
Operating Systems I

Supervision Exercises

Stephen Kell
Stephen.Kell@cl.cam.ac.uk

18 January 2010

These exercises are intended to cover all the main points of understanding
in the lecture course. There are roughly 1–11

2 questions per lecture, and each
question is supposed to take roughly the same amount of time to complete.
Don’t expect to be able to answer everything. You are advised not to spend
more than an hour on any one question – unless you really want to.

Compared to Tripos questions, these questions will generally be more
structured and require smaller steps of reasoning. However, with the excep-
tion of the first few, they should be no more or less difficult conceptually.
Unlike most Tripos questions, most of these can be answered quite briefly,
so you should expect to spend more time reading and thinking than you
spend writing answers.

Be warned that Tripos exams frequently contain “bookwork” questions,
and you will be expected to remember incidental facts from the lecture notes
which are not covered here.

Criticisms or comments about any aspect of these questions would be
very gratefully received, however large or small.

1



1. Architecture, memory hierarchy and the fetch-execute cycle

The following diagram shows a simple Von Neumann machine.

(a) Copy the diagram above, and add the following labels in the
appropriate places:

• register file
• control unit
• execution unit
• cache memory
• processor bus
• memory bus
• main memory
• I/O bus

Draw arrows to show the paths of communication between the
register file, control unit and execution unit.
Draw a dashed box around any data paths which were not present
in architectures predating the Von Neumann machine.

(b) An execution unit may contain many different functional sub-
units, but three in particular are always present. Give the names
of these, and identify which of them might output a signal con-
necting to an input on the control unit.

(c) (i) Explain why all modern systems have cache memory in ad-
dition to main memory.



(ii) A naive system designer calculates a system’s total memory
as the sum of sizes of its caches and the size of its main mem-
ory. Explain why this does not give a meaningful result.

(iii) If one memory device is said to be “below” another in a
memory hierarchy, what two comparisons can be deduced
between the two devices’ storage technologies?

(iv) Suggest what lies above the cache memory in the memory
hierarchy of the machine you drew in part (a).

(d) Briefly describe the sequence of events occurring as the processor
undergoes a series of clock cycles. Assume that the processor is
initially about to fetch an instruction. Make sure you explain
the roles of memory, execution unit, control unit and program
counter.

(e) The Harvard architecture is similar to the Von Neumann archi-
tecture except that it has separate caches for instructions and
data. Suggest one plausible reason why this might be advanta-
geous, and one situation where it might cause problems.



2. Arithmetic, memory access, addressing modes and endianness

(a) (i) In eight-bit signed two’s complement binary arithmetic, write
the bit-patterns for the decimal numbers 0, 1, 127, -1, -127
and -128. [The bits should be ordered from most-significant
to least-significant.]

(ii) Explain why the range of an n-bit two’s complement repre-
sentation is always one greater than that of a sign/magnitude
representation.

(iii) Explain why two’s complement is used in preference to other
schemes in all modern architectures.

(b) (i) Explain what is meant by “shifting”, as might be done in the
the arithmetic & logical unit (ALU) of a processor.

(ii) Explain how shifting can sometimes be used instead of multi-
plication and division, and why this can be advantageous.

(iii) Explain the distinction between logical and arithmetical shift-
ing, with reference to signed arithmetic.

(c) (i) Apart from operands (arguments), give two examples of in-
formation which information which might be included in the
representation of a machine instruction.

(ii) Identify three ways in which arguments to an instruction can
be specified.

(iii) Explain the benefits and drawbacks of a fixed-length instruc-
tion encoding (such as on the ARM architecture) compared
to a variable-length encoding (such as on x86).

(d) (i) Explain the term “byte order” (or “endianness”) by drawing
a diagram to show how how the 32-bit hexadecimal number
00C0FFEE is represented differently in the memory of 32-bit
big- and little-endian machines.

