

Combining Hardware Security, Failure Analysis and Forensic Analysis for the benefit of all

Dr Sergei Skorobogatov

University of Cambridge Cambridge, UK

http://www.cl.cam.ac.uk/~sps32 email: sps32@cam.ac.uk

Outline

- Introduction
- Embedded Memory in Semiconductor Devices
- Where do Failure Analysis, Forensic Analysis and Hardware Security meet together?
- Challenges, Pros and Cons
 - Failure Analysis
 - Forensic Analysis
 - Hardware Security
- What can we learn from each other?
- Limitations, Achievements and Improvements
- Future Work and Collaboration
- Conclusion

Introduction

- Multidisciplinary Background and Skills
 - Electronics, Chemistry, Physics and Computer Science
- Hardware Security research since 1995
 - testing microcontrollers and smartcards for security
 - semi-invasive methods (PhD, 2005, Cambridge, UK)
 - backdoors in semiconductors (2012)
 - iPhone 5C NAND mirroring (2016)
 - solutions for security challenges in real-world devices
- Some research related to Failure Analysis
 - data remanence in Flash/EEPROM (CHES 2005)
 - combined optical and emission methods (CHES 2006)
 - PVC SEM for EEPROM and Flash (ISTFA 2016)

Hardware Security

- High importance and growing demand
 - data protection
 - cyber security
 - preventing attacks on services
 - preventing data and intellectual property (IP) theft
 - developing countermeasures against all known attacks
 - predicting new attacks
- Need for educated hardware engineers
 - hardware security as part of design, not add-on
 - knowledge of countermeasures
 - implement protection at all levels

Embedded Memory in ICs

- Secure devices to thwart hardware attacks
 - Low end: standard microcontrollers (μC)
 - Intermediate: secure memory, secure μC, FPGA, ASIC
 - High end: smartcard, secure ASIC
- Embedded Non-Volatile Memory (NVM)
 - Mask ROM: bootloader, firmware, algorithms
 - EEPROM: variables, keys, passwords
 - Flash: bootloader, firmware, algorithms, keys, passwords
- Memory extraction is the crucial step in attacks
 - access to firmware for reverse engineering
 - extraction of crucial algorithms
 - access to sensitive data, keys and passwords

Where do all parties meet?

Failure Analysis methods

- reliability of data storage
- advanced extraction methods
- slow and expensive
- not for large memory extraction

Forensic Analysis methods

- damaged samples (electrical or mechanical)
- very few samples to deal with
- large amount of data

Hardware Security methods

- defeat protection and improve the defence
- efficient data extraction methods
- rely on Failure Analysis methods for advanced attacks

Memory extraction methods

Failure Analysis methods

- chemical de-processing (CMP, RIE)
- Scanning Probe Microscopy (SCM, SKPM)
- Scanning Electron Microscopy (SE, PVC)
- microprobing (FIB)
- direct readout with chip manufacturer support

Forensic Analysis methods

- software approach
- use of standard interfaces

Hardware Security methods

- defeat protection (non-invasive and invasive attacks)
- reverse engineering
- combined attacks

Challenges, Pros and Cons

Failure Analysis methods

- test for reliability of data storage
- advanced extraction methods
- slow and expensive
- inefficient for large memory extraction

Pros

- test latest fabrication processes
- reliable and repeatable methods
- wide availability of tools
- help from chip manufacturer

Cons

- high cost of equipment and analysis
- time consuming process
- require high skills

Challenges, Pros and Cons

Forensic Analysis methods

- data extraction for analysis
- eavesdropping
- information retrieval

- fast way of getting the data for analysis
- inexpensive and high volume
- can be carried out by less skilled personnel

Cons

- limited in budget
- limited by security features
- damaged devices pose big challenge
- very challenging for latest fabrication processes

Challenges, Pros and Cons

Hardware Security methods

- reverse engineering of devices
- direct memory extraction
- keys and passwords extraction
- advanced methods to bypass encryption

Pros

- approach even the most protected devices
- combined methods to reduce cost and time
- repeatable process

Cons

- expensive for modern devices
- time consuming process to develop attacks
- some skills are required

How can we benefit?

