Fault and side-channel attacks on memory

Dr Sergei Skorobogatov

http://www.cl.cam.ac.uk/~sps32 email: sps32@cam.ac.uk

Introduction: Who needs secure chips?

- car industry: anti-theft protection, spare parts identification
- service providers: access cards, payment tokens, RFID tags, electronic keys, software license dongles
- mobile phone manufacturers: batteries and accessories control
- printer manufacturers: toner cartridges, memory modules
- manufacturers of entertainment systems: copy protection, consumables and accessories control
- manufacturers of devices and equipment: protection against cloning and reverse engineering, IP protection (hardware, software, algorithms)
- banking industry: secure payment cards, secure processing
- military applications: data protection, encrypted communication

Introduction: Why we need hardware security?

- Theft of service (attacks on service providers)
 - satellite TV
 - electronic meters
 - access cards
 - software protection dongles
- Access to information
 - information recovery and extraction
 - gaining trade secrets (IP piracy)
 - ID theft
- Cloning and overbuilding
 - copying for making profit without investment in development
 - low-cost mass production by subcontractors
- Denial of service
 - dishonest competition
 - electronic warfare

Hardware security evolution

Hardware security evolution

Hardware security

- Embedded memory
 - SRAM, Mask ROM,
 EEPROM, Flash
 - stores sensitive information, critical parts of algorithms, passwords, encryption keys
 - easy to locate on a die

- Common components
 - CPU
 - Memory
 - I/O
 - A/D and D/A

Embedded memory

EEPROM and Flash

- access one row at a time
- read-sense amplifiers bottleneck
- high-voltage operation

SRAM

- access with data bus width
- read-sense amplifiers bottleneck

Choosing secure components

- What has changed in the past?
 - too many devices on the market
 - vast majority of devices are claimed to be secure
 - security started to be used for marketing purposes
 - virtually impossible to test everything
- What are the problems?
 - certification does not provide guarantee against attacks
 - manufacturers do not carry any obligations or legal responsibility
 - no such thing as security benchmark
 - no ways of comparing devices from different manufacturers
 - chip manufacturers will not tell you the truth about security
 - marketing dominates over security

Attack categories

Side-channel attacks

 techniques that allows the attacker to monitor the analog characteristics of supply and interface connections and any electromagnetic radiation

Software attacks

 use the normal communication interface and exploit security vulnerabilities found in the protocols, cryptographic algorithms, or their implementation

Fault generation

 use abnormal environmental conditions to generate malfunctions in the system that provide additional access

Microprobing

 can be used to access the chip surface directly, so we can observe, manipulate, and interfere with the device

Reverse engineering

 used to understand the inner structure of the device and learn or emulate its functionality; requires the use of the same technology available to semiconductor manufacturers and gives similar capabilities to the attacker

Attack methods

- Non-invasive attacks (low-cost)
 - observe or manipulate with the device without physical harm to it
 - require only moderately sophisticated equipment and knowledge to implement
- Invasive attacks (expensive)
 - almost unlimited capabilities to extract information from chips and understand their functionality
 - normally require expensive equipment, knowledgeable attackers and time
- Semi-invasive attacks (affordable)
 - semiconductor chip is depackaged but the internal structure of it remains intact
 - fill the gap between non-invasive and invasive types, being both inexpensive and easily repeatable

Non-invasive attacks

- Non-penetrative to the attacked device
 - normally do not leave tamper evidence of the attack
- Tools
 - digital multimeter
 - IC soldering/desoldering station
 - universal programmer and IC tester
 - oscilloscope, logic analyser, signal generator
 - programmable power supplies
 - PC with data acquisition board, FPGA board, prototyping boards
- Types of non-invasive attacks: passive and active
 - side-channel attacks: timing, power and emission analysis
 - data remanence
 - fault injection: glitching
 - brute forcing
- Compare old days (late 90s) with today challenges

