. Snir. A model for hierarchical mem-

ory. In STOC ’87: Proceedings of the nineteenth annual ACM symposium on

Theory of computing, pages 305–314, New York, NY, USA, 1987. ACM.

[5] D. Attwell and S. B. Laughlin. An energy budget for signaling in the grey matter

of the brain. J Cereb Blood Flow Metab, 21(10):1133–1145, Oct 2001.

[6] R. Bagrodia, Mineo Takai, Yu an Chen, Xiang Zeng, and Jay Martin. Parsec: A

parallel simulation environment for complex systems. IEEE Computer, 31:77–85,

1998.

[7] Arnab Banerjee, Pascal T. Wolkotte, Robert D. Mullins, Simon W. Moore, and

Gerard J. M. Smit. An energy and performance exploration of network-on-chip

architectures. IEEE Trans. Very Large Scale Integr. Syst., 17(3):319–329, 2009.

[8] Nick Barrow-Williams, Christian Fensch, and Simon Moore. A communication

characterization of SPLASH-2 and PARSEC. In Proceedings of the 2009 Interna-

tional Symposium on Workload Characterization, October 2009.

[9] Nick Barrow-Williams, Christian Fensch, and Simon Moore. Proximity coherence

for chip-multi processors. In Proceedings of the 2010 International Conference on

Parallel Architectures and Compilation Techniques, 2010.

[10] P. J. Basser. Cable equation for a myelinated axon derived from its microstructure.

Med Biol Eng Comput, 31 Suppl:S87–S92, Jul 1993.

[11] Danielle S Bassett, Edward Bullmore, Beth A Verchinski, Venkata S Mattay,

Daniel R Weinberger, and Andreas Meyer-Lindenberg. Hierarchical organization

of human cortical networks in health and schizophrenia. J Neurosci, 28(37):9239–

9248, Sep 2008.

[12] V. Beiu and W. Ibrahim. Does the brain really outperform Rent’s rule? pages

640–643, May 2008.

205



206 BIBLIOGRAPHY

[13] Gianfranco Bilardi, Carlo Fantozzi, Andrea Pietracaprina, and Geppino Pucci. On

the effectiveness of D-BSP as a bridging model of parallel computation. In In

Proceedings of the International Conference on Computer Science, LNCS 2074,

pages 579–588. Springer-Verlag, 2001.

[14] Gianfranco Bilardi and Franco P. Preparata. Horizons of parallel computation.

Journal of Parallel and Distributed Computing, 27:172–182, 1993.

[15] Gianfranco Bilardi and Franco P. Preparata. Lower bounds to processor-time

tradeoffs under bounded-speed message propagation. In WADS ’95: Proceed-

ings of the 4th International Workshop on Algorithms and Data Structures, pages

1–12, London, UK, 1995. Springer-Verlag.

[16] F. Brglez, D. Bryan, and K. Kozminski. Combinational profiles of sequential

benchmark circuits. pages 1929 –1934 vol.3, may 1989.

[17] Dirk Brockmann, Lars Hufnagel, and Theo Geisel. The scaling laws of human

travel. Nature, 439:462–465, 2006.

[18] J. Burkis. Clock tree synthesis for high performance ASICs. Sep 1991.

[19] Eliot C Bush and John M Allman. The scaling of white matter to gray matter in

cerebellum and neocortex. Brain Behav Evol, 61(1):1–5, 2003.

[20] A.E. Caldwell, Yu Cao, Andrew B. Kahng, F. Koushanfar, Hua Lu, I.L. Markov,

M. Oliver, D. Stroobandt, and D. Sylvester. GTX: the MARCO GSRC technology

extrapolation system. In 37th Design Automation Conference, pages 693–698,

June 5-9, 2000.

[21] R. F. Cancho, C. Janssen, and R. V. Solé. Topology of technology graphs: small

world patterns in electronic circuits. Physical review. E, Statistical, nonlinear, and

soft matter physics, 64(4 Pt 2), October 2001.

[22] Lynn Elliot Cannon. A cellular computer to implement the kalman filter algorithm.

PhD thesis, Bozeman, MT, USA, 1969.

[23] M. A. Changizi. Principles underlying mammalian neocortical scaling. Biol Cy-

bern, 84(3):207–215, Mar 2001.

[24] Bernard Chazelle and Louis Monier. A model of computation for vlsi with related

complexity results. Journal of the ACM, 32:573–588, 1985.

[25] Chun-Lung Chen and Ge-Ming Chiu. A fault-tolerant routing scheme for meshes

with nonconvex faults. Parallel and Distributed Systems, IEEE Transactions on,

12(5):467–475, May 2001.

[26] A.A. Chien and Jae H. Kim. Planar-adaptive routing: Low-cost adaptive networks

for multiprocessors. In Computer Architecture, 1992. Proceedings., The 19th

Annual International Symposium on, pages 268–277, May 19-21, 1992.



