
Point to Point GALS Interconnect

Simon Moore, George Taylor, Robert Mullins, Peter Robinson
Computer Laboratory, University of Cambridge, UK

Simon.Moore@cl.cam.ac.uk

Abstract

Reliable, low-latency channel communication between
independent clock domains may be achieved using a
combination of clock pausing techniques, self-calibrating
delay lines and an asynchronous interconnect. Such a
scheme can be used for point-to-point communication
in a globally asynchronous locally synchronous (GALS)
system, a possible methodology for managing the predicted
increase in clock domains.

We present interface wrapper circuits which permit
communication between a locally synchronous producer
and a locally synchronous consumer via an asynchronous
interconnect. Such interfaces can also be used to mix
asynchronous and synchronous modules. Clock pausing
is used to guarantee that metastability will never result
in failure. Arbitration between channel communication
and the local clock is performed concurrently so that
metastability resolution will rarely delay the clock.

Simulation results show that the maximum performance
of one data item per consumer clock cycle is achieved when
the producer:consumer clock ratio is equal or greater to
one. This communication mechanism is suited to other
asynchronous interconnect methods which offer low power
and high performance.

1. Introduction

The Semiconductor Industry Association (SIA) roadmap
and Electronic Design Automation Industry Council predict
that the number of clock domains on a silicon chip will
grow rapidly. This is due to wire delays becoming harder
to predict due to process variation, deep-sub micron effects
and dynamic effects such as cross-talk.

An alternative to the challenge of clocking many time
zones with controlled skew is a change to more globally
asynchronous architecture. From a theoretical standpoint,
circuits with delay-insensitive asynchronous interfaces
can be composed to produce large systems which are
guaranteed to be functionally correct. From a design
perspective this composition property eases the worry of
timing closure for large systems. Thus, the SIA Roadmap
recognises that, by 2007, asynchronous techniques will be
used in many designs. However, meeting a performance
target may still require multiple design iterations.

We are also entering the systems-on-chip (SoC) era
where circuit building blocks from a number of design
houses (intellectual property blocks or IP-blocks) are
purchased by a systems builder and integrated onto a
single chip. In some ways this is similar to building
systems by purchasing off the shelf ICs and integrating
them via a PCB. However, SoC results in lower cost mass
market products with much lower power requirements.
Communication between building blocks of a SoC is a
complex problem particularly when a range of clocking
strategies have to be tailored to each building block in order
to obtain the required performance within a power budget.

Clocked circuit design is a mature method with good
tool support. Clocked circuits with global synchronisation
are becoming impractical for large, deep submicron CMOS
designs, where for smaller circuits assumptions about
clock distribution are still valid. Given the investment in
clocked tools and techniques, clocked design in the small
will continue to be an attractive technique in industry.
One methodology which builds on this investment is that
of globally asynchronous, locally synchronous (GALS)
systems where asynchronous communication techniques
are used for long distance communication between
individually clocked subsystems.

2. Globally Asynchronous,
Locally Synchronous Systems

Globally Asynchronous, Locally Synchronous (GALS)
systems may offer a solution for system on a chip
implementors seeking good performance and low power
consumption [6]. Clocked building blocks can be integrated
onto one chip with independent clocks for each block and
an asynchronous interconnect between them.

Synchronising to asynchronous data is a well known
problem which can be crudely resolved by latching the
data at least twice to allow time for metastability in the
latches to resolve. This does not prevent metastability
from propagating, though the chance is small [7]. A more
pressing concern is the latency that is introduced by this
scheme.

An alternative strategy is to stretch the clock when there
is a risk of metastability [11, 13, 3, 2, 14, 16, 10]. Such
a scheme relies on generating the clock from a delay line
because such a clock is simple to stop by gating the clock



pulse. Self calibrating delay lines may be used to provide
an accurate timing reference [5].

In this paper we describe a reliable, low latency and high
bandwidth channel communication mechanism which may
be positioned between independently clocked synchronous
domains. The channel itself relies on asynchronous logic
techniques.

To assist explanation, the design is divided into several
parts. Section 3 describes our mechanism for reliable
data transfer between an asynchronous producer (the
output of the asynchronous channel) and a synchronous
consumer. Section 4 discusses the synchronous producer
which sends data to the asynchronous channel. Section 5
combines these two parts and Section 6 looks at additional
decoupling and other techniques required to maximise
bandwidth. Section 7 presents a variation in which the
producer/consumer can enter ‘sleep mode’ with the
clock stopped. Simulation results are then presented and
conclusions drawn.

