

Securing Network Location Awareness

with Authenticated DHCP

Tuomas Aura
Microsoft Research

Cambridge, UK

Michael Roe
Microsoft Research

Cambridge, UK

Steven J. Murdoch
University of Cambridge

Cambridge, UK

Abstract Network location awareness (NLA) enables mobile
computers to recognize home, work and public networks and wireless
hotspots and to behave differently at different locations. The location
information is used to change security settings such as firewall rules.
Current NLA mechanisms, however, do not provide authenticated
location information on all networks. This paper describes a novel
mechanism, based on public-key authentication of DHCP servers, for
securing NLA at home networks and wireless hotspots. The main
contributions of the paper are the requirements analysis, a naming
and authorization scheme for network locations, and the extremely
simple protocol design. The mobile computer can remember and
recognize previously visited networks securely even when there is no
PKI available. This is critical because we do not expect the majority
of small networks to obtain public-key certificates. The protocol also
allows a network administrator to pool multiple, heterogeneous
access links, such as a campus network, to one logical network
identity. Another major requirement for the protocol was that it must
not leak information about the mobile host’s identity or affiliation.
The authenticated location information can be used to minimize
attack surface on the mobile host by making security-policy
exceptions specific to a network location.

I. INTRODUCTION

This paper describes a secure network-location-awareness

(NLA) mechanism, based around authentication of the

dynamic host configuration protocol (DHCP) server. The goal

is to provide a ubiquitous mechanism by which a mobile host

can securely identify the network to which it is attached. It is

intended to be used not only on managed company networks

but also at a home, small office, coffee shop, or university

campus. The protocol works over the IP layer without needing

any special hardware, which leads to both fundamental

limitations and advantages.

Our protocol authenticates networks based on their public

keys. Networks may have public-key certificates but they are

not required. The mobile host remembers networks when it

meets them for the first time and securely recognizes them on

following visits. It can then store and automatically apply

security settings, such as firewall configuration, enabling or

disabling network services, and generating or reusing

pseudonyms for privacy preserving protocols.

A key insight motivating our work is that many network-

security settings are not strict policies but rather safe defaults

which users and applications are allowed to and often do

override in order to get their work done. Network location

awareness enables the computer to remember the modified

settings on a per-network basis and to revert to the safe

baseline for each new network. Thus, secure NLA enables a

new balance between convenience and risk minimization.

This paper’s main contributions are the requirements

analysis, the idea of recognizing previously visited networks

based on their public key, a method for deriving network

names and authorization for NLA from X.509 certificates, and

the easy-to-implement authentication protocol. We

implemented a prototype of the protocol for a Windows 2003

server and Vista client, and use the Windows network location

awareness as an example throughout the paper. Any other

mobile platform that implements some NLA functionality

would benefit equally from the secure location information.

The rest of the paper is organized as follows: section II

motivates the work by explaining the need for a new secure

location mechanism. Section III outlines our initial design

choices. Section IV discusses network naming and

authorization in detail. In sections V–VI, we give an overview

of the DHCP protocol and show how our authentication

extensions fit in. Section VII discusses residual threats, section

VIII surveys related work, and section IX concludes the paper.

II. NEED FOR NETWORK AUTHENTICATION IN NLA

When a Windows computer connects to a new network, it

asks the user to determine whether the network is private

(work or home) or public. Windows firewall uses this

information to select a firewall profile for the network. On

following visits to the same network, the same profile is

selected automatically. If the computer is a member of a

managed domain, there is also a separate profile for the

domain network. This is a simple example of how NLA can be

used to configure security settings depending on the network

location. While the profiles are easy to understand and

manage, there is no technical reason why the computer could

not store individual settings for each network. Applications

and services can also take advantage of NLA and remember

settings that are specific to a network location. Such location-

aware features will probably increase in sophistication as users

and developers get used to them.

Since the location information from NLA is used for

changing security settings, we have to ask how reliable this

information is. Windows NLA currently identifies the network

based on heuristics that take into account various clues

including the gateway MAC address, SSID on a wireless link,

wireless authentication state, and the presence of a domain

controller on a managed network. Some networks are

identified securely: the domain network by authenticating the

domain controller, secure wireless LANs with 802.1X or

shared-key authentication, and VPN and dialup connections

with their specific security mechanisms. Most networks,

however, are not strongly authenticated. In particular, wired

Ethernet and open wireless access points are identified

primarily by the gateway-router MAC address. This includes

networks that use the universal access method (UAM), i.e., a

web form and password, for access control.

This mechanism is not entirely insecure. Although an

attacker could spoof the identity of a private network and

cause the mobile computer to use weaker security settings than

it should use at a public location, it needs to know the gateway

MAC address of private network. The MAC address can be

easily discovered by sniffing the local link but that usually

requires a visit to the physical location of the access network.

For many applications of NLA, this may provide an

acceptable level of security. It would, however, be safer to

authenticate the network with a stronger mechanisms before

applying location-specific security settings.

The reliance on the gateway MAC address causes, however,

another limitation of the current NLA mechanism.

Unmanaged networks can only be identified at the granularity

of a single IP subnet. Some organizations, such as universities

and commercial hotspot operators have large, heterogeneous

access networks that span multiple IP subnets. Yet, it might be

desirable to treat such a network as a single entity and to set

the security profile once for the entire university campus or

hotspot chain, rather than require the user to configure the

settings separately for each IP segment. This calls for a

network authentication mechanism that supports secure

aggregation of multiple access links to one network identity

regardless of the network topology.

Once the location information is uniformly authenticated, it

will become much more attractive to use it in security and

privacy mechanisms. By adapting the firewall configuration to

each network and by enabling and disabling applications and

network services, the mobile computer can minimize its attack

surface at each location. Disabling unnecessary services and

protocols can also limit the amount of information leaked to

curious observers about the mobile user and his affiliation.

III. INITIAL DESIGN CHOICES

In this section, we discuss some of our fundamental design

choices. We also list high-level requirements for the

cryptographic protocol that we will describe in section VI.

A. IP-layer attacker model

Our goal is to ensure that a mobile computer can securely

identify the network to which it is attached. That is, we want

to prevent an attacker from spoofing the network location.

Moreover, we want the protocol to work over the IP layer.

This makes it independent of the of the underlying physical

network technology but puts some limitations on the kind of

security we can achieve.

At the IP layer, we can verify the logical presence of a

network, not its physical proximity. We cannot rely on

carefully designed hardware and accurate timing of physical

signals and, thus, cannot measure physical distances, as is

done in distance bounding protocols (see section VIII).