BIBLIOGRAPHY 207

[27] Y. Choe, B.H. McCormick, and W. Koh. Network connectivity analysis on the

temporally augmented C. elegans web: A pilot study. Society of Neuroscience

Abstracts 30:921.9., 2004.

[28] C. K. Chow. Determination of cache’s capacity and its matching storage hierarchy.

IEEE Trans. Comput., 25(2):157–164, 1976.

[29] P. Christie and D. Stroobandt. The interpretation and application of Rent’s rule.

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, 8(6):639–

648, Dec. 2000.

[30] Aaron Clauset, Cosma Rohilla Shalizi, and M. E. J. Newman. Power-law distri-

butions in empirical data. SIAM Review, 51(4):661–703, 2009.

[31] G. Concas, M.F. Locci, M. Marchesi, S. Pinna, and I. Turnu. Fractal dimension in

software networks. EPL (Europhysics Letters), 76(6):1221–1227, 2006.

[32] David Culler, Richard Karp, David Patterson, Abhijit Sahay, Klaus Erik Schauser,

Eunice Santos, Ramesh Subramonian, and Thorsten Von Eicken. Logp: Towards

a realistic model of parallel computation. pages 1–12, 1993.

[33] A Meyer-Lindenberg D. Weinberger S.W. Moore E Bullmore D. Bassett,

D.L. Greenfield. Efficient physical embedding of topologically complex informa-

tion processing networks in brains and computer circuits. PLoS Computational

Biology, April 2010.

[34] W. J. Dally. Computer architecture is all about interconnect. In HPCA Panel,

February 2002.

[35] William J. Dally and Brian Towles. Route packets, not wires: On-chip intercon-

nection networks. In Design Automation Conference, pages 684–689, 2001.

[36] J.A. Davis, V.K. De, and J.D. Meindl. A stochastic wire-length distribution for

gigascale integration (gsi). i. derivation and validation. Electron Devices, IEEE

Transactions on, 45(3):580 –589, mar 1998.

[37] R.P. Dick, D.L. Rhodes, and W. Wolf. TGFF: task graphs for free. In Hard-

ware/Software Codesign, 1998. (CODES/CASHE ’98) Proceedings of the Sixth

International Workshop on, pages 97–101, 15-18 March 1998.

[38] Rajeev K. Dokania and Alyssa B. Apsel. Analysis of challenges for on-chip optical

interconnects. In ACM Great Lakes Symposium on VLSI, pages 275–280, 2009.

[39] W. Donath. Placement and average interconnection lengths of computer logic.

Circuits and Systems, IEEE Transactions on, 26(4):272 – 277, Apr 1979.

[40] W. E. Donath. Wire length distribution for placements of computer logic. In IBM

Journal of Research and Development, VLSI Circuit Design, volume 25, page 152,

1981.



208 BIBLIOGRAPHY

[41] D.K. Ferry and W. Porod. Interconnections and architecture for ensembles of

microstructures. Superlattices and Microstructures, 2(1):41 – 44, 1986.

[42] Steven Fortune and James Wyllie. Parallelism in random access machines. In

STOC ’78: Proceedings of the tenth annual ACM symposium on Theory of com-

puting, pages 114–118, New York, NY, USA, 1978. ACM.

[43] G.C. Fox. The Use of Physics Concepts in Computation, NPAC Technical Report

SCCS-237 in Computation: the Micro and Macro View. World Scientific, River

Edge, NJ, 1992.

[44] Stephen Furber and Andrew Brown. Biologically-inspired massively-parallel ar-

chitectures - computing beyond a million processors. International Conference on

Application of Concurrency to System Design, 0:3–12, 2009.

[45] D. Greenfield, A. Banerjee, J.-G. Lee, and S. Moore. Implications of Rent’s rule

for NoC design and its fault-tolerance. In Proc. First International Symposium on

Networks-on-Chip NOCS 2007, pages 283–294, 2007.

[46] M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin, T. Mudge, and R.B. Brown.

MiBench: A free, commercially representative embedded benchmark suite. In

Proc. WWC-4 Workload Characterization 2001 IEEE International Workshop

on, pages 3–14, 2 Dec. 2001.

[47] Patric Hagmann, Leila Cammoun, Xavier Gigandet, Reto Meuli, Christopher J

Honey, Van J Wedeen, and Olaf Sporns. Mapping the structural core of human

cerebral cortex. PLoS Biol, 6(7):e159, Jul 2008.

[48] M. Hamdi and S.W. Song. On embedding various networks into the hypercube us-

ing matrix transformations. Parallel Processing Symposium, International, 0:650,

1996.

[49] A. Hartstein, V. Srinivasan, T. R. Puzak, and P. G. Emma. Cache miss behavior: is

it sqrt 2? In CF ’06: Proceedings of the 3rd conference on Computing frontiers,

pages 313–320, New York, NY, USA, 2006. ACM.