3. Asynchronous producer,
synchronous consumer

Figure 1 presents an interface between an asynchronous
producer and a synchronous consumer which is based on
our earlier work [8, 9]. When no data is being presented, the
output clock (clkB) is inverted and then fed to a calibrated
delay line [5] and to one input of an arbiter. The arbiter
then grants in the favour of the clock circuit and is merged
with the output from the delay line. This oscillatory process
continues and a stable clock signal is produced. Examples
of how delay lines may be constructed from standard cells
are provided in the Annex.

Data from the asynchronous producer is signalled
by a transition in thereq signal (see Figure 2); the
point-to-point channel uses a two-phase signalling scheme.
This will result in the arbiter granting in the favour of the
asynchronous interface when the clock (clkB) is high. If
the clock falls andreq changes around the same time then
the arbiter may go metastable. This is safe since the arbiter
guarantees that the clock cannot continue and the input
req signal can not be propagated until the metastability
has resolved.

Once the arbiter grants in favour of the input request
(req), data is latched which in turn releases the hold on
the arbiter. Now that the data has been latched, it is safe
for the synchronous consumer to be presented with a rising
clock edge which latches the incoming data in the final set
of latches. The incomingreq signal is also latched in the
final set of latches which is also fed-back as an acknowledge
signal.

A
rb

it
er

delay linedelay line

En
req_recieved

Clock B

req

data

sync_accept_new

sync_req

sync_data

clkB

ack

Figure 1. Interface between an asynchronous
producer and a synchronous consumer

clkB

req

req_received

sync_req

window when
asynchronous

data is received

req outside window req inside window

Figure 2. Request in to request out traces

4. Synchronous producer,
asynchronous consumer

Transmitting data from the synchronous domain to
the asynchronous domain requires that the synchronous
system knows when the asynchronous domain is able
to accept data. Thus, the primary difficulty is safe
transfer of this control signal from the asynchronous
domain to the synchronous one. Therefore, the circuit
we require (see Figure 3) is similar to the asynchronous
producer, synchronous consumer circuit described in the
previous section. The relationship between the incoming
asynchronous acknowledge (ack) and the outgoing
synchronous acknowledge (sync ack) in Figure 4, is
identical to the request (req) and synchronised request
(sync req) presented in Figure 2.

The only difference is the transmission of data from
the synchronous world to the asynchronous world. A



En

A
rb

it
er

delay line

ack_received

data
sync_

Clock A

sync_new_data

sync_ack

clkA

ack

req

data

Figure 3. Interface between an synchronous
producer and an asynchronous consumer

clkA

ack

ack_received

sync_ack

window when
asynchronous

data is received

req outside window req inside window

Figure 4. Acknowledge in to Acknowledge out
traces

2-phase request signal is bundled with the data to indicate
to the asynchronous system that new data is available.
Provided the synchronous state machine always waits for
an sync ack between sending data items, thereq will
always toggle and data will be sent correctly.

5. Channel communication with no buffering

The circuits from the previous two sections may be
concatenated together to form a simple asynchronous
communication channel between two clocked domains.
However, as can be seen from Figure 4, the synchronous
producer will have to wait at least one clock cycle between
sending data and receiving a correspondingsync ack
signal. This will limit the bandwidth to a maximum of one
data item every second clock cycle. The average bandwidth
is typically worse than this because the outgoingreq has

to pass right through the consumer control logic, back out
via ack and back through control logic in the producer
beforesync ack is seen.

6. Channel communication with buffering

Adding an asynchronous FIFO between the producer and
consumer (see Figure 5) decouples thereq!sync ack
path. This allows the producer to reliably send one data
item every second clock cycle.

For the producer to be able to transmit a data item every
clock cycle we have to make the following assumption: if
the first element of the FIFO is empty then any data emitted
by the synchronous producer will be safely stored before
the next clock cycle. This is a very safe timing assumption.
From this assumption it is clear that in place of theack
signal from the FIFO we require ainput element of FIFO is
emptysignal which we will callconsumed.

This new scheme is presented in Figure 6, with
two-phase to level sensitive conversion ofsync req and
sync consumed now explicitly shown. The synchronous
producer may generate new data every time there is an
outgoing transition onreq. If the FIFO becomes full then
no consumed will be received from the FIFO which
in turn means that noreq will be produced. Under
this condition, data must be held in the output latch by
deasserting the enable signal on this latch.