Consequently, we cannot defend against attackers who have

access to both the network location which they want to spoof

and to the local link of the mobile host. Such attackers could

tunnel packets between the two locations and, thus, effectively

modify the logical network topology. The security of our

protocol depends on physical and logical network boundaries,

such as routers and firewalls, to partition the Internet and to

limit the locations at which the attacker can spoof, sniff and

relay IP packets. In practice, the cost and inconvenience of

having to be present at the two locations is sufficient to

prevent most attacks. We have opted for this lower level of

security in exchange for easy universal deployment that does

not require any changes to the physical and link layer

technologies.

To state the goal and major assumption of our protocol

more precisely:

- We aim to prevent an attacker from spoofing network

locations to a mobile host. That is, the host should be able

to verify its location reliably in the presence of a

malicious attacker.

- We assume that the attacker cannot relay packets in real

time (i.e., within seconds) between the mobile computer’s

real location and the network location that it wants to

spoof.

An existing security mechanism in Windows NLA,

authentication of a domain controller, already works at the

same level of security as our protocol. That is, it depends on a

firewall to prevent connections to the domain controller from

outside the domain network.

Since our security mechanism works on the logical rather

than physical level, it can be analyzed against a Dolev-Yao-

style attacker [Dolev83] who has no timing constraints and has

access to all communication. One only needs to include in the

model the assumption that the attacker cannot relay packets

between the two locations.

B. Using DHCP

As already mentioned, we propose to verify the network

location by authenticating the dynamic host configuration

protocol (DHCP) [Dro97] server on the network. The main

reason for this is that DHCP is the one ubiquitous service that

is deployed on virtually every wired and wireless network to

which client hosts can connect. This allows us to provide

secure location information on almost all access networks by

modifying just one service.

The main exceptions to the availability of DHCP are

cellular data and point-to-point links such as dialup and VPN

connections. These types of networks are typically already

strongly authenticated by link-layer security mechanisms, on

which we can continue to rely. Nevertheless, some networks

like isolated wired LANs with manually configured IP

addresses and without any servers or gateways will always

remain without secure identification.

An alternative to the use of DHCP would be to disseminate

the secure location information via a combination of services

available on different networks, such as wireless access points,

file servers, Kerberos, RADIUS and AAA servers, Windows

domain controllers, and so on. Clearly, it is easier to

implement and deploy the security protocol only in one place.

For IPv6, authenticating the access router would be a logical

choice: the protocol for router discovery could be enhanced to

provide secure location information. Most IPv6 links will,

however, have a DHCP server to configure parameters such as

the local domain suffix [DBV+03]. We decided to concentrate

on DHCP and to leave it as future work to extend our secure

NLA protocol to work over IPv6 neighbor discovery.

Another reason for focusing on DHCP is that it is relatively

easy to fit the required data into the DHCP messages. Indeed,

DHCP is specifically intended for configuring hosts with all

kinds of information about the network and it readily allows

extensions without breaking backward compatibility with old

servers and clients that do not support the new features. (More

specifically, we can send public-key signatures in non-critical

long vendor options.)

A third, and equally important, reason for choosing DHCP

is that it is typically the first protocol executed by a mobile

host when it enters a new network (apart from the 802.1X

authentication on some wireless networks, see section VII).

The secure location information should be obtained as early as

possible so that the mobile host can use it to make decisions

about which other services to use and which protocols to

enable on the new network. The later in the network

attachment process the mobile authenticates the network, the

more trust it must put in the unknown environment before the

authentication.

Finally, DHCP is a protocol that is executed entirely on the

local link (or adjacent links connected by BOOTP relays)

using mostly broadcast messages. It does not require the

mobile host to use or know any server identifiers or addresses.

Neither does it require the client to have or reveal any

identifiers or addresses of itself (the dangers of which will be

discussed in section F). Therefore, it is possible to complete

the DHCP protocol without the client revealing any

information to the network.

C. Public key as a secure network identifier

In this subsection, we argue that public keys as machine-

readable network identifiers have the flexibility to support

various scenarios from PKI-based authentication of large and

heterogeneous networks to the creation of ad-hoc relations

with isolated LANs.

The first reason for choosing public-key authentication is

that it is more suitable for global operation than existing

secret-key protocols. Kerberos, the most common secret-key

protocol in IP networks, is rarely used outside closed domains

and, thus, is not suitable for roaming users. The current

Windows NLA already takes advantage of Kerberos when

authenticating the domain network but it would be difficult to

extend this to non-domain networks. SIM-based authentication

protocols from cellular networks have been adapted for mutual

authentication between mobile computers and access

networks; however, they require the access networks to have a

roaming agreement with the SIM issuer and a connection to its

home location register and authentication center (HLR/AuC).

With our protocol, a mobile computer should be able to

authenticate access networks anywhere in the world, not only

a specific operator’s network or a limited set of hotspots with

roaming agreements.

Another justification for the public-key protocol is that

public-key certificates enable offline operation. It is

sometimes desirable to authenticate networks that are

disconnected from the global Internet. Moreover, some

networks require a mobile computer to go through a complex

procedure, such as entering a password into a web form or

installing VPN software, before granting Internet access. In

these situations, public-key credentials enable authentication

of the access network before obtaining a connection to the

Internet. Our network authentication protocol can be seen as

an additional first layer of defense to these more complex

security protocols, although interaction between the protocols

is not the focus of this paper.

Finally, and perhaps most importantly, public keys can be

used to identify networks even when there are no certificates

available. A mobile computer can securely recognize networks

that it has previously visited based on their public keys. This

makes it possible to authenticate a network that has no

administration and no certificates, such as a home LAN or an

individual wireless hotspot. When the mobile computer

returns to the same network, it can recall the configuration and

services used there on the previous visit. This fits the model of

Windows NLA where the computer asks the user once to

determine the status of the network and remembers this choice

when the user returns to the same network. Our protocol

increases the security of this mechanism for identifying

previously visited networks without requiring changes to the

user interface.

D. Administrative identifiers

While public keys are practical network identifiers for the

internal use of the NLA implementation, users and

administrators will want to see a more familiar type of a

network name. Windows NLA currently sets the network

name to the wireless SSID where one is available but allows

users to edit the name. When there is more than one network

with the same name, these are numbered. In most situations,

our secure NLA protocol does not need to change this naming

scheme: the names allow the user to uniquely identify

previously visited networks.

