Using Optical Emission Analysis for Estimating Contribution to Power Analysis

Dr Sergei Skorobogatov

http://www.cl.cam.ac.uk/~sps32 email: sps32@cam.ac.uk

Introduction

- Power analysis attacks were introduced in 1999 (Kocher et al), and exploit well known fact that power consumption of a chip is correlated with its operation and processed data
- Semi-invasive attacks in a form of optical fault injection were introduced in 2002 (Skorobogatov et al), and use low-cost approach when a chip is attacked without establishing any physical contact to its internal components
- Optical emission analysis attacks were introduced in 2008 (Ferrigno et al), and exploit well known fact that photon emission of a chip is correlated with processed data
- The presented research shows how optical emission analysis attacks can be done at a low cost and how they can be used to improve protection against power analysis

Background

- Optical emission from CMOS circuits
 - known for over 40 years
 - actively used in failure analysis for over 20 years
- Can be used to compromise security in silicon chips
 - so far required expensive equipment and special chip preparation
 - was not considered as a threat, hence, no protection is in place

Background

 Number of photons emitted per every switch

$$N_e = S_e B(L_H I_d/q v_s) T_s \sim 10^{-2}...10^{-4} \text{ ph/switch}$$

 S_e – spectral emission density, B – emission bandwidth,
 L_H – hot-carrier region length, I_d – drain current, $q - e^-$ charge,
 v_s – carrier saturated velocity, T_s – transition time

- Only 5~10% of photons can reach the sensor (direction and losses)
- Existing analysis techniques
 - picosecond imaging circuit analysis (PICA) uses photomultiplier arrays
 - photon emission microscopy (PEM) uses special IR cameras
- Correlation between photon emission and power consumption

Experimental setup

- Sample preparation (PIC16F628)
- Locating Flash, EEPROM, SRAM, CPU
- Choosing PMT, APD and CCD sensors

Experimental setup

Choosing PMT: low dark current

Choosing APD: high quantum efficiency

Choosing CCD: NIR sensitivity, low dark current

	Parameters					
Type of camera	Wave-length, nm	<i>QE at 900 nm</i>	QE at 1000 nm	Dark current e /s	Time response	
Quantar Mepsicron II S25	180-940	1%	0%	0.005	50 ps	
Hamamatsu C4880-21	200-1200	50%	20%	0.3	20 ms	
Hamamatsu C4880-50	200-1100	30%	10%	0.01	20 ms	
Hamamatsu H10330-25	850-1250	2%	2%	2000	900 ps	
Hamamatsu H6780-01	250-850	<1%	0%	400	780 ps	
Sensl PCDMini-0020	400-1100	2%	<1%	50	200 ps	
Sony Super HAD CCD	300-1050	8%	1%	0.02	10 μs	
Sony EXview HAD CCD	300-1100	12%	5%	0.02	10 μs	

Experimental setup

- PMT setup: decapsulated chip facing sensor's aperture
- CCD setup: camera mounted on a microscope, chip placed in a test socket
- Hamamatsu H6780-01 PMT sensor
- Starlight Xpress SXV-H9 CCD camera

- PIC16F628 was running at 20MHz clock (5 MIPS) with 6V power supply
 - PMT: H6780-01, 60' acquisition
 - SPA: 10Ω resistor, active probe
- PMT vs SPA
 - higher bandwidth
 - possible localisation
 - special hardware will suit better as oscilloscope is not designed for integration
- Test code: bsf portb,3
 clrf 0x75
 decf 0x75,f
 bcf portb,3
 goto loop

CCD

- 2x objective lens
- 30' integration time
- continuous read of EEPROM and SRAM:

incf EEADR,f bsf EECON1,RD movf EEDATA,w decf 0x75,f goto loop

EEPROM

- 10x objective lens
- 10' integration time
- read 4 addresses in a loop
- data: 56h, 56h, 56h, 00h
- Flash memory has similar structure and gives similar results

SRAM

- 10x objective lens
- 10' integration time
- read A6h: movf 0x75,w
- write W=A6h: movwf 0x75
- XOR W=C3h, (0x74)=A6h, xorwf 0x74,f

Data recovery

- slow process: minimum 1 minute per byte

Modern chips

- three or more metal layers prevent direct observation and analysis
- smaller technologies require longer integration time

Backside approach

- silicon is transparent to light wavelengths above 1000 nm
- lower spatial resolution
- longer integration time due to higher losses in silicon and optics
- higher magnification lenses give better result
- use of NIR optics improves result (expensive)
- substrate thinning might be useful for faster analysis (expensive)
- increase of the power supply voltage boosts the optical emission

Increasing the power supply voltage:
 every 10% increase boosts the emission by 40~120%

	Power Supply Voltage						
PIC 16F628	3.5 V	4.0 V	4.5 V	5.0 V	5.5 V	6.0 V	
Photometry							
results	1046	1286	2427	8400	23292	43026	

	Power Supply Voltage						
130nm ASIC	1.5 V	1.6 V	1.8 V	2.0 V	2.2 V	2.5 V	
Photometry							
results	889	1194	1953	5270	9536	23270	

 16F628 vs 16F628A: 0.9 μm and 0.5 μm, higher density with CMP technology leads to ~80% loss in intensity

 PIC16F628: EEPROM area from front and rear sides after 30' of integration with standard 10x objective lens

- Backside approach
 - 0.13 μm ASIC with SRAM
 - Vcc increased from 1.5 V to 2.0 V (6x boost of emission)
 - 20x NIR objective
 - 60' integration time

Countermeasures

- Use of modern chips with multiple metal layers forces an attacker to use backside approach and results in longer time required for the attack
- Metal shielding over sensitive areas can help but cannot prevent backside analysis
- Encryption and redundancy check make analysis harder
- Asynchronous circuits could make the attack more problematic as data analysis requires a single byte to be present at a specific time

Conclusions

- Optical emission analysis can be carried out at a relatively low cost using hobbyist astronomical CCD cameras
- PMT offers high bandwidth and acquired data have correlation with power analysis results
- Results of optical emission analysis can be used for finding weak spots in protection against power analysis attacks
- Optical emission analysis offers possibility for partial reverse engineering of chips including data analysis
- Backside approach can help in modern chips, but has lower spatial resolution and requires longer integration time
- Increase of the power supply voltage boosts the optical emission and considerably reduces time of analysis
- Lack of protection against optical side-channel attacks in modern chips might lead to possible vulnerabilities