Data remanence in non-volatile semiconductor memories

Part I: Introduction and non-invasive approach

Sergei Skorobogatov

Computer Laboratory

Data remanence

- Magnetic media
- SRAM and DRAM
 - Low temperature data remanence
 - Long-term retention effects
 - Burning-in data
- Data retention
 - Connected to remanence
 - Specified by manufacturers

Data remanence in non-volatile memories

- EPROM, EEPROM and Flash
 - Floating-gate transistors, 10^3 10^5 ē, $\Delta V_{TH} = 3.5$ V
- Levels
 - File system (erasing a file)
 - File backup (software features)
 - Smart memory (hardware buffers)
 - Memory array
- Possible threats
 - Resetting security protection in microcontrollers
 - Sharing EEPROM area between different applications in smartcards

Non-volatile memories

■ UV EPROM

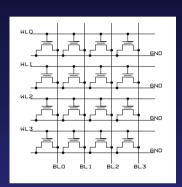
- Advantages
 - Electrically programmable
 - Compact design (1T cell)
- Disadvantages
 - Long write time (>10 ms)
 - High voltages for programming
 - Very long erase time (>10 min) and UV light use
 - Not scalable below 0.35 µm (top metal layers)
 - High cost (quartz window in ceramic) or OTP
 - Low endurance (100 E/W cycles)
 - Short data retention (10 years)

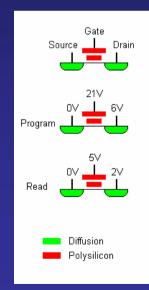
Non-volatile memories

EEPROM

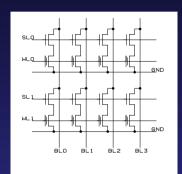
- Advantages
 - Electrically programmable and erasable
 - Internal charge pumps in modern devices
 - High endurance (>100,000 E/W cycles)
 - Long data retention (>40 years)

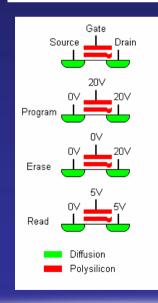
Disadvantages

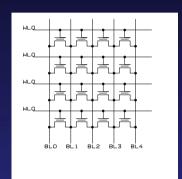

- Large cell size (2T cell)
- Long write time (>1 ms) and erase time (>100 ms)
- High voltages for programming (old designs)
- High cost (low density)

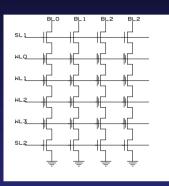

Non-volatile memories

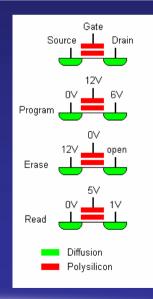
- Flash EEPROM
 - Advantages
 - Electrically programmable and erasable
 - Internal charge pumps
 - Compact design (1T cell)
 - Fast write time (1 100 µs)
 - High endurance (>100,000 E/W cycles)
 - Long data retention (>100 years)
 - Low cost (compact design, 0.13 µm and smaller)
 - Disadvantages
 - Erasing in blocks
 - Long erase time (>100 ms)

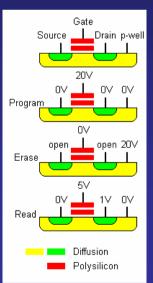

Structure of non-volatile memories


UV EPROM




EEPROM





Flash EEPROM

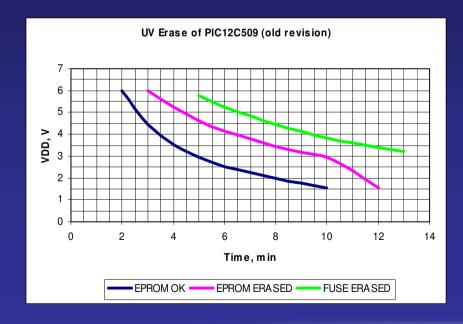
Security in EPROM devices

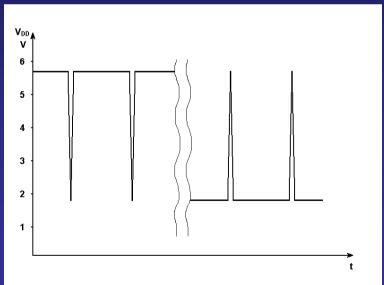
- Security fuse location
 - Separate from main memory
 - Embedded in main memory
- Security monitoring
 - On reset or initialisation
 - Each time access is requested
 - Permanent
- Protection from UV light
 - Top metal layer
 - Fuses embedded in main memory

Security in EPROM devices

- Erasing with UV light
 - Memory and fuse are erased simultaneously
 - Memory is erased before the fuse