Sometimes, however, the operating system or applications

may have a security policy (e.g., a Windows group policy)

that is specified based on human-readable network names. In

that case, the names must be globally unique and there must

be a secure way of assigning them to networks. A wireless

SSID is not suitable for this purpose because there is no

effective mechanism for assigning globally unique SSIDs or

for verifying their ownership.

For these reasons, we suggest using a DNS suffix as the

network name whenever a globally unique name is needed.

DNS names have an effective global allocation scheme. They

often correspond to natural administrative boundaries and,

because of the hierarchical structure, allow variable

granularity for the network naming. As we will explain in

detail is section IV, the binding between DNS suffixes and

certificates can be secured using public-key certificates.

E. Authentication and authorization

In this paper, we use frequently the word authentication.

Since this word has many meanings, it requires some further

explanation. It is important to understand the difference

between the abstract idea of identifying a location securely

and the concrete mechanism of authenticating the DHCP

server.

Our ultimate goal in this paper is to identify and

authenticate the network location. We do this in two ways.

First, we recognize networks and ensure that the same network

name, when encountered again, either refers to the same

network or, if it does not, is treated as a new network. Second,

where certificates issued by a trusted certification authority

(CA) exist, it is possible to authenticate the globally unique

network name. In practice, we believe that the first type of

authentication is sufficient to prevent most location-spoofing

attacks, and that it is unnecessary for most applications and

users to consider the difference between the two types of

authentication. The optional certification of networks allows

the system administrators to manage the users’ security and

assign security profiles to networks, e.g., via Windows group

policy. This frees the user from making any judgments over

security settings when encountering the specific networks.

Since we are, on the abstract level, not interested in the

identity of the DHCP server but rather the location that it

advertises, the critical question is not who the server is but

whether it is authorized to advertise the specific location. The

authorization may arise from two sources. (Such sources of

authority are often called roots of trust.) In our system, a

DHCP server that first advertises a network name gains

automatically authority over that name. This control is limited

to the namespace of the particular client machine. Another

possible source of authorization is a certificate chain that starts

from a trusted certification authority (CA). If a conflict arises

between the names from the these two sources, we may have

to ask the user to resolve it. Given the uniqueness of the DNS

names, we do not expect such conflicts to occur often between

honest access networks. For SSIDs, conflicts could be more

common.

On the protocol level, we are authenticating the DHCP

server, which is entity authentication. Although we implement

this by signing messages sent by the server, it is important to

keep in mind that the goal is not data-origin authentication. It

does not even matter very much which particular message is

signed. As a side effect of signing the DHCP responses, we

may get some security for the data in the messages, i.e., the

various host configuration parameters. That is, however, not

the goal of the current work and anyone who relies on such

data authentication should assess separately its suitability for

the particular application that they have in mind.

F. Privacy of mobile users

While verifying the location, we want to protect the privacy

of the mobile user. The client should be able to remain

anonymous towards the access network and all other nodes

there at least until it has verified the identity of the network

and, possibly, throughout the network access. This means that

the secure NLA protocol should not require mutual

authentication and it should not leak information about the

user to the access network. We will approach this problem by

explaining first why some existing security mechanisms are

not sufficiently privacy friendly even though they in some

other respects might be acceptable mechanisms for secure

NLA.

In corporate wireless LANs, the client and network

typically authenticate each other with the 802.1X [EA03]

protocol and public-key certificates. The information from the

server certificate can be used to secure location awareness.

802.1X, however, is intended as an access control mechanism

for closed networks and, thus, puts emphasis on authenticating

the client. Since 802.1X allows the addition of new

authentication methods, e.g., EAP-TLS for authentication with

TLS/SSL certificates, EAP-SIM for authentication with a

GSM SIM, and PEAP for password-based user authentication.

Of these, the PEAP method protects the client’s privacy by

first authenticating the server and then performing the client

authentication inside the established secure channel. This

hides the client identity from both passive observers and rogue

access points. If we had been interested in securing NLA only

in wireless LANs and not in wired networks, we might have

chosen to define a new EAP method with server-only

authentication.

When a Windows machine attaches to its domain network,

it connects to the domain controller (DC) and performs a

Kerberos authentication. Windows NLA uses this

authentication as a secure mechanism for verifying that the

machine is connected to the domain network. Authenticating

the domain controller gives the same level of security as the

DHCP-based protocol presented in this paper; i.e., the attacker

has to have an accomplice inside the domain network in order

to spoof the location to a mobile machine that is roaming

elsewhere. The limitations of the DC authentication are that it

works only for one administrative domain per machine and,

thus, cannot be used to authenticate home or visited networks,

and that attempting connection to the domain controller leaks

information about the mobile computer’s domain name

(because it involves resolving the DNS names _kerberos._udp.

DomainName and _ldap._tcp.dc._msdcs. DomainName). This

is sufficient information to find out the organization to which

the mobile computer belongs. An active attacker could also

spoof responses to these DNS requests, which would cause the

client to send a Kerberos authentication request

(KRB_AS_REQ) to the supposed domain controller. The

authentication request contains the client host name as well as

its domain suffix (i.e., Kerberos realm) in plaintext. In

conclusion, the DC authentication, just like 802.1X, does not

give any anonymity for the mobile computer.

The DHCP-based protocol described in this paper has the

advantage of not requiring client identification at all.

Moreover, the clients broadcasts its DHCP messages on the

access link. Thus, the client does not need to know a specific

server name or try to resolve it to an IP address. This means

that the client can authenticate the network location without

revealing anything to the network about itself or its

affiliations.

It is well-known that an Ethernet adapter can be tracked

based on its hardware (MAC) address [EP02]. An IPv6

address may similarly contain parts that allow correlation

between appearances of the same host. These problems can be

solved by randomizing the hardware address and IPv6 address

periodically [LT06][ND01]. For full privacy protection, our

protocol should be used together with such address

randomization. Nevertheless, even if the MAC address

remains a unique identifier, hiding the higher-layer identifiers

makes identification of mobile computers significantly less

practical for local attackers, such as individual users.

G. Protocol requirements

We summarize the design goals for our protocol:

- increase reliability of NLA by authenticating the DHCP

server on the access network;

- recognize previously visited networks securely based on

their public key;

- if a network has a globally unique name and is certified,

authenticate it using a PKI;

- protect user privacy by not revealing the user identity,

affiliation, or the list of user’s preferred networks to either

passive or active adversaries;

- allow the client to roam in networks that do not support

the new protocol without compromising security of NLA

at networks that do;

- allow future use of the authentication mechanism for other

security purposes, such as preventing general spoofing

attacks against DHCP.

In rest of the paper, we will discuss in detail how these

requirements influenced the protocol design.

