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Abstract Network location awareness (NLA) enables mobile 
computers to recognize home, work and public networks and wireless 
hotspots and to behave differently at different locations. The location 
information is used to change security settings such as firewall rules. 
Current NLA mechanisms, however, do not provide authenticated 
location information on all networks. This paper describes a novel 
mechanism, based on public-key authentication of DHCP servers, for 
securing NLA at home networks and wireless hotspots. The main 
contributions of the paper are the requirements analysis, a naming 
and authorization scheme for network locations, and the extremely 
simple protocol design. The mobile computer can remember and 
recognize previously visited networks securely even when there is no 
PKI available. This is critical because we do not expect the majority 
of small networks to obtain public-key certificates. The protocol also 
allows a network administrator to pool multiple, heterogeneous 
access links, such as a campus network, to one logical network 
identity. Another major requirement for the protocol was that it must 
not leak information about the mobile host’s identity or affiliation. 
The authenticated location information can be used to minimize 
attack surface on the mobile host by making security-policy 
exceptions specific to a network location. 

I. INTRODUCTION 

This paper describes a secure network-location-awareness 

(NLA) mechanism, based around authentication of the 

dynamic host configuration protocol (DHCP) server. The goal 

is to provide a ubiquitous mechanism by which a mobile host 

can securely identify the network to which it is attached. It is 

intended to be used not only on managed company networks 

but also at a home, small office, coffee shop, or university 

campus. The protocol works over the IP layer without needing 

any special hardware, which leads to both fundamental 

limitations and advantages. 

Our protocol authenticates networks based on their public 

keys. Networks may have public-key certificates but they are 

not required. The mobile host remembers networks when it 

meets them for the first time and securely recognizes them on 

following visits. It can then store and automatically apply 

security settings, such as firewall configuration, enabling or 

disabling network services, and generating or reusing 

pseudonyms for privacy preserving protocols.  

A key insight motivating our work is that many network-

security settings are not strict policies but rather safe defaults 

which users and applications are allowed to and often do 

override in order to get their work done. Network location 

awareness enables the computer to remember the modified 

settings on a per-network basis and to revert to the safe 

baseline for each new network. Thus, secure NLA enables a 

new balance between convenience and risk minimization.   

This paper’s main contributions are the requirements 

analysis, the idea of recognizing previously visited networks 

based on their public key, a method for deriving network 

names and authorization for NLA from X.509 certificates, and 

the easy-to-implement authentication protocol. We 

implemented a prototype of the protocol for a Windows 2003 

server and Vista client, and use the Windows network location 

awareness as an example throughout the paper. Any other 

mobile platform that implements some NLA functionality 

would benefit equally from the secure location information.  

The rest of the paper is organized as follows: section II 

motivates the work by explaining the need for a new secure 

location mechanism. Section III outlines our initial design 

choices. Section IV discusses network naming and 

authorization in detail. In sections V–VI, we give an overview 

of the DHCP protocol and show how our authentication 

extensions fit in. Section VII discusses residual threats, section  

VIII surveys related work, and section IX concludes the paper. 

II. NEED FOR NETWORK AUTHENTICATION IN NLA 

When a Windows computer connects to a new network, it 

asks the user to determine whether the network is private 

(work or home) or public. Windows firewall uses this 

information to select a firewall profile for the network. On 

following visits to the same network, the same profile is 

selected automatically. If the computer is a member of a 

managed domain, there is also a separate profile for the 

domain network. This is a simple example of how NLA can be 

used to configure security settings depending on the network 

location. While the profiles are easy to understand and 

manage, there is no technical reason why the computer could 

not store individual settings for each network. Applications 

and services can also take advantage of NLA and remember 

settings that are specific to a network location. Such location-

aware features will probably increase in sophistication as users 

and developers get used to them. 

Since the location information from NLA is used for 

changing security settings, we have to ask how reliable this 

information is. Windows NLA currently identifies the network 

based on heuristics that take into account various clues 

including the gateway MAC address, SSID on a wireless link, 

wireless authentication state, and the presence of a domain 



 

controller on a managed network. Some networks are 

identified securely: the domain network by authenticating the 

domain controller, secure wireless LANs with 802.1X or 

shared-key authentication, and VPN and dialup connections 

with their specific security mechanisms. Most networks, 

however, are not strongly authenticated. In particular, wired 

Ethernet and open wireless access points are identified 

primarily by the gateway-router MAC address. This includes 

networks that use the universal access method (UAM), i.e., a 

web form and password, for access control.  

This mechanism is not entirely insecure. Although an 

attacker could spoof the identity of a private network and 

cause the mobile computer to use weaker security settings than 

it should use at a public location, it needs to know the gateway 

MAC address of private network. The MAC address can be 

easily discovered by sniffing the local link but that usually 

requires a visit to the physical location of the access network. 

For many applications of NLA, this may provide an 

acceptable level of security. It would, however, be safer to 

authenticate the network with a stronger mechanisms before 

applying location-specific security settings.  

The reliance on the gateway MAC address causes, however, 

another limitation of the current NLA mechanism. 

Unmanaged networks can only be identified at the granularity 

of a single IP subnet. Some organizations, such as universities 

and commercial hotspot operators have large, heterogeneous 

access networks that span multiple IP subnets. Yet, it might be 

desirable to treat such a network as a single entity and to set 

the security profile once for the entire university campus or 

hotspot chain, rather than require the user to configure the 

settings separately for each IP segment. This calls for a 

network authentication mechanism that supports secure 

aggregation of multiple access links to one network identity 

regardless of the network topology. 

Once the location information is uniformly authenticated, it 

will become much more attractive to use it in security and 

privacy mechanisms. By adapting the firewall configuration to 

each network and by enabling and disabling applications and 

network services, the mobile computer can minimize its attack 

surface at each location. Disabling unnecessary services and 

protocols can also limit the amount of information leaked to 

curious observers about the mobile user and his affiliation.  

III. INITIAL DESIGN CHOICES 

In this section, we discuss some of our fundamental design 

choices. We also list high-level requirements for the 

cryptographic protocol that we will describe in section VI. 

A. IP-layer attacker model 

Our goal is to ensure that a mobile computer can securely 

identify the network to which it is attached. That is, we want 

to prevent an attacker from spoofing the network location. 

Moreover, we want the protocol to work over the IP layer. 

