Operational Semantics of
Concurrent Assembly

Shaked Flur

Collaboration with: Peter Sewell
Christopher Pulte Susmit Sarkar
Luc Maranget and others

1/30

What Does this Program Do?

MOV X2,#1
STR X2, [X0]
STR X2, [X1]

2/30

What Does this Program Do?

Thread 0 Thread 1
MOV X2,#1 LDR X3, [X1]
STR X2, [X0] LDR X4, [X0]

STR X2, [X1]

2/30

Outline of the Talk

What's wrong with the reference manual?
Why operational semantics?

Why concurrency is hard?

An operational model for ARMv8

Further abstractions

3/30

TPHOLs 2009

PLDI 2011

POPL 2016

POPL 2017

POPL 2018

POPL 2019

POPL 2020

A better x86 memory model: x86-TSO. Scott Owens, Susmit Sarkar, and

Peter Sewell.

Understanding POWER Multiprocessors. Susmit Sarkar, Peter Sewell,
Jade Alglave, Luc Maranget, and Derek Williams.

Modelling the ARMv8 architecture, operationally: concurrency
and ISA. Shaked Flur, Kathryn E. Gray, Christopher Pulte, Susmit Sarkar, Ali Sezgin,

Luc Maranget, Will Deacon, and Peter Sewell.

Mixed-size Concurrency: ARM, POWER, C/C++11, and SC.
Shaked Flur, Susmit Sarkar, Christopher Pulte, Kyndylan Nienhuis, Luc Maranget, Kathryn
E. Gray, Ali Sezgin, Mark Batty, and Peter Sewell.

Simplifying ARM Concurrency: Multicopy-atomic Axiomatic
and Operational Models for ARMVS. Christopher Pulte, Shaked Flur, Wil

Deacon, Jon French, Susmit Sarkar, and Peter Sewell.

ISA Semantics for ARMv8-A, RISC-V, and CHERI-MIPS.
Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Alastair Reid, Kathryn E. Gray,
Robert M. Norton, Prashanth Mundkur, Mark Wassell, Jon French, Christopher Pulte,

Shaked Flur, lan Stark, Neel Krishnaswami, and Peter Sewell.

ARMV8-A system semantics: instruction fetch in relaxed
architectures. Ben Simner, Shaked Flur, Christopher Pulte, Alasdair Armstrong, Jean

Pichon-Pharabod, Luc Maranget, and Peter Sewell.

4/30

ARM Architecture Reference Manual is 7900 pages!!!

Informal, ambiguous, imprecise, incomplete...

x1.58

5/30

Formal Semantics

6/30

The architecture can be decomposed to two main parts:
» Instruction semantics (sequential execution)

» Memory model (multi-threading)

7/30

The architecture can be decomposed to two main parts:
» Instruction semantics (sequential execution)
» Memory model (multi-threading)

The ARM manual: Sail:

bits(datasize) result; (bit['R]) result := 0;
result = Zeros ();

result := Zeros();
result <pos+15:pos> = imml6; result [(pos+15)..pos] := imml6;
X[d] = result; wX(d) = result;

MOV X2,#1

7/30

The architecture can be decomposed to two main parts:
» Instruction semantics (sequential execution)
» Memory model (multi-threading)

The ARM manual: Sail:

bits(datasize) result; (bit['R]) result := 0;
result = Zeros ();

result := Zeros();
result <pos+15:pos> = imml6; result [(pos+15)..pos] := imml6;
X[d] = result; wX(d) = result;

MOV X2,#1

7/30

What is the physical thing we model?

8/30

What is the physical thing we model?
» There is no prior reliable model
> We model the architect’s intent

» Our model provides formal foundation for other models

8/30

What is the physical thing we model?
» There is no prior reliable model
> We model the architect’s intent

» Our model provides formal foundation for other models

How do we make our model reliable?