IV. IDENTIFYING AND NAMING NETWORKS

This section explains in detail how our protocol recognizes

networks and binds names to them. We start with the simplest

case of uncertified small networks with only one DHCP

server, which are typical at home or in coffee shops. We then

consider certified network names, used in closed domains and

commercial access networks. Combining ideas from these two

cases allows us to finally tackle the most difficult network

type: large, uncertified and heterogeneous networks with

multiple DHCP servers, such as university campus

infrastructure.

A. Uncertified small networks

Most access networks are set up by individuals and small

businesses who do not want to go through the trouble and

expense of obtaining a certificate from a commercial

certification authority (CA). They often do not have the

resources and expertise to set up their own CA, which would

require them not only to deploy server certificates to the

DHCP servers but also to distribute the root certificate to all

potential clients.

In these situations, the client will not be able to rely on a

trusted authority to verify the network identity. Instead, we

want the client to learn the network key when it comes to the

network for the first time and then recognize the network as

the same one on the following visits. This way, the client

machine can memorize security settings for the network, such

as the firewall profile. On the following visits, the client can

verify the network identity using DHCP authentication and

automatically enable the previous security settings. This

improves the security of NLA in wired and open wireless

access networks, which can currently be spoofed by anyone

who knows the gateway MAC address.

Implementing the secure recognition of previously visited

small networks is straightforward: the DHCP server on the

network presents a self-signed X.509 server certificate to the

client. The client stores this certificate (or a hash of the public

key) with the network settings and, on the following visits,

requires the network to authenticate itself using the same key.

If the key changes, the network is treated as a new one. The

user-readable name of the network can be taken from the

certificate (we’ll discuss the names in certificates below) but

other names such as the wireless SSID can be used as well. A

limitation of this scenario is that it is does not scale to larger

networks with multiple DHCP servers. If there are several

DHCP servers on the network, they would have to share the

same secret signature key. Otherwise, the client will treat the

networks as separate.

B. Certified network names

Network operators with high security requirements and

sufficient resources may want to certify their DHCP servers in

order to give the networks authenticated, globally unique

names. Large closed organizations can issue their own

certificates while small organizations and those operating open

access networks tend to rely on well-known commercial CAs

like Verisign or CyberTrust.

For many network operators, the cost of issuing or

purchasing new certificates specifically for network

authentication may be too high. For this reason, we would like

to give network administrators the option of reusing existing

server certificates, including SSL server certificates, for the

DHCP-server authentication.

On the conceptual level, implementing the authentication is

straightforward: the DHCP server presents a certificate chain

to the client. The client verifies that the certificate chain starts

from a trusted root CA and ends in a server certificate issued

to the DHCP server. (Because of space limitations in DHCP

messages, which must fit into one unfragmented IP packet on

the local link, the chain should typically be just a single

certificate or at most a few certificates long.) The client then

takes the network name from the server certificate.

There is a problem with the names in existing X.509

certificates, though. As explained earlier, we want to use DNS

domain suffixes as network names. For example, a network

could be called contoso.com. The server certificate issued to

the DHCP server, on the other hand, is an X.509 end-entity

certificate that specifies a fully qualified domain name

(FQDN). Thus, the DHCP server’s certificate will specify a

host, not a suffix. That could, for example, be

dhcpserver.sales.contoso.com. We could extend the certificate

standard by specifying a new name type for network names (in

the SubjectAltName field). The problem with that approach is

that it may take years to standardize such extensions, to deploy

support for them in X.509 certificate implementations, and to

gain acceptance of commercial CAs. Hence, it is desirable to

use the existing name types if at all possible.

Our solution is to take as the network name the local DNS

suffix advertised by the DHCP server. The client will verify

that the advertised DNS suffix is a suffix of the server FQDN

in the server certificate. The suffix may be the entire FQDN,

just the last segment like com, or something in between. This

simple policy may sound surprising and requires further

explanation.

First, consider the server dhcpserver.sales.contoso.com. The

organization may decide to name its networks by the

department (sales.contoso.com) or treat them as one large

network (contoso.com). Our policy for naming allows any

departmental DHCP server to use the longer and more

accurate sub-domain name or the shorter and coarser

company-wide name. In some sense, we are defining the

semantics of hierarchical network names as membership:

servers in sub-domains are also members of the organization

as a whole and may represent it.

Second, consider what happens if a rogue server

dhcpserver.sales.contoso.com claims plain com as its network

name, or dhcpserver.contoso.co.uk claims co.uk. Obviously,

no honest server would do that. A malicious server, on the

other hand, could name its network com or co.uk and

impersonate any other network that uses the same name. But

that does not matter because no honest network uses such

names. It is important to note that a DHCP server or network

that assumes the name com will not have any authority over

longer names such as contoso.com. Any server that selects too

short a name for its network will only compromise the security

of its own network, not anyone else’s. The same applies to

rogue departmental servers that try to hijack an unused

organizational name.

Another way to think about the semantics of the names is

that when a DHCP server chooses the name for its network, it

authorizes others to be (or to pretend to be) the same network.

The longer name it chooses, the fewer other servers, if any, are

allowed to advertise the same network name. The shorter

name it chooses, the more other servers it is permitting to be

(or to pretend to be) on the same network.

This scenario scales to arbitrarily large networks, including

corporate intranets distributed across multiple continents. A

limitations is the need for a common trusted root CA between

the servers and clients.

C. Uncertified large networks

The scenarios discussed above allow the mobile client to

name and remember small uncertified networks and to

authenticate globally unique names of certified networks. By

combining the solutions from these two scenarios, we can also

support secure NLA in large uncertified networks that have

multiple DHCP servers.

The idea that the client accepts any certificate or certificate

chain even if it does not recognize the root CA. The client then

remembers the root CA and the local DNS suffix advertised

by the DHCP server.

When the client connects to the same network again, it will

require the network to authenticate itself using a certificate

chain that starts from the same root key as on the first visit.

The previous security settings will be applied only after

successful authentication. If either the root CA or the

advertised network name differ from the previous visit, the

network is treated as a new one.

As in the case of small uncertified networks, the user-

readable network name can be anything, although it probably

makes sense to use the advertised DNS suffix as the default

name. If multiple networks have the same name, these can be

numbered (e.g., contoso.com and contoso.com 2). These

names are local to the client machine and can be used to refer

to only local security settings, not to any policy that uses

globally unique names.

