# Optically Enhanced Position-Locked Power Analysis

Sergei Skorobogatov



Computer Laboratory

## A new attack technique

#### Combines

- Power analysis (non-invasive)
- Optical probing (semi-invasive)

#### Application: Monitoring instructions and data in real time

- What information flows inside the device (data)?
- Where is the information stored (address)?
- What is the result of an operation (conditional branch, flags)?

#### Advantages

- Isolates individual locations on chip for observation
- Non-destructive
- No interference with device operation
- No modification to memory (EEPROM, SRAM)

## A new attack technique

#### Reasons for developing the new attack technique

- More efficient than existing analysis techniques
  - Power analysis
  - Optical probing
- Faster than invasive attacks (e.g. microprobing)
- Relatively easy to set up
- No modification to the semiconductor chip
- Will not interfere with normal device operation

## Conventional power analysis

#### Measuring power consumption during device operation

- Non-invasive attack with a simple setup (resistor & oscilloscope)
- Averaging can be used to reduce noise and increase resolution
- Each CPU instruction has its own waveform
- Different values of data influence on the power trace (lower signal)





PIC16F84: Difference between instructions

PIC16F84, Write:  $(0x00 \rightarrow 0x00) - (0x01 \rightarrow 0x00)$  (Av = 64)

## Conventional power analysis

#### Can we distinguish between 0xD4 and 0x9A data values?

- Very hard to distinguish values with the same Hamming weight
- Sometimes possible if small number of bits has changed
  - For example: 0x01 vs 0x10; 0xF7 vs 0xDF
  - Averaging over a large number of power traces is essential to reduce the noise





PIC16F84, Write:  $(0x01 \rightarrow 0x00) - (0x10 \rightarrow 0x00)$  (Av = 256)

PIC16F84, Write:  $(0xF7 \rightarrow 0x00) - (0xDF \rightarrow 0x00)$  (Av = 256)

# Power analysis summary

- Non-invasive attack with a simple setup
- Measurements applied for a whole chip rather than on a small area
- Averaging is essential to distinguish between small changes in data values, hence longer measurement time
- Detects only changes in data values rather than their absolute value
- Data dependency has a tiny contribution in the instruction power trace, Hamming weight dependency has far more less contribution
  - > Power ~15 mA: Instructions ~5 mA, Data (1 bit) ~0.5 mA, Hamming weight ~0.05 mA







PIC16F84: Difference between instructions

Write:  $(0x00 \rightarrow 0x00) - (0x01 \rightarrow 0x00)$  (Av = 64)

Write:  $(0x01 \rightarrow 0x00) - (0x10 \rightarrow 0x00)$  (Av = 256)

## **Semi-invasive methods**

#### Use lasers to probe device operation

- Require access to the chip surface without mechanical contact
- Widely used in failure analysis of semiconductors (LIVA, TIVA)
  - Determine state of CMOS transistors in static mode
- Direct observation of signals inside a semiconductor (polarization)
  - Expensive setup and special sample preparation
- Modified OBIC (delta OBIC)
  - Measures difference in power consumption
  - Does not change SRAM state
  - Relatively high cost and low sensitivity
- Changes caused by injected photocurrent are very small
  - > <0.05 mA vs >0.5 mA in SPA
  - Most techniques are static



## **Semi-invasive methods**

#### Use lasers to interfere with device operation

- Optical fault injection attacks
  - > Relatively inexpensive setup (photoflash & microscope)
  - Scalable down to a single inverter in SRAM cell
  - ➤ Memory cell changes its state (→ detectable by software)





# Comparing different methods of analysis

- Power analysis is effective for data dependency analysis
- Optical methods are effective for recovering absolute values of data

|                           | Power analysis (SPA) | LIVA | ΔΟΒΙϹ   |
|---------------------------|----------------------|------|---------|
| State of SRAM cell        | No                   | Yes  | Yes     |
| Access to SRAM cell       | Limited              | No   | Limited |
| State change of SRAM cell | Yes                  | No   | Limited |
| Real-time measurement     | Yes                  | No   | Limited |

## Research questions

Is it possible to combine semi-invasive (optical probing) and non-invasive (power analysis) methods to reliably detect a single bit change without interfering with normal device operation?

