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A new attack technique

Combines
Power analysis (non-invasive)
Optical probing (semi-invasive)

Application: Monitoring instructions and data in real time
What information flows inside the device (data)?
Where is the information stored (address)?
What is the result of an operation (conditional branch, flags)?

Advantages
Isolates individual locations on chip for observation
Non-destructive
No interference with device operation
No modification to memory (EEPROM, SRAM)
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A new attack technique

Reasons for developing the new attack technique
More efficient than existing analysis techniques

Power analysis
Optical probing

Faster than invasive attacks (e.g. microprobing)
Relatively easy to set up
No modification to the semiconductor chip
Will not interfere with normal device operation
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Conventional power analysis

Measuring power consumption during device operation
Non-invasive attack with a simple setup (resistor & oscilloscope)
Averaging can be used to reduce noise and increase resolution
Each CPU instruction has its own waveform
Different values of data influence on the power trace (lower signal)

PIC16F84: Difference between instructions PIC16F84, Write: (0x00 0x00) − (0x01 0x00)   (Av = 64)
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Conventional power analysis

Can we distinguish between 0xD4 and 0x9A data values?
Very hard to distinguish values with the same Hamming weight
Sometimes possible if small number of bits has changed

For example: 0x01 vs 0x10; 0xF7 vs 0xDF
Averaging over a large number of power traces is essential to reduce the noise

PIC16F84, Write: (0x01 0x00) − (0x10 0x00)   (Av = 256) PIC16F84, Write: (0xF7 0x00) − (0xDF 0x00)   (Av = 256)
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Power analysis summary

Non-invasive attack with a simple setup
Measurements applied for a whole chip rather than on a small area
Averaging is essential to distinguish between small changes in data 
values, hence longer measurement time
Detects only changes in data values rather than their absolute value
Data dependency has a tiny contribution in the instruction power trace, 
Hamming weight dependency has far more less contribution

Power ~15 mA: Instructions ~5 mA, Data (1 bit) ~0.5 mA, Hamming weight ~0.05 mA

PIC16F84: Difference between instructions Write: (0x00 0x00) − (0x01 0x00)  (Av = 64) Write: (0x01 0x00) − (0x10 0x00)  (Av = 256)
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Semi-invasive methods

Use lasers to probe device operation
Require access to the chip surface without mechanical contact
Widely used in failure analysis of semiconductors (LIVA, TIVA)

Determine state of CMOS transistors in static mode

Direct observation of signals inside a semiconductor (polarization)
Expensive setup and special sample preparation

Modified OBIC (delta OBIC)
Measures difference in
power consumption
Does not change SRAM state
Relatively high cost and
low sensitivity

Changes caused by injected
photocurrent are very small

<0.05 mA  vs  >0.5 mA in SPA
Most techniques are static

S ens itivity image [mV]
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Semi-invasive methods

Use lasers to interfere with device operation
Optical fault injection attacks

Relatively inexpensive setup (photoflash & microscope)
Scalable down to a single inverter in SRAM cell
Memory cell changes its state ( detectable by software)
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Comparing different methods of analysis

Power analysis is effective for data dependency analysis
Optical methods are effective for recovering absolute 
values of data

Power analysis (SPA) LIVA ΔOBIC
State of SRAM cell No Yes Yes

Access to SRAM cell Limited No Limited

State change of SRAM cell Yes No Limited

Real-time measurement Yes No Limited
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Research questions

Is it possible to combine semi-invasive (optical probing) 
and non-invasive (power analysis) methods to reliably 
detect a single bit change without interfering with normal 
device operation?

Can we avoid averaging?
Can we increase the response?
Countermeasures?
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Why an SRAM cell?

Widely used in modern devices as volatile memory
CPU registers, Data memory, Cache memory

As a result, all cryptographic algorithms and 
password authentication go through it

If an attacker gets hold of the data in SRAM or       
CPU registers, he can easily break the system
Good for debugging and analysis
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Experimental setup

Target of evaluation: PIC16F84 microcontroller
Known physical locations for all the SRAM cells (from optical 
fault injection experiments)
Known layout of the SRAM cell
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Experimental setup

PIC16F84: Finding active locations
Decapsulated samples prepared in a standard way
Light-sensitive locations found using OBIC laser-scan technique
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Experimental setup

Decapsulated PIC16F84 on a test socket
Standard power analysis setup with 10 Ω in GND
Laser (639 nm, 0…5 mW) focused using 100× objective
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Experimental setup

PIC16F84: Test sequence
Microcontroller programmed with a test code

Generate trigger pulse for oscilloscope
Read from the SRAM memory locations
Write to the SRAM memory locations
Dump SRAM memory for verification

Known physical location and layout for all SRAM cells
Light-sensitive locations for VT1…VT6 from OBIC laser scan
Repeat measurements for different laser positions and power
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Results

Laser focused on VT1 (n-channel) of the SRAM cell
State of the cell stays unchanged for low laser power

Maximum difference is less than a single-bit change influence
Only writing into the memory cell can be detected (address 0x31)