[50] Mikhail Haurylau, Associate Member, Guoqing Chen, Hui Chen, Jidong Zhang,

Nicholas A. Nelson, Student Member, David H. Albonesi, Senior Member, and

Eby G. Friedman. Optical interconnect roadmap: challenges and critical direc-

tions. IEEE J. Sel. Top. Quantum Electron. (2006), 40:434–446, 2005.

[51] Erno Salminen Heikki Orsila, Tero Kangas and Timo D. Hamalainen. Parameter-

izing simulated annealing for distributing task graphs on multiprocessor SoCs. In

International Symposium on System-on-Chip 2006, Tampere, Finland, pages pp.

73–76, November 2006.

[52] Wim Heirman, Joni Dambre, Dirk Stroobandt, and Jan Van Campenhout. Rent’s

rule and parallel programs: characterizing network traffic behavior. In SLIP ’08:



BIBLIOGRAPHY 209

Proceedings of the 2008 international workshop on System level interconnect pre-

diction, pages 87–94, New York, NY, USA, 2008. ACM.

[53] Jim Held, Jerry Bautista, and Sean Koehl. From a few cores to many: A tera-scale

computing research overview. Technical report, 2006.

[54] Richard S. Hemmert. Poisson process and integrated circuit yield prediction. Solid-

State Electronics, 24(6):511 – 515, 1981.

[55] Suzana Herculano-Houzel, Christine E Collins, Peiyan Wong, Jon H Kaas, and

Roberto Lent. The basic nonuniformity of the cerebral cortex. Proc Natl Acad Sci

U S A, 105(34):12593–12598, Aug 2008.

[56] Mark D. Hill and Michael R. Marty. Amdahlś law in the multicore era. IEEE
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A
APPENDIX A

SPATIAL SCALING: CMP
SOFTWARE

The following plots for SPLASH-2 and PARSEC benchmark applications show the band-

width versus node distribution on the left, followed by the hop-distributions on the right.

These are based on shared-memory traces by Barrow-Williams et al [8] running on a 32-

core CMP Simics-based simulator [73].

The spatial placement is done by a simulated annealing algorithm, implemented by the

author. Its only goal is to minimise aggregate bandwidth (i.e. sum of all communication

bandwidths weighted by the distance of the communication).

The left-hand side plots show multiple two-free-parameter models fitted to the data. The

right-hand side shows the predicted distance distributions for the generalised uniform

and spatio-temporal Rentian models based on the fit on the left-hand-side plots. These

are the only two models that have associated distance-distribution predictions.

The benchmarks are sorted according to the fitted spatio-temporal Rent’s exponent. This

means they should be sorted from greatest (predicted) locality to least (predicted) locality.
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APPENDIX B

FRACTAL

DIMENSIONALITY:
MIBENCH SOFTWARE

The following plots for MiBench benchmark applications show the box-counting scaling

behaviour for the data-dependency graph of 100,000 contiguous instructions. A method

adapted from Concas et al [31], itself based on the work of Song et al [95] was used for

doing the incremental box-counting.

All plots are in log-log form for power-law fitting. Two benchmark graphs (tiff2bw and

susan.smoothing) are not shown as they failed box-counting analysis, due to small-world

behaviour. Indeed, there are important differences between box-counting dimension and

the Rentian dimensionality, especially when it concerns small-world networks. See the

discussion in Chapter 9 for more details.

ix
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C
APPENDIX C

TEMPORAL SCALING:
MIBENCH SOFTWARE

The following plots for MiBench benchmark applications show the scaling behaviour for

2 million instructions of their data-dependency graphs. The meaning of ‘placement’ here

is the actual instruction execution position in time – so the first instruction has position

one and the last has instruction position two-million. The communication graph is then

segmented approximately equally in time into eight regions starting from segment 1, and

ending at segment 8, and these are labelled separately within each plot. The Rentian

scaling properties of ‘terminals’ (cut hyper-edges) to nodes (instructions) is shown on the

left. The scaling of the distance distribution of accesses is shown on the right hand side.

Some correspondence between the Rent’s exponent and the distance distribution can be

observed. Although the fits are not ideal, with unknown boundaries of Region II effects,

most of these have the distance distribution slope about ∼ p̂− 2, where p̂ is the slope of

the Rentian fit, except for those with truncated distance distributions (last points ending

at an average frequency of about one or more instead of fractional average frequencies

of less than one).

All plots are in log-log form for power-law fitting. Distance distribution frequencies are

logarithmically binned. A shallower distance distribution slope implies less locality, as it

means there is more communication at further distances. For Rentian distributions, there

is a limiting value in the slope of −1 which corresponds to unbounded dimensionality

in the communication graph’s connectivity. One-dimensional graphs (serial communica-

tion) have a limiting-case distance distribution slope of −2, or steeper. For the Rentian

plots on the left, the size of the cross corresponds to the degeneracy (number of identical

samples) at that sample point.