Non-invasive attacks: side-channel

- Timing attacks aimed at different computation time
 - incorrect password verification: termination on incorrect byte,
 different computation length for incorrect bytes
 - incorrect implementation of encryption algorithms: performance optimisation, cache memory usage, non-fixed time operations
- Today: timing attacks became harder to apply
 - common mistakes were fixed by manufacturers
 - internal clock sources and use of PLL made analysis difficult
 - countermeasures are in place: randomised clock, dummy cycles
 - careful selection of hardware eliminates many problems

Non-invasive attacks: side-channel

- Power analysis: measuring power consumption in time
 - very simple set of equipment a PC with an oscilloscope and a small resistor in power supply line; very effective against many cryptographic algorithms and password verification schemes
 - some knowledge in electrical engineering and digital signal processing is required
 - two basic methods: simple (SPA) and differential (DPA)
- Electro-magnetic analysis (EMA): measuring emission
 - similar to power analysis, but instead of resistor, a small magnetic coil is used allowing precise positioning over the chip
- Today: SPA/DPA and EMA became more challenging
 - higher operating frequency and noise: faster equipment is required
 - power supply is reduced from 5V to 1V: lower signal, more noise
 - 8-bit data vs 32-bit data: harder to distinguish single-bit change
 - more complex circuits: higher noise from other parts, hence, more signal averaging and digital signal processing are required
 - effective countermeasures for many cryptographic algorithms

Non-invasive attacks: fault injection

- Glitch attacks
 - clock glitches
 - power supply glitches
 - corrupting data
- Security fuse verification in the Mask ROM bootloader of the Motorola MC68HC05B6 microcontroller
 - double frequency clock glitch causes incorrect instruction fetch
 - low-voltage power glitch results in corrupted EEPROM data read

	LDA	#01h	
	AND	\$0100	;the contents of the EEPROM byte is checked
loop:	BEQ	loop	;endless loop if bit 0 is zero
	BRCLR	4, \$0003, cont	;test mode of operation
	JMP	\$0000	;direct jump to the preset address
cont:			

Non-invasive attacks: fault injection

- Today: glitch attacks became harder to exploit
 - effective countermeasures are in place: clock and power supply monitors
 - internal clock sources, clock conditioning and PLL circuits
 - internal charge pumps and voltage regulators
 - asynchronous design
 - checksums (CRC, SHA-1)
 - encryption

Invasive attacks

- Penetrative attacks
 - leave tamper evidence of the attack or even destroy the device
- Tools
 - IC soldering/desoldering station
 - simple chemical lab
 - high-resolution optical microscope
 - wire bonding machine, laser cutting system, microprobing station
 - oscilloscope, logic analyser, signal generator
 - scanning electron microscope and focused ion beam workstation
- Types of invasive attacks: passive and active
 - decapsulation, optical imaging, reverse engineering
 - microprobing and internal fault injection
 - chip modification
- Compare old days (late 90s) with today challenges

Invasive attacks: sample preparation

Decapsulation

- manual with fuming nitric acid (HNO₃) and acetone at 60°C
- automatic using mixture of HNO₃ and H₂SO₄
- full or partial
- from front side and from rear side
- Today: more challenging due to small and BGA packages

Invasive attacks: imaging

- Optical imaging
 - resolution is limited by optics and wavelength of a light: $R = 0.61 \lambda / NA = 0.61 \lambda / n \sin(\mu)$ - best is 0.18µm technology
 - reduce wavelength of the light using UV sources
 - increasing the angular aperture, e.g. dry objectives have NA = 0.95
 - increase refraction index of the media using immersion oil (n = 1.5)
- Today: optical imaging is replaced by electron microscopy

Bausch&Lomb MicroZoom, 50×2×, NA = 0.45

18

Invasive attacks: reverse engineering

- Reverse engineering understanding the structure of a semiconductor device and its functions
 - optical, using a confocal microscope (for >0.5µm chips)
 - deprocessing is necessary for chips with smaller technology