The result is very similar to ΔOBIC observation

PIC16F84, Write: (0x00 0xFF) − (0x00 0xFF)L (Av = 16) PIC16F84, Read: (0xFF) − (0xFF)L (Av = 256)
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Results

Optimisation for the laser focused on VT1 results
Increasing the laser power
State of the cell changes with higher laser power

Higher difference than a single-bit change influence (state changing plus 
injected photocurrent)
Both write and read operations can be detected (the data value has changed)

PIC16F84, Write: (0x00 0xFF) − (0x00 0xFF)L (Av = 16) PIC16F84, Write: (0x00 0xFF) − (0x00 0x7F)L (Av = 1)
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Further improvements to the results

Laser focused on VT1+VT4 of the SRAM cell
State of the cell stays unchanged for low laser power

Response is five times higher than a single-bit change influence
No averaging is necessary for reliable detection of the memory-write event

PIC16F84, Write: (0x00 0xFF) − (0x00 0xFF)L (Av = 16) PIC16F84, Write: (0x00 0xFF) − (0x00 0xFF)L (Av = 1)
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Results

Laser focused on VT1+VT4 (n-channels) of memory cell
State of the cell stays unchanged for low laser power

Both read and write operations can be detected
Response is high for both read and write events

Any access to a particular memory cell is visible in the power trace 
independently of whether the cell changes its state or not 

PIC16F84, Write: (0x00 0xFF) − (0x00 0xFF)L (Av = 1) PIC16F84, Read: (0xFF) − (0xFF)L (Av = 1)
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Explaining the results

Why this high response with the laser on VT1+VT4?
Compared to single-bit difference in data: 5 times higher
Compared to the laser on VT1 results: 6…10 times higher
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Write: (0x00 0xFF) − (0x00 0xFF)L (Av=16) PIC16F84, Read: (0xFF) − (0xFF)L (Av = 1)
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Write: (0x00 0x00) − (0x01 0x00)  (Av = 64)
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Explaining the results

Characteristics of the SRAM cell are changing when both      
n-channel transistors (VT1+VT4) of the flip-flop are influenced

As both CMOS inverters forming the flip-flop become open, a large 
power surge takes place
Slower response from the SRAM cell causes a phase shift in the 
power trace increasing the difference in the power trace

PIC16F84, Read: (0XFF) − (0xFF)L (Av = 1) PIC16F84, Read: (0xFF) − (0xFF)L (Av = 1),   ZOOM IN
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Applications for higher laser power

State of the memory cell is likely to change
Any access to a chosen cell can be detected (VT1+VT4)
If the laser is focused on VT3+VT6 (select transistors)

Read and write operations for any cell in the whole column can be detected
Can be used for triggering but affects the normal chip operation

PIC16F84, Read: (0xFF) − (0xFF)L (Av = 1) PIC16F84, Read: (0x00, 0xFF)L (Av = 1)
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Comparing different methods of analysis

Optically enhanced position-locked power analysis allows 
detection of the access event for chosen SRAM cell

It complements and improves the standard power analysis 
technique allowing to detect the state of a memory cell and 
providing higher signal-to-noise ratio

It complements optical probing with event detection ability
For most applications averaging is not required

SPA LIVA ΔOBIC OEPA
State of SRAM cell No Yes Yes Yes

Access to SRAM cell Limited No Limited Yes

State change of SRAM cell Yes No Limited Yes

Real-time measurement Yes No Limited Yes
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Further improvements to the method

Rear-side access to SRAM (through silicon substrate)
Infrared lasers, optics and cameras must be used
Thinning of the substrate is required for < 0.35 μm chips

PIC16F84 SRAM cell: optical image 100× PIC16F84 SRAM cell: OBIC front image PIC16F84 SRAM cell: OBIC rear image

Modern chips benefit from multiple metal layers and 
polished insulation layers restricting optical access
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Results for the rear-side experiments

Laser focused on VT1+VT4 (n-channels) of memory cell
State of the cell stays unchanged for low laser power

Response is very similar to the front side approach, but shifted due to spatial
ionization of the bulk silicon substrate
Both read and write operations can be detected

State changes for higher laser power

PIC16F84 front side, Read: (0xFF) − (0xFF)L (Av=1) PIC16F84 rear side, Read: (0xFF) − (0xFF)L (Av=1)
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Further work

These results were for a PIC16F84 microcontroller (~1 μm)
Modern microcontrollers are built with 0.18 μm…0.35 μm
Further improvements to rear-side access is required

Substrate thinning and polishing
Using high-end infrared lasers

better output power control
low-noise operation
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Conclusions

1. It is possible to detect the internal state of memory cells 
using conventional optical probing methods

2. Optically enhanced power analysis (OEPA) significantly 
improves the results without interfering with the device 
operation

3. Compared to conventional power analysis, OEPA allows 
detection of individual bit changes

4. OEPA provides event detection capability
Countermeasures

Modern technology (small feature size, multiple metal layers)
Top metal protection, highly doped silicon and opaque cover
Encrypted memory
…
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