We should note that all fits are over the entire data-range, and therefore may include

Region II effects that may alter the values of the slopes.
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Distance distribution of data-dependency graph: susan.smoothing

(1) slope=-1.558
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Terminal vs node scaling of data-dependency graph: tiff2bw

(1) slope=0.603
(2) slope=0.641
(3) slope=0.597
(4) slope=0.620
(5) slope=0.639
(6) slope=0.638
(7) slope=0.644
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Distance distribution of data-dependency graph: tiff2bw

(1) slope=-1.587
(2) slope=-1.236
(3) slope=-1.237
(4) slope=-1.238
(5) slope=-1.234
(6) slope=-1.234
(7) slope=-1.240
(8) slope=-1.240



Appendix C Temporal Scaling: MiBench Software xix

 1

 10

 100

 1000

 10000

 1  10  100  1000  10000  100000  1e+06

N
um

be
r 

of
 te

rm
in

al

Number of nodes (instructions)

Terminal vs node scaling of data-dependency graph: tiff2rgba

(1) slope=0.437
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(6) slope=0.591
(7) slope=0.652
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Distance distribution of data-dependency graph: tiff2rgba

(1) slope=-1.361
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Terminal vs node scaling of data-dependency graph: tiffdither

(1) slope=0.700
(2) slope=0.721
(3) slope=0.729
(4) slope=0.720
(5) slope=0.731
(6) slope=0.723
(7) slope=0.727
(8) slope=0.691

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1  10  100  1000  10000  100000  1e+06

F
re

qu
en

cy
 o

f l
in

k 
di

st
an

ce

Link distance in instructions

Distance distribution of data-dependency graph: tiffdither

(1) slope=-1.348
(2) slope=-1.411
(3) slope=-1.483
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(7) slope=-1.481
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Terminal vs node scaling of data-dependency graph: typeset

(1) slope=0.512
(2) slope=0.493
(3) slope=0.546
(4) slope=0.472
(5) slope=0.553
(6) slope=0.527
(7) slope=0.528
(8) slope=0.533
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Distance distribution of data-dependency graph: typeset

(1) slope=-1.487
(2) slope=-1.548
(3) slope=-1.557
(4) slope=-1.609
(5) slope=-1.520
(6) slope=-1.557
(7) slope=-1.616
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D
APPENDIX D

PARTITIONED SCALING:
MIBENCH SOFTWARE

The following plots for MiBench benchmark applications show the scaling behaviour

for 2 million instructions of their data-dependency graphs. The ‘partitioning’ here uses

hMetis [62] which tries to find a min-cut bisection of the communication graph using

hyper-edges. This is done recursively for sixteen levels. The top three levels of bisection

form eight regions which are labelled segment 1 to segment 8, which although tend to

also correspond to eight near-contiguous temporal segments, do not necessarily do so.

These labels are shown within each plot. The Rentian scaling properties of ‘terminals’

(cut hyper-edges) to nodes (instructions) is shown on the left. The scaling of the distance

distribution of accesses is shown on the right hand side.

The distance distribution here, as in the previous chapter, uses the actual instruction

time distances but using the partitioning found by hMetis. We should perhaps note that

the min-cut problem is actually NP-complete, and hMetis is using heuristic approaches

and annealing to achieve its result. As such hMetis is not guaranteed to find a minimal

partitioning. One would hope that it could do better than the existing embedding of

instructions in time from the previous chapter, but this is not necessarily the case.

All plots are in log-log form for power-law fitting. Distance distribution frequencies are

logarithmically binned. A shallower distance distribution slope implies less locality, as it

means there is more communication at further distances. For Rentian distributions, there

is a limiting value in the slope of −1 which corresponds to infinitely large dimensionality

in the communication graph’s connectivity. One-dimensional graphs (serial communica-

tion) have a limiting-case distance distribution slope of −2, or steeper. For the Rentian

plots on the left, the size of the cross corresponds to the degeneracy (number of identical

samples) at that sample point.