Invasive attacks: reverse engineering

Deprocessing

- removing passivation layer to expose the top metal layer for microprobing attacks
- decomposition of a chip for reverse engineering
- Mask ROM extraction

Methods

- wet chemical etching (KOH solutions, HCI, H₂O₂)
 - isotropic uniformity in all directions
 - uneven etching and undercuts metal wires lift off the surface
- plasma etching or dry etching (CF₄, C₂F₆, SF₆ or CCl₄ gases)
 - perpendicular to the surface
 - speed varies for different materials
- chemical-mechanical polishing (abrasives like Al₂0₃ or diamond)
 - good planarity and depth control, suitable for modern technologies
 - difficult to maintain planarity of the surface, special tools are required

Invasive attacks: reverse engineering

- Removing top metal layer using wet chemical etching
 - good uniformity over the surface, but works reliably only for chips fabricated with 0.8µm or larger process (without polished layers)
- Today: plasma etching and chemical-mechanical polishing

Motorola MC68HC705C9A microcontroller 1.0 μm

NEC μ PD78F9116 microcontroller 0.35 μ m

Invasive attacks: microprobing

- Microprobing with fine electrodes
 - eavesdropping on signals inside a chip
 - injection of test signals and observing the reaction
 - can be used for extraction of secret keys and memory contents
 - limited use for 0.35µm and smaller chips

Invasive attacks: microprobing

- Laser cutting systems
 - removing polymer layer from a chip surface
 - local removing of a passivation layer for microprobing attacks
 - cutting metal wires inside a chip
 - maximum can access the second metal layer

Picture courtesy of Dr Markus Kuhn

Invasive attacks: chip modification

- Today: Focused Ion Beam workstation
 - chip-level surgery with 10nm precision
 - create probing points inside smartcard chips, read the memory
 - modern FIBs allow backside access, but require special chip preparation techniques to reduce the thickness of silicon

Picture: Oliver Kömmerling

Picture courtesy of Dr Markus Kuhn

Semi-invasive attacks

- Filling the gap between non-invasive and invasive attacks
 - less damaging to target device (decapsulation without penetration)
 - less expensive and easier to setup and repeat than invasive attacks
- Tools
 - IC soldering/desoldering station
 - simple chemical lab
 - high-resolution optical microscope
 - UV light sources, lasers
 - oscilloscope, logic analyser, signal generator
 - PC with data acquisition board, FPGA board, prototyping boards
 - special microscopes (laser scanning, infrared etc.)
- Types of semi-invasive attacks: passive and active
 - imaging: optical and laser techniques
 - fault injection: UV attack, photon injection, local heating
 - side-channel attacks: optical emission analysis, induced leakage
- Compare old days (late 90s) with today challenges

Semi-invasive attacks: sample preparation

Decapsulation

- manual with fuming nitric acid (HNO₃) and acetone at 60°C
- automatic using mixture of HNO₃ and H₂SO₄
- full or partial
- from front side and from rear side
- Today: more challenging due to small and BGA packages

- Backside infrared imaging
 - microscopes with IR optics give better quality of image
 - IR-enhanced CCD cameras or special cameras must be used
 - resolution is limited to ~0.6µm by the wavelength of used light
 - view is not obstructed by multiple metal layers

- Backside infrared imaging
 - Mask ROM extraction without chemical etching
- Today: the main option for 0.35µm and smaller chips
 - multiple metal wires do not block the optical path

Texas Instruments MSP430F112 microcontroller 0.35 µm

Motorola MC68HC705P6A microcontroller 1.2 μm

- Advanced imaging techniques active photon probing
 - Optical Beam Induced Current (OBIC)
 - photons with energy exceeding semiconductor band gap ionize IC's regions, which results in a photocurrent flow producing the image
 - used for localisation of active areas
 - also works from the rear side of a chip (using infrared lasers)