8/30

What is the physical thing we model?
» There is no prior reliable model
> We model the architect’s intent

» Our model provides formal foundation for other models

How do we make our model reliable?
» Litmus tests with known results

» Soundness with respect to existing hardware

8/30

What is the physical thing we model?
» There is no prior reliable model
> We model the architect’s intent

» Our model provides formal foundation for other models

How do we make our model reliable?
P Litmus tests with known results
» Soundness with respect to existing hardware

» Expressed in the same terms architects use

8/30

Styles of Semantic Definitions

Axiomatic semantics

Denotational semantics

Operational semantics

9/30

Styles of Semantic Definitions

Axiomatic semantics
» Candidate execution over memory events
> Apply a predicate to the execution

» The main construct here is relations

Denotational semantics

Operational semantics

9/30

Styles of Semantic Definitions

Axiomatic semantics
» Candidate execution over memory events
> Apply a predicate to the execution

» The main construct here is relations

Denotational semantics
Construct executions by applying rules to partially ordered
multi-sets

Operational semantics

9/30

Styles of Semantic Definitions

Axiomatic semantics
» Candidate execution over memory events
> Apply a predicate to the execution

» The main construct here is relations

Denotational semantics
Construct executions by applying rules to partially ordered
multi-sets

Operational semantics
» State machine
» Construct execution incrementally
> Relations emerge from the structure (not explicit)

P This is the language architects use

9/30

Axiomatic and Denotational Semantics

» No microarchitectural intuition

> Not a reliable foundation

» How do we add system-level features?

» Allow more behaviour than the architecture
» For well-behaved code

» Combinatorial explosion

> Better suited for higher-level programming languages

10/30

Operational Semantics

» Familiar to the architects (microarchitectural intuition)
» Captures the architects intent

P> Tightly integrated with instruction semantics

> Relatively easy to extend with system-level features

» Construct valid executions incrementally

11/30

The ARM Operational Memory Model

» Written in Lem
» Core functionality: ~7.5k LoC
» Utilities and other models: ~10k LoC

let reorder_pred params state feic =
match feic.buffer_below with
| 1] —> Nothing
| e :: below —
guard ((e, feic.event) NIN state.reordered) >>
guard (reorder_pred ' params feic.event e) >>
return (e, below)

end
let reorder_next _params state feic = fun e below —>
let buffer =
feic.buffer_above ++ [e; feic.event] ++ below
in
<| state with
buffers =

Map.insert feic.segment buffer state.buffers;
reordered =
{(feic.event, e)} union state.reordered;
|>

12/30

Instruction semantics

Memory models

Lem: ARM

13/30

Instruction semantics

Memory models

Lem RISC-V

Power

13/30

Instruction semantics

Memory models

Lem: ARM RISC-V Power

13/30

Instruction semantics

Memory models

RISC-V Power

Lem: ARM
I

.

13/30

https://www.cl.cam.ac.uk/~sf502/regressions/rmem/

e —

< (]

@ cl.camac.uki~sfs02/regressi

4t

ns/rmem/

Graph~ | Linktothis state~ Help

Kemory = [(1000:0:0):W 0x1000 (y)/4=0, (1000:1:0):W OX1100 €x)/4=0]

02100

2 flow write to memory: (0

Thread 0 state:
read issue order: [
0:1 0x050000 MOV W0, 81
micro_op_state: MOS_plain Done ()
[finish instruction: MOV 40,#1
0:2 0x050004 STR
Ro:

nicro_op_state: MOS_plain Write memv

memory_urite values of store instruct:

Teg writes: R0=0x_63'0000000000000001

Teg Teads: Ri=0x_63'0000000000001100 (x) from initialstate,

0:3 0x080008
nicro_op_state: MOS_plain
0:4 0x08000c

R3:

nicro_op_state: MOS_plain

Thread 1 state:

read issue order: [1
1:1 0x051000 LDR W0, D
Ri=0x ¢

Teg writes: R2=0x_63'0000000000000001

nen writes:

)W 0X1000 (y)/4=1 Teg reads

X_630000000000001000 (y) from initialstate, R2=0x_63'0000000000000001 from 0:4

mem reads: (1:1:0:R from (0:4:0):W 0x1000 (5.