This scheme allows the network operator to issue

certificates to the DHCP servers in order to bind them into one

logical network location. It is up to the network operator to

decide the granularity of the locations (i.e., DNS suffixes) it

advertises. For example, a university can certify all DHCP

servers on its campus and set them to advertise the same DNS

suffix. It is a major functional improvement over the current

unauthenticated NLA mechanism that we can securely

aggregate multiple access links into one network identity

regardless of the physical network topology.

D. Combined scenario

As the reader may have noticed, the three scenarios outlined

above are actually special cases of one uniform network

identification mechanism: When the client computer attaches

to a network, it receives a certificate chain (often of length

one) from the DHCP server. The server also advertises a local

DNS suffix. The client verifies that the certificate chain is

valid, except that it does not require the chain start from a

trusted root CA. It does check all other aspects of the

certificate chain, including any name constraints that limit the

authority of sub-CAs to subsets of the DNS name space. It

also requires the advertised DNS suffix to be a suffix of the

server name in the server certificate. The client then uses the

combination of the root CA public key and the advertised

suffix as the machine-readable identifier of the network. If it

has visited the same network previously and has stored

permanent security settings for this network, it may configure

them automatically. On the other hand, if either the root CA or

the advertised suffix differ from previously visited networks,

the client treats the current network as a new one.

The network name presented to the user may be the DNS

suffix or some other identifier like the SSID of a wireless

network. However, if the client has security policies that refer

to globally unique network names, it uses the advertised DNS

suffix to look up the policy and applies the policy only after

verifying that the certificate chains starts from a trusted CA

(i.e., the network is “certified”). For the benefit of expert

users, the client user interface should give some indication of

whether the name presented to the user is globally unique

(certified by a trusted CA) or local to the particular computer.

Most users, however, will not need to know the difference.

Any name conflicts between certified, uncertified but securely

recognized, and completely unauthenticated legacy networks

can be solved by appending a number to the user-readable

network name and treating them as different networks.

V. DHCP OVERVIEW

In this section, we give an overview of the dynamic host

configuration protocol (DHCP) with focus on the features that

are relevant to our protocol design. Figure 1 shows a typical

protocol execution when a mobile computer first enters an

access network. Only selected data fields are shown and the

fields that reveal the mobile identity or affiliation (at the IP

layer or above) have been highlighted.

The execution consists of two request-response pairs, which

are sent in UDP packets with the client port 68 and server port

67. The requests are broadcast on the local link with no source

address (source 0.0.0.0, destination 255.255.255.255). The

responses are sent as unicast from the server IP address to the

offered client IP address. (Clients may request broadcast

responses.) The messages are linked together by the

TransactionID, chosen by the client before it sends the first

message. The server identifies the client by the

ClientHardwareAddress, which must be unique to each link.

The client may include in its messages another identifier field

called ClientID, which contains a unique client identifier.

Windows sets this field equal to the client hardware address,

which is why we won’t discuss it further.

The reason for including the client hardware address in the

message content in addition to the packet header is that it is

possible for the server to be located outside the access link. In

that case there is a BOOTP relay agent on the access link that

forwards requests to the server and responses back to the

client. We have omitted from the figure most fields related to

the relay agent mechanism. It does not affect the design of our

protocol apart from the fact that the granularity of secure

location awareness will be the set of network links covered by

one DHCP server and its relay agents, rather than the

individual access link. Routers typically have the capability of

acting as BOOTP relays between adjacent links.

The first message exchange consists of the

DHCPDISCOVER request from the client and the

DHCPOFFER response from one or more servers. The client

typically broadcasts its host name, which enables the servers

to select host-specific parameters. The offer always contains

an IP address and often other host parameters. The client may

receive multiple offers. It chooses one offer from one server

and broadcasts the DHCPREQUEST, which is interpreted as a

request by the chosen server and as a rejection message by all

other servers. The request repeats the hostname and may also

contain the client’s fully-qualified domain name (FQDN) so

that the DHCP server can update the client’s DNS entry with

the new IP address. With the DHCPACK response, the server

commits the requested address to the client. This

 Message Fields

Clientà Broadcast DHCPDISCOVER TransactionID,

ClientHardwareAddress,

HostName (harrys-laptop)

Serverà Client DHCPOFFER TransactionID,

ClientHardwareAddress,

YourIP,

ServerIdentifier

Clientà Broadcast DHCPREQUEST TransactionID,

ClientHardwareAddress,

RequestedIPAddress,

ServerIdentifier,

HostName (harrys-laptop),

FQDN (harrys-laptop.

example.org)

Serverà Client DHCPACK TransactionID,

ClientHardwareAddress,

YourIP,

ServerIdentifier,

Domain (contoso.com)

Figure 1. Typical DHCP protocol execution

acknowledgement may contain the local domain suffix of the

network. The server has no obligation to reserve the address

for the client until it sends the acknowledgement. If the

address is no longer available when the server receives the

request, it will respond with a DHCPNACK message, after

which the client may reinitiate the protocol.

There are two kinds of data fields in the DHCP messages

that are of particular interest to us: The domain suffix in the

acknowledgement is the location identifier that we want to

authenticate. We also need to worry about the host name and

FQDN in the discovery and request messages because they

reveal the client identity and affiliation.

The server typically offers the client only a limited-length

lease to the IP address. The client may later renew this lease

by executing a shorter protocol with just the request and

acknowledgement messages. At that point, the client has

already executed the initial four-message protocol on the same

link. Sometimes, the client might mistakenly believe it is on

the same link when its point of attachment to the network has,

in fact, changed. In that case, the client might start the

protocol by sending a request to the new link. This request

will inevitably leak the client’s old IP address to the new

network. Since this only happens on rare occasions when the

hardware-based or link-layer detection of network attachment

fails, we do not try to protect against the information leakage.

In IPv6, stateless autoconfiguration has replaced DHCP as

the primary mechanism for address allocation. Nevertheless,

DHCP is still needed for configuring other parameters local to

the access network, such as the DNS server address. The

DHCPv6 protocol execution typically consists of only two

messages where the client requests and receives specific

parameters.

VI. DHCP AUTHENTICATION PROTOCOL

Figure 2 shows the authentication information that we add

to the DHCP messages. The principle is simple: each request

contains a client nonce (i.e., a new random number chosen by

the client), and each response contains a copy of the client

nonce, the server’s signature, and the server’s certificate chain,

which is often just a single self-signed certificate. For network

identification, the server must send the local domain suffix,

i.e., the location identifier, also in the offer.

It is important to note that the main contribution of this

paper is not the protocol itself but rather the careful

consideration of the requirements and design details that lead

to the choice of such a simple mechanism.