- Advanced imaging techniques active photon probing
 - light-induced current variation
 - alternative to light-induced voltage alteration (LIVA) technique
 - photon-induced photocurrent is dependable on the state of a transistor
 - reading logic state of CMOS transistors inside a powered-up chip
 - works from the rear side of a chip (using infrared lasers)
- Today: backside approach for 0.35µm and smaller chips
 - multiple metal wires do not block the optical path
 - resolution is limited to ~0.6µm (still enough for memory cells)

Semi-invasive attacks: fault injection

Optical fault injection attacks

- optical fault injection was observed in my experiments with microprobing attacks in early 2001, introduced as a new method in 2002
- lead to new powerful attack techniques and forced chip manufacturers to rethink their design and bring better protection
- original setup involved optical microscope with a photoflash and Microchip PIC16F84 microcontroller programmed to monitor its SRAM

Semi-invasive attacks: fault injection

- Optical fault injection attacks
 - the chip was decapsulated and placed under a microscope
 - light from the photoflash was shaped with aluminium foil aperture
 - physical location of each memory address by modifying memory contents
 - the setup was later improved with various lasers and a better microscope
- Today: backside approach for 0.35µm and smaller chips
 - successfully tested on chips down to 130nm

Semi-invasive attacks: fault injection

- Localised heating using cw lasers
 - test board with PIC16F628 and PC software for analysis
 - permanent change of a single memory cell on a 0.9µm chip
- Today: influence is limited for modern chips (<0.5µm)
 - adjacent cells are affected as well

Semi-invasive attacks: side-channel

- Optically enhanced position-locked power analysis
 - Microchip PIC16F84 microcontroller with test program at 4MHz
 - classic power analysis setup (10Ω resistor in GND, digital storage oscilloscope) plus laser microscope scanning setup
 - test pattern
 - run the code inside the microcontroller and store the power trace
 - point the laser at a particular transistor and store the power trace
 - compare two traces

Semi-invasive attacks: side-channel

- Optically enhanced position-locked power analysis
 - results for memory read operations: non-destructive analysis of active memory locations ('0' and '1')
 - results for memory write operations: non-destructive analysis of active memory locations ('0→0', '0→1', '1→0' and '1→1')
- Today: backside approach for 0.35µm and smaller chips
 - single-cell access is limited to 0.5µm laser spot

Semi-invasive attacks: side-channel

- Optical emission analysis
 - transistors emit photons when they switch
 - 10⁻² to 10⁻⁴ photons per switch with peak in NIR region (900–1200nm)
 - optical emission can be detected with photomultipliers and CCD cameras
 - comes from area close to the drain and primarily from the NMOS transistor

- Optical emission analysis
 - Microchip PIC16F628 microcontroller with test code at 20Mhz;
 PMT vs SPA and CCD camera images in just 10 minutes
- Today: backside approach for 0.35µm and smaller chips
 - successfully tested on chips down to 130nm (higher Vcc and >1 hour)

- Optical emission analysis: new challenges
 - Actel® ProASIC3® 0.13µm, 7 metal layers, flash FPGA
 - "highly secure FPGA" which is reprogrammable, non-volatile, single-chip and live-at-power-up solution
 - "offer one of the highest levels of design security in the industry"
 - robust design security features: flash logic array, flash ROM, security fuses, FlashLock™, AES
 - "even without any security measures (such as FlashLock with AES), it is not possible to read back the programming data from a programmed device"
 - allows secure ISP field upgrades using 128-bit AES-encrypted bitstream with AES authentication and MAC verification
 - other security measures: voltage monitors, internal charge pumps, asynchronous internal clock and many others

- Sample preparation of A3P060 FPGA: front and rear
 - the surface is covered with sticky polymer which needs to be removed for physical access to the surface
 - >99% of the surface is covered with supply grid and dummy fillers
 - backside: low-cost approach used without any treatment

