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What Does this Program Do?

MOV X2,#1
STR X2, [X0]
STR X2, [X1]
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What Does this Program Do?

Thread 0 Thread 1
MOV X2,#1 LDR X3, [X1]
STR X2, [X0] LDR X4, [X0]

STR X2, [X1]
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Outline of the Talk

What's wrong with the reference manual?
Why operational semantics?

Why concurrency is hard?

An operational model for ARMv8

Further abstractions
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ARM Architecture Reference Manual is 7900 pages!!!

Informal, ambiguous, imprecise, incomplete...

x1.58
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Formal Semantics
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The architecture can be decomposed to two main parts:
» Instruction semantics (sequential execution)

» Memory model (multi-threading)
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The architecture can be decomposed to two main parts:
» Instruction semantics (sequential execution)
» Memory model (multi-threading)

The ARM manual: Sail:

bits(datasize) result; (bit['R]) result := 0;
result = Zeros ();

result := Zeros();
result <pos+15:pos> = imml6; result [( pos+15)..pos] := imml6;
X[d] = result; wX(d) = result;

MOV X2,#1
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The architecture can be decomposed to two main parts:
» Instruction semantics (sequential execution)
» Memory model (multi-threading)

The ARM manual: Sail:

bits(datasize) result; (bit['R]) result := 0;
result = Zeros ();

result := Zeros();
result <pos+15:pos> = imml6; result [( pos+15)..pos] := imml6;
X[d] = result; wX(d) = result;

MOV X2,#1
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What is the physical thing we model?
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What is the physical thing we model?
» There is no prior reliable model
> We model the architect’s intent

» Our model provides formal foundation for other models
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What is the physical thing we model?
» There is no prior reliable model
> We model the architect’s intent

» Our model provides formal foundation for other models

How do we make our model reliable?
P Litmus tests with known results
» Soundness with respect to existing hardware

» Expressed in the same terms architects use
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Styles of Semantic Definitions

Axiomatic semantics

Denotational semantics

Operational semantics
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Styles of Semantic Definitions

Axiomatic semantics
» Candidate execution over memory events
> Apply a predicate to the execution

» The main construct here is relations

Denotational semantics
Construct executions by applying rules to partially ordered
multi-sets

Operational semantics
» State machine
» Construct execution incrementally
> Relations emerge from the structure (not explicit)

P This is the language architects use
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Axiomatic and Denotational Semantics

» No microarchitectural intuition

> Not a reliable foundation

» How do we add system-level features?

» Allow more behaviour than the architecture
» For well-behaved code

» Combinatorial explosion

> Better suited for higher-level programming languages
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Operational Semantics

» Familiar to the architects (microarchitectural intuition)
» Captures the architects intent

P> Tightly integrated with instruction semantics

> Relatively easy to extend with system-level features

» Construct valid executions incrementally
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The ARM Operational Memory Model

» Written in Lem
» Core functionality: ~7.5k LoC
» Utilities and other models: ~10k LoC

let reorder_pred params state feic =
match feic.buffer_below with
| 1] —> Nothing
| e :: below —
guard ((e, feic.event) NIN state.reordered) >>
guard (reorder_pred ' params feic.event e) >>
return (e, below)

end
let reorder_next _params state feic = fun e below —>
let buffer =
feic.buffer_above ++ [e; feic.event] ++ below
in
<| state with
buffers =

Map.insert feic.segment buffer state.buffers;
reordered =
{(feic.event, e)} union state.reordered;
|>
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Instruction semantics

Memory models

Lem: ARM
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Instruction semantics

Memory models

Lem RISC-V

Power
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Instruction semantics

Memory models

Lem: ARM RISC-V Power
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Instruction semantics

Memory models

RISC-V Power

Lem: ARM
I

.
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Why Concurrency is Hard?

» Computers create an illusion that single threaded code is
executed sequentially

» It is not practical to do the same for multi-threaded programs

» Multi-threaded programs can observe optimisations
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Taste of Multi-threaded
Behaviour



Out of Order Execution

Thread 0 Thread 1

MOV X2,#1 LDR X3, [X1]
STR X2, [X0] |[LDR X4, [X0]
STR X2, [X1]
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pre-allocated int64_t

[Initial state: Xo-tdata¥ X1-&flag |
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Out of Order Execution
pre- aIIocated int64_t

’Imtlal state: X0=&data®X1= =gflag ‘

Thread 0 Thread 1
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MOV X2,#1 LDR X3, [X1]
STR X2, [X0] |[LDR X4, [X0]
STR X2, [X1]