This makes it independent of the of the underlying physical 

network technology but puts some limitations on the kind of 

security we can achieve.  

At the IP layer, we can verify the logical presence of a 

network, not its physical proximity. We cannot rely on 

carefully designed hardware and accurate timing of physical 

signals and, thus, cannot measure physical distances, as is 

done in distance bounding protocols (see section VIII). 

Consequently, we cannot defend against attackers who have 

access to both the network location which they want to spoof 

and to the local link of the mobile host. Such attackers could 

tunnel packets between the two locations and, thus, effectively 

modify the logical network topology. The security of our 

protocol depends on physical and logical network boundaries, 

such as routers and firewalls, to partition the Internet and to 

limit the locations at which the attacker can spoof, sniff and 

relay IP packets. In practice, the cost and inconvenience of 

having to be present at the two locations is sufficient to 

prevent most attacks. We have opted for this lower level of 

security in exchange for easy universal deployment that does 

not require any changes to the physical and link layer 

technologies.  

To state the goal and major assumption of our protocol 

more precisely:  

- We aim to prevent an attacker from spoofing network 

locations to a mobile host. That is, the host should be able 

to verify its location reliably in the presence of a 

malicious attacker.  

- We assume that the attacker cannot relay packets in real 

time (i.e., within seconds) between the mobile computer’s 

real location and the network location that it wants to 

spoof.  

An existing security mechanism in Windows NLA, 

authentication of a domain controller, already works at the 

same level of security as our protocol. That is, it depends on a 

firewall to prevent connections to the domain controller from 

outside the domain network.  

Since our security mechanism works on the logical rather 

than physical level, it can be analyzed against a Dolev-Yao-

style attacker [Dolev83] who has no timing constraints and has 

access to all communication. One only needs to include in the 

model the assumption that the attacker cannot relay packets 

between the two locations. 

B. Using DHCP 

As already mentioned, we propose to verify the network 

location by authenticating the dynamic host configuration 

protocol (DHCP) [Dro97] server on the network. The main 

reason for this is that DHCP is the one ubiquitous service that 

is deployed on virtually every wired and wireless network to 

which client hosts can connect. This allows us to provide 

secure location information on almost all access networks by 

modifying just one service.  

The main exceptions to the availability of DHCP are 

cellular data and point-to-point links such as dialup and VPN 



 

connections. These types of networks are typically already 

strongly authenticated by link-layer security mechanisms, on 

which we can continue to rely. Nevertheless, some networks 

like isolated wired LANs with manually configured IP 

addresses and without any servers or gateways will always 

remain without secure identification. 

An alternative to the use of DHCP would be to disseminate 

the secure location information via a combination of services 

available on different networks, such as wireless access points, 

file servers, Kerberos, RADIUS and AAA servers, Windows 

domain controllers, and so on. Clearly, it is easier to 

implement and deploy the security protocol only in one place. 

For IPv6, authenticating the access router would be a logical 

choice: the protocol for router discovery could be enhanced to 

provide secure location information. Most IPv6 links will, 

however, have a DHCP server to configure parameters such as 

the local domain suffix [DBV+03]. We decided to concentrate 

on DHCP and to leave it as future work to extend our secure 

NLA protocol to work over IPv6 neighbor discovery.  

Another reason for focusing on DHCP is that it is relatively 

easy to fit the required data into the DHCP messages. Indeed, 

DHCP is specifically intended for configuring hosts with all 

kinds of information about the network and it readily allows 

extensions without breaking backward compatibility with old 

servers and clients that do not support the new features. (More 

specifically, we can send public-key signatures in non-critical 

long vendor options.) 

A third, and equally important, reason for choosing DHCP 

is that it is typically the first protocol executed by a mobile 

host when it enters a new network (apart from the 802.1X 

authentication on some wireless networks, see section VII). 

The secure location information should be obtained as early as 

possible so that the mobile host can use it to make decisions 

about which other services to use and which protocols to 

enable on the new network. The later in the network 

attachment process the mobile authenticates the network, the 

more trust it must put in the unknown environment before the 

authentication.  

Finally, DHCP is a protocol that is executed entirely on the 

local link (or adjacent links connected by BOOTP relays) 

using mostly broadcast messages. It does not require the 

mobile host to use or know any server identifiers or addresses. 

Neither does it require the client to have or reveal any 

identifiers or addresses of itself (the dangers of which will be 

discussed in section F). Therefore, it is possible to complete 

the DHCP protocol without the client revealing any 

information to the network. 

C. Public key as a secure network identifier 

In this subsection, we argue that public keys as machine-

readable network identifiers have the flexibility to support 

various scenarios from PKI-based authentication of large and 

heterogeneous networks to the creation of ad-hoc relations 

with isolated LANs. 

The first reason for choosing public-key authentication is 

that it is more suitable for global operation than existing 

secret-key protocols. Kerberos, the most common secret-key 

protocol in IP networks, is rarely used outside closed domains 

and, thus, is not suitable for roaming users. The current 

Windows NLA already takes advantage of Kerberos when 

authenticating the domain network but it would be difficult to 

extend this to non-domain networks. SIM-based authentication 

protocols from cellular networks have been adapted for mutual 

authentication between mobile computers and access 

networks; however, they require the access networks to have a 

roaming agreement with the SIM issuer and a connection to its 

home location register and authentication center (HLR/AuC). 

With our protocol, a mobile computer should be able to 

authenticate access networks anywhere in the world, not only 

a specific operator’s network or a limited set of hotspots with 

roaming agreements. 

Another justification for the public-key protocol is that 

public-key certificates enable offline operation. It is 

sometimes desirable to authenticate networks that are 

disconnected from the global Internet. Moreover, some 

networks require a mobile computer to go through a complex 

procedure, such as entering a password into a web form or 

installing VPN software, before granting Internet access. In 

these situations, public-key credentials enable authentication 

of the access network before obtaining a connection to the 

Internet. Our network authentication protocol can be seen as 

an additional first layer of defense to these more complex 

security protocols, although interaction between the protocols 

is not the focus of this paper. 