7. Variation with sleep mode

For some applications it may be desirable for the
synchronous consumer to enter a sleep state with the clock
stopped until new data input arrives.

Figure 7 shows an extension of the circuit from Figure 1.
A second arbiter is inserted to permit the clock to be
stopped; note that both arbitrations are concurrent and
that the upper grant output of the additional arbiter is not
required. When the synchronous consumer wishes to sleep
it raisessync sleep causing the clock to stop. The XOR
clears the now set DFF once new data has been latched
by the interface. The DFF could be replaced with an SR
latch where reset has priority. This circuit extension is also
applicable to the high-bandwidth variation from Figure 6.

A similar arrangement applies for the producer, shown
in Figure 8. Here the synchronous producer can request to
sleep until the previously sent data has been read.

8. Multiple interfaces

A GALS block with more than one input/output interface
can be constructed by adding additional arbiters in parallel.
The single arbiter is replaced with multiple aribters, see
Figure 9 and an AND gate, much like the scheme used in



A
rb

it
er

A
rb

it
er

delay linedelay linedelay line

data

req

sync_data

Synchronous Producer

Clock A Clock B

req

data

Synchronous Consumer
Asynchronous

Decoupling

clkB

clkA

FIFOEn En

sync_accept_newsync_new_data

ack
sync_

sync_
data

ack

sync_req

Figure 5. Channel communication with FIFO buffering

A
rb

it
er

A
rb

it
er

Clr

delay linedelay line

En
req_recieved

req

data

ack

n/c

1

Clock B

clkB

sync_data

sync_sleep

sync_req

sync_accept_new

Figure 7. Synchronous consumer interface
with sleep feature

Section 7. Each arbiter arbitrates between a GALS interface
and the single clock generator. Such a scheme permits
multiple data items to be input or output in each clock
cycle, albeit with an increased probability of the clock being
paused.

9. Results

Simulations were performed using Verilog with SDF
annotation using the VST/UMC 0.25�m timing library with
wireload model. The consumer runs at a fixed frequency of
50MHz, the producer at a varying frequency up to 200MHz,
obviously higher frequencies are possible depending on the
complexity of the producer and consumer.

We tested the simple control scheme (Figure 5) for
various FIFO depths. When the FIFO is of size zero,

A
rb

it
er

A
rb

it
er

delay linedelay line

Clr

En

data
sync_

ack

req

data

n/c

Clock B

sync_ack

sync_new_data

1

clkA

sync_sleep

Figure 8. Synchronous producer interface
with sleep feature

it corresponds to the circuit in Figure 5 with the FIFO
removed. The detailed simulations were undertaken and
the bandwidth measurements are shown in in Figure 10.
Making the FIFO more than two slots long does not
improve performance further.

The more complex control scheme (Figure 6) requires
a FIFO depth of at least two items. However, making the
FIFO deeper does not improve performance further. The
bandwidth results are presented in Figure 11.

The calibrated delay line and arbiter to stop and start
the clock has been fabricated on a 0.35�m process. In this
test a 25-80MHz clock is produced using a 32kHz watch
crystal as a calibration reference, calibration takes place
once per second. This clock has been successfully used
to clock both a 16 bit microcontroller and a UART serial
interface. A revised version with finer adjustment steps has



A
rb

it
er

delay linedelay line

req

data

Asynchronous
Decoupling

FIFO

En

data

delay line

Clock A

sync_data

Clock B

En En

Synchronous Consumer

sync_accept_new

A
rb

it
er

Synchronous Producer

req

consumed

clkA

sync_consumed

sync_new_data

sync_data

ack

req
sync_

clkB

Figure 6. High bandwidth channel communication scheme

A
rb

it
er

A
rb

it
er

A
rb

it
er

Figure 9. Concurrent arbiters

been submitted to a 0.18�m process.

10. Review

It is worth noting that some special cases of the GALS
interface exist where arbitration is not required.

Case 1—Asynchronous consumer always ready and
synchronous producer: Here the synchronous producer
simply sends a request and data to the consumer. No
acknowledge from the consumer is used. Arbitration and
clock pausing are not required. Typically a consumer
would always be ready if there was only one input port and
it could consume the data within the producer clock cycle.
An example of this is a memory device.

