Tamper resistance and physical attacks

Part III: Security analysis and defence

Dr Sergei Skorobogatov

http://www.cl.cam.ac.uk/~sps32 email: sps32@cam.ac.uk

UNIVERSITY OF CAMBRIDGE
Computer Laboratory
Security Group, TAMPER Lab
Hardware security analysis

- Design overview
 - Localisation of potentially weak points
 - Analysis of security critical paths

- Finding attack points
 - Systematic search
 - Brute force search
 - Fuzzy search
 - Modelling attacks through simulation
Hardware security analysis

- Using semi-invasive attacks for testing security protection
 - Exposing large area to light flashes
 - Reducing the area of search by using higher magnification and apertures
 - For multipoint security systems, overlapping area shows potential threat

Microchip PIC16C622A microcontroller
Hardware security analysis

- Using semi-invasive imaging techniques to locate the security fuses
 - Light-induced current variation method
 - Comparing two scans – one for non-secure device, other for secure

Microchip PIC16F84 microcontroller
Hardware security analysis

- Modelling of semi-invasive attacks (DIODE-2D software)
 - Detecting the logic state of CMOS transistors through photocurrent
 - Wavelength and location dependence
 - Technology dependence
Hardware security analysis

- Modelling of semi-invasive attacks
 - Detecting the logic state of CMOS transistors through photocurrent
 - Dependence on laser wavelength for p-MOS and n-MOS transistors in CMOS inverter
Hardware security analysis

- Modelling of semi-invasive attacks
 - Optical fault injection
 - For n-type substrates: switching is easier for p-MOS transistor
 - For p-type substrates: opposite result
Hardware security analysis

- Modelling of semi-invasive attacks
 - Signal distribution
 - Location dependence: $t = \frac{x^2}{4D_p(n)}$
Hardware security analysis

- Modelling of backside semi-invasive attacks
 - Approaching from rear side (OBIC and current variation)
 - Sufficient ionization current for wavelengths less than 1000 nm
Hardware security analysis

- Modelling of backside semi-invasive attacks
 - Fault injection from rear side
 - Delayed and smoothed response from shorter wavelengths

![Graphs showing the response of different wavelengths over time](image1.png)

1. 900 nm 2. 950 nm 3. 970 nm 4. 1060 nm

1. 530 nm 2. 900 nm 3. 950 nm 4. 970 nm
Conclusions

- Laser irradiation is a very effective tool for investigating IC properties and changing circuit states.
- The effectiveness can be optimised through numerical simulation, using, for example, “DIODE-2D” software.
Defence technologies

- Low-cost solutions
 - Can be used to increase the protection from level ZERO or LOW to LOW or MODL
- Unmarking, remarking and repackaging
 - Available as option from chip manufacturers
Defence technologies

- Low-cost solutions
 - Can be used to increase the protection from level ZERO or LOW to LOW or MODL
- Remarking to look like high-security product (MODL to MODH) – illegal as it violates trademark laws
Defence technologies

- Low-cost solutions
 - Can be used to increase the protection from level LOW or MODL to MODL or MOD
- Destroying (burning) access and test circuit

Microchip PIC16F76 microcontroller
Defence technologies

- Smartcards and tamper protection
 - Glue logic design to make reverse engineering harder
 - Top metal protection and tamper sensors
 - Temperature, light, voltage and frequency monitoring
 - Bus encryption
 - Crypto-coprocessors
Defence technologies

- ASICs and custom ICs
 - Types of ASIC design
 - Built from libraries using one or two factory programmable metal layers (very similar to Mask ROM fabrication)
Defence technologies

- ASICs and custom ICs
 - Types of ASIC design
 - Glue logic design from VHDL or logic level (Netlist)
 - Fully custom design with security requirements
Defence technologies

- Silicon design level approach
 - Asynchronous logic circuits
 - Internal signals are not synchronised to external or internal clock – impossible to perform clock glitching attacks
 - Consumes less power making power analysis less efficient
 - Dual-rail logic has four states: 00=clear, 01=0, 10=1, 11=alarm
 - Dual-rail design uses ‘01’ and ‘10’ for low and high logic signals
 - power analysis less able to see number of set and reset data bits
Defence technologies

- Tamper protection enclosures
 - Give highest possible protection against invasive attacks
 - Not very compact, require constant battery power supply
 - High cost compared to silicon solution

Pictures courtesy of Dr Markus Kühn
Defence from non-invasive attacks

- Countermeasures against data remanence
 - Cycle freshly manufactured EEPROM/Flash devices 10 – 100 times with new random data before writing sensitive information
 - Program all EEPROM/Flash cells before erasing them
 - Unable to successfully recover information from PIC16F84A if it was programmed to all 0’s before the erase operation
 - This is standard procedure in some Flash and EEPROM devices (Intel ETOX Flash memory (P28F010), Microchip KeeLoq HCS200)
 - Remember about “intelligent” memories, backup and temporary files in file systems
 - Use latest high-density devices, as they benefit from technical improvements that make attacks less feasible
 - Cryptography can help to make data recovery more difficult. E.g. store longer pre-key R instead of key: $K = h(R)$
 - Test secure devices before using them in a real system
Defence from semi-invasive attacks

- Countermeasures against optical fault injection
 - Top metal protection layers
 - Highly doped silicon substrate to prevent rear side approach
 - Special non-transparent and hard-to-remove coatings
 - Active photon sensors
 - Special circuit design to reduce photonic influence
Conclusions

- There is no such a thing as absolute protection
 - Given enough time and resources any protection can be broken
- Technical progress helps a lot
 - Do not overestimate capabilities of the silicon circuits
 - Do not underestimate capabilities of the attackers
- Defence should be adequate to anticipated attacks
- Security hardware engineers must be familiar with attack technologies to develop adequate protection
- Attack technologies are constantly improving, so should the defence technologies