Finally, and perhaps most importantly, public keys can be 

used to identify networks even when there are no certificates 

available. A mobile computer can securely recognize networks 

that it has previously visited based on their public keys. This 

makes it possible to authenticate a network that has no 

administration and no certificates, such as a home LAN or an 

individual wireless hotspot. When the mobile computer 

returns to the same network, it can recall the configuration and 

services used there on the previous visit. This fits the model of 

Windows NLA where the computer asks the user once to 

determine the status of the network and remembers this choice 

when the user returns to the same network. Our protocol 

increases the security of this mechanism for identifying 

previously visited networks without requiring changes to the 

user interface.  

D. Administrative identifiers 

While public keys are practical network identifiers for the 

internal use of the NLA implementation, users and 

administrators will want to see a more familiar type of a 

network name. Windows NLA currently sets the network 

name to the wireless SSID where one is available but allows 

users to edit the name. When there is more than one network 

with the same name, these are numbered. In most situations, 

our secure NLA protocol does not need to change this naming 



 

scheme: the names allow the user to uniquely identify 

previously visited networks.  

Sometimes, however, the operating system or applications 

may have  a security policy (e.g., a Windows group policy) 

that is specified based on human-readable network names. In 

that case, the names must be globally unique and there must 

be a secure way of assigning them to networks. A wireless 

SSID is not suitable for this purpose because there is no 

effective mechanism for assigning globally unique SSIDs or 

for verifying their ownership.  

For these reasons, we suggest using a DNS suffix as the 

network name whenever a globally unique name is needed. 

DNS names have an effective global allocation scheme. They 

often correspond to natural administrative boundaries and, 

because of the hierarchical structure, allow variable 

granularity for the network naming. As we will explain in 

detail is section IV, the binding between DNS suffixes and 

certificates can be secured using public-key certificates.  

E. Authentication and authorization 

In this paper, we use frequently the word authentication. 

Since this word has many meanings, it requires some further 

explanation. It is important to understand the difference 

between the abstract idea of identifying a location securely 

and the concrete mechanism of authenticating the DHCP 

server. 

Our ultimate goal in this paper is to identify and 

authenticate the network location. We do this in two ways. 

First, we recognize networks and ensure that the same network 

name, when encountered again, either refers to the same 

network or, if it does not, is treated as a new network. Second, 

where certificates issued by a trusted certification authority 

(CA) exist, it is possible to authenticate the globally unique 

network name. In practice, we believe that the first type of 

authentication is sufficient to prevent most location-spoofing 

attacks, and that it is unnecessary for most applications and 

users to consider the difference between the two types of 

authentication. The optional certification of networks allows 

the system administrators to manage the users’ security and 

assign security profiles to networks, e.g., via Windows group 

policy. This frees the user from making any judgments over 

security settings when encountering the specific networks. 

Since we are, on the abstract level, not interested in the 

identity of the DHCP server but rather the location that it 

advertises, the critical question is not who the server is but 

whether it is authorized to advertise the specific location. The 

authorization may arise from two sources. (Such sources of 

authority are often called roots of trust.) In our system, a 

DHCP server that first advertises a network name gains 

automatically authority over that name. This control is limited 

to the namespace of the particular client machine. Another 

possible source of authorization is a certificate chain that starts 

from a trusted certification authority (CA). If a conflict arises 

between the names from the these two sources, we may have 

to ask the user to resolve it. Given the uniqueness of the DNS 

names, we do not expect such conflicts to occur often between 

honest access networks. For SSIDs, conflicts could be more 

common. 

On the protocol level, we are authenticating the DHCP 

server, which is entity authentication. Although we implement 

this by signing messages sent by the server, it is important to 

keep in mind that the goal is not data-origin authentication. It 

does not even matter very much which particular message is 

signed. As a side effect of signing the DHCP responses, we 

may get some security for the data in the messages, i.e., the 

various host configuration parameters. That is, however, not 

the goal of the current work and anyone who relies on such 

data authentication should assess separately its suitability for 

the particular application that they have in mind.  

F. Privacy of mobile users 

While verifying the location, we want to protect the privacy 

of the mobile user. The client should be able to remain 

anonymous towards the access network and all other nodes 

there at least until it has verified the identity of the network 

and, possibly, throughout the network access. This means that 

the secure NLA protocol should not require mutual 

authentication and it should not leak information about the 

user to the access network. We will approach this problem by 

explaining first why some existing security mechanisms are 

not sufficiently privacy friendly even though they in some 

other respects might be acceptable mechanisms for secure 

NLA. 

In corporate wireless LANs, the client and network 

typically authenticate each other with the 802.1X [EA03] 

protocol and public-key certificates. The information from the 

server certificate can be used to secure location awareness. 

802.1X, however, is intended as an access control mechanism 

for closed networks and, thus, puts emphasis on authenticating 

the client. Since 802.1X allows the addition of new 

authentication methods, e.g., EAP-TLS for authentication with 

TLS/SSL certificates, EAP-SIM for authentication with a 

GSM SIM, and PEAP for password-based user authentication. 

Of these, the PEAP method protects the client’s privacy by 

first authenticating the server and then performing the client 

authentication inside the established secure channel. This 

hides the client identity from both passive observers and rogue 

access points. If we had been interested in securing NLA only 

in wireless LANs and not in wired networks, we might have 

chosen to define a new EAP method with server-only 

authentication.  

When a Windows machine attaches to its domain network, 

it connects to the domain controller (DC) and performs a 

Kerberos authentication. Windows NLA uses this 

authentication as a secure mechanism for verifying that the 

machine is connected to the domain network. Authenticating 

the domain controller gives the same level of security as the 

DHCP-based protocol presented in this paper; i.e., the attacker 

has to have an accomplice inside the domain network in order 

to spoof the location to a mobile machine that is roaming 



 

elsewhere. The limitations of the DC authentication are that it 

works only for one administrative domain per machine and, 

thus, cannot be used to authenticate home or visited networks, 

and that attempting connection to the domain controller leaks 

information about the mobile computer’s domain name 

(because it involves resolving the DNS names _kerberos._udp. 

DomainName and _ldap._tcp.dc._msdcs. DomainName). This 

is sufficient information to find out the organization to which 

the mobile computer belongs. An active attacker could also 

spoof responses to these DNS requests, which would cause the 

client to send a Kerberos authentication request 

(KRB_AS_REQ) to the supposed domain controller. The 

authentication request contains the client host name as well as 

its domain suffix (i.e., Kerberos realm) in plaintext. In 

conclusion, the DC authentication, just like 802.1X, does not 

give any anonymity for the mobile computer. 