Can we avoid averaging?

Can we increase the response?

Countermeasures?

## Why an SRAM cell?

Widely used in modern devices as volatile memory

■ CPU registers, Data memory, Cache memory

As a result, all cryptographic algorithms and password authentication go through it

- If an attacker gets hold of the data in SRAM or CPU registers, he can easily break the system
- Good for debugging and analysis









### Target of evaluation: PIC16F84 microcontroller

- Known physical locations for all the SRAM cells (from optical fault injection experiments)
- Known layout of the SRAM cell







| b | b | b | b | b | b | b | b |
|---|---|---|---|---|---|---|---|
| i | i | i | i | i | i | i | i |
| t | t | t | t | t | t | t | t |
| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |

| 30h | 34h | 38h | 3Ch | 40h | 44h | 48h | 4Ch | 10h | 14h | 18h | 1Ch | 20h | 24h | 28h | 2Ch | 0Ch |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 31h | 35h | 39h | 3Dh | 41h | 45h | 49h | 4Dh | 11h | 15h | 19h | 1Dh | 21h | 25h | 29h | 2Dh | 0Dh |
| 32h | 36h | 3Ah | 3Eh | 42h | 46h | 4Ah | 4Eh | 12h | 16h | 1Ah | 1Eh | 22h | 26h | 2Ah | 2Eh | 0Eh |
| 33h | 37h | 3Bh | 3Fh | 43h | 47h | 4Bh | 4Fh | 13h | 17h | 1Bh | 1Fh | 23h | 27h | 2Bh | 2Fh | 0Fh |

#### PIC16F84: Finding active locations

- Decapsulated samples prepared in a standard way
- Light-sensitive locations found using OBIC laser-scan technique









Decapsulated PIC16F84 on a test socket Standard power analysis setup with 10 Ω in GND Laser (639 nm, 0...5 mW) focused using 100× objective





#### PIC16F84: Test sequence

- Microcontroller programmed with a test code
  - Generate trigger pulse for oscilloscope
  - > Read from the SRAM memory locations
  - Write to the SRAM memory locations
  - Dump SRAM memory for verification
- Known physical location and layout for all SRAM cells
- Light-sensitive locations for VT1...VT6 from OBIC laser scan
- Repeat measurements for different laser positions and power







#### Results

#### Laser focused on VT1 (n-channel) of the SRAM cell

- State of the cell stays unchanged for low laser power
  - Maximum difference is less than a single-bit change influence
  - > Only writing into the memory cell can be detected (address 0x31)
- The result is very similar to ∆OBIC observation







PIC16F84, Read:  $(0xFF) - (0xFF)_{i}$  (Av = 25)

## Results

#### Optimisation for the laser focused on VT1 results

- Increasing the laser power
- State of the cell changes with higher laser power
  - Higher difference than a single-bit change influence (state changing plus injected photocurrent)
  - Both write and read operations can be detected (the data value has changed)





PIC16F84, Write:  $(0x00 \rightarrow 0xFF) - (0x00 \rightarrow 0x7F)_{L}$  (Av = 1)

PIC16F84, Write:  $(0x00 \rightarrow 0xFF) - (0x00 \rightarrow 0xFF)_{t}$  (Av = 16)

## Further improvements to the results

#### Laser focused on VT1+VT4 of the SRAM cell

- State of the cell stays unchanged for low laser power
  - > Response is five times higher than a single-bit change influence
  - No averaging is necessary for reliable detection of the memory-write event







#### Results

#### Laser focused on VT1+VT4 (n-channels) of memory cell

- State of the cell stays unchanged for low laser power
  - > Both read and write operations can be detected
  - > Response is high for both read and write events
- Any access to a particular memory cell is visible in the power trace independently of whether the cell changes its state or not





PIC16F84, Write:  $(0x00 \rightarrow 0xFF) - (0x00 \rightarrow 0xFF)_{I}$  (Av = 1)