- Sample preparation: front
 - only three top metal layers are visible at a most
 - full imaging will require de-layering and scanning electron microscopy
 - any invasive attacks will require sophisticated and expensive equipment

- Backside imaging is the only possibility
 - low spatial resolution of about 1 μ m (R=0.61 λ /NA=0.61·1000/0.5)
- 20× NIR objective lens, light source with Si filter
- Locating internal blocks: JTAG, Flash ROM, SRAM
- Optical emission analysis
 - power supply was increased from 1.5V to 2.0V to boost the emission

- Increasing the power supply voltage: every 10% of increase above nominal Vcc boosts the emission by 40%...120%
- A3P060: JTAG ID reading

Power supply voltage	1.5V	1.6V	1.8V	2.0V	2.2V	2.5V
Photometry results	889	1194	1953	5270	9536	23270

- Flash ROM (Settings + Data)
 - 20× NIR objective lens
 - 60' integration time
 - continuous reading
- Recognisable data pattern
 - some data can be extracted
 - gives information about location

SRAM dedicated for AES

- 20× NIR objective lens
- 120' integration time
- continuous initialisation

AES key recovery

- key scheduling used in AES
- AES key can be easily calculated from any round key
- existence of separate JTAG commands for AES initialisation, authentication and decryption
- information is leaked by the SRAM array and write drivers

SRAM dedicated for AES

- 20× NIR objective lens
- 120' integration time
- continuous initialisation

Exploiting power supply trick

- alternating the supply voltage during the operation: 2.0V peak
- 16µs per AES initialisation
- 1.6µs per each round key:
 calculation + storage
- 16 bit at a time: 8 write cycles

- SRAM dedicated for AES
 - 20× NIR objective lens
 - 120' integration time
 - continuous initialisation
- Exploiting power supply trick
 - alternating the supply voltage during the last round operation: 2.5V peak
 - 0.2µs increase of the supply voltage from 1.5V to 2.5V for one write cycle

New attacks

Flash memory 'bumping' attacks

- will appear at CHES-2010, 17-20 August 2010, Santa Barbara
- new class of optical fault injection attacks aimed at data and key extraction from embedded memory through indirect access (authentication, verify operation, CRC check, hash check)

Optical Fault Masking Attacks

- will appear at FDTC-2010, 21 August 2010, Santa Barbara
- new types of optical fault attacks aimed at disrupting of the normal memory operation through preventing changes of the memory contents (write and erase protection)

Defence technologies: tamper protection

Old devices

- security fuse is placed separately from the memory array (easy to locate and defeat)
- security fuse is embedded into the program memory (hard to locate and defeat), similar approach is used in many smartcards in the form of password protection and encryption keys
- moving away from building blocks which are easily identifiable and have easily traceable data paths

Motorola MC68HC908AZ60A microcontroller

Scenix SX28 microcontroller

Defence technologies: tamper protection

- Help came from chip fabrication technology
 - planarisation as a part of modern chip fabrication process (0.5 µm or smaller feature size)
 - glue logic design makes reverse engineering much harder
 - multiple metal layers block any direct access
 - small size of transistors makes attacks less feasible
 - chips operate at higher frequency and consume less power
 - smaller and BGA packages scare off many attackers

0.9µm microcontroller

0.5µm microcontroller

0.13µm FPGA

Defence technologies: tamper protection

Additional protections

- top metal layers with sensors
- voltage, frequency and temperature sensors
- memory access protection, crypto-coprocessors
- internal clocks, power supply pumps
- asynchronous logic design, symmetric design, dual-rail logic
- ASICs, secure FPGAs and custom-designed ICs
- software countermeasures

STMicroelectronics ST16 smartcard

Fujitsu secure microcontroller

Defence technologies: what goes wrong?