The DHCP-based protocol described in this paper has the 

advantage of not requiring client identification at all. 

Moreover, the clients broadcasts its DHCP messages on the 

access link. Thus, the client does not need to know a specific 

server name or try to resolve it to an IP address. This means 

that the client can authenticate the network location without 

revealing anything to the network about itself or its 

affiliations. 

It is well-known that an Ethernet adapter can be tracked 

based on its hardware (MAC) address [EP02]. An IPv6 

address may similarly contain parts that allow correlation 

between appearances of the same host. These problems can be 

solved by randomizing the hardware address and IPv6 address 

periodically [LT06][ND01]. For full privacy protection, our 

protocol should be used together with such address 

randomization. Nevertheless, even if the MAC address 

remains a unique identifier, hiding the higher-layer identifiers 

makes identification of mobile computers significantly less 

practical for local attackers, such as individual users. 

G. Protocol requirements 

We summarize the design goals for our protocol:  

- increase reliability of NLA by authenticating the DHCP 

server on the access network;  

- recognize previously visited networks securely based on 

their public key; 

- if a network has a globally unique name and is certified, 

authenticate it using a PKI; 

- protect user privacy by not revealing the user identity, 

affiliation, or the list of user’s preferred networks to either 

passive or active adversaries; 

- allow the client to roam in networks that do not support 

the new protocol without compromising security of NLA 

at networks that do; 

- allow future use of the authentication mechanism for other 

security purposes, such as preventing general spoofing 

attacks against DHCP. 

In rest of the paper, we will discuss in detail how these 

requirements influenced the protocol design.  

IV. IDENTIFYING AND NAMING NETWORKS 

This section explains in detail how our protocol recognizes 

networks and binds names to them. We start with the simplest 

case of uncertified small networks with only one DHCP 

server, which are typical at home or in coffee shops. We then 

consider certified network names, used in closed domains and 

commercial access networks. Combining ideas from these two 

cases allows us to finally tackle the most difficult network 

type: large, uncertified and heterogeneous networks with 

multiple DHCP servers, such as university campus 

infrastructure.  

A. Uncertified small networks 

Most access networks are set up by individuals and small 

businesses who do not want to go through the trouble and 

expense of obtaining a certificate from a commercial 

certification authority (CA). They often do not have the 

resources and expertise to set up their own CA, which would 

require them not only to deploy server certificates to the 

DHCP servers but also to distribute the root certificate to all 

potential clients. 

In these situations, the client will not be able to rely on a 

trusted authority to verify the network identity. Instead, we 

want the client to learn the network key when it comes to the 

network for the first time and then recognize the network as 

the same one on the following visits. This way, the client 

machine can memorize security settings for the network, such 

as the firewall profile. On the following visits, the client can 

verify the network identity using DHCP authentication and 

automatically enable the previous security settings. This 

improves the security of NLA in wired and open wireless 

access networks, which can currently be spoofed by anyone 

who knows the gateway MAC address.  

Implementing the secure recognition of previously visited 

small networks is straightforward: the DHCP server on the 

network presents a self-signed X.509 server certificate to the 

client. The client stores this certificate (or a hash of the public 

key) with the network settings and, on the following visits, 

requires the network to authenticate itself using the same key. 

If the key changes, the network is treated as a new one. The 

user-readable name of the network can be taken from the 

certificate (we’ll discuss the names in certificates below) but 

other names such as the wireless SSID can be used as well. A 

limitation of this scenario is that it is does not scale to larger 

networks with multiple DHCP servers. If there are several 

DHCP servers on the network, they would have to share the 

same secret signature key. Otherwise, the client will treat the 

networks as separate. 

B. Certified network names 

Network operators with high security requirements and 

sufficient resources may want to certify their DHCP servers in 



 

order to give the networks authenticated, globally unique 

names. Large closed organizations can issue their own 

certificates while small organizations and those operating open 

access networks tend to rely on well-known commercial CAs 

like Verisign or CyberTrust.  

For many network operators, the cost of issuing or 

purchasing new certificates specifically for network 

authentication may be too high. For this reason, we would like 

to give network administrators the option of reusing existing 

server certificates, including SSL server certificates, for the 

DHCP-server authentication.  

On the conceptual level, implementing the authentication is 

straightforward: the DHCP server presents a certificate chain 

to the client. The client verifies that the certificate chain starts 

from a trusted root CA and ends in a server certificate issued 

to the DHCP server. (Because of space limitations in DHCP 

messages, which must fit into one unfragmented IP packet on 

the local link, the chain should typically be just a single 

certificate or at most a few certificates long.) The client then 

takes the network name from the server certificate. 

There is a problem with the names in existing X.509 

certificates, though. As explained earlier, we want to use DNS 

domain suffixes as network names. For example, a network 

could be called contoso.com. The server certificate issued to 

the DHCP server, on the other hand, is an X.509 end-entity 

certificate that specifies a fully qualified domain name 

(FQDN). Thus, the DHCP server’s certificate will specify a 

host, not a suffix. That could, for example, be 

dhcpserver.sales.contoso.com. We could extend the certificate 

standard by specifying a new name type for network names (in 

the SubjectAltName field). The problem with that approach is 

that it may take years to standardize such extensions, to deploy 

support for them in X.509 certificate implementations, and to 

gain acceptance of commercial CAs. Hence, it is desirable to 

use the existing name types if at all possible.  

Our solution is to take as the network name the local DNS 

suffix advertised by the DHCP server. The client will verify 

that the advertised DNS suffix is a suffix of the server FQDN 

in the server certificate. The suffix may be the entire FQDN, 

just the last segment like com, or something in between. This 

simple policy may sound surprising and requires further 

explanation.  

First, consider the server dhcpserver.sales.contoso.com. The 

organization may decide to name its networks by the 

department (sales.contoso.com) or treat them as one large 

network (contoso.com). Our policy for naming allows any 

departmental DHCP server to use the longer and more 

accurate sub-domain name or the shorter and coarser 

company-wide name. In some sense, we are defining the 

semantics of hierarchical network names as membership: 

servers in sub-domains are also members of the organization 

as a whole and may represent it.  