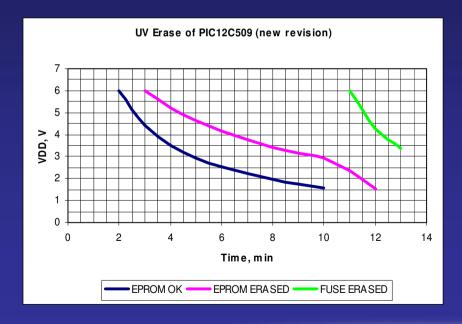
Security in EEPROM/Flash devices

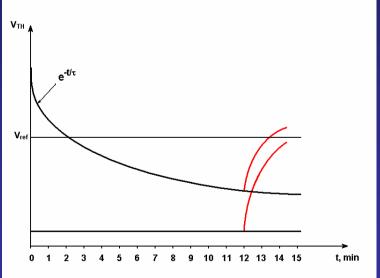

- Security fuse location
 - Separate from main memory
 - Embedded in main memory
- Security monitoring
 - On reset or initialisation
 - Each time access was requested
 - Permanent
- Protection
 - Top metal layer from UV light
 - Inverted cells or non-sensitive to UV light
 - Passwords


Security in EEPROM/Flash devices

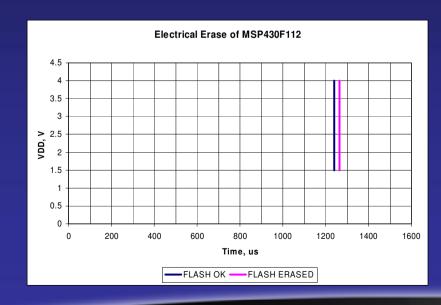
- Electrical erase
 - Fuse is erased before the memory
 - Memory and fuse are erased simultaneously
 - Memory is erased before the fuse

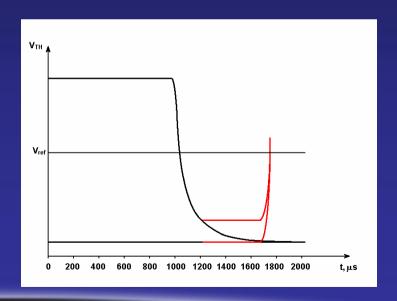
Attacks on EPROM devices


- Erasing with UV light
 - Memory and fuse are erased simultaneously
 - V_{DD} variation or power glitching
 - Read sense circuit: $V_{TH} = K V_{DD}$, $K \sim 0.5$

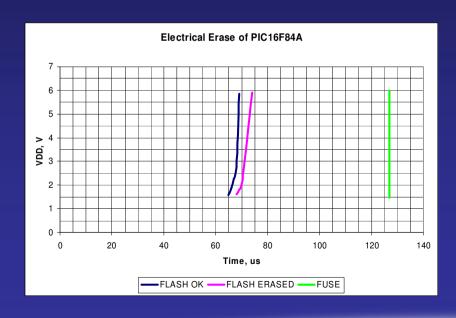


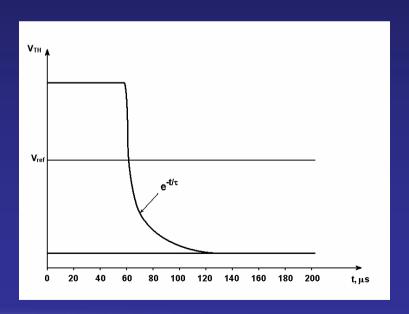
Attacks on EPROM devices


- Erasing with UV light
 - Memory is erased before the fuse
 - Cell charge alteration (controlled CHE injection)
 - External control over programming parameters



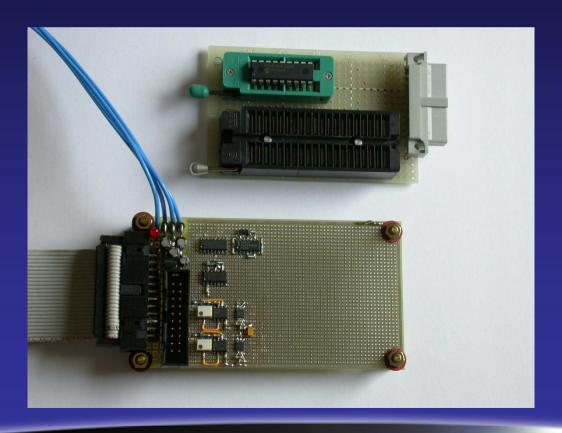
Attacks on EEPROM/Flash devices


- Electrical erasing
 - Memory and fuse are erased simultaneously
 - Fast process (difficult to control erasing)
 - V_{TH} drops too low (power glitching does not work)
 - Internally stabilized power supply and voltage monitors
 - Cell charge alteration does not work
 - Internal charge pumps and timing control
 - Fowler-Nordheim tunneling or fast CHE injection



Attacks on EEPROM/Flash devices

- Electrical erasing
 - Memory is erased before the fuse
 - Five times excess in PIC16F84A
 - \blacksquare q = q₀ e ^{-t/τ}, τ = 5 μs : 10⁵ ē → 1 2 ē
 - Standard erase cycle = 10 ms