- Failure Analysis (high end, slow)
 - can help with smaller fabrication processes
 - can learn faster methods and innovative approaches
 - can access components directly (damaged parts)
- Forensic Analysis (low end, fast)
 - can learn methods for extreme cases (damaged parts)
 - can learn faster methods
- Hardware Security (innovative, medium)
 - can help with sophisticated methods (damaged parts)
 - can help with faster methods
 - can learn methods for smaller fabrication processes

How can we benefit?

Failure Analysis

 PVC SEM methods were developed as part of Hardware Security research project

Forensic Analysis

 data extraction from custom NAND Flash was part of Hardware Security research project

Hardware Security

- microprobing using FIB machines
- SEM imaging for Reverse Engineering
- Mask ROM extraction using selective chemical etching
- detection of Trojans in logic by delineation using selective chemical etching
- advanced microscopy for data extraction

Limitations

Size of transistors

- smaller feature sizes: from >1µm to <10nm
- extremely thin layers: <1nm gate oxide, <2nm tunnel oxide</p>
- non-planar structures (3D gate, FinFET, 2 or 3 poly layers)

Measurement noise

- non-uniform emissions
- thermal noise of detectors
- amplifiers noise
- averaging adds time to the processing

Limitations in Flash/EEPROM

Size of transistors

- EEPROM: 65nm/90nm process, cells size 4Fx6F (0.5µm)
- eFlash: 28nm/45nm/65nm process, cell size 3F×4F (0.2μm)
- NAND Flash: 15nm/19nm/25nm process, cell size 2F×2F

PVC SEM challenges

- beam energy high enough to penetrate dielectric (>500eV)
- low beam energy to avoid discharge (<50eV)
- keep dielectric barrier thick enough to avoid discharge
- difficult trade off but not entirely impossible

Number of electrons

- significant drop between old processes and latest ones
- from >50,000e⁻ for 0.35μm to <50e⁻ for 16nm process

Achievements

- EEPROM (2T cell) imaging using PVC SEM
 - good contrast down to 210nm process
 - being replaced with more efficient Flash memory
- Flash (1T cell) imaging using PVC SEM
 - high noise even at 250nm process
 - need for more advanced methods and technologies
- Can 100% extraction be achieved?
 - EEPROM: 0.35μm 2kB (100%), 0.21μm 1kB (99.5%)
 - Flash: 0.35μm 4kB (99%), 0.25μm 16kB (90%)

Improvements

SPM methods

- more sensitive equipment with less noise: high cost
- faster equipment: high cost

PVC SEM methods

- more sensitive equipment with less noise: high cost
- signal processing: affordable
- parallel scanning: impact on PVC

New methods

- combined methods did work for semi-invasive techniques
- more research and development is needed to find new innovative solutions
- Work-in-Progress webpage for latest breakthrough news: http://www.cl.cam.ac.uk/~sps32/dec_proj.html

Future Work and Collaboration

SPM improvements

- SKPM is more promising than SCM: sample preparation
- Smart scanning could improve the speed
- post processing of images

SEM improvements

- improving setup and detectors
- digital signal processing of detector signal
- post processing of images

Collaboration with industry

- bring new ideas and test new methods
- apply interdisciplinary approach
- funding is essential
- possibility to go beyond state-of-the-art

Conclusion

- Failure Analysis, Forensic Analysis and Hardware Security can learn something from each other
 - need for more interdisciplinary research
- Need for closer collaboration between industry and academia
 - test innovative ideas (sometime non-standard and crazy)
- What was impossible a few years ago could become a mainstream tomorrow
- We are constantly working hard to improve the existing methods and find the best solutions to existing problems and challenges

Thank You!