Second, consider what happens if a rogue server 

dhcpserver.sales.contoso.com claims plain com as its network 

name, or dhcpserver.contoso.co.uk claims co.uk. Obviously, 

no honest server would do that. A malicious server, on the 

other hand, could name its network com or co.uk and 

impersonate any other network that uses the same name. But 

that does not matter because no honest network uses such 

names. It is important to note that a DHCP server or network 

that assumes the name com will not have any authority over 

longer names such as contoso.com. Any server that selects too 

short a name for its network will only compromise the security 

of its own network, not anyone else’s. The same applies to 

rogue departmental servers that try to hijack an unused 

organizational name. 

Another way to think about the semantics of the names is 

that when a DHCP server chooses the name for its network, it 

authorizes others to be (or to pretend to be) the same network. 

The longer name it chooses, the fewer other servers, if any, are 

allowed to advertise the same network name. The shorter 

name it chooses, the more other servers it is permitting to be 

(or to pretend to be) on the same network. 

This scenario scales to arbitrarily large networks, including 

corporate intranets distributed across multiple continents. A 

limitations is the need for a common trusted root CA between 

the servers and clients. 

C. Uncertified large networks 

The scenarios discussed above allow the mobile client to 

name and remember small uncertified networks and to 

authenticate globally unique names of certified networks. By 

combining the solutions from these two scenarios, we can also 

support secure NLA in large uncertified networks that have 

multiple DHCP servers.  

The idea that the client accepts any certificate or certificate 

chain even if it does not recognize the root CA. The client then 

remembers the root CA and the local DNS suffix advertised 

by the DHCP server.  

When the client connects to the same network again, it will 

require the network to authenticate itself using a certificate 

chain that starts from the same root key as on the first visit. 

The previous security settings will be applied only after 

successful authentication. If either the root CA or the 

advertised network name differ from the previous visit, the 

network is treated as a new one.  

As in the case of small uncertified networks, the user-

readable network name can be anything, although it probably 

makes sense to use the advertised DNS suffix as the default 

name. If multiple networks have the same name, these can be 

numbered (e.g., contoso.com and contoso.com 2). These 

names are local to the client machine and can be used to refer 

to only local security settings, not to any policy that uses 

globally unique names.  

This scheme allows the network operator to issue 

certificates to the DHCP servers in order to bind them into one 

logical network location. It is up to the network operator to 

decide the granularity of the locations (i.e., DNS suffixes) it 

advertises. For example, a university can certify all DHCP 

servers on its campus and set them to advertise the same DNS 



 

suffix. It is a major functional improvement over the current 

unauthenticated NLA mechanism that we can securely 

aggregate multiple access links into one network identity 

regardless of the physical network topology.  

D. Combined scenario 

As the reader may have noticed, the three scenarios outlined 

above are actually special cases of one uniform network 

identification mechanism: When the client computer attaches 

to a network, it receives a certificate chain (often of length 

one) from the DHCP server. The server also advertises a local 

DNS suffix. The client verifies that the certificate chain is 

valid, except that it does not require the chain start from a 

trusted root CA. It does check all other aspects of the 

certificate chain, including any name constraints that limit the 

authority of sub-CAs to subsets of the DNS name space. It 

also requires the advertised DNS suffix to be a suffix of the 

server name in the server certificate. The client then uses the 

combination of the root CA public key and the advertised 

suffix as the machine-readable identifier of the network. If it 

has visited the same network previously and has stored 

permanent security settings for this network, it may configure 

them automatically. On the other hand, if either the root CA or 

the advertised suffix differ from previously visited networks, 

the client treats the current network as a new one. 

The network name presented to the user may be the DNS 

suffix or some other identifier like the SSID of a wireless 

network. However, if the client has security policies that refer 

to globally unique network names, it uses the advertised DNS 

suffix to look up the policy and applies the policy only after 

verifying that the certificate chains starts from a trusted CA 

(i.e., the network is  “certified”). For the benefit of expert 

users, the client user interface should give some indication of 

whether the name presented to the user is globally unique 

(certified by a trusted CA) or local to the particular computer. 

Most users, however, will not need to know the difference. 

Any name conflicts between certified, uncertified but securely 

recognized, and completely unauthenticated legacy networks 

can be solved by appending a number to the user-readable 

network name and treating them as different networks. 

V. DHCP OVERVIEW 

In this section, we give an overview of the dynamic host 

configuration protocol (DHCP) with focus on the features that 

are relevant to our protocol design. Figure 1 shows a typical 

protocol execution when a mobile computer first enters an 

access network. Only selected data fields are shown and the 

fields that reveal the mobile identity or affiliation (at the IP 

layer or above) have been highlighted. 

The execution consists of two request-response pairs, which 

are sent in UDP packets with the client port 68 and server port 

67. The requests are broadcast on the local link with no source 

address (source 0.0.0.0, destination 255.255.255.255). The 

responses are sent as unicast from the server IP address to the 

offered client IP address. (Clients may request broadcast 

responses.) The messages are linked together by the 

TransactionID, chosen by the client before it sends the first 

message. The server identifies the client by the 

ClientHardwareAddress, which must be unique to each link. 

The client may include in its messages another identifier field 

called ClientID, which contains a unique client identifier. 

Windows sets this field equal to the client hardware address, 

which is why we won’t discuss it further. 

The reason for including the client hardware address in the 

message content in addition to the packet header is that it is 

possible for the server to be located outside the access link. In 

that case there is a BOOTP relay agent on the access link that 

forwards requests to the server and responses back to the 

client. We have omitted from the figure most fields related to 

the relay agent mechanism. It does not affect the design of our 

protocol apart from the fact that the granularity of secure 

location awareness will be the set of network links covered by 

one DHCP server and its relay agents, rather than the 

individual access link. Routers typically have the capability of 

acting as BOOTP relays between adjacent links. 

