Local Heating Attacks on Flash Memory Devices

Dr Sergei Skorobogatov

http://www.cl.cam.ac.uk/~sps32 email: sps32@cam.ac.uk
Introduction

• Semi-invasive attacks were introduced in 2002 (“Optical fault induction attacks”, CHES-2002)
 – fill the gap between non-invasive and invasive attacks
 – do not require direct access to internal wires
 – local heating was proposed as possible fault attack

• EEPROM and Flash memory
 – used in many microcontrollers, smartcards and secure memories
 – offer non-volatile storage for passwords and encryption keys
 – have limited resource and data retention time

• The presented research shows how local heating can be used to implement modification attacks on EEPROM and Flash memory
Background

- Structures of EEPROM and Flash memory
- Floating-gate transistor used as a storage element
- Have different cell size and write/erase operation modes
- Limited data retention time is caused by loss of charge on the floating gate. Loss is increased at higher temperature
Experimental setup

- Sample preparation
- Locating Flash and EEPROM
Experimental setup

- Localised heating using cw lasers
- Test board and software were used for analysis
- For comparison a whole chip was heated up on a hotplate
Results

- Heating EEPROM cells with a 650 nm cw laser
 - 50 mW laser erases one cell and eventually two neighbour cells
 - 100 mW laser erases faster but causes permanent damage to the memory cells
Results

- Heating on a hotplate at 450°C
 - partially erased sample was used
 - aluminium foil was used to prevent loss of heat
 - plastic degrades at higher temperature
Results

- Detecting partially modified Flash memory cells
 - discharging process is slow and non-reversible
 - modification may result in non-operational chip (CRC, protection)
 - the state of cell is an analog value which is sampled by read-sense amplifier, and that can be noticed in the power trace
 - can be used for locating cells and for data recovery

0x3FFE vs 0x3FFF

0x3FFE vs 0x3FFE (10 mW 30 sec)
Limitations and improvements

• Data recovery
 – slow process
 – high-power lasers can cause damage to memory cells

• Modern chips
 – three or more metal layers prevent direct access by the laser
 – impossible to influence a single cell in 0.5 µm and smaller chips

• Backside approach
 – IR lasers (wavelength > 1000 nm)
 – lower spatial resolution
 – more powerful lasers are required due to loss on absorption
 – with 50 mW laser no noticeable difference after 30 minutes
 – substrate thinning might be required to reduce the time
Countermeasures

• Use modern chips with multiple metal layers
• Metal shielding over sensitive memory areas
• Light sensors
• Encrypt keys and passwords
• Use redundancy check
Conclusions

• EEPROM and Flash memory are sensitive to local heating

• Memory contents can be altered using affordable semi-invasive technique

• Partially modified memory cells can be detected through power analysis techniques, but still undetectable by embedded software

• Possibility of partial reverse engineering of memory structure and its content

• In modern chips it is impossible to alter just a single cell. However, fault attacks can still be carried out

• Backside approach can help in modern chips, but has lower spatial resolution and requires more powerful lasers
Further research

• **Fault injection attacks**
 – advanced memory extraction techniques
 – real-time injection

• **Side-channel attacks**
 – optical emission analysis attacks (FDTC-2009, September)
 – improved power analysis attacks: more effective (higher precision and resolution), faster (higher speed) and cheaper (lower cost)