(ii) Similarly, draw a digram showing how the string “Hello,
world!” is stored in memory on big- and little-endian ma-
chines. You need not convert the characters to numerical
representations, and should assume a one-byte-per-character
encoding.

(iii) Explain why there is no need for architectures offering only
8-bit arithmetic and 8-bit memory accesses to specify a byte
ordering convention.



(iv) Suppose you wanted to write an assembly-language routine
which counted the length of a null-terminated string by iter-
ating over the characters until you reached the end. Explain
how you would store the current location in the string, and
which addressing mode you would use when reading the next
character. Assuming you could only read and compare four
bytes at a time, what arithmetic and/or logical instructions
could you use to detect the string’s null terminator?

[A null-terminated string is one which is represented in mem-
ory as a sequence of character values followed by a zero-
valued “null” byte. You should assume a one-byte encoding
as previously. An answer in pseudo-assembly code is accept-
able.]



3. I/O: buses, interrupts and direct memory access

(a) Briefly explain the term bus. Explain the purpose of address, data
and control lines. In a synchronous bus, what specific control line
is always found?

(b) Explain the terms “master” and “slave” in relation to buses. Give
an example of a device which is always a master, and one which
is always a slave.

(c) Explain what an interrupt line is, and why it is used. Suggest
which functional unit of the processor it connects to. Explain
what happens to the processor’s flow of execution when an inter-
rupt line is asserted.

(d) Explain the key difference between direct memory access (DMA)
and simple interrupt-driven I/O. Why might DMA introduce ad-
ditional complexity to the processor’s cache memory?



4. Operating system concepts and structure

(a) Consider the statement that “an operating system should securely
multiplex a computer’s hardware resources”. Give four examples
of “resources” to which this statement might be referring. Ex-
plain the term “multiplex”. Give an example of an insecure way
to multiplex one of the resources you mentioned.

(b) Explain the term “multiprogramming”. Explain why a system
which is not multiprogrammed does not need secure multiplexing
of resources. Suggest what function(s) an operating system might
still be used for on such a system.

(c) Consider multiplexing of CPU time, I/O devices and memory. In
each case, explain what hardware support is necessary to ensure
secure multiplexing.

(d) What is a software interrupt? Explain why these might not nec-
essarily be found in a monolithic operating system, but are always
found in kernel-based systems. [Note that, for reasons which will
become clear, most monolithic OSes do, in fact, provide software
interrupts.]

(e) How does a microkernel differ from a conventional kernel? Briefly
list the motivations and difficulties behind this.



5. Processes and scheduling

(a) Briefly explain the terms terms “process” and “context switch”.

(b) Draw a state diagram showing the three basic states a process
may be in, and the events which cause it to transition between
these. Give a specific example of an event which might cause a
process to transition from “blocked” to “ready”.

(c) Explain why non-preemptive scheduling is more likely to be fair
for I/O-bound processes than for CPU-bound processes.

(d) For each of the following scheduling algorithms, briefly describe
their operation and list their advantages and disadvantages.

(i) first-come-first-served (FCFS)

(ii) shortest job first (SJF)

(iii) round robin (RR)

(iv) shortest remaining time first (SRTF)

(e) Explain the concepts of priority and quantum in scheduling al-
gorithms. Which of the above algorithms make use of these con-
cepts?

(f ) Explain the difference between static and dynamic priority, and
the motivation behind the latter. In what way might SJF and
SRTF be considered dynamic priority algorithms?



6. Memory management basics: the relocation problem

A simple assembler outputs a program executable in the form of a list
of instructions (or text), a list of words containing global constant data
and a list of words containing initialised global variable data. When
the program is loaded, each of these is read into a particular area of
memory.

(a) Name two other regions of memory which will typically be al-
located when the program is run, and will be accessible by the
instructions of the program. Briefly state the purpose of each.