The first message exchange consists of the 

DHCPDISCOVER request from the client and the 

DHCPOFFER response from one or more servers. The client 

typically broadcasts its host name, which enables the servers 

to select host-specific parameters. The offer always contains 

an IP address and often other host parameters. The client may 

receive multiple offers. It chooses one offer from one server 

and broadcasts the DHCPREQUEST, which is interpreted as a 

request by the chosen server and as a rejection message by all 

other servers. The request repeats the hostname and may also 

contain the client’s fully-qualified domain name (FQDN) so 

that the DHCP server can update the client’s DNS entry with 

the new IP address. With the DHCPACK response, the server 

commits the requested address to the client. This 

 Message Fields 

Clientà Broadcast DHCPDISCOVER TransactionID, 

ClientHardwareAddress,  

HostName (harrys-laptop) 

Serverà Client DHCPOFFER TransactionID, 

ClientHardwareAddress, 

YourIP, 

ServerIdentifier 

Clientà Broadcast DHCPREQUEST TransactionID, 

ClientHardwareAddress,  

RequestedIPAddress, 

ServerIdentifier, 

HostName (harrys-laptop), 

FQDN (harrys-laptop. 

example.org) 

Serverà Client DHCPACK TransactionID, 

ClientHardwareAddress, 

YourIP, 

ServerIdentifier, 

Domain (contoso.com) 

Figure 1.  Typical DHCP protocol execution 

 



 

acknowledgement may contain the local domain suffix of the 

network. The server has no obligation to reserve the address 

for the client until it sends the acknowledgement. If the 

address is no longer available when the server receives the 

request, it will respond with a DHCPNACK message, after 

which the client may reinitiate the protocol. 

There are two kinds of data fields in the DHCP messages 

that are of particular interest to us: The domain suffix in the 

acknowledgement is the location identifier that we want to 

authenticate. We also need to worry about the host name and 

FQDN in the discovery and request messages because they 

reveal the client identity and affiliation.  

The server typically offers the client only a limited-length 

lease to the IP address. The client may later renew this lease 

by executing a shorter protocol with just the request and 

acknowledgement messages. At that point, the client has 

already executed the initial four-message protocol on the same 

link. Sometimes, the client might mistakenly believe it is on 

the same link when its point of attachment to the network has, 

in fact, changed. In that case, the client might start the 

protocol by sending a request to the new link. This request 

will inevitably leak the client’s old IP address to the new 

network. Since this only happens on rare occasions when the 

hardware-based or link-layer detection of network attachment 

fails, we do not try to protect against the information leakage.  

In IPv6, stateless autoconfiguration has replaced DHCP as 

the primary mechanism for address allocation. Nevertheless, 

DHCP is still needed for configuring other parameters local to 

the access network, such as the DNS server address. The 

DHCPv6 protocol execution typically consists of only two 

messages where the client requests and receives specific 

parameters. 

VI. DHCP AUTHENTICATION PROTOCOL 

Figure 2 shows the authentication information that we add 

to the DHCP messages. The principle is simple: each request 

contains a client nonce (i.e., a new random number chosen by 

the client), and each response contains a copy of the client 

nonce, the server’s signature, and the server’s certificate chain, 

which is often just a single self-signed certificate. For network 

identification, the server must send the local domain suffix, 

i.e., the location identifier, also in the offer.  

It is important to note that the main contribution of this 

paper is not the protocol itself but rather the careful 

consideration of the requirements and design details that lead 

to the choice of such a simple mechanism.  

 

A. What to authenticate 

As explained in section IV, the DHCP protocol execution 

typically consists of two request-response message exchanges: 

discover-offer and request-acknowledgement. For entity 

authentication, it suffices to authenticate either one of the 

responses. It is, however, not straightforward to decide which 

one. 

Our solution, which we will motivate below, works as 

follows: The client decides which responses need 

authentication and sends a nonce in the request to indicate this. 

The server automatically signs the response whenever the 

request contains a nonce. A simple client will ask the server to 

sign all responses while a smarter client can leave the nonce 

out whenever it does not need the security. 

The client should always ask the server to sign the offer for 

privacy reasons. Otherwise, an active attacker could send 

offers that appear to come from various DHCP servers and 

observe which of the offers the client prefers. This could be 

used to discover the client’s preferred networks and, thus, its 

affiliation.  

In a 4-message protocol execution, it may be sufficient to 

authenticate just the offer. This is the case if the only purpose 

of the authentication is to secure NLA. On the other hand, if 

the goal is also to authenticate the host-configuration 

parameters obtained from the DHCP server, then it is 

necessary to sign also the acknowledgement. Moreover, 

requiring a signature on all messages when the client knows 

that the server supports authenticated DHCP may help to 

protect against various denial-of-service attacks.  

In the two-message request-acknowledgement protocol (for 

requesting a previously allocated address) the client should 

always ask the server to sign the response in order to detect 

changes in network attachment in a secure way. 

To summarize, the simplest and safest policy for the client 

is to request a signature for all DHCP responses. In the full 4-

message protocol, the client may choose to leave the signature 

out from the second response. That signature is not required 

for securing NLA but it may be needed for authentication of 

other information in the message. 

B. Freshness 

We use nonces to prevent replay attacks. Since the DHCP 

protocol consists of request-response pairs and only the 

responses are authenticated, the client should send a fresh 

nonce in each request and the server should copy it into the 

following signed response.  

The nonces should be freshly generated random or pseudo-

random numbers. They should be unpredictable and must not 

be repeated with more than negligible probability. Thus, the 

nonces need to be about 128 bits long. It is not a good idea to 

use sequence numbers instead of random nonces. The first 

 Message Authentication  fields 

Clientà Broadcast DHCPDISCOVER Nonce1 

Serverà Client DHCPOFFER Domain suffix, Nonce1, 

Signature, Certificates 

Clientà Broadcast DHCPREQUEST Nonce2 

Serverà Client DHCPACK Domain suffix, Nonce2,  

Signature, Certificates 

Figure 2.  Authenticating DHCP responses 

 



 

reason is that it is easy for the client to accidentally repeat the 

same sequence after state loss. The second, more important, 

reason is that the sequence numbers could be used to correlate 

the appearances of the same mobile computer in different 

networks.  

An alternative to nonces would be to use time stamps, but 

mobile devices and embedded DHCP servers may not have a 

real-time clock. (Home routers that implement a DHCP server 

usually have a clock but it is rarely used for anything other 

than time stamps in log files and might not be set to the correct 

time.) There would be no particular advantage to time stamps 

either. The usual arguments for timestamps are that they save 

one message (half round-trip time) in the protocol execution 

and that they can be used to for authenticating broadcast 

messages. Neither argument is valid in our protocol: the 

nonces do not add any messages and the responses are unicast. 

C. Privacy protection 

The fact that our protocol performs only server 

authentication makes it relatively easy to hide the client 

identity from both passive and active adversaries in the access 

network. This would be much more difficult if the protocol 

required the client to have a certificate or some other type of 

credential. We also want to hide the client’s preference of 

networks, except the unavoidable disclosure of the network to 

which the client actually connects. It is not obvious how to do 

this and we need to find a suitable trade-off between privacy 

and functionality. 

