Tamper resistance and physical attacks

Part I: Introduction

Dr Sergei Skorobogatov

http://www.cl.cam.ac.uk/~sps32 email: sps32@cam.ac.uk
Structure of the talk

- Introduction
 - Physical security
 - Attack technologies
 - Security protection levels
- Attack technologies
 - Non-invasive attacks
 - Invasive attacks
 - Semi-invasive attacks
- Security evaluation and defence technologies
- Ongoing research
Introduction

- Protection from physical attacks
 - Protecting objects from being stolen
 - Psychological and historical background

- Physical protection in pre-computer era
 - Burglary (doors, locks, fences, safes)
 - Theft (guards, chains, locks)
 - Military enemy (fortification, armed guards, tanks, missiles)

- Physical protection in computer era
 - Military enemy (control and spying)
 - Bank fraud (PINs, plastic cards, on-line cryptography, holograms)
 - Theft (CCTV, RF tags, electronic keys)
 - Services (prepayment meters and cards)
 - Pay-TV piracy (access using smartcards)
 - GSM service (access using SIMs)
 - Software piracy (hardware dongles, crypto-coprocessors)
Introduction

- Technical progress pushed low-cost cryptoprocessors towards ubiquity
 - Car industry
 - anti-theft protection
 - spare parts
 - Accessory control
 - mobile phone batteries
 - printer toner cartridges
 - memory modules
 - Access control (tokens and dongles)
 - Home appliances (door control, entertainment)
 - Intellectual property (IP) protection (in products)
 - Software copy protection
 - Protection of algorithms
 - Protection from cloning
Levels of physical protection

- Access control
- Obstruction
- Active protection
- Sensors
 - Lid switch
 - Environment
 - Tamper detection and tamper evidence
- Software level
 - Password protection
 - Encryption
 - Protocols
- Hardware level
 - Electronics – PCB, sensors
 - Microelectronics – Silicon implementation
Area of interest

- Hardware security of semiconductor chips
 - Security modules
 - Smartcards
 - Microcontrollers
 - ASICs and custom ICs
 - Other single-chip solutions

- Do we have the same level of protection as in high-end applications?
- Do we have an adequate level of protection?
Tamper protection levels

- **Level HIGH**
 - Military and bank equipment
 - All known attacks are defeated. Some research by a team of specialists is necessary to find a new attack. Total cost: over a million euros. Time to attack: months to years

![Image of tamper protection device](image-url)

D.G.Abraham et al. (IBM), 1991
Tamper protection levels

- **Level MODH**
 - Secure i-Buttons, secure FPGAs, high-end smartcards and ASICs
 - Special attention is paid to design of the security protection. Equipment is available but is expensive to buy and operate. Total cost: hundreds of thousand euros. Time to attack: weeks to months
Tamper protection levels

- **Level MOD**
 - Smartcards, high-security microcontrollers, ASICs, CPLDs, hardware dongles, i-Buttons
 - Special tools and equipment are required for successful attack as well as some special skills and knowledge. Total cost: tens of thousand euros. Time to attack: weeks to months
Tamper protection levels

- **Level MODL**
 - Microcontrollers with security protection, low-cost hardware dongles
 - Protection against most low-cost attacks. Relatively inexpensive tools are required, but some knowledge is necessary. Total cost: thousands of euros. Time to attack: days to weeks
Tamper protection levels

- **Level LOW**
 - Microcontrollers with proprietary read algorithm, remarked ICs
 - Some security features are used but they can be relatively easy defeated with minimum tools required. Total cost: hundreds of euros. Time to attack: hours to days
Tamper protection levels

- **Level ZERO (no special protection)**
 - Microcontroller or FPGA with external ROM
 - No special security features are used. All parts have free access and can be easily investigated. Total cost: less than a hundred euros. Time to attack: less than an hour
Tamper protection levels

- Division of levels from HIGH to ZERO is relative
 - Some products designed to be very secure might have flaws
 - Some products not designed to be secure might still end up being very difficult to attack
 - Technological progress opens doors to less expensive attacks, thus reducing the protection level of some products

- Proper security evaluation must be carried out to estimate whether products comply with all the requirements
 - Design overview
 - Test against known attacks
Attacks and attackers

- Who is going to attacks our system?
 - Classes of the attackers

- What tools will they use?
 - Attack categories
 - Attack methods

- What is the reason to attack?
 - Attack scenarios

- How to protect?
 - Security engineering
Classes of the attackers

- **Class I (clever outsiders):**
 - very intelligent but may have insufficient knowledge of the system
 - have access to only moderately sophisticated equipment
 - often try to take advantage of an existing weakness in the system, rather than try to create one

- **Class II (knowledgeable insiders):**
 - have substantial specialised technical education and experience
 - have varying degrees of understanding of parts of the system but potential access to most of it
 - often have access to highly sophisticated tools and instruments for analysis

- **Class III (funded organisations):**
 - able to assemble teams of specialists with related and complementary skills backed by great funding resources
 - capable of in-depth analysis of the system, designing sophisticated attacks, and using the most advanced analysis tools
 - may use Class II adversaries as part of the attack team
Attack methods

- **Non-invasive attacks**
 - Observe or manipulate with the device without physical harm to it
 - Require only moderately sophisticated equipment and knowledge to implement