(b) A direct branch instruction transfers control to an instruction at
a known position (or offset) within the program text, where this
offset is included as an argument to the instruction. How might
the presence of this kind of instruction in a program lead to an
instance of the relocation problem?

(c) Describe a way of expressing the destination address of a di-
rect branch, such that code which uses this instruction may be
position-independent, without requiring virtual addressing.

(d) DOS, a single-tasking monolithic operating system, allows some
executables to directly specify the physical memory addresses of
their constituents. Explain why a multiprogramming operating
system cannot allow this.

(e) A system architect suggests that all memory addresses in pro-
grams should be rewritten as the program is loaded into memory.
Another suggests that instead, additional hardware is introduced
to support virtual addressing. Briefly explain the advantages and
disadvantages of the latter technique as opposed to the former.

(f ) In modern systems which use virtual addressing, it is neverthe-
less common to rewrite addresses at load time. Suggest a useful
feature which might make this necessary, and explain why it does
so.



7. Allocation, fragmentation, paging and segmentation

(a) Consider the following statements about memory allocation schemes.
In each case, say whether the statement is true or false. If it is
false, write one or two sentences explaining why. If it is true,
explain why the converse would not work or is not possible.

(i) “A static multiprogramming system can only have one pro-
cess in main memory at a time.”

(ii) “A dynamic partitioning system requires a process to specify
how much memory it requires in advance.”

(iii) “Compaction can only be used on machines with support for
run-time relocation.”

(iv) “Paged virtual memory systems do not suffer from fragmen-
tation.”

(v) “A pure segmentation design always suffers from slower allo-
cation than an equivalent pure paged memory system.”

(b) Consider a process wishing to allocate a minimum k kilobytes of
contiguous virtual memory. Stating any assumptions you make,
give the big-O execution time cost of performing the allocation
on:

(i) a pure page-based virtual memory system, where each page
is f kilobytes and the total number of pages already allocated
is p;

(ii) a pure segment-based virtual memory system, using a first-
fit allocation policy on a linked list of s previously-allocated
segments stored as (base, limit) pairs.

[You should assume that all the symbolic quantities above are
variables, so it is likely that your big-O expressions will contain
most of them.]



8. Page tables, translation, sharing

(a) (i) In a process’s page table, why are many entries marked “in-
valid”? What happens if a process tries to access an invalid
page? Briefly describe two techniques which can be used
to reduce the amount of space wasted on invalid page table
entries. [You need not go into detail.]

(ii) What extra information, specific to paging, must be saved as
part of a process’s context when switching to another pro-
cess?

(iii) A system designer optimises the saving and restoring of regis-
ters, so that the cost of doing so is negligible. He claims that
there is now no performance penalty in frequently switching
between address spaces. Supposing that his optimisations are
correct, and assuming that the system has a simple transla-
tion lookaside buffer (TLB), why is his claim still not true?

(b) Two processes are sharing a particular page at the same virtual
address. This means that in both processes’s address spaces, a
particular paged-sized region of memory maps to the same frame
of physical memory.

(i) What might (possibly) differ about the entries for the shared
page between the two processes’ page tables?

(ii) For two concurrently-running instances of the same program,
each with code, data, heap and stack segments, which seg-
ments might benefit from copy-on-write? In what circum-
stances, if any, could these instead be shared read-only?



9. Demand paging, page replacement

(a) (i) What might an operating system do to ensure that it is no-
tified the next time a process accesses a particular page?

(ii) In a demand-paged virtual memory system, what additional
information must an operating system record for pages, other
than what would ordinarily be included in a page table entry?
Suggest two different places where this information could be
stored.

(iii) The total capacity of a demand-paged virtual memory system
is (approximately) the sum of the main memory size and the
available disk swap space. This contrasts with caches, where
the effective capacity is simply the size of main memory. Ex-
plain as fully as you can why the two cases are different.
[Hint: think about how cache, main memory and disk space
are addressed, and how they are managed.]