] Final state: 1:X3=1 A 1:X4=0 \

W data=1 R flag=1
lpo/ lpo
W flag=1 R data
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Out of Order Execution
pre- aIIocated int64_t

’Imtlal state: X0=&data®X1= =gflag ‘

Thread 0 Thread 1

MOV X2,#1 LDR X3, [X1]
STR X2, [X0] |[LDR X4, [X0]
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] Final state: 1:X3=1 A 1:X4=0 \

W data=1 R flag=1
lpo/ lpo
W flag=1 R data=0
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Out of Order Execution
pre-allocated int64_t

[Initial state: Xo-tdata¥ X1-&flag |

Thread 0 Thread 1

MOV X2,#1 LDR X3, [X1]
STR X2, [X0] |[LDR X4, [X0]
STR X2, [X1]

] Final state: 1:X3=1 A 1:X4=0 \

W data=1 R flag=1

b

W flag=1 R data=0
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Out of Order Execution
pre-allocated int64_t

[Initial state: Xo-tdata’¥ X1-&flag |

Thread 0 Thread 1

MOV X2,#1 LDR %3, [®11
STR X2, [X0] |[LDR X4,[X0]
STR X2, [X1]

] Final state! 1:X3=1 A 1:X4=0 \

Whdata=1 R flag=1

b b

W flag=1 R data=0
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Forcing In Order Execution

‘ Initial state: X0=¢data, X1=gflag

Thread 0 Thread 1
MOV X2,#1 LDR X3, [X1]
STR X2, [X0] AND X4,X3,#0//address

DMB SY//barrier |LDR X5, [X0,X4]
STR X2, [X1]

] Final state: 1:X3=1 A 1:X5=0
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Forcing In Order Execution

’ Initial state: X0=&data, X1=&flag

Thread 0 Thread 1
MOV X2,#1 LDR X3, [X1]
STR X2, [X0] AND X4,X3,#0//address

DMB SY//barrier |LDR X5, [X0,X4]
STR X2, [X1]

] Final state: 1:X3=1 A 1:X5=0

W data=1 R flag=1

ldm% laddr

W flag=1 R data=0

18/30



Forcing In Order Execution

Thread 0

MOV X2,#1 LDR X3,
STR X2, [X0]
DMB SY//barrier

R flag=1

W flag=1 R data=0
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Speculative Execution (Load)

‘ Initial state: X0=¢data, X1=gflag

Thread 0 Thread 1

MOV X2,#1 LDR X3, [X1]

STR X2, [X0] |CBZ X3,end//branch
DMB SY LDR X4, [X0]

STR X2, [X1] |end:

]Final state: 1:X3=1 A 1:X4=0
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Speculative Execution (Load)

’Initial state: X0=&data, X1=&flag

Thread 0 Thread 1

MOV X2,#1 LDR X3, [X1]

STR X2, [X0] |CBZ X3,end//branch
DMB SY LDR X4, [X0]

STR X2, [X1] |end:

]Final state: 1:X3=1 A 1:X4=0 \

W data=1 R flag=1

ld m% lctrl

W flag=1 R data=0
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Speculative Execution (Load)

‘ Initial state: X0=¢data, X1=gflag

Thread 0 Thread 1

MOV X2,#1 LDR X3, [X1d

STR X2, [X0] |CBZ X3 .,end//branch
DMB SY LDR_X4,[%0]

STR X24[X1] |end:

]Final state: 1:X3=1 /\ 1:X4=0 \

Whdata=1 R flag=1

ld m% lctrl

W flag=1 R data=0
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Speculative Execution (Store)

|Initial state: X0=za, X1=tb

Thread 0 Thread 1
LDR X2,[X0] |LDR X2, [X1]
DMB SY CBZ X2,end
MOV X3,#1 MOV X3,#1
STR X3, [X1] |STR X3, [X0]

end:

Final state: 0:X2=1 A 1:X2=1
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Speculative Execution (Store)

|Initial state: X0=za, X1=tb

Thread 0 Thread 1

LDR X2, [X0] |LDR X2, [X1]
DMB SY CBZ X2,end
MOV X3,#1 MOV X3,#1
STR X3, [X1] |STR X3, [X0]
end:

| Final state: 0:x2=1 A 1:x2=1 |

’ Thread 0 ‘ ’ Thread 1 ‘

R a=1 R b=1
rf ldi lctrl
W b=1 W a=1
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Speculative Execution (Store)