We should note that all fits are over the entire data-range, and therefore may include

Region II effects that may alter the values of the slopes.
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Terminal vs node scaling of data-dependency graph: adpcmdec
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Distance distribution of data-dependency graph: adpcmdec

(1) slope=-1.840
(2) slope=-1.741
(3) slope=-1.528
(4) slope=-1.716
(5) slope=-2.228
(6) slope=-1.750
(7) slope=-1.825
(8) slope=-1.797

 1

 10

 100

 1000

 10000

 1  10  100  1000  10000  100000  1e+06

N
um

be
r 

of
 te

rm
in

al

Number of nodes (instructions)

Terminal vs node scaling of data-dependency graph: adpcmenc

(1) slope=-0.145
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Distance distribution of data-dependency graph: adpcmenc
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Terminal vs node scaling of data-dependency graph: basicmath

(1) slope=-0.008
(2) slope=0.067
(3) slope=0.050
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Distance distribution of data-dependency graph: basicmath

(1) slope=-1.712
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Terminal vs node scaling of data-dependency graph: bitcount

(1) slope=0.013
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(3) slope=-0.034
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Distance distribution of data-dependency graph: bitcount

(1) slope=-2.985
(2) slope=-3.135
(3) slope=3.108

(4) slope=-4.215
(5) slope=-3.726
(6) slope=-3.130
(7) slope=-4.162
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Terminal vs node scaling of data-dependency graph: blowfish

(1) slope=0.211
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(3) slope=0.236
(4) slope=0.172
(5) slope=0.220
(6) slope=0.195
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Distance distribution of data-dependency graph: blowfish
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Terminal vs node scaling of data-dependency graph: CRC32

(1) slope=0.126
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Distance distribution of data-dependency graph: CRC32
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Terminal vs node scaling of data-dependency graph: dijkstra

(1) slope=0.715
(2) slope=0.715
(3) slope=0.714
(4) slope=0.715
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(7) slope=0.750
(8) slope=0.746

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1  10  100  1000  10000  100000  1e+06

F
re

qu
en

cy
 o

f l
in

k 
di

st
an

ce

Link distance in instructions

Distance distribution of data-dependency graph: dijkstra

(1) slope=-1.407
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(3) slope=-1.399
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Terminal vs node scaling of data-dependency graph: FFT.4

(1) slope=0.172
(2) slope=0.132
(3) slope=0.069
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(5) slope=0.628
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Distance distribution of data-dependency graph: FFT.4

(1) slope=-1.838
(2) slope=-1.905
(3) slope=-1.650
(4) slope=-1.651
(5) slope=-1.458
(6) slope=-1.505
(7) slope=-1.481
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Terminal vs node scaling of data-dependency graph: gsmdec

(1) slope=0.281
(2) slope=0.279
(3) slope=0.296
(4) slope=0.268
(5) slope=0.244
(6) slope=0.254
(7) slope=0.269
(8) slope=0.249

 1e-06

 0.0001

 0.01

 1

 100

 10000

 1e+06

 1  10  100  1000  10000  100000  1e+06

F
re

qu
en

cy
 o

f l
in

k 
di

st
an

ce

Link distance in instructions

Distance distribution of data-dependency graph: gsmdec
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Terminal vs node scaling of data-dependency graph: gsmenc

(1) slope=0.554
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Distance distribution of data-dependency graph: gsmenc
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Terminal vs node scaling of data-dependency graph: lame

(1) slope=0.337
(2) slope=0.320
(3) slope=0.326
(4) slope=0.314
(5) slope=0.508
(6) slope=0.450
(7) slope=0.446
(8) slope=0.319

 1e-08

 1e-06

 0.0001

 0.01

 1

 100

 10000

 1e+06

 1  10  100  1000  10000  100000  1e+06

F
re

qu
en

cy
 o

f l
in

k 
di

st
an

ce

Link distance in instructions

Distance distribution of data-dependency graph: lame
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(2) slope=-1.727
(3) slope=-1.767
(4) slope=-1.744
(5) slope=-1.406
(6) slope=-1.388
(7) slope=-1.516
(8) slope=-1.874

 1

 10

 100

 1000

 10000

 1  10  100  1000  10000  100000  1e+06

N
um

be
r 

of
 te

rm
in

al

Number of nodes (instructions)

Terminal vs node scaling of data-dependency graph: Linpack
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Distance distribution of data-dependency graph: Linpack
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(2) slope=-1.761
(3) slope=-1.634
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Terminal vs node scaling of data-dependency graph: ls

(1) slope=0.647
(2) slope=0.644
(3) slope=0.656
(4) slope=0.651
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Distance distribution of data-dependency graph: ls
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Terminal vs node scaling of data-dependency graph: patricia
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Distance distribution of data-dependency graph: patricia
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Terminal vs node scaling of data-dependency graph: qsort
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Distance distribution of data-dependency graph: qsort

(1) slope=-1.771
(2) slope=-1.767
(3) slope=-1.829
(4) slope=-1.760
(5) slope=-1.770
(6) slope=-1.756
(7) slope=-1.632
(8) slope=-1.755

 1

 10

 100

 1000

 10000

 1  10  100  1000  10000  100000  1e+06

N
um

be
r 

of
 te

rm
in

al

Number of nodes (instructions)

Terminal vs node scaling of data-dependency graph: rijndael
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Distance distribution of data-dependency graph: rijndael
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Terminal vs node scaling of data-dependency graph: sha
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Distance distribution of data-dependency graph: sha
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Terminal vs node scaling of data-dependency graph: susan.corner
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Distance distribution of data-dependency graph: susan.corner
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Terminal vs node scaling of data-dependency graph: susan.smoothing
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APPENDIX E