(b) FIFO, Clock and least-recently-used (LRU) are three page re-
placement algorithms.

(i) Consider a process starting up on a pure demand-paged vir-
tual memory system. Thinking about the kinds of data (in-
cluding code) that are read in to memory during the process’s
initial start-up phase, give an example of data for which FIFO
would make a good page replacement decision, and another
where it would make a poor one.

(ii) LRU cannot be implemented efficiently on conventional hard-
ware. Suggest two alternative hardware features which could
allow LRU to be implemented efficiently. Suggest why these
are not implemented in practice.

(iii) What optimisation does the availability of a dirty bit in page
table entries allow the operating system to make when doing
page replacement? How can a dirty bit be simulated if the
hardware does not provide it?

(iv) Explain how Clock approximates LRU using the reference
bit. State one way in which Clock is similar to FIFO, and
another in which it is fundamentally different.

(v) Write some pseudocode, operating on a large array of data,
for which LRU would be a bad choice of algorithm. What as-
sumption does LRU rely on but your code contradict? [Your
code need not do anything useful.]



10. Frame allocation, thrashing; segmentation, more sharing and protec-
tion

(a) The working set of a process is defined as the minimal set of pages
which it requires to be resident in order to make any progress in
its task.

(i) With reference to the working set, explain why, if too many
processes are started, the system enters the state known as
thrashing. What is characteristic of the CPU load observed
under thrashing?

(ii) Suggest how the working set of a process may be estimated
from a snapshot of its memory space (including page tables).
State what assumptions your approximation depends on for
its accuracy.

(iii) An allocation policy is logic used to decide what share of
physical memory a process should receive. With reference to
the working set and thrashing avoidance, outline one situa-
tion where a simple “proportional shares” policy results in
wasted frames.

(b) (i) Give an example of a privileged operation which can be per-
formed more efficiently under a pure segmented architecture
than under a pure paging architecture.

(ii) When a process performs a memory access in a paged archi-
tecture, to check that the access is valid, the hardware checks
the valid bit and access permissions of the relevant page table
entry (normally cached in the TLB). Outline the steps of the
equivalent check in a pure segmented architecture. [Assume
that segmentation is implemented in hardware.]

(iii) Demand segmentation is analogous to demand paging, but
it is rarely implemented. Suggest two reasons why demand
segmentation is less useful or less efficient than demand pag-
ing.

(iv) Suggest one optimisation which could be made to save space
in a multi-level page table scheme. Likewise, suggest an opti-
misation to overcome external fragmentation in a segmenta-
tion scheme. [Hint: two possible optimisations both result in
systems which are part-way between segmentation and pag-
ing, without going so far as to implement both techniques at
the same time.]



11. I/O: polling, interrupts and DMA

A processor is connected to I/O devices by an I/O bus, and can com-
municate with them by polling, interrupt-driven I/O or direct memory
access.

(a) (i) In what way does polling waste CPU cycles? Why is it nev-
ertheless still widely supported and used?

(ii) When using interrupt-driven I/O, the number of CPU cycles
consumed by I/O operations is determined by the speed of
which device?

(iii) Describe one way in which interrupts can be used to aid fair
process scheduling, and another in which they hinder it.

(iv) Briefly describe two ways in which DMA slows down the
CPU’s access to memory.

(b) A process wishes to transfer to main memory n bytes of data
from an I/O device which can internally buffer up to b (b < n)
bytes, over a bus which is w (w ≤ b) bytes wide and takes c CPU
cycles per bus transfer.

(i) Using interrupt-driven I/O, how many interrupts must be
serviced to complete the transfer? How many CPU cycles
are spent transferring data over the bus?

(ii) Using DMA, how many interrupts must be serviced to com-
plete the transfer? How many CPU cycles are spent trans-
ferring data over the bus?



12. Device characteristics, application-level interfaces to I/O

(a) For each of the following, select the device or event which best
matches the stated criterion, and very briefly explain your choice.

