
The Inevitable Death of VMs: A Progress Report
Stephen Kell

University of Cambridge
Cambridge, United Kingdom
stephen.kell@cl.cam.ac.uk

ABSTRACT
Language virtual machines (VMs), as implementation artifacts, are
characterised by hard boundaries which limit their conduciveness
to language interoperability, whole-system tooling, and other inter-
actions with the ‘world outside’. Since the VM paradigm emerged,
it has become increasingly clear that no single language or VM
can succeed to the exclusion of others. This motivates a different
approach in which languages are no longer implemented as VMs
per se, but as participants in certain shared system-wide protocols,
shared across diverse collection of languages and constituting a
more porous boundary. One means of achieving such a shift is to
evolve the underlying infrastructure from an essentially Unix-like
environment to one that incorporates VM-like services, includ-
ing memory management primitives, as a core protocol shared
between many language implementations. Ongoing work towards
these goals within the liballocs runtime is discussed, specifically
concerning pointer identification, process-wide garbage collection,
and speculative optimisations.

CCS CONCEPTS
• Software and its engineering → Operating systems; Interop-
erability; Compilers;

KEYWORDS
Unix, virtual machines, debugging, garbage collection, linking
ACM Reference Format:
Stephen Kell. 2018. The Inevitable Death of VMs: A Progress Report. In Pro-
ceedings of 2nd International Conference on the Art, Science, and Engineering
of Programming (<Programming’18> Companion). ACM, New York, NY, USA,
2 pages. https://doi.org/10.1145/3191697.3191728

1 INTRODUCTION
The paradigm of language virtual machines has given us many
things: high performance for even highly dynamic languages; con-
venient and fast garbage collection; and reliable high-level tooling.
All are enabled by the internal uniformity of a virtual machine.
Here the ‘virtual machine’ is not only a specification artifact, used
to define a platform or a language, but is also how the implementa-
tion is designed and ‘packaged’, as a more-or-less freestanding box.
But this paradigm also takes from us: through removing access to
certain abstractions offered by the host system, supporting only

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
<Programming’18> Companion, April 9–12, 2018, Nice, France
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5513-1/18/04. . . $15.00
https://doi.org/10.1145/3191697.3191728

one or a subset of the languages of interest, and providing only pre-
scriptive tool interfaces, it create barriers and external needs which
must be worked around. These workarounds are different for each
VM (e.g. different FFIs), and often must be reinvented or re-learned
by each end programmer unfortunate enough to need them. For
example, custom tooling on the JVM is surprisingly commonplace
and is usually done via onerous bytecode manipulation. Other VMs
offer other mechanisms, many of them not even language-standard,
but rather specific to a given implementation.

This paradigm is limiting. It made sense in the early days, of
Lisp and Smalltalk, when the creator of a new language could
earnestly believe that it had a chance of fully and quickly obsolet-
ing what came before. Those days are long gone—yet the insular,
self-contained implementation paradigm remains. As I have argued
previously, we should instead adopt different principles in how
we implement high-level languages, adopting a pluralist outlook
and an attitude not unlike what Noble and Biddle [5] have called
‘postmodern’. Specifically, we should aspire to package language
implementations in a way that renounces ‘one true VM’, instead
allowing first-class interoperability with the host environment (per-
haps at modest drop in performance), the same interoperability
with other VMs past and present, and tool support which ‘sees
across’ these boundaries. One basis for this would be a common
substrate that exposes high-level VM-like primitives sufficient to
allow rich communication, including data sharing and cross-calling,
between multiple VMs and host-native code. Such a substrate might
be realised by extending a pre-existing platform that is widely used
and embodies a pluralist attitude to languages and tools. Such a
platform does exist: it is the Unix(-like) process.

This shift in principles does not necessarily mean throwing away
what we have built. One appeal of adopting Unix as a base is that
most VMs already target Unix-like abstractions. The shift that is nec-
essary is therefore one of repositioning, or what I call ‘retrofitting’,
so that the VM can make use of the services of the extended sub-
strate, beyond what Unix currently offers. This would partly replace
hand-rolled code with calls to the substrate, and partly add descrip-
tive information and . The working hypothesis is that only small
fraction of code must be changed, and that this code is mostly quite
low-lying (e.g. concerning memory allocation from the operating
system); compilation, object layout, or even the principal garbage
collector (that on whose performance the language implementation
critically depends) need not be much affected. As such, the goal is
not to ‘add one more’ VM or design to the pile, but to embrace and
underpin a broad collection of co-existing systems.

In what follows I will first recap and elaborate this position and
previous work, then outline some recent or ongoing technical work
on further challenges. Three particular challenges of interest are
pointer identification, process-wide garbage collection (GC), and
speculative optimisations.

https://doi.org/10.1145/3191697.3191728
https://doi.org/10.1145/3191697.3191728

<Programming’18> Companion, April 9–12, 2018, Nice, France Stephen Kell

2 EXTENDING LIBALLOCS
The vehicle for this work is my liballocs runtime, first described at
Onward! 2015 [3]. The concept of liballocs is to ‘embrace and extend’
existing Unix APIs towards a unified meta-level interface. This
interface admits a diversity of implementations which, collectively,
reach across the entirety of a Unix process—spanning not only VM-
hosted code but also unsafe C, C++ or even assembly code, and all
data created by such code. This interface provides query operations
(get type, get bounds, etc), mutations (setting type information
and/or other metadata) and allocation management operations
(move, resize, etc). The key idea is to view the process address space
not as a flat collection of memory mappings but more generally
as a hierarchical collection of allocations, spanning from the large
(mappings) down to the small (individual objects, each with type
information). Allocations are managed by reified allocators (stack,
heap, etc); each allocator implements the shared meta-level protocol
in its own way. Type information, in a form derived from native
debugging information is capable of describing a very large variety
of object layouts, without precluding certain VMs (or allocators,
or language implementations) primarily working with their own
internal format, as currently. The fixed overheads of maintaining
this information for conventional C heap, stack and static allocators
are close to the noise.