SPATIO-TEMPORAL

RENTIAN MODEL:
32-CORE SYSTEM

This section provides more detail on the Spatio-Temporal Rentian model utilised in

Chapter 5 (section 5.2). In Chapter 7, a Spatio-Temporal Rentian model was examined

for an L×L configuration of cores. For the 32-core system, this is instead accommodated

by an arrangement of 6 × 6 with the four corners unoccupied. This alters the function

D (lS) - the number of spatial links of length lS which can instead be numerically cal-

culated from this configuration. We then have the unnormalised configuration volume

reachable at exactly distance r as:

Q (r) ≡
r
∑

k=0

D (k) .

The unnormalised, total configuration volume reachable within distance q is then:

R (q) ≡
q
∑

r=0

Q (r) .

The spatial bandwidth is calculated based on the number of cores. First, each node is

taken as a seed node, then all nodes within a distance k of the seed node are counted as

a region of S nodes. The bandwidth for this region of S nodes is given by the amount

of communication from within the S nodes to outside the S nodes, which results in a

weighted sum of powers of the configuration volume. There may be many such regions

of size S nodes, so the average is taken. The expected amount of traffic between two

spatial nodes i and j is given by a weighted sum of the configuration volume:

b
∑

k

λi,j,kV
p−1
k ,

where b is the average bandwidth per node. Let dij be the distance between nodes i and

j. Then λi,j,k is:
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λi,j,k =















0 , k < dij − 1
D(di,j)

Q(dij)
, k = dij − 1

D(di,j)

Q(k+1)
− D(di,j)

Q(k)
, dij ≤ k

With this configuration of 32 nodes, each node is reachable from every other node within

8 steps, so ∀k > 8 : Q (k) = Q (8), trivially resulting in λi,j,k = 0. For the set of N nodes

we have configuration volumes:

Vk =
1

|N |R (k) .

Let Ns be the set of regions with size of exactly s nodes (found by setting each node

as a seed node). Then averaging over all regions S ∈ Ns and summing over all nodes

i ∈ S, j ∈ N \ S, the bandwidth Bs (b, p) as a function of the average bandwidth b and

spatio-temporal Rent’s exponent p is:

Bs (b, p) = b
∑

k





1

|Ns|
∑

S∈Ns

∑

i∈S

∑

j∈N\S
λi,j,k



V p−1
k .

We factor-out the parameter ξs,k as:

ξs,k =
1

|Ns|
∑

S∈Ns

∑

i∈S

∑

j∈N\S
λi,j,k,

thus simplifying as:

Bs (b, p) = b
∑

k

ξs,kV
p−1
k .

The best-fit is done in the logarithmic domain, which is:

log (Bs (b, p)) = log b+ log

(

∑

k

ξs,kV
p−1
k

)

,

with partial derivatives:

∂ log (Bs (b, p))

∂b
=

1

b

∂ log (Bs (b, p))

∂p
=

∑

k ξs,kV
p−1
k log Vk

∑

k ξs,kV
p−1
k

.

We can then use Levenberg-Marquardt to fit this model to the experimental data.
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APPENDIX F

SOURCE CODE FOR

NUMERICAL EVALUATION

OF SPATIO-TEMPORAL

RENTIAN MODEL

Efficient numerical evaluation of the Spatio-Temporal Rentian model, as used in Chap-

ter 7 is non-trivial, as the calculation spans many orders of magnitude that need to be

successively approximated by integration. Thus the C++ source code is included below

to help the reader.

RentianModel.cc

/*

* This program calculates the memory and I/O bandwidth requirements

* using the Spatio-Temporal Rentian Model, given a side-length L of a square

* arrangement of nodes, Rent’s exponent and effective spatial cost psi.

* Communication between nodes is as a 2-D mesh with simple Manhattan metric.

* The number of nodes is N=L*L.

*

* Command-line usage: RentianModel [L] [p] [psi]

*/

#include <iostream>

#include <math.h>

#define ERROR_TOLERANCE 0.0001

/* STRETCH specifies how many times further out to *directly* calculate beyond

* the critical volume where each node can reach every other node. Beyond

* this region, integration is used to approximate further, and the contribution

* of the top ’cone’ is neglected as negligible.

