

IPFA 2018

Is Hardware Security prepared for unexpected discoveries?

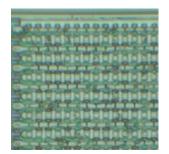
Dr Sergei Skorobogatov

University of Cambridge, UK

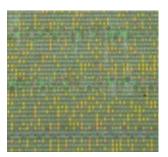
Dept of Computer Science and Technology

Purpose

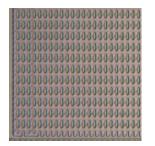
- Remind about the importance of Hardware Security
 - Growing number of devices being used in critical and sensitive applications
 - Have we learned from history of attacks?
- Highlight that mitigation is not developed in time to defeat attacks
- Present some new attacks
- Discuss predictability of attacks

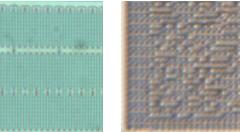

Outline

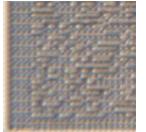
- Introduction
- History of attack technologies
- New attacks
- Discussions
- Challenges and Future work
- Conclusion


Introduction

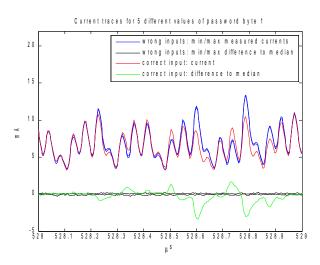
- History of disturbing physical attacks
 - Mask ROM visibility
 - Power analysis
 - Optical fault injection
 - Data remanence in Flash/EEPROM
 - Combined attacks
 - Optical emission analysis
 - Flash/EEPROM imaging under SEM
 - CPU speculative execution bug

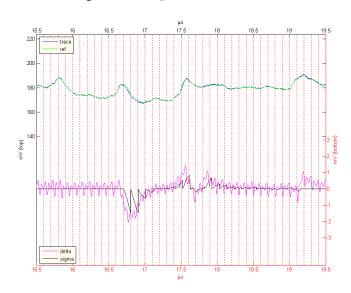

- Mask ROM "invisibility" in 1990s
 - Information is encoded with doping level
 - Impossible to see under optical microscope
 - Failure Analysis helps with defects etching
 - Countermeasures at silicon level

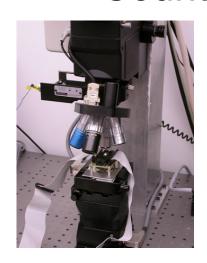

encoding by presence of transistors

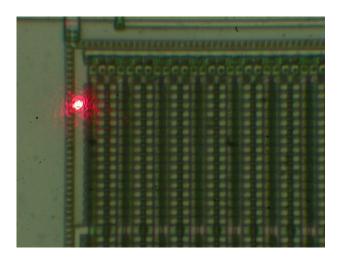


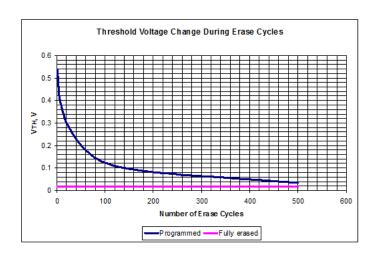
encoding by shorts in metal layer

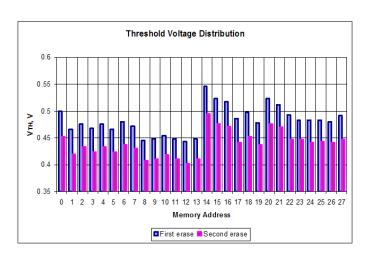

encoding by doping concentration

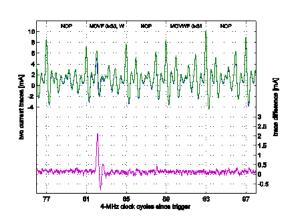



after selective dash etching

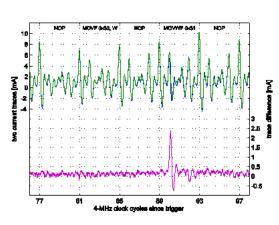

- Power analysis reveals deep secrets
 - Leakage from switching CMOS transistors is correlated with processed data
 - Can break passwords and crypto keys
 - Countermeasures are very sophisticated

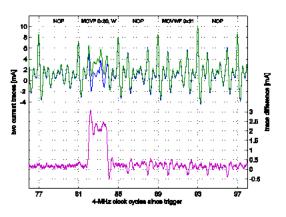

- Optical fault injection
 - CMOS transistors and memory cells can be controlled with a laser beam
 - Confirmed down to 28nm devices
 - Countermeasures at silicon level





- Data remanence in Flash/EEPROM
 - Residual information present after Erase
 - Could lead to recovery of sensitive data
 - Once learned can be easily defeated

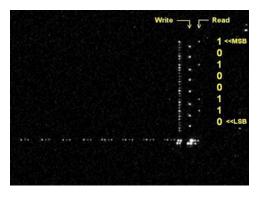




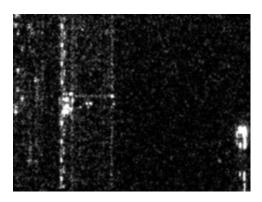
- Combined attacks
 - Power analysis + Fault injection
 - More powerful and localised
 - Countermeasures are hard to implement

read memory location (laser Off - On)

