Combining Hardware Security, Failure Analysis and Forensic Analysis for the benefit of all

Dr Sergei Skorobogatov

University of Cambridge
Cambridge, UK

http://www.cl.cam.ac.uk/~sps32
email: sps32@cam.ac.uk
Outline

• Introduction
• Embedded Memory in Semiconductor Devices
• Where do Failure Analysis, Forensic Analysis and Hardware Security meet together?
• Challenges, Pros and Cons
 – Failure Analysis
 – Forensic Analysis
 – Hardware Security
• What can we learn from each other?
• Limitations, Achievements and Improvements
• Future Work and Collaboration
• Conclusion
Introduction

• **Multidisciplinary Background and Skills**
 – Electronics, Chemistry, Physics and Computer Science

• **Hardware Security research since 1995**
 – testing microcontrollers and smartcards for security
 – semi-invasive methods (PhD, 2005, Cambridge, UK)
 – backdoors in semiconductors (2012)
 – iPhone 5C NAND mirroring (2016)
 – solutions for security challenges in real-world devices

• **Some research related to Failure Analysis**
 – data remanence in Flash/EEPROM (CHES 2005)
 – combined optical and emission methods (CHES 2006)
 – PVC SEM for EEPROM and Flash (ISTFA 2016)
Hardware Security

• High importance and growing demand
 – data protection
 – cyber security
 – preventing attacks on services
 – preventing data and intellectual property (IP) theft
 – developing countermeasures against all known attacks
 – predicting new attacks

• Need for educated hardware engineers
 – hardware security as part of design, not add-on
 – knowledge of countermeasures
 – implement protection at all levels
Embedded Memory in ICs

• **Secure devices to thwart hardware attacks**
 – Low end: standard microcontrollers (μC)
 – Intermediate: secure memory, secure μC, FPGA, ASIC
 – High end: smartcard, secure ASIC

• **Embedded Non-Volatile Memory (NVM)**
 – Mask ROM: bootloader, firmware, algorithms
 – EEPROM: variables, keys, passwords
 – Flash: bootloader, firmware, algorithms, keys, passwords

• **Memory extraction is the crucial step in attacks**
 – access to firmware for reverse engineering
 – extraction of crucial algorithms
 – access to sensitive data, keys and passwords
Where do all parties meet?

- **Failure Analysis methods**
 - reliability of data storage
 - advanced extraction methods
 - slow and expensive
 - not for large memory extraction

- **Forensic Analysis methods**
 - damaged samples (electrical or mechanical)
 - very few samples to deal with
 - large amount of data

- **Hardware Security methods**
 - defeat protection and improve the defence
 - efficient data extraction methods
 - rely on Failure Analysis methods for advanced attacks
Memory extraction methods

• Failure Analysis methods
 – chemical de-processing (CMP, RIE)
 – Scanning Probe Microscopy (SCM, SKPM)
 – Scanning Electron Microscopy (SE, PVC)
 – microprobing (FIB)
 – direct readout with chip manufacturer support

• Forensic Analysis methods
 – software approach
 – use of standard interfaces

• Hardware Security methods
 – defeat protection (non-invasive and invasive attacks)
 – reverse engineering
 – combined attacks
Challenges, Pros and Cons

• Failure Analysis methods
 – test for reliability of data storage
 – advanced extraction methods
 – slow and expensive
 – inefficient for large memory extraction

• Pros
 – test latest fabrication processes
 – reliable and repeatable methods
 – wide availability of tools
 – help from chip manufacturer

• Cons
 – high cost of equipment and analysis
 – time consuming process
 – require high skills
Challenges, Pros and Cons

- **Forensic Analysis methods**
 - data extraction for analysis
 - eavesdropping
 - information retrieval

- **Pros**
 - fast way of getting the data for analysis
 - inexpensive and high volume
 - can be carried out by less skilled personnel

- **Cons**
 - limited in budget
 - limited by security features
 - damaged devices pose big challenge
 - very challenging for latest fabrication processes
Challenges, Pros and Cons

- **Hardware Security methods**
 - reverse engineering of devices
 - direct memory extraction
 - keys and passwords extraction
 - advanced methods to bypass encryption

- **Pros**
 - approach even the most protected devices
 - combined methods to reduce cost and time
 - repeatable process

- **Cons**
 - expensive for modern devices
 - time consuming process to develop attacks
 - some skills are required
How can we benefit?