In order to better understand the privacy issues in the DHCP 

protocol, we need to carefully consider what kind of 

information the client may leak in the protocol messages and 

whether we can avoid it. As noted in section IV, the client 

reveals its hostname and domain suffix in the HostName and 

FQDN fields. This information should not be sent by clients 

that wish to hide their identity. Typically, not much 

functionality is lost by removing the host name from the 

messages. In theory, the client name could be used by the 

DHCP server to give the client its old IP address and to 

configure client-specific host parameters. In practice, most 

DHCP servers offer the old IP address based on the client’s 

hardware address. The FQDN in the request, on the other 

hand, is used by many DHCP servers to update the DNS 

records (either both A and PTR records or only the backward 

PTR record). For this reason, the client may want to send the 

FQDN in the request. At that point, it has already 

authenticated the network as its domain network based on the 

signed offer. This behavior could be configured by the domain 

administrators, e.g., via Windows group policy. 

Additionally, the client sends its MAC address in the 

ClientHardwareAddress and optional ClientID fields. We do 

not address the problems with the MAC address in the paper 

because reasonable solutions based on address randomization 

can be found in the literature. Changing MAC address 

naturally means that the client will not be offered the same IP 

address as on its previous visit to the same network. This may 

be an inconvenience for expert users, mainly to those who 

would like to configure manually TCP or UDP port 

forwarding at the NAT in a home network. The average user 

will not notice any difference because all commonly used 

protocols are designed to cope with changing client IP 

addresses. 

The client may also reveal a previous IP address by 

requesting it in the RequestedIPAddress field. For a simple 

client, or one that did not detect the change in network 

attachment, this may be the last IP address used. For a client 

that supports network location awareness, it is more likely to 

be the last IP address used in the same network. A privacy-

conscious client should always execute the full 4-message 

protocol after changes in network attachment rather than 

reveal its old IP address. 

Various DHCP extensions may leak information about host 

parameters. At minimum, the client must reveal which 

parameters it wishes to learn from the server. This information 

alone is not sufficient to identify the individual client but it 

could be used together with other observations to profile 

clients. Therefore, mobile computers whose users are 

interested in anonymity should only request the most common 

DHCP parameters and not any ones specific to their 

organization. 

A less obvious channel for leaking information is created by 

the choices that the client makes during the protocol 

execution. In particular, the client’s preferred networks may 

be revealed by the fact that the client chooses one offer from 

many. An active attacker could spoof offers with different 

domain suffixes to find out which one the client prefers. We 

protect against this threat by signing the offers. The attacker 

could also replay offers from various networks and observe 

which offer the client chooses. This is prevented by the nonce 

in the response as long as the client cannot relay messages in 

real time. 

Finally, we need to consider the contents of the new data 

fields added by the security protocol. Fortunately, the only 

new information sent by the client is the random nonce, which 

does not reveal any information beyond the fact that the client 

supports authenticated DHCP. 

VII. RESIDUAL VULNERABILITIES 

In this section, we briefly summarize the known 

vulnerabilities of the DHCP-based secure location awareness 

protocol.  

The main limitation of the protocol is that an attacker who 

is present on both the local link of a DHCP server and on the 

local link of the mobile client can relay messages between the 

two locations and convince the client that it is on the same link 

as the DHCP server. For company and home networks, we 

depend on firewalls to prevent the attacker from accessing the 

DHCP server. Physical access controls and wireless LAN 

security also make it difficult for an attacker to insert its own 

node into the intranet. Wireless hotspots and other public 

access networks, on the other hand, give relatively easy access 



 

to the attacker. For these networks, the cost of maintaining 

physical presence at the local link of the DHCP server is 

relatively low. Fortunately, the consequences of a successful 

spoofing attack are low as well, because the mobile client will 

have relatively strict security settings in these networks. 

In another form of the tunneling attack, the attacker relays 

DHCP messages to and from a large number of popular 

networks and tries to find out which one the client prefers. The 

cost of this attacks is fairly high compared to the minor 

compromise of privacy that results. Nevertheless, client 

implementations may want to protect against this type of 

attack by receiving only some small maximum number of 

offers after sending a discovery message and by ignoring the 

rest. 

In secure wireless networks, the 802.1X authentication is 

executed before DHCP. This may affect client anonymity 

because the client certificate in EAP-TLS authentication will 

reveal the client identity before the client has authenticated the 

network. An attacker could pretend to be a secure wireless 

access point and wait for clients that try to connect to it. It can 

then request the client certificate in the TLS handshake. While 

this is not exactly a vulnerability in our protocol, it is a way of 

circumventing the privacy protection. There are two 

immediately available solutions, both somewhat 

unsatisfactory: the first is to disable automatic connection to 

certificate-authenticated wireless networks so that users can 

use their judgment before connecting; the second is to 

mandate the use of the privacy-protecting PEAP 

authentication method where a secure tunnel is established to 

the server before client authentication. Ultimately, one would 

hope for a more general privacy-protection mechanism for 

wireless LAN authentication. 

The fact that we allow the DHCP server to use any server 

certificate, such as one issued to an SSL server, also needs 

discussion. This saves certificate provisioning costs but it also 

allows any server within the same organization to impersonate 

the DHCP server. This might appear a major shortcoming. It 

is, however, a necessary compromise between security and 

ease of deployment. The same kind compromise is already 

widely accepted in corporate wireless LAN authentication 

where any host with an SSL server certificate can pretend to 

be a RADIUS server in the EAP-TLS method. For 

organizations that require stronger network-name 

authentication, we suggest adding a new certificate field 

(X.509 extended key usage  or application policy) to indicate 

that the certificate is specifically intended for network 

authentication (both DHCP-based and 802.1X with EAP-

TLS). All clients should treat networks that specify the 

extended key usage as different from those that do not, even if 

the two networks otherwise appear the same (i.e., have the 

same root CA and name). This prevents the use of generic 

server certificates for impersonating networks that use the 

special certificates. Moreover, high-security clients may be 

configured not to use names from generic server certificates to 

access security policies that are specified in terms of globally 

unique names. This still allows the client to use such 

certificates for network aggregation, similar to certificates 

issued by an unknown root CA (see section IV.C).  