Case 2—Asynchronous producer always able to produce
data and synchronous consumer: This is the converse of
case 1. Arbitration and clock pausing is not required, the
consumer clocks data out of the asynchronous FIFO.

Case 3—Synchronous producer and slave consumer.
Here the synchronous producer clock pauses until the
consumer has acknowledged receipt of the data and

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3 3.5 4

da
ta

 it
em

s 
pe

r 
re

ce
iv

er
 c

lo
ck

producer/consumer clock ratio

fifosize=0
fifosize=1
fifosize=2

Figure 10. Throughput of simple channel as
FIFO size varies

returned any response, for example a microcontroller
accessing a slow delay-matched memory. Clock pausing
is required but not arbitration. A similar principle can be
used to embed asynchronous modules inside an otherwise
synchronous pipeline [14]. Additionally [14] discusses the
impact of the clock buffer insertion delay which we have
not addressed here.

So far GALS interfaces with zero probability of failure
have been discussed, however, this is at the expense of clock
pausing, possibly with arbitration. Additionally failureto
meet a timing deadline due to metastability resolution may
be considered a failure in some real-time systems.



0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3 3.5 4

da
ta

 it
em

s 
pe

r 
re

ce
iv

er
 c

lo
ck

produced/consumer clock ratio

fifosize=2

Figure 11. Throughput of fast channel for the
minimum sized (two item) FIFO

An alternative is to use two cascaded registers for
synchronisation but instead of synchronising the data
synchronising some control signals indicating the state
of the FIFO between producer and consumer [4]. This
permits truly free running clocks and the probability of
synchronisation failure is linearly reduced by reducing the
number of synchronisations without reducing bandwidth.
During continuous steady-state data transmission the
probability of synchronisation failure is zero, however,
such a state may be hard to maintain. This scheme involves
extra latency and a startup cost when the FIFO becomes
empty.

Each GALS block has a bundled data interface and the
delay line for the local clock delay matches the worst case
combinational logic path within the synchronous block.
This could be viewed as a coarser scale version of standard
bundled data design, where a unique delay is used to match
the worst case path in each of many small combinational
logic blocks. Design styles with even more localised delay
assumptions include IPCMOS [12] which uses a pulse
generator to strobe latches, and GASP with self-reset [15].

The GALS methodology is well suited to other
asynchronous interconnect methods. For simplicity, in this
paper bundled data has been used, the request signal is
bundled with the data and is assumed to not arrive earlier
than the data. Such a scheme is unable to exploit the widely
varying data dependent delays for data transmission. At the
extreme case, compare one bit going high whilst the others
go low with all bits changing in the same direction.

Alternative interconnect could use dual-rail or
one-of-four encoding. Such interconnect is truly
self-timed, the consumer is able to proceed as soon as
data arrives. For large interconnect capacitances the

one-of-four encoding scheme offers half the transition
power and a lower latency that the bundled and dual-rail
schemes [1]. The GALS interface structure would remain
the same with the consumers request input supplied from
the interconnect completion detection logic. Further
bandwidth improvement might be achieved by adding
FIFO stages and distributing these between the producer
and consumer. Finally it should also be possible to apply
the GALS principle to a bus rather than point-to-point link.

11. Conclusion

We have presented an asynchronous channel
communication mechanism which allows low latency, high
bandwidth and reliable data transfer between independently
clocked synchronous domains. This mechanism could form
the basis of a globally asynchronous, locally synchronous
(GALS) chip-level architecture in order to meet the
challenges of deep sub-micron CMOS design.

Annex: Delay line circuits

To achieve a very fine adjustment in the delay our
delay lines are composed of two sections, fine and coarse
adjustment sections. This is a variation of a previous
scheme [8] where fine and coarse adjustment were
integrated. The idea is that the fine delay section provides
a total delay range of about one delay step in the coarse
delay section. This scheme is shown in Figure 12.

The coarse delay line is based upon blocks of inverter
delays and a binary scheme, see Figure 13. The fine delay
adjustment step requires to be smaller than a normal
standard cell gate delay, two possible methods are given
here. The first, shown in Figure 14, exploits changing the
pull-up resistance in a simple AO gate shown in Figure 15.
The second involves having a number of tristate buffers
in parallel, the more of which are enabled, the higher the
drive strength and thus shorter the delay.