A. What to authenticate

As explained in section IV, the DHCP protocol execution

typically consists of two request-response message exchanges:

discover-offer and request-acknowledgement. For entity

authentication, it suffices to authenticate either one of the

responses. It is, however, not straightforward to decide which

one.

Our solution, which we will motivate below, works as

follows: The client decides which responses need

authentication and sends a nonce in the request to indicate this.

The server automatically signs the response whenever the

request contains a nonce. A simple client will ask the server to

sign all responses while a smarter client can leave the nonce

out whenever it does not need the security.

The client should always ask the server to sign the offer for

privacy reasons. Otherwise, an active attacker could send

offers that appear to come from various DHCP servers and

observe which of the offers the client prefers. This could be

used to discover the client’s preferred networks and, thus, its

affiliation.

In a 4-message protocol execution, it may be sufficient to

authenticate just the offer. This is the case if the only purpose

of the authentication is to secure NLA. On the other hand, if

the goal is also to authenticate the host-configuration

parameters obtained from the DHCP server, then it is

necessary to sign also the acknowledgement. Moreover,

requiring a signature on all messages when the client knows

that the server supports authenticated DHCP may help to

protect against various denial-of-service attacks.

In the two-message request-acknowledgement protocol (for

requesting a previously allocated address) the client should

always ask the server to sign the response in order to detect

changes in network attachment in a secure way.

To summarize, the simplest and safest policy for the client

is to request a signature for all DHCP responses. In the full 4-

message protocol, the client may choose to leave the signature

out from the second response. That signature is not required

for securing NLA but it may be needed for authentication of

other information in the message.

B. Freshness

We use nonces to prevent replay attacks. Since the DHCP

protocol consists of request-response pairs and only the

responses are authenticated, the client should send a fresh

nonce in each request and the server should copy it into the

following signed response.

The nonces should be freshly generated random or pseudo-

random numbers. They should be unpredictable and must not

be repeated with more than negligible probability. Thus, the

nonces need to be about 128 bits long. It is not a good idea to

use sequence numbers instead of random nonces. The first

 Message Authentication fields

Clientà Broadcast DHCPDISCOVER Nonce1

Serverà Client DHCPOFFER Domain suffix, Nonce1,

Signature, Certificates

Clientà Broadcast DHCPREQUEST Nonce2

Serverà Client DHCPACK Domain suffix, Nonce2,

Signature, Certificates

Figure 2. Authenticating DHCP responses

reason is that it is easy for the client to accidentally repeat the

same sequence after state loss. The second, more important,

reason is that the sequence numbers could be used to correlate

the appearances of the same mobile computer in different

networks.

An alternative to nonces would be to use time stamps, but

mobile devices and embedded DHCP servers may not have a

real-time clock. (Home routers that implement a DHCP server

usually have a clock but it is rarely used for anything other

than time stamps in log files and might not be set to the correct

time.) There would be no particular advantage to time stamps

either. The usual arguments for timestamps are that they save

one message (half round-trip time) in the protocol execution

and that they can be used to for authenticating broadcast

messages. Neither argument is valid in our protocol: the

nonces do not add any messages and the responses are unicast.

C. Privacy protection

The fact that our protocol performs only server

authentication makes it relatively easy to hide the client

identity from both passive and active adversaries in the access

network. This would be much more difficult if the protocol

required the client to have a certificate or some other type of

credential. We also want to hide the client’s preference of

networks, except the unavoidable disclosure of the network to

which the client actually connects. It is not obvious how to do

this and we need to find a suitable trade-off between privacy

and functionality.

In order to better understand the privacy issues in the DHCP

protocol, we need to carefully consider what kind of

information the client may leak in the protocol messages and

whether we can avoid it. As noted in section IV, the client

reveals its hostname and domain suffix in the HostName and

FQDN fields. This information should not be sent by clients

that wish to hide their identity. Typically, not much

functionality is lost by removing the host name from the

messages. In theory, the client name could be used by the

DHCP server to give the client its old IP address and to

configure client-specific host parameters. In practice, most

DHCP servers offer the old IP address based on the client’s

hardware address. The FQDN in the request, on the other

hand, is used by many DHCP servers to update the DNS

records (either both A and PTR records or only the backward

PTR record). For this reason, the client may want to send the

FQDN in the request. At that point, it has already

authenticated the network as its domain network based on the

signed offer. This behavior could be configured by the domain

administrators, e.g., via Windows group policy.

Additionally, the client sends its MAC address in the

ClientHardwareAddress and optional ClientID fields. We do

not address the problems with the MAC address in the paper

because reasonable solutions based on address randomization

can be found in the literature. Changing MAC address

naturally means that the client will not be offered the same IP

address as on its previous visit to the same network. This may

be an inconvenience for expert users, mainly to those who

would like to configure manually TCP or UDP port

forwarding at the NAT in a home network. The average user

will not notice any difference because all commonly used

protocols are designed to cope with changing client IP

addresses.

The client may also reveal a previous IP address by

requesting it in the RequestedIPAddress field. For a simple

client, or one that did not detect the change in network

attachment, this may be the last IP address used. For a client

that supports network location awareness, it is more likely to

be the last IP address used in the same network. A privacy-

conscious client should always execute the full 4-message

protocol after changes in network attachment rather than

reveal its old IP address.

Various DHCP extensions may leak information about host

parameters. At minimum, the client must reveal which

parameters it wishes to learn from the server. This information

alone is not sufficient to identify the individual client but it

could be used together with other observations to profile

clients. Therefore, mobile computers whose users are

interested in anonymity should only request the most common

DHCP parameters and not any ones specific to their

organization.

A less obvious channel for leaking information is created by

the choices that the client makes during the protocol

execution. In particular, the client’s preferred networks may

be revealed by the fact that the client chooses one offer from

many. An active attacker could spoof offers with different

domain suffixes to find out which one the client prefers. We

protect against this threat by signing the offers. The attacker

could also replay offers from various networks and observe

which offer the client chooses. This is prevented by the nonce

in the response as long as the client cannot relay messages in

real time.

Finally, we need to consider the contents of the new data

fields added by the security protocol. Fortunately, the only

new information sent by the client is the random nonce, which

does not reveal any information beyond the fact that the client

supports authenticated DHCP.

VII. RESIDUAL VULNERABILITIES

In this section, we briefly summarize the known

vulnerabilities of the DHCP-based secure location awareness

protocol.