(i) Least suited to polled I/O: {network interface, mouse, mo-
dem}

(ii) Least likely to generate an interrupt: {key pressed, CD ejected,
disk read completed}

(iii) Least likely to use DMA: {sound card, disk, printer}
(iv) Most likely to use memory-mapped I/O: {disk, 2-D display

adapter, keyboard}
(v) Most likely to be buffered with circular buffers: {network

interface, CD-ROM reader, timer}
(vi) Most likely to be buffered and cached: {network interface,

display adapter, disk}
(vii) Most likely to be scheduled using a nontrivial algorithm:

{printer, network interface, disk}

(b) An operating system provides system calls allowing applications
to perform blocking, non-blocking and asynchronous I/O. De-
scribe an application which might use all three of these. In each
case outline one function for which the application might use that
kind of I/O, and justify its suitability. [It might help to consider
primarily disk-based I/O, using a familiar example such as a word
processor, web browser or e-mail client.]

(c) Many operating systems separate devices into classes, such as
block, character and network devices, and provide a slightly dif-
ferent programming interface for each. Give an example of an
operating system service which allows access to one a device of
one class by making it look more like one of another class. Ex-
plain, using an example, why this makes error handling more
problematic. [Hint: think about how an operating system may
provide access to files.]

(d) Identify a possible inefficiency in the interaction of buffering,
caching and demand paging. Briefly outline how this might be
solved.



13. File systems: storage service implementation

A disk consists of a large number of fixed-size blocks, numbered from
0 upwards. The disk controller supports operations to read or write
exactly one block at a time. The operating system wishes to implement
a file system on top of this block-level interface, so that applications
can store variable-length files instead of individual blocks.

The storage service of this file system is to support files consisting of
zero or more blocks. Each file will also have some metadata stored in a
file control block. This metadata includes the file length, timestamps,
access permissions, the owning user ID and information used to locate
the file’s data blocks. Disk blocks are not shared: each contains only
one kind of data and pertains to at most one file.

(a) The storage service implementation divides blocks into three cat-
egories, based on their contents. One of these is “unused”. What
are the other two? [Note: in the design so far outlined, the map-
ping of blocks to categories is not stored on the disk, and there
is no directory structure.]

(b) The file metadata encodes a mapping from a system file identifier
(SFID) to an ordered sequence of block numbers. Suggest what
piece of information could be used as the SFID for a given file.

(c) Suggest two simple data structures which could be used to main-
tain (on disk) the mapping from SFID to sequence of block num-
bers. Give an advantage and a disadvantage of each.

(d) Why is the file length stored in the metadata?

(e) As described so far, it is impossible to safely create a new file in
the storage system. Explain why, and suggest what additional
data structure could be stored on the disk to rectify the prob-
lem.

(f ) A file system integrity checker is a program which walks a file sys-
tem (typically after a power failure or other system crash) and
ensures that file metadata is self-consistent. Explain why it is im-
possible to check the integrity of the storage system as described
so far, and suggest changes which would make this possible with-
out adding a directory service.



14. File systems: the directory service, user access and other issues

A directory service is implemented on top of the storage service. A
directory is a new type of file, whose contents are a table mapping
variable-length “human-friendly” names to SFIDs.

(a) What new piece of metadata must now be recorded in each file
control block?

[Students taking the 25% option may wish to read the Wikipedia arti-
cle “binary relation” before attempting the remainder of this question.]

The directory structure encodes a graph (V, E) where V is the set
of files (including directories) on the file system, and E is a binary
relation on V such that (v, v′) ∈ E iff v is a directory mapping some
name to v′. A pathname is a list of such names.

(b) Given a particular file system and a pathname, what else is re-
quired to identify a particular file? How is this usually speci-
fied?

(c) What two problems occur if the set of directories is restricted to
exactly one element?

(d) What problem remains if there may be any number of directories
but E must encode a strict hierarchy (i.e. a tree)?