Experimental part

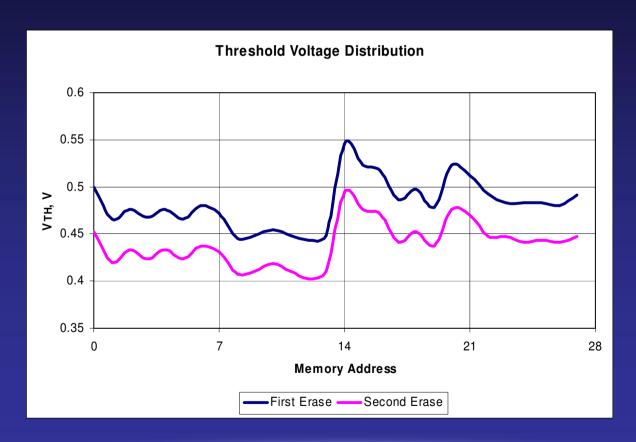
- Test whether it is possible to measure V_{TH} close to 0 V
- Test whether any significant residual charge is left after normal erase operation
- Test whether it is possible to distinguish between never-programmed and programmed cells
- Work out suggestions and countermeasures if necessary

Experimental part

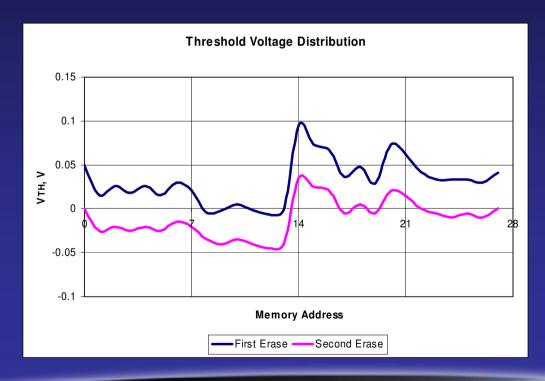
- Data remanence evaluation in PIC16F84A
 - 100 µV precision power supply
 - 1 µs timing control

Measuring V_{TH} close to 0 V in PIC16F84A

- Using power glitching technique
 - Reducing V_{ref} to 0.5 V
- Exploiting after-erase discharging bug
 - Accidentally discovered 5 years ago
 - \blacksquare Shifts V_{TH} up by 0.6 0.9 V
- Applying both techniques simultaneously
 - $\blacksquare V_{TH} = K V_{DD} V_{W}$
 - $V_{TH} = -0.4 2.0 \text{ V}$


Test residual charge after erase

- $V_{TH} = V_{ref} = K V_{DD} V_{W}, K = 0.5, V_{W} = 0.7 V_{W}$
- Memory bulk erase cycles (5V, 10 ms)
 - Flash memory, 100 cycles: $\Delta V_{TH} = 100 \text{ mV}$
 - EEPROM memory, 10 cycles: $\Delta V_{TH} = 1 \text{ mV}$


Recovering data from erased PIC16F84A

- \blacksquare Large difference in V_{TH} between cells in the array
- Reference to the cell itself after an extra erase cycle

Never-programmed and programmed cells

- PIC16F84A comes programmed to all 0's
 - 10,000 erase cycles and 10 hrs at 150°C
 - Program all 0's, then 10,000 erase cycles
- Still noticeable change of V_{TH} = 40 mV

Programming cells before erasing

- No successfully recovered information from PIC16F84A if it was programmed with all 0's before the erase operation
- Used as a standard in some Flash and EEPROM devices
 - Intel ETOX Flash memory (P28F010)
 - Microchip KeeLoq HCS200

Countermeasures

- Cycle EEPROM/Flash 10 100 times with random data before writing anything sensitive to them
- Program all EEPROM/Flash cells before erasing them
- Remember about too intelligent memories, backup/temporary files and file systems
- Remember that memory devices are identical within the same family
 - everything which is valid for PIC16F84A will work for PIC16F627/628, PIC16F870/871/872 and PIC16F873/874/876/877
- Use latest high-density devices which benefit from newest technologies
- Using encryption helps make data recovery more difficult

Further research

- Back to the subtitle of this talk
 - Part I: Introduction and non-invasive approach
 - Good for security less than 5% of memory devices are susceptible to non-invasive attack discussed in this talk
- Semi-invasive approach
 - Measuring changes inside memory transistors
 - Influence on cell characteristics
 - To be Part II
- Invasive approach
 - Modifying the read sense circuit of the memory
 - Direct connection to the internal memory lines
 - To be Part III

Conclusions

- Floating-gate memories (EPROM, EEPROM and Flash) have data remanence problems
- Information from some samples can be recovered even after 100 erase cycles
- Even if the residual charge cannot be detected with existing methods it might be possible in the future with new technologies
- Secure devices should be tested for any possible outcomes of data remanence effect