PIC16F84, Read:  $(0xFF) - (0xFF)_{L}$  (Av = 1)

## **Explaining the results**

#### Why this high response with the laser on VT1+VT4?

- Compared to single-bit difference in data: 5 times higher
- Compared to the laser on VT1 results: 6...10 times higher







Write:  $(0x00 \rightarrow 0xFF) - (0x00 \rightarrow 0xFF)$ , (Av=16)



PIC16F84, Read:  $(0xFF) - (0xFF)_{i}$  (Av = 1)

## **Explaining the results**

Characteristics of the SRAM cell are changing when both n-channel transistors (VT1+VT4) of the flip-flop are influenced

- As both CMOS inverters forming the flip-flop become open, a large power surge takes place
- Slower response from the SRAM cell causes a phase shift in the power trace increasing the difference in the power trace





PIC16F84, Read:  $(0XFF) - (0xFF)_{i}$  (Av = 1)

PIC16F84, Read:  $(0xFF) - (0xFF)_{i}$  (Av = 1), ZOOM IN

## Applications for higher laser power

#### State of the memory cell is likely to change

- Any access to a chosen cell can be detected (VT1+VT4)
- If the laser is focused on VT3+VT6 (select transistors)
  - Read and write operations for any cell in the whole column can be detected
- Can be used for triggering but affects the normal chip operation





PIC16F84, Read:  $(0xFF) - (0xFF)_{i}$  (Av = 1)

PIC16F84, Read:  $(0x00, 0xFF)_{L}$  (Av = 1)

# Comparing different methods of analysis

Optically enhanced position-locked power analysis allows detection of the access event for chosen SRAM cell

It complements and improves the standard power analysis technique allowing to detect the state of a memory cell and providing higher signal-to-noise ratio

It complements optical probing with event detection ability For most applications averaging is not required

|                           | SPA     | LIVA | ΔΟΒΙϹ   | OEPA |
|---------------------------|---------|------|---------|------|
| State of SRAM cell        | No      | Yes  | Yes     | Yes  |
| Access to SRAM cell       | Limited | No   | Limited | Yes  |
| State change of SRAM cell | Yes     | No   | Limited | Yes  |
| Real-time measurement     | Yes     | No   | Limited | Yes  |

## Further improvements to the method

Modern chips benefit from multiple metal layers and polished insulation layers restricting optical access

- → Rear-side access to SRAM (through silicon substrate)
  - Infrared lasers, optics and cameras must be used
  - Thinning of the substrate is required for < 0.35 µm chips



PIC16F84 SRAM cell: optical image 100×



PIC16F84 SRAM cell: OBIC front image



PIC16F84 SRAM cell: OBIC rear image

## Results for the rear-side experiments

#### Laser focused on VT1+VT4 (n-channels) of memory cell

- State of the cell stays unchanged for low laser power
  - Response is very similar to the front side approach, but shifted due to spatial ionization of the bulk silicon substrate
  - Both read and write operations can be detected
- State changes for higher laser power





PIC16F84 front side, Read:  $(0xFF) - (0xFF)_{i}$  (Av=1)

PIC16F84 rear side, Read:  $(0xFF) - (0xFF)_i$  (Av=1)

#### **Further work**

These results were for a PIC16F84 microcontroller (~1 µm) Modern microcontrollers are built with 0.18 µm...0.35 µm Further improvements to rear-side access is required

- Substrate thinning and polishing
- Using high-end infrared lasers
  - better output power control
  - low-noise operation

## Conclusions

- 1. It is possible to detect the internal state of memory cells using conventional optical probing methods
- Optically enhanced power analysis (OEPA) significantly improves the results without interfering with the device operation
- Compared to conventional power analysis, OEPA allows detection of individual bit changes
- 4. OEPA provides event detection capability

#### Countermeasures

- Modern technology (small feature size, multiple metal layers)
- Top metal protection, highly doped silicon and opaque cover
- Encrypted memory

\_\_\_\_