*/

#define STRETCH 100

#define MAX_MEM 2e10
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using namespace std;

/*

* D(ls, L) returns number of links with spatio-temporal distance ls for

* side-length L

*/

double D(int _ls, int _L) {

double ls = _ls;

double L = _L;

if (_ls==0)

return L*L;

if (_ls<_L)

return ls*(ls*ls-1.0+6.0*L*(L-ls))*2.0/3.0;

if (_ls<=2*_L)

return (2.0*L-ls+1.0)*(2.0*L-ls)*(2.0*L-ls-1.0)*2.0/3.0;

return 0.0;

}

/*

* Q(r, L) returns non-normalised configuration volume reachable exactly at

* distance r

*/

double Q(int _r, int _L) {

double r = _r;

double L = _L;

double r2 = r*r;

double r3 = r2*r;

double r4 = r2*r2;

double L2 = L*L;

double L3 = L2*L;

double L4 = L2*L2;

if (_r < _L)

return (6.0*L2-2.0*r-4.0*L*r+12.0*L2*r-r2-12.0*L*r2

+12.0*L2*r2+2.0*r3-8.0*L*r3+r4)/6.0;

if (_r < 2*_L)

return (-4.0*L+4.0*L2+16.0*L3-10.0*L4+2.0*r-4.0*L*r-24.0*L2*r

+32.0*L3*r+r2+12.0*L*r2-24.0*L2*r2-2.0*r3+8.0*L*r3-r4)/6.0;

else return L4;

}

double *prob; // Array of probabilities per ’era’

double *wprob; // Array of length-weighted probabilities per ’era’

int critVal = 0; // Critical value where integral approximation is within

// ERROR_TOLERANCE of the summation

/*

* Returns the weighted sum: Sum[((a+x)^(p-1)-(a+x+1)^(p-1))*x,{x,c,d}]

*/

double calcWeightedSum(double a, int c, int d, double p) {

double sum = 0.0;

for (int x=c; x<=d; ++x) {

if (x!=0) {

sum += (pow(a+x,p-1.0)-pow(a+x+1.0,p-1.0))*x;

}
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}

return sum;

}

/*

* Approximates the calcWeightedSum function using an integral

* returns Integral[((a+x)^(p-1)-(a+x+1)^(p-1))*x,{x,c-0.5,d+0.5}]

*/

double calcWeightedIntegral(double a, double _c, double _d, double p) {

double c = _c-0.5;

double d = _d+0.5;

return (pow(a+c,p)*(a-c*p)-pow(1.0+a+c,p)*(1.0+a-c*p)

+pow(1.0+a+d,p)*(1.0+a-d*p)+pow(a+d,p)*(-a+d*p))/(p*(1.0+p));

}

/*

* Uses calcWeightedIntegral, calcWeightedSum, or a linear combination of both

* to come up with a fast approximation of calcWeightedSum that is within

* ERROR_TOLERANCE of the correct value.

*/

double calcWeightedHybrid(double a, double c, double d, double p) {

if (a+(double)c > (double)critVal)

return calcWeightedIntegral(a, c, d, p);

if (a+(double)d <= (double)critVal)

return calcWeightedSum(a, round(c), round(d), p);

return calcWeightedSum(a, round(c), round(critVal-a), p)

+ calcWeightedHybrid(a, round(critVal-a+1.0), round(d), p);

}

/*

* Finds the transition point for when the sum can be replaced with the

* integral and be within ERROR_TOLERANCE of the correct value.

*/

int findCriticalTransition(double p) {

// the the value of ’l’ for which thereafter it is within .1% error

int a_x=1;

while (true) {

double X = calcWeightedIntegral(a_x, 0, 0, p);

double Y = calcWeightedSum(a_x, 0, 0, p);

double rel = 1.0-X/Y;

if (rel < ERROR_TOLERANCE) {

break;

}

a_x++;

}

return a_x;

}

/* Returns within ERROR_TOLERANCE tolerance the distance-weighted sum:

* Sum[((V0+x*Vdelta)^(p-1)-(V0+(x+1)*Vdelta)^(p-1))*x, {x, lstart, lend}]

* where V0+lstart*Vdelta = Vstart

*/

double calcEither(double p, double Vstart, double Vdelta,
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double lstart, double lend) {

if (critVal == 0) {

critVal = findCriticalTransition(p);

}

double factor = pow(Vdelta, p-1.0); // factor out this term from the sum

return factor*calcWeightedHybrid(Vstart/Vdelta-lstart, lstart, lend, p);

}

/*

* Calculate and print out the details of the head region

*/

void calcHead(int L, double psi, double p) {

double mem = 0;

double cummProb = 0;

int stepsize = 1;

int count = 0;

for (int l=1; l<=psi; l+=stepsize) {

// When dealing with a large psi, it helps to exponentially grow the

// stepsize, to speed up calculation

if (count++ > 1000) {

stepsize *= 2;

count = 0;

}

double V0 = 1; // initially each node can only reach itself

double prob = 0;

double wprob = 0;

for (int r=0; r<=2*L; ++r) {

double deltaV = Q(r,L)/pow(L,2);

double V = V0+(double)(l-1.0)*deltaV;

double Pbig = (pow(V,p-1.0)-pow(V+stepsize*deltaV,p-1.0));

double prop = D(r,L)/Q(r,L);

prob += prop * Pbig;

wprob += prop * calcEither(p, V, deltaV, l, l+stepsize-1.0);