- Security advertising without proof
 - no means of comparing security, lack of independent analysis
 - no guarantee and no responsibility from chip manufacturers
 - wide use of magic words: protection, encryption, authentication, unique, highly secure, strong defence, cannot be, unbreakable, impossible, uncompromising, buried under x metal layers
- Constant economics pressure on cost reduction
 - less investment, hence, cheaper solutions and outsourcing
 - security via obscurity approach
- Quicker turnaround
 - less testing, hence, more bugs
- What about back-doors?
 - access to the on-chip data for factory testing purposes
 - how reliably was the factory testing feature disabled?
 - how difficult is to attack the access port?

Defence technologies: how it fails

- Microchip PIC microcontrollers: security fuse bug (command)
 - security fuse can be reset without erasing the code/data memory
- Atmel AVR microcontrollers: security fuse bug (glitch attack)
 - security fuse can be reset without erasing the code/data memory
- Hitachi smartcard: information leakage on a products CD
 - full datasheet on a smartcard was placed by mistake on the CD
- Actel secure FPGA: programming software bug
 - devices were always programmed with a 00..00 passkey
- Xilinx secure CPLD: programming software bug
 - security fuse incorrectly programmed resulting in no protection
- Maxim/Dallas SHA-1 secure memory: factory setting bug
 - some security features were not activated resulting in no protection
- Other examples
 - insiders, datasheets of similar products, development tools
 - solution: test real devices and control the output

Defence technologies: why goes wrong?

- Ignorance of mistakes by chip manufacturers
- Unconditional trust from customers
- Reluctance to collaborate with people from academia
- Security perception and awareness levels
 - the security bug cannot be fixed unless the attack procedure is known and reliably reproduced
 - the security flaw cannot be fixed unless the attack method is learned and well understood
- Engineering problem: for many systems the security comes as an extra feature added at a later design stage

Future work

- Improvements to semi-invasive attacks
 - some of 180nm and 130nm chips tested
 - preparation for testing 90nm chips is under way
 - 65nm chips are in plans
- Seeking collaboration with industry
 - evaluation of products against new attacks
 - developing new attack methods and techniques
 - focusing on low-cost attacks which are more dangerous
- New challenges
 - synchronisation techniques for side-channel and fault attacks
 - new imaging techniques based on fault attacks
 - is everything solved in the side-channel attacks area?

New directions for research

- Boosting side-channel attacks with new methods and techniques aimed at improvement by a factor of 1000000
 - off-the-shelf solution vs special hardware
 - what a million times improvement would mean for a real device?
 - 1 day for an attack which normally takes 2000 years to succeed
 - 1 second for an attack which normally takes 10 days to succeed
- Fixed funds and fixed term attacks?
 - how far could an attacker move given X budget and limited time?
- What is 'practical attack'?
 - could someone achieve key extraction within 1 second and 1000\$
- Backdoors testing
 - many chips have Factory test and Debug modes, are they secure?
- Clone dilemma
 - how one can prove that another product is a clone and not a compatible product (forensic analysis within security constraints)?
 - if a product is cloned, how was it done (there are many ways)? 55

Conclusions

- There is no such a thing as absolute protection
 - given enough time and resources any protection can be broken
- Technical progress helps a lot, but has certain limits
 - do not overestimate capabilities of the silicon circuits
 - do not underestimate capabilities of the attackers
- Defence should be adequate to anticipated attacks
 - security hardware engineers must be familiar with attack technologies to develop adequate protection
 - choosing the correct protection saves money in development and manufacturing
- Attack technologies are constantly improving, so should the defence technologies
- Many vulnerabilities were found in various secure chips and more are to be found, that poses more challenges to hardware security engineers

References

- Abstract
 - http://www.cl.cam.ac.uk/~sps32/PASTIS2010_abstract.pdf
- Slides
 - http://www.cl.cam.ac.uk/~sps32/PASTIS2010.pdf
- Literature:
 - http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-630.pdf
 - http://www.cl.cam.ac.uk/~sps32/#Publications