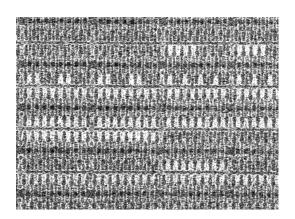


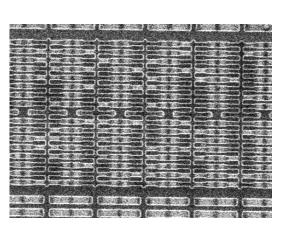

write memory location (laser Off - On)

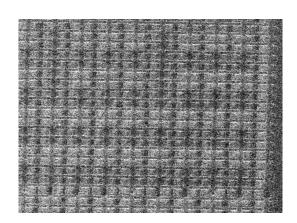
read memory location (laser Off – On) contents of memory changed by laser


- Optical emission analysis
 - Switching CMOS transistors emit photons
 - Can be detected with CCD cameras (2D) and photomultiplier tubes (time resolved)
 - Countermeasures are hard to implement

PMT response over large area




CCD image acquired on SRAM



CCD image acquired on AES, 130nm

- Flash/EEPROM imaging under SEM
 - More efficient and faster than SPM
 - Destructive to memory cells
 - Physical limits for detectable charge
 - Countermeasures are hard to implement

- CPU speculative execution bug
 - Design flaw in most modern CPUs
 - Attack names: Meltdown, Spectre
 - Allows eavesdropping on internal CPU data from independent processes
 - Countermeasures at OS and silicon level

M. Lipp et al: Meltdown. USENIX 2018 P. Kocher et al: Spectre. S&P 2018

History of attack technologies

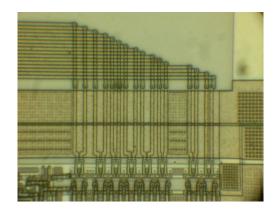
- Did all those attacks came unexpected or they could have been predicted?
 - Mask ROM visibility
 - manufacturers new what they were doing
 - Power analysis
 - standard tool to calculate power dissipation
 - Optical fault injection
 - radiation causes circuits to malfunction
 - Data remanence
 - was known for magnetic media

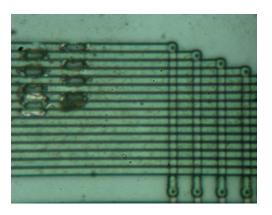
History of attack technologies

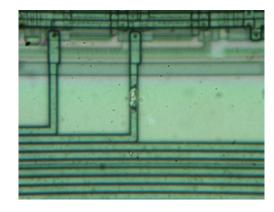
- Did all those attacks came unexpected or they could have been predicted?
 - Combined attacks
 - were not considered as simpler attacks existed
 - Optical emission analysis
 - was known for many years and is used in LEDs
 - Flash/EEPROM imaging under SEM
 - was not considered until latest SEMs with PVC
 - CPU speculative execution bug
 - possible to predict if you have security review

Impossible attacks – very high drive

- Reading data if there is no readback
 - Devices were considered secure by design
 - bypassed with bumping attacks
- Accessing data through backdoor
 - Was considered to be impossible by design
 - proved to work via undocumented debugging
- Reset passcode attempt counter in iPhone
 - FBI claimed that NAND mirroring will not work
 - proved to work with hardware cloning prototype

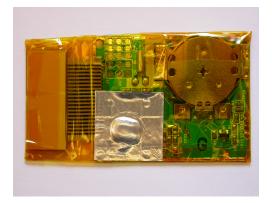

S. Skorobogatov: Flash Memory 'Bumping' Attacks. CHES 2010


S. Skorobogatov, C. Woods: Breakthrough silicon scanning discovers backdoor in military chip. CHES 2012


S. Skorobogatov: The bumpy road towards iPhone 5c NAND mirroring. arXiv 2016

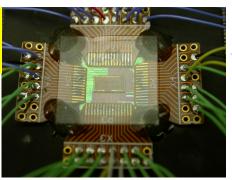
New attacks

- Microprobing CPU data bus
 - Hitachi HD6483102 smartcard controller
 - 16-bit Von-Neumann RISC CPU
 - Cutting bus line bit-15 will inject permanent '1'
 - CPU will execute non-branch 1-cycle instructions
 - Full memory extracted using one microprobe



New proof of concept attack

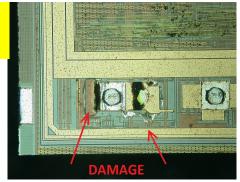
- Decapsulation on live circuits
 - Vasco Digipass 270 authentication token
 - Battery-backed SRAM storage for keys
 - on losing power or if Reset stops working
 - Sample preparation involves tape insulation, applying hot 100% Nitric Acid via stencil and washing with Acetone


Discussions

- Is it possible to predict new attacks?
 - Hardware security educated engineers
 - Open mind design reviewers
- Unexpected attack: bad or good
 - Helps in understanding the nature
 - What is bad for chip manufacturers might be good for technological progress
 - new materials could be created
 - new processes could be developed
 - new solutions to problems found

Challenges and Future Work

- Mechanical damage
 - Restore challenging packages (QFN, BGA)
 - Recovering information from shattered dies
- Electrical damage
 - Recovering information with burned I/O
 - Recovering information if logic is burned



Conclusion

- Many new attacks are based on well known facts and phenomena
- Instruction set in many CPUs is highly orthogonal, hence, susceptible to fault attacks
- Battery backed devices can be decapsulated without losing power
- New attacks are likely to emerge in the future
 - Are we ready to defeat?
- Collaboration between Industry and Academia
 - Implementing 'impossible' attacks
 - Coming up with new solutions and 'crazy' ideas