• Failure Analysis (high end, slow)
 – can help with smaller fabrication processes
 – can learn faster methods and innovative approaches
 – can access components directly (damaged parts)

• Forensic Analysis (low end, fast)
 – can learn methods for extreme cases (damaged parts)
 – can learn faster methods

• Hardware Security (innovative, medium)
 – can help with sophisticated methods (damaged parts)
 – can help with faster methods
 – can learn methods for smaller fabrication processes
How can we benefit?

• Failure Analysis
 – PVC SEM methods were developed as part of Hardware Security research project

• Forensic Analysis
 – data extraction from custom NAND Flash was part of Hardware Security research project

• Hardware Security
 – microprobing using FIB machines
 – SEM imaging for Reverse Engineering
 – Mask ROM extraction using selective chemical etching
 – detection of Trojans in logic by delineation using selective chemical etching
 – advanced microscopy for data extraction
Limitations

• Size of transistors
 – smaller feature sizes: from >1μm to <10nm
 – extremely thin layers: <1nm gate oxide, <2nm tunnel oxide
 – non-planar structures (3D gate, FinFET, 2 or 3 poly layers)

• Measurement noise
 – non-uniform emissions
 – thermal noise of detectors
 – amplifiers noise
 – averaging adds time to the processing
Limitations in Flash/EEPROM

• Size of transistors
 – EEPROM: 65nm/90nm process, cells size 4F×6F (0.5μm)
 – eFlash: 28nm/45nm/65nm process, cell size 3F×4F (0.2μm)
 – NAND Flash: 15nm/19nm/25nm process, cell size 2F×2F

• PVC SEM challenges
 – beam energy high enough to penetrate dielectric (>500eV)
 – low beam energy to avoid discharge (<50eV)
 – keep dielectric barrier thick enough to avoid discharge
 – difficult trade off but not entirely impossible

• Number of electrons
 – significant drop between old processes and latest ones
 – from >50,000e− for 0.35μm to <50e− for 16nm process
Achievements

• EEPROM (2T cell) imaging using PVC SEM
 – good contrast down to 210nm process
 – being replaced with more efficient Flash memory

• Flash (1T cell) imaging using PVC SEM
 – high noise even at 250nm process
 – need for more advanced methods and technologies

• Can 100% extraction be achieved?
 – EEPROM: 0.35μm 2kB (100%), 0.21μm 1kB (99.5%)
 – Flash: 0.35μm 4kB (99%), 0.25μm 16kB (90%)
Improvements

• SPM methods
 – more sensitive equipment with less noise: high cost
 – faster equipment: high cost

• PVC SEM methods
 – more sensitive equipment with less noise: high cost
 – signal processing: affordable
 – parallel scanning: impact on PVC

• New methods
 – combined methods did work for semi-invasive techniques
 – more research and development is needed to find new innovative solutions
Future Work and Collaboration

• SPM improvements
 – SKPM is more promising than SCM: sample preparation
 – Smart scanning could improve the speed
 – post processing of images

• SEM improvements
 – improving setup and detectors
 – digital signal processing of detector signal
 – post processing of images

• Collaboration with industry
 – bring new ideas and test new methods
 – apply interdisciplinary approach
 – funding is essential
 – possibility to go beyond state-of-the-art
Conclusion

• Failure Analysis, Forensic Analysis and Hardware Security can learn something from each other
 – need for more interdisciplinary research
• Need for closer collaboration between industry and academia
 – test innovative ideas (sometime non-standard and crazy)
• What was impossible a few years ago could become a mainstream tomorrow
• We are constantly working hard to improve the existing methods and find the best solutions to existing problems and challenges
Thank You!