Finally, our protocol depends on the security of the DHCP 

server. In home networks, the server is usually located in the  

gateway device, which combines the functionality of a NAT, 

router and firewall. These devices are notoriously vulnerable 

to compromise because they are typically purchased based on 

price rather than security; are left with the default 

configuration; and there is currently no effective way of 

deploying security patches to their firmware. This may enable 

an attacker to take control of the DHCP server either by 

connecting from the local network using a default password or 

by exploiting a software vulnerability remotely from the 

Internet. Thus, we have to assume that, in many networks 

without professional administration, the DHCP server will be 

compromised. The consequences to the secure NLA protocol 

are, however, mitigated by the fact that if the attacker already 

has a permanent presence at the home network of the mobile 

client, the attacker gains little from being able to spoof that 

location to the same client in other access networks. It would 

be simpler for the attacker to mount any attacks when the 

mobile computer is at home.  

VIII. RELATED WORK 

There is a standard for authenticated DHCP [DA01]. 

Currently, the only authentication method is a symmetric 

MAC with a preshared key, which is practical only for small, 

closed organizations. The specification could be extended to 

support public-key signatures. RSA signatures and certificates 

do not, however, fit into the authentication option and we 

found it simpler to send them in a long DHCP vendor option.  

Wireless LAN security protocols [EA03] may seem like an 

alternative to DHCP authentication. They, too, have the 

limitation of requiring a pre-established relation between the 

client and the network. Public wireless access networks are 

typically unauthenticated or use the universal access method 

(UAM). UAM hijacks HTTP requests and redirects the 

browser onto a secure web page, whose certificate the mobile 

user could, in theory, inspect for network identification. The 

user involvement makes UAM unsuitable for universal 

network authentication. 

Location awareness and the related privacy discussions 

usually refer to geographic locations, such as GPS coordinates 

or place names (see, e.g., [Leo98]). There have some been 

attempts at securing the location services, e.g., 

[DM96][Kuh04]. Even when the location information is 

obtained from communications networks, as it is for example 

in the E911 and GSM location services, the ultimate aim is to 

obtain physical coordinates. Yet, to computers, the logical 

network location is far more important. Operating systems for 

mobile computers naturally try to adapt to the network 

conditions and increase usability by remembering settings for 

each network. Windows NLA is only the latest step in this 

direction. A key development is the realization that an IP 



 

address or an address prefix does not represent a unique 

logical location on the network and more complex heuristics 

are needed that combine several observed identifiers to a 

unique network identity. Our protocol removes much of the 

inherent uncertainly of such heuristics by allowing the access 

network itself to determine the right granularity of location 

information for that particular network and by using public 

keys as authenticated network identifiers.  

Any protocol that tries to determine the relative location of 

itself and another entity by sending messages between them is 

vulnerable to tunneling or “wormhole” attacks [HPJ03] where 

the attacker relays messages between the client and a distant 

location. Some applications, such as door keys and other 

physical access-control tokens, are particularly vulnerable to 

tunneling attacks. The only secure mechanism for detecting 

such attacks is to measure the roundtrip time between the 

devices, but the implementation will require careful 

consideration of the physical signals and communications 

hardware [HK05]. Our protocol explicitly ignores the 

tunneling attacks in order to enable universal deployment to IP 

networks without significant new hardware requirements. 

Literature on location privacy is mainly concerned with 

hiding the location of the mobile host from the peers with 

which it communicates. For example, onion routing 

[Cha81][SGR97] can prevent the server from observing the 

client location and vice versa. Since IP addresses are both 

locations and identifiers, this is usually stated in terms of 

anonymity: the communicating peers cannot find out each 

other’s real identity. The location-privacy requirements of our 

protocol are somewhat different: we want the mobile host and 

user to remain anonymous towards the access network. 

Clearly, the access network knows where the mobile is. Our 

protocol does not help it to find the mobile’s name or 

affiliation or to correlate multiple appearances of the same 

mobile at the same or different access networks. 

The authentication of uncertified networks in our protocol is 

similar to the leap-of-faith authentication used in the secure 

shell (SSH) [Ylo96] or opportunistic IPsec [CM02], where the 

client learns the server’s public key when connecting to it for 

the first time and, thereafter, associates that public key with 

the server name. There is a subtle difference, though, to the 

advantage of our protocol. The SSH client receives the server 

name from the user and tries to associate it with one correct 

computer and public key. Our DHCP client, on the other hand, 

encounters a network and a public key and decides to call 

them with the name suggested by the DHCP server. Only after 

that, the name is presented to the user. Thus, the client 

computer, not the user, is the authority on network naming, 

meaning that the computer cannot really be wrong no matter 

what names it decides to use for a network. The blind  leap of 

faith happens only if the user or an application decides to use 

the locally assigned name to apply a security policy that refers 

to globally unique names. As long as the network names are 

used in the internal world of the client computer and its user, 

for example, to recall security settings saved on a previous 

visit to the same access network, it doesn’t matter very much 

what the actual values of the names are.  

With the emergence of various cryptographically 

authenticable identifiers, such as the cryptographically 

generated IPv6 addresses [Aur03] and HIP identifiers 

[NYW03], which do not require certification, the idea of 

opportunistic security associations is moving towards 

mainstream networking applications. One example of 

opportunistic authentication in network attachment is the 

quick network access protocol (Quick NAP) [AET+06], which 

is a clean-slate redesign of the current complex network 

attachment procedure for wireless networks. Although focused 

on access control and authorization of clients for network 

access, the protocol allows ad-hoc relations between a client 

and an access network, which are identified by the hashes of 

their public keys. Our protocol continues this trend towards 

using public keys as identifiers and enabling security without 

certified names wherever possible. 

IX. CONCLUSION 

In this paper, we describe an authentication protocol for 

DHCP servers. It is intended for securing network-location 

information distributed by the server. The protocol allows both 

PKI-based server authentication and secure identification of 

previously visited networks that have no certificates. We are 

careful to protect client anonymity at every step of the process. 

The protocol uses standard DHCP extension mechanisms. In 

addition to the authentication protocol itself, major 

contributions of the paper are a careful requirements analysis, 

the idea of recognizing network locations based on their public 

key, the use of a local PKI to aggregate multiple access 

networks into a single logical identity, and a novel way of 

binding network names to X.509-certified DHCP servers. 
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