Thread 0

LDR X2, [X0] |LDR
DMB SY

MOV X3,#i¢@
STR X3, [X1]

k‘ [ Thread 1]
R b=1
Q rf ld my' lctrl

W b=1 W a=1
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Write Forwarding

Initial state: X0=¢data, X1=&flag,

X2=&temp
Thread 0 Thread 1

MOV X3,#1 LDR X3, [X1]

STR X3, [X0] |CBZ X3,end

DMB SY MOV X4 ,#1

STR X3, [X1] |STR X4, [X2]
LDR X5, [X2]
AND X6,X5,#0
LDR X7, [X0,X6]
end:

1:X7=0

Final state: 1:X3=1 A 1:X5=1 A
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Write Forwarding

Initial state: X0=¢data, X1=&flag,

X2=&temp
Thread 0 Thread 1 ’ThmadO‘ Thread 1
MOV X3,#1 |LDR X3, [X1] W data=1 R flag=1
STR X3, [X0] |CBZ X3,end
DMB SY MOV X4,#1 Lﬂnb rf ctrl
STR X3, [X1] [STR X4, [X2] y
LDR X5, [X2] W flag=1 W temp=1
AND X6,X5,#0
LDR X7, [X0,X6] of
end: \
Final state: 1:X3=1 A 1:X5=1 A R temp=1
1:X7=0
.\rj ‘addr
R data=0
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Write Forwarding

Initial state: X0=¢data, X1=&flag,

X2=&temp
Thread 0 Thread 1 ’ThmadO‘ Thread 1
MOV X3,#1 |LDR X3, [X1] W, data=1 R flag=1
STR X3, [X0] |CBZ X3,end
DMB SY MOV X4&,#1 Lﬁnb rf ctrl
STR X3, [X1] [STR X4.,[x2] y
LDR X5, [X2] W flag=1 W temp=1
AND %6, X5, #0
LDR X7, [X0,X6] of
cnd \
Final state: 1:X3=1 A 1:X5=1 A R temp=1
1:X7=0
'\rj ‘addr
R data=0
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Model State

Thread Subsystem

write
read req. read value
barrier

Storage Subsystem

Thread 0 Thread 1 --- Thread n
Memory
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Model State

Thread Subsystem

B

write
read req. read value
barrier

Storage Subsystem
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Model State

Thread Subsystem

BB
o

T ry

write
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barrier
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Thread transitions
Execute a store
Condition: a store can be executed if
1. all previous stores and loads to the same location have been
executed;
2. all previous branches are determined; and
3. all previous barriers have been executed.
Action: add a write to the top of the buffer associated with the
thread.

Execute a barrier
Condition: a barrier can be executed if
1. all previous stores and loads to the same location have been
executed; and
2. all previous branches are determined;
Action: add a barrier to the top of the buffer associated with the
thread.
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Storage transitions

Flow event

The bottom most event of a non-root buffer can flow to the top of
the root buffer, and the bottom most event of the root buffer can
flow into memory.

Satisfy a read
A read that is adjacent to a write (read is higher) to the same
location can be satisfied by the write.

Reorder events
Two adjacent memory accesses in a buffer can be reordered with
each other, if they are to different memory locations.
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Example

Initial state: X0=&data, X1=&flag,
0:X2=1
Thread 0 Thread 1

STR X2, [X0] |[LDR X3, [X1]
DMB SY AND X4,X3,#0
STR X2, [X1] |[LDR X5, [X0,X4]

’Forbidden: 1:X3=1 A 1:X5=0 ‘

W data=1 R flag=1

ldm% laddr

W flag=1 R data=0
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Example

Thread 0

Thread 1

ofetch

fetch

I

’datazO ‘flagzO ‘
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Example

Thread 0 Thread 1
STR X2, [X0] read reg. X0=&data fetch
ofetch
I
I
’datazO ‘flagzO ‘
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Example

Thread 0

Thread 1

STR X2, [X0] read reg. X0=&data
DMB SY

ofetch

fetch

l
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Example

Thread 0 Thread 1

STR X2, [X0] read reg. X0=&data ofetch
DMB SY
STR X2, [X1] read reg. X1=&flag

I
’ data=0 ‘ flag=0 ‘ ‘ o
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Example

Thread 0

Thread 1

STR X2, [X0] read reg. X0=&data| |LDR X3, [X1]
DMB SY
STR X2, [X1] read reg. X1=&flag

read reg. X1=&flag

ofetch

l

’ data=0 ‘ flag=0 ‘ ‘ o
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Example

