Optical Fault Masking Attacks

Sergei Skorobogatov

http://www.cl.cam.ac.uk/~sps32 email: sps32@cam.ac.uk

Introduction

- Memory modification attacks were actively used in mid
 90s to circumvent the security in microcontrollers
- In old chips a high voltage was supplied to an external pin to drive the memory control and programming circuit
- Modern chips have internal charge pumps and this prevents low-cost non-invasive attacks on memory
- Semi-invasive attacks in the form of optical fault injection were introduced at CHES-2002 and they use low-cost approach when a chip is attacked without establishing any physical contact to its internal components
- The presented research shows how embedded memory write and erase operations can be disabled using semiinvasive attacks thus raising security concerns

Background

- Flash memory structure
 - high voltages required for operation
 - narrow data bus
 - dedicated control logic

- Sample preparation for PIC16F84, 16F628 and 16F628A
 - straightforward operation using simple chemistry lab

- Test board for memory access via ICSP interface
- The chip was placed in a test socket mounted on XYZstage under a microscope with 20× objective lens
- Red laser diode module was used, 650nm, 25mW power

- Locating Flash and EEPROM in PIC16F84 (1.2µm)
 - high-density areas with regular structure
 - the memory control is nearby

- Locating Flash and EEPROM in PIC16F628 (0.9µm)
 - high-density areas with regular structure
 - the memory control is nearby

- Locating Flash and EEPROM in PIC16F628A (0.5µm)
 - high-density areas with regular structure
 - the memory control is nearby

- Influence on memory Write and Erase operations
 - 10mW 650nm laser with front-side approach
 - tables show number of Cells/Lines protected at a time
- Whole memory disable with timing control delivers the perfect write protection tool

Chip	Memory Write Operations					
	Flash Cells	Flash Lines	Flash Array	EEPROM Cell	EEPROM Lines	EEPROM Array
PIC16F84	4-19	1-2	Yes	2-6	1 - 2	Yes
PIC16F628	2-16	1 – 2	Yes	2-4	1 – 2	Yes
PIC16F628A	1-2	1 – 2	Yes	1-2	1 – 2	Yes

	Memory Erase Operations					
Chip	Flash Cells	Flash Lines	Flash Array	EEPROM Cell	EEPROM Lines	EEPROM Array
PIC16F84	4-16	1-2	Yes	1 – 4	1-2	Yes
PIC16F628	2-13	1 – 2	Yes	2-3	1 – 2	Yes
PIC16F628A	No	1-2	Yes	No	1-2	Yes

- Backside sample preparation for PIC16F628A (0.5µm)
 - no chemicals involved
 - very simple, quick and easy operation

- Microscope setup with a test socket and 20× objective lens
- Infrared laser diode module was used, 1065nm, 75mW
- Locating Flash and EEPROM in PIC16F628A (0.5µm)
 - position is known from the front-side experiments
 - the memory control is nearby

- Influence on memory Write and Erase operations
 - 25mW 1065nm laser with backside approach
 - tables show number of Cells/Lines protected at a time

	Memory Write Operations					
Chip	Flash Cells	Flash Lines	Flash Array	EEPROM Cell	EEPROM Lines	EEPROM Array
PIC16F628A	1-2	1-2	Yes	1-2	1-2	Yes
PIC16F628A						
(backside)	12 - 45	1 - 2	Yes	8 - 22	1 - 2	Yes

	Memory Erase Operations					
Chip	Flash Cells	Flash Lines	Flash Array	EEPROM Cell	EEPROM Lines	EEPROM Array
PIC16F628A	No	1 – 2	Yes	No	1 – 2	Yes
PIC16F628A						
(backside)	10 - 36	1 - 2	Yes	10 - 27	1 - 2	Yes

- Backside sample preparation for MSP430F112 (0.35µm)
 - no chemicals involved
 - very simple, quick and easy operation
- Microscope setup with a test socket and 20× objective lens

- Infrared laser diode module was used, 1065nm, 75mW
- Locating Flash in MSP430F112 (0.35µm)
 - high-density areas with regular structure and large control
 - the memory control is nearby

- Influence on memory Write and Erase operations
 - 25mW 1065nm laser with backside approach for PIC16F628A
 - 75mW 1065nm laser with backside approach for MSP430F112
 - power supply of MSP430F112 chip was reduced to 2.5V
 - tables show number of Cells/Lines protected at a time

	Memory Write Operations					
Chip	Flash Cells	Flash Lines	Flash Array	EEPROM Cell	EEPROM Lines	EEPROM Array
PIC16F628A						
(backside)	12 - 45	1-2	Yes	8 - 22	1 - 2	Yes
MSP430F112						
(backside)	28 - 60	1 - 2	Yes	N/A	N/A	N/A

Chip	Memory Erase Operations					
	Flash Cells	Flash Lines	Flash Array	EEPROM Cell	EEPROM Lines	EEPROM Array
PIC16F628A						
(backside)	10 - 36	1-2	Yes	10 - 27	1 - 2	Yes
MSP430F112						
(backside)	19 - 40	1-2	Yes (unstable)	N/A	N/A	N/A

Limitations and improvements

Fault masking attacks

- work for other embedded memory, e.g. SRAM (S.Skorobogatov:
 Optically Enhanced Position-Locked Power Analysis, CHES-2006)
- not very effective for single-cell influence
- works well for disabling bit-lines, word-lines and a whole chip
- Modern chips with three or more metal layers
 - backside approach is the only solution as the optical path is blocked
- Backside approach
 - higher laser power is required for reliable influence
 - lower spatial resolution, hence, better optics is required
- Power supply voltage influence on PIC16F628 chip

			Power Sup	ply Voltage					
PIC16F628	2.5 V	3.0 V	3.5 V	4.0 V	4.5 V	5.0 V			
Laser power, mW	2.4	4.6	6.1	7.2	7.9	8.5			

Countermeasures

- Use of modern chips with multiple metal layers forces an attacker to use backside approach and results in more expensive and longer attack
- Metal shielding over sensitive areas can help but cannot prevent backside approach
- Light sensors could detect the attack but will require more sophisticated hardware
- Encryption, redundancy check and address permutations make analysis harder, but cannot eliminate it completely
- Data verification after writing can help, however, the read operation can be influenced as well by using fault injection

Conclusions

- Optical fault masking attacks can be applied using semiinvasive techniques without sophisticated chip preparation techniques
- Optical fault masking attacks offer possibility of partial reverse engineering for chips by finding active locations
- Backside approach helps in modern chips and it is easy to perform
- At a lower power supply voltage less power of laser is required for the attack
- Lack of protection against optical fault masking attacks in modern chips might lead to possible vulnerabilities