Optical Fault Induction Attacks

Sergei Skorobogatov
Ross Anderson
Semi-Invasive attacks

- Depackaging is required (access chip surface)

- No internal connections are required
 - No expensive FIB or Laser cutter techniques
 - No microprobing
Examples of Semi-Invasive attacks

- UV light applied to a certain location
 - Erase EPROM/E²PROM/Flash (removing charge from floating gate)
- X-ray
 - Erase EPROM/E²PROM/Flash under top metal protection
 - Local ionization
- Laser light
 - Local ionization
- Local heating
- Electromagnetic fields
Attack on Static RAM

- Structure of CMOS SRAM cell
Attack on SRAM in PIC16F84

- Chip preparation
Attack on SRAM in PIC16F84

- Attack setup
 - Vivitar 550FD photoflash on microscope camera port
 - Magnification set to 1500x
 - Shielding the light with aluminum foil aperture
 - PIC16F84 programmed to monitor the SRAM
Results

Allocation of memory bits

<table>
<thead>
<tr>
<th>B</th>
<th>I</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Physical location of each memory address

| 30h | 34h | 38h | 3Ch | 40h | 44h | 48h | 4Ch | 10h | 14h | 18h | 1Ch | 20h | 24h | 28h | 2Ch | 0Ch |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 31h | 35h | 39h | 3Dh | 41h | 45h | 49h | 4Dh | 11h | 15h | 19h | 1Dh | 21h | 25h | 29h | 2Dh | 0Dh |
| 32h | 36h | 3Ah | 3 Eh | 42h | 46h | 4Ah | 4 Eh | 12h | 16h | 1Ah | 1 Eh | 22h | 26h | 2Ah | 2 Eh | 0 Eh |
| 33h | 37h | 3Bh | 3Fh | 43h | 47h | 4 Bh | 4Fh | 13h | 17h | 1Bh | 1Fh | 23h | 27h | 2Bh | 2Fh | 0Fh |
Implications on Smartcards

- Attack on RSA digital signature:
 \[S = h(m)^d \pmod{pq} \]
- Memory modification
- Glitch attacks on a particular register or area
Improvements to the attack equipment

- Replacing the photoflash with a laser pointer

- Motorized stage was required to align the chip
Countermeasures

- Top metal protection layers
 - X-rays
 - IR lasers from back side
- Self-timed dual-rail logic
 - Remove the clock to avoid clock glitch attacks
 - Be speed independent to tolerate power glitch attacks
 - Detect bad power glitches
 - Propagate \textit{alarm} signals as part of the data:

<table>
<thead>
<tr>
<th>code</th>
<th>meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>clear</td>
</tr>
<tr>
<td>01</td>
<td>logic-0</td>
</tr>
<tr>
<td>10</td>
<td>logic-1</td>
</tr>
<tr>
<td>11</td>
<td>\textit{alarm}</td>
</tr>
</tbody>
</table>
Conclusions

- Standard CMOS circuitry is extremely vulnerable to optical attacks
- Other memory technologies (EPROM, E²PROM and Flash) can also be manipulated in various ways
- Top metal protection is not efficient
- Special circuit design is required to prevent optical attacks