Thread 0 Thread 1

STR X2, [X0] read reg. X0=&data| |LDR X3, [X1]
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Example

Thread 0 Thread 1
STR X2, [X0] read reg. X0=&data| |LDR X3, [X1] read reg. X1=&flag
DMB SY AND X4,X3,#0
STR X2, [x1] read reg. X1=&flag LDR X5, [X0,X4Jeread reg. X0=&data

I
’ data=0 ‘ flag=0 ‘ ‘ o
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Example

Thread 0

Thread 1

STR X2, [X0] read reg. X0=&data| |LDR X3, [X1]

DMB SY

AND X4,X3,#0

STR X2, [X1] read reg. X1=&flag LDR X5, [X0,X4]

eread reg. X1=&flag

I
’ data=0 ‘ flag=0 ‘ ‘ o
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Example

Thread 0

Thread 1

STR X2, [X0] read reg. X0=&data| |LDR X3, [X1]

DMB SY

AND X4,X3,#0

STR X2, [X1] read reg. X1=&flag LDR X5, [X0,X4]

erequest read flag
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Example

Thread 0 Thread 1
STR X2, [X0] read reg. X0=&data| |LDR X3, [X1]
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Example

Thread 0 Thread 1
STR X2, [X0] read reg. X0=&data| |LDR X3, [X1]
DMB SY AND X4,X3,#0
STR X2, [X1Jeread reg. X2=1 LDR X5, [X0,X4]
read flag
|
I
I
’ data=0 ‘ flag=0 ‘ ‘ e
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Example

Thread 0 Thread 1
STR X2, [X0Jeread reg. X0=&data| |LDR X3, [X1]
DMB SY AND X4,X3,#0
STR X2, [X1] LDR X5, [X0,X4]
read flag
|
I
I
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Example

Thread 0

Thread 1

STR X2, [X0Jeread reg. X2=1
DMB SY
STR X2, [X1]

LDR X3, [X1]
AND X4,X3,#0
LDR X5, [X0,X4]

read flag

l

’ data=0 ‘ flag=0 ‘ ‘ o
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Example

Thread 0

Thread 1

STR X2, [X0Jewrite mem. data=1
DMB SY
STR X2, [X1]

LDR X3, [X1]
AND X4,X3,#0
LDR X5, [X0,X4]

read flag

l

’ data=0 ‘ flag=0 ‘ ‘ o
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Example

STR X2, [X0]

Thread 0 Thread 1
finished! LDR X3, [X1]
ebarrier AND X4,X3,#0

DMB SY
STR X2, [X1]

LDR X5, [X0,X4]

write data=1 read flag

I
’ data=0 ‘ flag=0 ‘ ‘ o
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Example

Thread 0 Thread 1
STR X2, [X0] finished! LDR X3, [X1]
DMB SY finished! AND X4,X3,#0

STR X2, [X1lewrite mem. flag=1

LDR X5, [X0,X4]

barrier
write data=1

read flag

l

’ data=0 ‘ flag=0 ‘ ‘ o
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Example

Thread 0 Thread 1
STR X2, [X0] finished! LDR X3, [X1]
DMB SY finished! AND X4,X3,#0
STR X2, [X1] finished! LDR X5, [X0,X4]
write flag=1 read flag
barrier
ewrite data=1

I
’ data=0 ‘ flag=0 ‘ ‘ o

26/30




Example

Thread 0 Thread 1
STR X2, [X0] finished! LDR X3, [X1]
DMB SY finished! AND X4,X3,#0

STR X2, [X1] finished!

LDR X5, [X0,X4]

write flag=1 read flag
ebarrier

I
write data=1

l

’ data=0 ‘ flag=0 ‘ ‘ o
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Example

Thread 0 Thread 1
STR X2, [X0] finished! LDR X3, [X1]
DMB SY finished! AND X4,X3,#0

STR X2, [X1] finished!

LDR X5, [X0,X4]

swrite flag=1 read flag

|

barrier
write data=1

l

’ data=0 ‘ flag=0 ‘ ‘ o
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Example

Thread 0 Thread 1
STR X2, [X0] finished! LDR X3, [X1]
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» More suitable as basis for program logic

Axiomatic Model
» Very concise

» Appears in the ARM reference manual
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Contribution

» As a result of my work ARM has changed the memory model

v

A reliable model of the ARMv8 architecture
» Machine readable definitions

» A tool, derived from the definitions (RMEM)
» Bugs in commercial hardware

» Similar work for RISC-V
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