V0 += psi*deltaV;

}

mem += wprob;

cummProb += prob;

cout <‌< "0\t" <‌< mem <‌< "\t" <‌< (1.0-cummProb) <‌< "\t" <‌< cummProb <‌< endl;

}

}

/*

* Calculate and print out details of the transition region

*/

double calcTransition(int L, double psi, double p) {

double V = 1.0; // initially each node can only reach itself

for (int r=0; r<=2*L; ++r) {

double deltaV = Q(r,L)/pow(L,2);

double Pbig = (pow(V,p-1.0)-pow(V+psi*deltaV,p-1.0));

for (int era=0; era<=r; ++era) {

double prop = D(r-era,L)/Q(r,L);

prob[era] += prop * Pbig;

wprob[era] += prop
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* calcEither(p, V, deltaV, (double)era*psi+1.0, (double)(era+1.0)*psi);

}

V += psi*deltaV;

}

// beyond the Vcrit region, we have a simpler relationship

double deltaV = L*L;

for (int r=2*L+1; r<STRETCH*2*L; ++r) {

double Pbig = pow(V,p-1.0)-pow(V+psi*deltaV,p-1.0);

for (int era = r-2*L; era<=r; ++era) {

double prop = D(r-era,L)/Q(r,L);

prob[era] += prop * Pbig;

wprob[era] += prop *

calcEither(p, V, deltaV, (double)era*psi+1.0, (double)(era+1.0)*psi);

}

V += psi*deltaV;

}

// print out the results (excluding the ’top cone’ that hasn’t been filled)

double mem = 0, cummProb = 0;

for (int i=0; i<=(STRETCH-1)*2*L; ++i) {

mem += wprob[i];

cummProb += prob[i];

cout <‌<i<‌<"\t"<‌<mem<‌<"\t"<‌<(1.0-cummProb)<‌<"\t"<‌<cummProb<‌<endl;

}

return V;

}

/*

* Calculate and print out the details of the tail region

*/

void calcTail(double Vtail, int L, double psi, double p) {

double mem = 0, cummProb = 0;

// compute memory and BW for entire region including the ending ’cone region’

for (int i=0; i<STRETCH*2*L; ++i) {

mem += wprob[i];

cummProb += prob[i];

}

// starting at Vtail, we can now add a very large configuration volume

// lets start with a spatio-temporal length of 8*L*psi

double S = STRETCH*2.0*(double)L;

double deltaS = 8.0*L;

double deltaV = L*L;

double correctionFactor = 0.0;

for (int y=1; y<=2*L; ++y) {

correctionFactor += D(y, L) * y;

}
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// Compute up to a memory size of MAX_MEM words

while (mem < MAX_MEM) {

cummProb += pow(Vtail,p-1.0)-pow(Vtail+psi*deltaS*deltaV,p-1.0);

mem += calcEither(p, Vtail, deltaV, S*psi, (S+deltaS)*psi-1.0);

// correct for the conical influence of spatio-temporal configuration space

{

double Vstart = Vtail;

double lstart = S*psi;

double a = Vstart/deltaV-lstart;

double c = lstart-0.5;

double d = lstart+deltaS*psi-1.0+0.5;

double factor = pow(deltaV, p-1.0);

mem -= correctionFactor * factor *

(pow(a+d,p)-pow(a+d+1.0,p)-pow(a+c,p)+pow(a+c+1.0,p));

}

S += deltaS;

cout <‌< S<‌<"\t"<‌< mem<‌<"\t"<‌< (1.0-cummProb)<‌<"\t"<‌<cummProb<‌<"\n";

Vtail += psi*deltaS*deltaV;

deltaS *= 2.0;

}

}

/*

* Command-line usage: RentianModel [L] [p] [psi]

*/

int main(int argc, char *argv[]) {

if (argc < 4) {

cerr <‌< "Usage: RentianModel [L] [p] [psi]" <‌< endl;

return -1;

}

int L = atoi(argv[1]);

double p = atof(argv[2]);

double psi = atoi(argv[3]);

int N = L*L;

cout <‌< "### Distance\tMemPerCore\tBWPerCore\tN = " <‌< N <‌< ", p = " <‌< p

<‌<", psi = " <‌< psi <‌< endl;

prob = new double[STRETCH*2*L];

wprob = new double[STRETCH*2*L];

// Initialise

for (int i=0; i<STRETCH*2*L; ++i) {

prob[i] = wprob[i] = 0.0;

}

double Vtail; // configuration volume for starting the tail-region calculation

calcHead(L, psi, p);

Vtail = calcTransition(L, psi, p);

calcTail(Vtail, L, psi, p);

return 0;

}