The main limitation of the protocol is that an attacker who

is present on both the local link of a DHCP server and on the

local link of the mobile client can relay messages between the

two locations and convince the client that it is on the same link

as the DHCP server. For company and home networks, we

depend on firewalls to prevent the attacker from accessing the

DHCP server. Physical access controls and wireless LAN

security also make it difficult for an attacker to insert its own

node into the intranet. Wireless hotspots and other public

access networks, on the other hand, give relatively easy access

to the attacker. For these networks, the cost of maintaining

physical presence at the local link of the DHCP server is

relatively low. Fortunately, the consequences of a successful

spoofing attack are low as well, because the mobile client will

have relatively strict security settings in these networks.

In another form of the tunneling attack, the attacker relays

DHCP messages to and from a large number of popular

networks and tries to find out which one the client prefers. The

cost of this attacks is fairly high compared to the minor

compromise of privacy that results. Nevertheless, client

implementations may want to protect against this type of

attack by receiving only some small maximum number of

offers after sending a discovery message and by ignoring the

rest.

In secure wireless networks, the 802.1X authentication is

executed before DHCP. This may affect client anonymity

because the client certificate in EAP-TLS authentication will

reveal the client identity before the client has authenticated the

network. An attacker could pretend to be a secure wireless

access point and wait for clients that try to connect to it. It can

then request the client certificate in the TLS handshake. While

this is not exactly a vulnerability in our protocol, it is a way of

circumventing the privacy protection. There are two

immediately available solutions, both somewhat

unsatisfactory: the first is to disable automatic connection to

certificate-authenticated wireless networks so that users can

use their judgment before connecting; the second is to

mandate the use of the privacy-protecting PEAP

authentication method where a secure tunnel is established to

the server before client authentication. Ultimately, one would

hope for a more general privacy-protection mechanism for

wireless LAN authentication.

The fact that we allow the DHCP server to use any server

certificate, such as one issued to an SSL server, also needs

discussion. This saves certificate provisioning costs but it also

allows any server within the same organization to impersonate

the DHCP server. This might appear a major shortcoming. It

is, however, a necessary compromise between security and

ease of deployment. The same kind compromise is already

widely accepted in corporate wireless LAN authentication

where any host with an SSL server certificate can pretend to

be a RADIUS server in the EAP-TLS method. For

organizations that require stronger network-name

authentication, we suggest adding a new certificate field

(X.509 extended key usage or application policy) to indicate

that the certificate is specifically intended for network

authentication (both DHCP-based and 802.1X with EAP-

TLS). All clients should treat networks that specify the

extended key usage as different from those that do not, even if

the two networks otherwise appear the same (i.e., have the

same root CA and name). This prevents the use of generic

server certificates for impersonating networks that use the

special certificates. Moreover, high-security clients may be

configured not to use names from generic server certificates to

access security policies that are specified in terms of globally

unique names. This still allows the client to use such

certificates for network aggregation, similar to certificates

issued by an unknown root CA (see section IV.C).

Finally, our protocol depends on the security of the DHCP

server. In home networks, the server is usually located in the

gateway device, which combines the functionality of a NAT,

router and firewall. These devices are notoriously vulnerable

to compromise because they are typically purchased based on

price rather than security; are left with the default

configuration; and there is currently no effective way of

deploying security patches to their firmware. This may enable

an attacker to take control of the DHCP server either by

connecting from the local network using a default password or

by exploiting a software vulnerability remotely from the

Internet. Thus, we have to assume that, in many networks

without professional administration, the DHCP server will be

compromised. The consequences to the secure NLA protocol

are, however, mitigated by the fact that if the attacker already

has a permanent presence at the home network of the mobile

client, the attacker gains little from being able to spoof that

location to the same client in other access networks. It would

be simpler for the attacker to mount any attacks when the

mobile computer is at home.

VIII. RELATED WORK

There is a standard for authenticated DHCP [DA01].

Currently, the only authentication method is a symmetric

MAC with a preshared key, which is practical only for small,

closed organizations. The specification could be extended to

support public-key signatures. RSA signatures and certificates

do not, however, fit into the authentication option and we

found it simpler to send them in a long DHCP vendor option.

Wireless LAN security protocols [EA03] may seem like an

alternative to DHCP authentication. They, too, have the

limitation of requiring a pre-established relation between the

client and the network. Public wireless access networks are

typically unauthenticated or use the universal access method

(UAM). UAM hijacks HTTP requests and redirects the

browser onto a secure web page, whose certificate the mobile

user could, in theory, inspect for network identification. The

user involvement makes UAM unsuitable for universal

network authentication.

Location awareness and the related privacy discussions

usually refer to geographic locations, such as GPS coordinates

or place names (see, e.g., [Leo98]). There have some been

attempts at securing the location services, e.g.,

[DM96][Kuh04]. Even when the location information is

obtained from communications networks, as it is for example

in the E911 and GSM location services, the ultimate aim is to

obtain physical coordinates. Yet, to computers, the logical

network location is far more important. Operating systems for

mobile computers naturally try to adapt to the network

conditions and increase usability by remembering settings for

each network. Windows NLA is only the latest step in this

direction. A key development is the realization that an IP

address or an address prefix does not represent a unique

logical location on the network and more complex heuristics

are needed that combine several observed identifiers to a

unique network identity. Our protocol removes much of the

inherent uncertainly of such heuristics by allowing the access

network itself to determine the right granularity of location

information for that particular network and by using public

keys as authenticated network identifiers.

Any protocol that tries to determine the relative location of

itself and another entity by sending messages between them is

vulnerable to tunneling or “wormhole” attacks [HPJ03] where

the attacker relays messages between the client and a distant

location. Some applications, such as door keys and other

physical access-control tokens, are particularly vulnerable to

tunneling attacks. The only secure mechanism for detecting

such attacks is to measure the roundtrip time between the

devices, but the implementation will require careful

consideration of the physical signals and communications

hardware [HK05]. Our protocol explicitly ignores the

tunneling attacks in order to enable universal deployment to IP

networks without significant new hardware requirements.

Literature on location privacy is mainly concerned with

hiding the location of the mobile host from the peers with

which it communicates. For example, onion routing

[Cha81][SGR97] can prevent the server from observing the

client location and vice versa. Since IP addresses are both

locations and identifiers, this is usually stated in terms of

anonymity: the communicating peers cannot find out each

other’s real identity. The location-privacy requirements of our

protocol are somewhat different: we want the mobile host and

user to remain anonymous towards the access network.

Clearly, the access network knows where the mobile is. Our

protocol does not help it to find the mobile’s name or

affiliation or to correlate multiple appearances of the same

mobile at the same or different access networks.