(e) What difficulty occurs with existence control if structure of the
directory graph is not restricted? What restriction may be im-
posed to overcome this? Explain how link counts may be used to
implement existence control on such a graph.

(f ) Normally, user-level access to files proceeds according to an open-
access-close pattern: first the user “opens” (or perhaps creates) a
file, specifying pathname, and is returned a “user file identifier”
(UFID). The user then performs some operations, and finally
“closes” the file.

(i) Outline, as fully as you can, the steps performed by the op-
erating system when asked to “open” a file.

(ii) Suggest three reasons why an open-access-close pattern is
used in preference to specifying each operation independently.



15. Unix file system case study

(a) Give closest Unix equivalent for the following generic terms.

• file control block
• system file identifier
• user file identifier

(b) Describe the simplifications or restrictions which Unix makes to
provide the following features or guarantees. Briefly mention any
special cases or subtleties involved.

• efficient existence control
• unified interface to devices, files and interprocess communi-

cation streams
• simple but reasonably powerful access control

(c) Draw a diagram of a Unix inode. Explain the trade-off motivating
the use of direct, indirect and multiply-indirect block references.

(d) What is a mount point? Explain the change it necessitates to
pathname lookup.

(e) What is a symbolic link? Explain how it differs from a normal
link (i.e. a directory entry), and its benefits and drawbacks.

(f ) Draw a simple diagram showing how a disk is laid out in Unix,
and what information each section contains.

(g) Give three ways in which Unix helps users to avoid the use of
long pathnames, not counting facilities provided by the shell.

(h) Outline the procedure for file system integrity checking and re-
covery (following a crash). For both of the major inconsistencies
which are possible, describe a sequence of operations which would
have given rise to this inconsistency, had they been under way im-
mediately before the crash.



16. Protection basics

(a) Below are some common security-oriented practices or features
of operating systems. For each, identify one or more goals or
properties which the feature or practice is designed to achieve,
choosing from the following vocabulary: {secure authentication,
audit trail, privacy, integrity, availability, compromise detection,
covert channel avoidance, least privilege operation}. Briefly ex-
plain the particular instance of the property which the system is
trying to achieve.

(i) Being required to “press Ctrl–Alt–Del to log in” (e.g. on a
Windows NT box)

(ii) RSA encryption between terminal and server

(iii) Randomised delay after failed login (e.g. on Unix)

(iv) Digital signature of device drivers and downloaded software

(v) File access control lists

(vi) Running services (e.g. a web server) under their own special
user identity

(vii) Limited (maximum) rate of process creation

(viii) Disallowing user access to DMA

(ix ) Reserving a fixed amount of disk space for privileged users

(b) Give three possible techniques which improve computer security
but which are not themselves implemented in computer hardware
or software. In each case, mention which (using the above list,
and adding your own if necessary) security properties they help
enforce.



17. Capabilities, and Unix access control

A Unix system contains an executable called web with owner bob,
group spider and mode rwxr-x--x. The group spider has members
alice, bob, charlie and dave.

(a) (i) Draw an access control matrix for the file.

(ii) Give one benefit of using groups in access control as opposed
to an arbitrary access control list (without groups), and one
disadvantage.

(iii) What is a capability? Refer to the access control matrix in
your answer.

(b) Bob wants his program to maintain some system-wide usage statis-
tics, outputting to a file in his home directory. Anyone should be
able to read the statistics, but only Bob should have write access
to them.

(i) What feature of Unix access control might Bob use to provide
this functionality?

(ii) Why is this modification likely to introduce security vulner-
abilities?

(iii) Suggest a way that Bob can avoid the biggest potential vul-
nerability, by making careful use of Unix file descriptors.
[Hint: consider file descriptors as capabilities.]

(iv) Suggest why the resulting system is still unlikely to be se-
cure.