- **Invasive attacks**
 - Almost unlimited capabilities to extract information from chips
 - Normally require expensive equipment, knowledgeable attackers and time

- **Semi-invasive attacks**
 - Chip is depackaged but the passivation layer remains intact
 - Fill the gap between non-invasive and invasive types, being both inexpensive and easily repeatable
Attack categories

- Eavesdropping (non-invasive)
 - techniques that allows the attacker to monitor the analog characteristics of supply and interface connections and any electromagnetic radiation

- Software attacks (non-invasive)
 - use the normal communication interface and exploit security vulnerabilities found in the protocols, cryptographic algorithms, or their implementation

- Fault generation (non-invasive and invasive)
 - use abnormal environmental conditions to generate malfunctions in the system that provide additional access

- Microprobing (invasive)
 - can be used to access the chip surface directly, so we can observe, manipulate, and interfere with the device

- Reverse engineering (invasive)
 - used to understand the inner structure of the chip and learn or emulate its functionality; requires the use of the same technology available to semiconductor manufacturers and gives similar capabilities to the attacker
Tamper evidence

- **Non-invasive attacks**
 - Normally do not leave evidence of the attack
 - Many are reversible

- **Invasive attacks**
 - Destructive, hence, leave evidence of the attack
 - Most are irreversible

- **Semi-invasive attacks**
 - Destructive to the packaging of the chip
 - Many are reversible
Attack scenarios

- Cloning
 - Most widely used attack scenarios (from individuals to companies)
 - Increasing sales without investment in design
- Overbuilding
 - Mass production
- Theft of service
 - Attacks on service providers (satellite TV, electronic meters, phones)
- Denial of service
 - Dishonest competition
- Decryption
 - Information recovery
 - Read cryptographic keys in plaintext
 - Force crypto keys to a known value
 - Force cryptosystem to insecure mode
- Extraction of information
 - Trade secrets and IP piracy
Security engineering

- Understanding motivations of the attackers
 - Attack scenarios
- Figuring out what to protect
 - Locating the most sensitive points (fuses, keys)
- Estimating capabilities of the attackers
 - Equipment
 - Knowledge
- Developing adequate protection
 - Hardware level (Silicon design, PCB, sensors)
 - Software level (encryption, protocols)
Security evolution in semiconductors

- Years 1970 – 1985
 - Tamper protection level ZERO or LOW
 - All components are easy to access and test
Security evolution in semiconductors

- Years 1980 – 1990
 - Tamper protection level LOW
 - Obscurity vs security
Security evolution in semiconductors

- Years 1985 – 1995
 - Tamper protection level LOW or MODL
 - No special protection used
Security evolution in semiconductors

- Years 1990 – 2000
 - Tamper protection level MODL
 - Restricted access
Security evolution in semiconductors

- Years 1990 – 2000
 - Tamper protection level MODL or MOD
 - Microcontrollers with security protection
Security protection in microcontrollers

- Security fuse is placed separately from the memory array
 - Easy to locate and defeat
Security protection in microcontrollers

- Security fuse is placed inside the program memory array
 - Hard to locate and defeat
Security protection in microcontrollers

- Security fuse is embedded into the program memory
 - Very hard to locate and defeat
 - Similar approach is used in many smartcards
Security protection in microcontrollers

- Monitoring of the security protection
 - Single check on power-up or reset
 - Sensitive to glitching
 - Single check on power-up and store state in a register
 - Sensitive to glitching and fault injection
 - Check each time access is required
 - Harder to attack because of synchronization requirements
- Permanent monitoring
 - Best choice for protection, however, not always convenient
Security evolution in semiconductors

- Years 2000 – 2005
 - Tamper protection level MOD or MODH
 - Glue logic design
 - used in modern microcontrollers and smartcards
Security evolution in semiconductors

- Years 1995 – present
 - Tamper protection level MOD or MODH
 - Planarisation as a part of modern chip fabrication processes (0.5 μm or smaller feature size)
Security evolution in semiconductors

- **Years 1995 – present**
 - Tamper protection level MOD or MODH
 - Bus encryption
 - Simple algorithms not to slow down the communication

Dallas Semiconductor DS5002FP microcontroller

Infineon SLE66 smartcard
Security evolution in semiconductors

- Years 1995 – present
 - Tamper protection level MOD or MODH
 - Secure memory
 - VTROM for Mask ROM implementation
 - Flash and FRAM for non-volatile memory
Security evolution in semiconductors

- Years 1995 – present
 - Tamper protection level MODH
 - Top metal layers with sensors
 - Voltage, frequency and temperature sensors
 - Memory access protection, crypto-coprocessors
Security evolution in semiconductors

- Impacts of technological progress
 - Size of transistors reduced to less than 0.3 μm
 - Multiple metal layers obstruct direct observation
 - Complexity of circuits significantly increased
 - More security features could be implemented
Conclusions

- There is no absolute protection – any device can be broken given enough time and resources.
- Division of levels from HIGH to ZERO is relative
 - Some products designed to be very secure might have flaws
 - Some products not designed to be secure might still end up being very difficult to attack
- Proper security evaluation must be carried out to estimate whether products comply with all the requirements.
- Main concern is the cost of an attack.
- With technological progress it becomes more difficult to attack devices.
- Attack motivations is the major driving factor in compromising security of a device.
- Insiders could be potentially more dangerous as they could have more information about the devices.