The authentication of uncertified networks in our protocol is

similar to the leap-of-faith authentication used in the secure

shell (SSH) [Ylo96] or opportunistic IPsec [CM02], where the

client learns the server’s public key when connecting to it for

the first time and, thereafter, associates that public key with

the server name. There is a subtle difference, though, to the

advantage of our protocol. The SSH client receives the server

name from the user and tries to associate it with one correct

computer and public key. Our DHCP client, on the other hand,

encounters a network and a public key and decides to call

them with the name suggested by the DHCP server. Only after

that, the name is presented to the user. Thus, the client

computer, not the user, is the authority on network naming,

meaning that the computer cannot really be wrong no matter

what names it decides to use for a network. The blind leap of

faith happens only if the user or an application decides to use

the locally assigned name to apply a security policy that refers

to globally unique names. As long as the network names are

used in the internal world of the client computer and its user,

for example, to recall security settings saved on a previous

visit to the same access network, it doesn’t matter very much

what the actual values of the names are.

With the emergence of various cryptographically

authenticable identifiers, such as the cryptographically

generated IPv6 addresses [Aur03] and HIP identifiers

[NYW03], which do not require certification, the idea of

opportunistic security associations is moving towards

mainstream networking applications. One example of

opportunistic authentication in network attachment is the

quick network access protocol (Quick NAP) [AET+06], which

is a clean-slate redesign of the current complex network

attachment procedure for wireless networks. Although focused

on access control and authorization of clients for network

access, the protocol allows ad-hoc relations between a client

and an access network, which are identified by the hashes of

their public keys. Our protocol continues this trend towards

using public keys as identifiers and enabling security without

certified names wherever possible.

IX. CONCLUSION

In this paper, we describe an authentication protocol for

DHCP servers. It is intended for securing network-location

information distributed by the server. The protocol allows both

PKI-based server authentication and secure identification of

previously visited networks that have no certificates. We are

careful to protect client anonymity at every step of the process.

The protocol uses standard DHCP extension mechanisms. In

addition to the authentication protocol itself, major

contributions of the paper are a careful requirements analysis,

the idea of recognizing network locations based on their public

key, the use of a local PKI to aggregate multiple access

networks into a single logical identity, and a novel way of

binding network names to X.509-certified DHCP servers.

REFERENCES

[AET+06] Jari Arkko, Pasi Eronen, Hannes Tschofenig, Seppo Heikkinen,
and Anand Prasad. Quick NAP--secure and efficient network access
protocol. In Proc. 6th International Workshop on Applications and
Services in Wireless Networks (ASWN 2006), pages 163-170, Berlin,
Germany, May 2006.

[Aur03] Tuomas Aura. Cryptographically generated addresses (CGA). In
Proc. 6th Information Security Conference (ISC'03), volume 2851 of
LNCS, pages 29-43, Bristol, UK, October 2003. Springer.

[Cha81] David L. Chaum. Untraceable electronic mail, return addresses, and
digital pseudonyms. Communications of the ACM, 24(2):84-88,
February 1981.

[CM02] Claude Castelluccia and Gabriel Montenegro. IPv6 opportunistic
encryption. Technical Report 4568, INRIA, October 2002.

[DM96] Dorothy E. Denning and Peter F. MacDoran. Location-based
authentication: Grounding cyberspace for better security. Elsevier
Computer Fraud & Security, pages 12-16, February 1996.

[DY83] D. Dolev and A. Yao. On the security of public-key protocols.
Communications of the ACM, 29(8):198-208, August 1983.

[Dro97] Ralph Droms. Dynamic host configuration protocol. RFC 2131,
IETF, March 1997.

[DA01] Ralph Droms and Bill Arbaugh. Authentication for DHCP messages.
RFC 3118, IETF, June 2001.

DBV+03] Ralph Droms, Jim Bound, Bernie Volz, Ted Lemon, Charles E.
Perkins, and Mike Carney. Dynamic host configuration protocol for IPv6
(DHCPv6). RFC 3315, IETF, July 2003.

[EA03] Jon Edney and William A. Arbaugh. Real 802.11 Security: Wi-Fi
Protected Access and 802.11i. Addison-Wesley, 2003.

[EP02] Alberto Escudero-Pasqual. Privacy in the next generation Internet:
data protection in the context of the European Union. PhD thesis, Royal
Institute of Technology, Stockholm, Sweden, December 2002.

[HK05] Gerhard P. Hancke and Markus G. Kuhn. An RFID distance bounding
protocol. In Proc. IEEE SecureComm 2005, Athens, Greece, September
2005. IEEE Communications Society.

[HPJ03] Yih-Chun Hu, Adrian Perrig, and David B. Johnson. Packet leashes:
A defense against wormhole attacks in wireless networks. In Proc. IEEE
Infocomm 2003, April 2003.

[ITU97] International Telecommunication Union. ITU-T recommendation
X.509 (1997 E): Information technology—open systems
interconnection—the directory: Authentication framework, June 1997.

[Kuh04] Markus G. Kuhn. An asymmetric security mechanism for navigation
signals. In Proc. 6th International Workshop on Information Hiding,
volume 3200 of LNCS, pages 239-252, Toronto, Canada, May 2004.
Springer.

[Leo98] Ulf Leonhardt. Supporting Location-Awareness in Open Distributed
Systems. PhD thesis, Imperial College of Science, Technology and
Medicine, University of London, May 1998.

[LT06] Janne Lindqvist and Laura Takkinen. Privacy management for secure
mobility. In Proc. Workshop on Privacy in the Electronic Society
(WPES 2006), Alexandria, VA, USA, October 2006.

[ND01] Thomas Narten and Richard Draves. Privacy extensions for stateless
address autoconfiguration in IPv6. RFC 3041, IETF Network Working
Group, January 2001.

[NYW03] Pekka Nikander, Jukka Ylitalo, and Jorma Wall. Integrating
security, mobility, and multi-homing in a HIP way. In Proc. Network and
Distributed Systems Security Symposium (NDSS'03), pages 87-99, San
Diego, CA USA, February 2003.

[SGR97] Paul F. Syverson, David M. Goldschlag, and Michael G. Reed.
Anonymous connections and onion routing. In Proc. 1997 IEEE
Symposium on Security and Privacy, pages 44-54, Oakland, CA USA,
May 1997. IEEE Computer Society Press.

[Ylo96] Tatu Ylönen. SSH—secure login connections over the Internet. In
Proc. 6th USENIX Security Symposium, pages 37–42, San Jose, CA
USA, July 1996. USENIX Association.