(c) Capabilities are often criticised for being difficult to revoke. Ex-
plain this statement, and suggest one or two simple solutions
(highlighting any clear drawbacks within your suggestions).

(d) A system designer proposes using virtual addresses as capabili-
ties. Suggest why this is not secure on a conventional instruction
set architecture, and suggest one or more changes which would
make this possible.



18. More from the Unix case study

(a) Explain why in Unix, the /etc/passwd file is publicly readable.
What mechnism is used to protect passwords? Why is this in-
adequate on modern machines? What modification is made to
password storage in modern implementations?

(b) Draw a diagram of a Unix process, explaining the different re-
gions of the virtual address space and how each changes over the
process’s lifetime.

(c) How is the Unix kernel image loaded from disk at boot-time?
What is the role of the init process?

(d) Explain the usage of the fork(), exec(), exit() and wait()
system calls in Unix. What is the advantage of separating out
fork() from exec() and what feature provided by other operat-
ing systems (such as Windows NT) makes this less useful?

(e) What are the three standard communication streams available to
any Unix process? What is I/O redirection? What is a pipeline
and what limitation with redirection does it address? Why must
pipelined processes have a common ancestor? Give an example
of a (non-linear) pipeline topology which cannot be created from
the shell (but could be created from a hand-crafted program using
system calls directly).

(f ) To what feature of a (hardware) processor are Unix process sig-
nals analogous?

(g) Suggest (guess) what functionality might be provided by the
cooked character I/O interface, and what system calls would be
used to access it.

(h) Why might it be dangerous to cache filesystem metadata?

(i) Describe the Unix process scheduler in five words or fewer. What
does the nice value of a process represent? What else does the
scheduler account for when making decisions?



19. NT design principles

(a) Windows NT’s design goals included portability, security, POSIX
compliance, multiprocessor support, extensibility, internationali-
sation support and backwards-compatibility. List which of these
design goals motivated each of the following implementation de-
cisions.
(i) written in high-level languages
(ii) microkernel architecture
(iii) modular structure
(iv) use of a hardware abstraction layer

(b) What distinction concerning interrupts is made between the ex-
ecutive and the kernel? Why is the use of the word kernel in NT
different from generic use of the word?

(c) Explain the relationship between a process and a thread in NT.

(d) What tradeoff is being exploited by the use of different thread
scheduling quantums between Workstation and Server editions of
NT?

(e) Draw a diagram of the internal structure of an object as found
in the NT executive. Which fields are used to implement the
namespace?

(f ) To support what kind of application-level I/O interface does NT
introduct I/O request packets?

(g) What is meant when NT’s I/O cache system is described as uni-
fied? What features does the cache manager provide for application-
directed “hinting”?

(h) Consider the FAT filesystem. What data structure is used to
record the sequence of blocks containing each file’s data? When
is space for this structure allocated? Explain why “big cluster
size is bad”.

(i) Consider the NTFS filesystem. In what sense is a file in NTFS
structured? Explain how use of a special log file aids recovery.

(j ) Later versions of NT moved some graphical interface function-
ality into the executive. Where did this functionality previously
reside? Suggest one service in the NT executive which might have
been used by the graphical interface code, and why this could op-
erate faster once the code was moved into the executive.



20. NT vs Unix

(a) What design goals of NT did Unix specifically not address?

(b) For each of the following features of Unix, specify in what way
NT’s closest analogous features are essentially different, and sug-
gest a benefit and/or drawback in each case:

(i) filesystem namespace structured as directed acyclic graph;

(ii) process hierarchy;

(iii) buffer cache;

(iv) synchronous I/O.

(c) For each of the following features of NT, specify the closest anal-
ogous feature of Unix, if any, and suggest what design decisions
justified Unix’s approach.

(i) hardware abstraction layer (HAL)

(ii) NT “subsystems”

(iii) graphical user interface part of Win32 subsystem

(iv) thread creation

(v) local procedure call (LPC)