Adjusting the coarse delay should only be performed
whilst the clock is stopped and the delay line contains
logical zeros, otherwise an extra pulse might be inserted
in the feedback ring. Various versions of these delay lines
have been included on a 0.18�m test chip submitted for
fabrication.

References

[1] W. J. Bainbridge and S. B. Furber. Delay insensitive
system-on-chip interconnect using 1-of-4 data encoding. In
Proc. International Symposium on Advanced Research in
Asynchronous Circuits and Systems, March 2001.

[2] David S. Bormann and Peter Y. K. Cheung. Asynchronous
wrapper for heterogeneous systems. InProc. International
Conf. Computer Design (ICCD), October 1997.



coarse delay fine delay

decode

delay setting

Figure 12. Block view of delay line

M
U

X
dly8

M
U

X

dly4

M
U

X

dly2
dout

cset[2] cset[1] cset[0]

din

Figure 13. Coarse section

[3] Daniel M. Chapiro. Globally-Asynchronous
Locally-Synchronous Systems. PhD thesis, Stanford
University, October 1984.

[4] T. Chelcea and S. M. Nowick. A low-latency FIFO for
mixed-clock systems. InProceedings of the IEE Computer
Society Annual Workshop on VLSI (WVLSI’00), April 2000.

[5] George Taylor, Simon Moore, Steev Wilcox and Peter
Robinson. An on-chip dynamically recalibrated delay line
for embedded self-timed systems. InProc. International
Symposium on Advanced Research in Asynchronous Circuits
and Systems, April 2000.

[6] A. Hemani, T. Meincke, S. Kumar, A. Postula, T. Olsson,
P. Nilsson, J.̈Oberg, P. Ellervee, and D. Lundqvist. Lowering
power consumption in clock by using globally asynchronous,
locally synchronous design style. InProc. ACM/IEEE
Design Automation Conference, 1999.

[7] Howard W. Johnson and Martin Graham.High-Speed
Digital Design — A Handbook of Black Magic. Prentice
Hall, 1993.

[8] S. W. Moore, G. S. Taylor, P. A. Cunningham, R. D. Mullins,
and P. Robinson. Self-calibrating clocks for globally
asynchronous locally synchronous systems. InProc.
International Conf. Computer Design (ICCD), September
2000.

[9] S. W. Moore, G. S. Taylor, P. A. Cunningham, R. D.
Mullins, and P. Robinson. Using stoppable clocks to
safely interface asynchronous and synchronous subsystems.
In Asynchronous INTerfaces: tools, techniques, and
implementations (AINT), July 2000.

[10] Jens Muttersbach, Thomas Villiger, and Wolfgang
Fichtner. Practical design of globally-asynchronous
locally-synchronous systems. InProc. International
Symposium on Advanced Research in Asynchronous Circuits
and Systems, pages 52–59, April 2000.

fset[2] fset[1] fset[0]

0 0 0

din
dout

Figure 14. Fine adjustment: AO gate version

fset

in

in

0
fset

out

0

Figure 15. AO gate

din dout

tset1[7:0]

x8

tset2[7:0]

x8

Figure 16. Fine adjustment: Tristate version

[11] Miroslav Pec̆houc̆ek. Anomalous response times of
input synchronizers. IEEE Transactions on Computers,
25(2):133–139, February 1976.

[12] S. E. Schuster. Asynchronous interlocked pipelined
cmos (IPCMOS) circuits operating at 3.3-4.5GHz.
In Asynchronous INTerfaces: tools, techniques, and
implementations (AINT), July 2000.

[13] Charles L. Seitz. System timing. In Carver A. Mead and
Lynn A. Conway, editors,Introduction to VLSI Systems,
chapter 7. Addison-Wesley, 1980.

[14] Allen E. Sjogren and Chris J. Myers. Interfacing
synchronous and asynchronous modules within a high-speed
pipeline. In Advanced Research in VLSI, pages 47–61,
September 1997.

[15] I. Sutherland and S. Fairbanks. GasP: a minimal FIFO
control. In Proc. International Symposium on Advanced
Research in Asynchronous Circuits and Systems, March
2001.

[16] K.Y. Yun and A. E. Dooply. Pausible clocking based
heterogeneous systems.IEEE Transactions on VLSI Systems,
7(4):482–487, December 1999.

Acknowledgements

The authors would like to acknowledge the support of EPSRC
grant GR/L86326, Cambridge Consultants Ltd and AT&T Labs
Cambridge.