Three particular areas of interest are as follows.

Pointer identification. A classical distinction between VMs and
lower-level execution environments is that VMs usually ‘know
where the pointers are’. This design property bootstraps not only
precise garbage collection, but also object motion more generally, as
well as feats of dynamic compilation such as on-stack replacement,
and ‘hot patching’ services (which, in general, require resizing
and reallocation of objects). Identifying pointers reliably across a
whole process appears surprisingly feasible, albeit with challenges
remaining. Ongoing work is progressing this on three fronts: for
static objects, the use of link-time relocation records for pointer
identification even at run time; for the stack, combining compiler-
generated debug info (for locals) and frame information (describing
saved registers) to eliminate gaps and ambiguities in stackmetadata;
and for dynamically created pointer-derived integers, such as inter-
object offsets computed in unsafe code (lightly instrumented to
catch this), generalising slightly the previous notion of relocation
records in order to record these dynamically as these integers are
created and stored. A theme here is to exploit the surprisingly close
correspondence between ‘moving’ garbage collection of objects (at
run time) and ‘relocation’-based linking of code and data sections;
as I will explain, this synonymy is not a coincidence.

Steps towards process-wide garbage collection. Given reliable pointer
identification,many useful applications become possible. Onewould
be a single tracing garbage collector covering the whole process.
Such a collector would not be a good ‘primary’ collector, since it is
not being tuned to particular languages or object representations.
However, it is essential to provide a key ‘pluralist’ facility necessary
for the desired degree of interoperability: inter-language references
with semantically first-class status. This entails cross-heap refer-
ences; a process-wide precise collector could run occasionally to
detect inter-heap cycles, and/or as an improve on the performance

and precision of the imprecise (conservative) Boehm collector [1]
in applications which currently use that. An alternative and less
performance-sensitive application for proving the robustness of
pointer identification is dynamic software update (hot patching).
This shares with GC the need to resize and reallocate arbitrary code
and data allocations, rewriting pointers as necessary. However, it is
overall a somewhat more forgiving application regarding both per-
formance and the necessary frequency of safe execution points at
which it may be invoked. Current dynamic-update systems require
either ABI changes or extensive user-supplied guidance. A system
based on strong pointer identification could likely offer common-
case upgrades without these interventions—roughly following an
UpStare-style stack rewinding approach [4] but offering substantial
automation. To enable initial progress towards these goals, a key
observation is that since native compilers often (avoidably) compro-
mise metadata coverage in the course of performing optimisations,
tools for quantifying and diagnosing such omissions are necessary.
The toolchain must therefore incorporate a feedback cycle: analyse
the compiler’s debugging information to identify stack slots which
remain unexplained or ambiguous, generate a warning, and re-run
the compiler with fewer optimisations. This effectively falls back
to precisely described (but less optimised) code, while triaging the
defect, so stands also to help existing debuggers such as gdb.

Speculative optimisations. A VM-like host environment should
allow optimisations which speculate—such as on the class or lay-
out of a target object [2]. In a heterogeneous system allowing the
sort of first-class interoperability I have posited, it also becomes
important to speculate on the allocator of the object being accessed,
to allow code to include language-specific fast paths (e.g. a JS-to-JS
object access, also speculating on a particular object map) while
still permitting other cases (e.g. a JS-to-C field access, object lay-
out looked up dynamically). The earlier paper [3, §6] presented
a sketch of this allocator affinity idea, but no implementation. A
very early implementation exists in liballocs of speculation on an
object’s allocator, enabling inlining of a likely code path.

3 FURTHER MATTERS FOR DISCUSSION
A key hypothesis of the liballocs design is that existing VMs may be
retrofitted onto it at fairly modest effort, rather than being thrown
away or substantially rewritten. A previous partial retrofitting (of
V8) exists, but is challenging to maintain; therefore, input is sought
on alternative candidate VMs for use as retrofitting targets.

REFERENCES
[1] Hans-Juergen Boehm and Mark Weiser. 1988. Garbage collection in an un-

cooperative environment. Softw. Pract. Exper. 18, 9 (1988), 807–820. https:
//doi.org/10.1002/spe.4380180902

[2] C. Chambers, D. Ungar, and E. Lee. 1989. An efficient implementation of SELF, a
dynamically-typed object-oriented language based on prototypes. SIGPLAN Not.
24, 10 (1989), 49–70. https://doi.org/10.1145/74878.74884

[3] Stephen Kell. 2015. Towards a Dynamic Object Model Within Unix Processes. In
2015 ACM International Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software (Onward!) (Onward! 2015). ACM, New York, NY,
USA, 224–239. https://doi.org/10.1145/2814228.2814238

[4] Kristis Makris. 2009. Whole-Program Dynamic Software Updating. Ph.D. Disserta-
tion. Arizona State University.

[5] James Noble and Robert Biddle. 2002. Notes on postmodern programming. Technical
Report CS-TR-02-9. Victoria University of Wellington, Wellington, New Zealand.

https://doi.org/10.1002/spe.4380180902
https://doi.org/10.1002/spe.4380180902
https://doi.org/10.1145/74878.74884
https://doi.org/10.1145/2814228.2814238

	Abstract
	1 Introduction
	2 Extending liballocs
	3 Further matters for discussion
	References

