Tamper resistance and physical attacks

Part IV: Hardware security research

Dr Sergei Skorobogatov

http://www.cl.cam.ac.uk/~sps32

email: sps32 @cam.ac.uk

Security Group, TAMPER Lab

- Hardware research lab (TAMPER Lab)
 - Part of the Security Group at the Computer Laboratory Department
 - Research focused on the hardware aspects of semiconductor devices, computers and communication security
 - 3 associated staff members, 1 postdoc and 2 research students
 - Cooperates with interested researchers of other university departments, other universities, government institutions and industrial companies

- Perform analysis of on-the-market semiconductor devices against known attacks
- Develop new attack methods and countermeasures
- Develop efficient, inexpensive and fast analysis methods
 - Semi-invasive methods are in higher demand
- Provide consulting for various organisations
 - Manufacturers of test equipment
 - Chip manufacturers
 - Developers of secure devices

Sample preparation

- Manual decapsulation and chemical etching
- Laser cutting system
- Externally: plasma etching, backside preparation, CMP, FIB

Analysis

- Optical imaging with a high-resolution microscope
- Microprobing station
- Various laser scanning techniques
- Special microscopes for optical fault injection analysis (sponsors)
- Externally: optical imaging, SEM, FIB, reverse engineering, emulation techniques

Feedback

- Reports, consulting, collaboration
- In plans: special courses on hardware security and semi-invasive attacks (lectures, seminars, demonstrations and practical labs)

- Semi-invasive analysis using equipment from Semiresearch Ltd.
 - Ex-demo version of Trioscan BSL2R with NWR QuikLaze-II TriLaze laser cutter
 - Dual-mode advanced laser scanning
 - Large-area scanning (12×12 mm²)
 - High-resolution scanning (0.05 μm)
 - Long-working distance objectives (10 mm minimum for high-magnification objectives)
 - Dual-use laser cutting system
 - Sample preparation
 - Fault injection (Trig in/out synchronisation)
 - Optical fault injection capability for NWR and BSL lasers (external triggering)
 - Evaluation showed that NWR pulsed laser is not suitable for some types of optical fault injection attacks

- Semi-invasive analysis using equipment from Semiresearch Ltd.
 - Demo version of Multioscan BTSL4RGI
 - Triple-mode advanced laser scanning
 - Large-area scanning (18×18 mm²)
 - High-resolution scanning (0.025 μm)
 - Real-time scanning
 - Dual wavelength lasers for convenient operation from front and rear sides
 - Improved IR and UV optics plus special CCD cameras for backside navigation
 - Long-working distance objectives (10 mm minimum for high-magnification objectives)
 - Optical fault injection capability for any of the lasers (software, pattern and external triggering)
 - Evaluation showed high effectiveness of the system for many types of optical attacks

 Experiments using Semiresearch Trioscan BSL2R special laser system for optical analysis of semiconductors

- Optically enhanced position-locked power analysis
 - Microchip PIC16F84 microcontroller
 - Classic power analysis setup (10 Ω resistor in GND, 500 MHz digital oscilloscope) and Trioscan BSL2R special laser system

- Optically enhanced position-locked power analysis
 - Standard laser scanning operation reveals all sensitive areas
 - Microcontroller was programmed with the program which accesses certain memory locations and output result to the ports
 - Test pattern
 - Run the code inside the microcontroller and store the power trace
 - Trigger fault injection event and store the power trace
 - Compare two traces

- Optically enhanced position-locked power analysis
 - Single acquisition with 250 Ms/s
 - Results for memory read operations
 - Non-destructive analysis of active memory locations ('0' and '1')

- Optically enhanced position-locked power analysis
 - Single acquisition with 250 Ms/s
 - Results for memory write operations
 - Non-destructive analysis of active memory locations ('0→0', '0→1', '1→0' and '1→1')

- Optically enhanced position-locked power analysis
 - Single acquisition with 250 Ms/s
 - Results for memory read and write destructive operations
 - Detecting active cells
 - Detecting active columns in the memory array

- Optically enhanced position-locked power analysis
 - Full story to be published later this year
 - Full presentation will appear at CHES-2006
- Other combinations of optical fault injection methods with conventional side-channel attacks
 - Fault injection in conjunction with power analysis
 - Temporary CPU modification followed by the Reset to prevent reaction

- Other interesting combinations of the attack methods were found
 - Will appear later in publications
 - Together with already known optical methods will become a part of the tuition courses on:
 - hardware security
 - semi-invasive attacks
 - optical attacks

Conclusions

- Having proper equipment for semi-invasive analysis is a vital part in the research
- It is not always necessary to have very expensive equipment to attack a semiconductor device, but the security analysis could be very expensive
 - Fault injection attacks are much easier to use and repeat, than to test the real device against these attacks
- New attacks could emerge when previously known attack methods are combined together
- Simulation does not always work reliably, by testing real hardware some unexpected problems could be spotted