reg Teads:

from initialstats

[aron s |

Gamov L

:fiish nstrucHon: MOV W)

g

oz]

Lnstaniste memory wite values of slore NEVLCIon: SW 0X1100 (l4=1

2ffiow write 1o memory. b-w 0x1000 (y)i4=1

Tost Mpapovcrt

AArch64 MP+po+trl

0:X1=x; 0:X3=y -
LiXi=y; 1iX3=x

2.0X3] | LDR W2, [X3]

\ 1320

14 /30

https://www.cl.cam.ac.uk/~sf502/regressions/rmem/

Why Concurrency is Hard?

» Computers create an illusion that single threaded code is
executed sequentially

» It is not practical to do the same for multi-threaded programs

» Multi-threaded programs can observe optimisations

15/30

Taste of Multi-threaded
Behaviour

Out of Order Execution

Thread 0 Thread 1

MOV X2,#1 LDR X3, [X1]
STR X2, [X0] |[LDR X4, [X0]
STR X2, [X1]

17/30

Out of Order Execution
pre-allocated int64_t

[Initial state: Xo-tdata¥ X1-&flag |

Thread 0 Thread 1

MOV X2,#1 LDR X3, [X1]
STR X2, [X0] |[LDR X4, [X0]
STR X2, [X1]

17/30

Out of Order Execution
pre-allocated int64_t

[Initial state: Xo-tdata¥ X1-&flag |

Thread 0 Thread 1

MOV X2,#1 LDR X3, [X1]
STR X2, [X0] |[LDR X4, [X0]
STR X2, [X1]

] Final state: 1:X3=1 A 1:X4=0

17/30

Out of Order Execution
pre- aIIocated int64_t

’Imtlal state: X0=&data®X1= =gflag ‘

Thread 0 Thread 1

MOV X2,#1 LDR X3, [X1]
STR X2, [X0] |[LDR X4, [X0]
STR X2, [X1]

] Final state: 1:X3=1 A 1:X4=0

W data=1 R flag
S
W flag=1 R data

17/30

Out of Order Execution
pre- aIIocated int64_t

’Imtlal state: X0=&data®X1= =gflag ‘

Thread 0 Thread 1

MOV X2,#1 LDR X3, [X1]
STR X2, [X0] |[LDR X4, [X0]
STR X2, [X1]

] Final state: 1:X3=1 A 1:X4=0

W data=1 R flag=1
o e
W flag=1 R data

17/30

Out of Order Execution
pre- aIIocated int64_t

’Imtlal state: X0=&data®X1= =gflag ‘

Thread 0 Thread 1

MOV X2,#1 LDR X3, [X1]
STR X2, [X0] |[LDR X4, [X0]
STR X2, [X1]

] Final state: 1:X3=1 A 1:X4=0 \

W data=1 R flag=1
lpo/ lpo
W flag=1 R data

17/30

Out of Order Execution
pre- aIIocated int64_t

’Imtlal state: X0=&data®X1= =gflag ‘

Thread 0 Thread 1

MOV X2,#1 LDR X3, [X1]
STR X2, [X0] |[LDR X4, [X0]
STR X2, [X1]

] Final state: 1:X3=1 A 1:X4=0 \

W data=1 R flag=1
lpo/ lpo
W flag=1 R data=0

17/30

Out of Order Execution
pre-allocated int64_t

[Initial state: Xo-tdata¥ X1-&flag |

Thread 0 Thread 1

MOV X2,#1 LDR X3, [X1]
STR X2, [X0] |[LDR X4, [X0]
STR X2, [X1]

] Final state: 1:X3=1 A 1:X4=0 \

W data=1 R flag=1

b

W flag=1 R data=0

17/30

Out of Order Execution
pre-allocated int64_t

[Initial state: Xo-tdata’¥ X1-&flag |

Thread 0 Thread 1

MOV X2,#1 LDR %3, [®11
STR X2, [X0] |[LDR X4,[X0]
STR X2, [X1]

] Final state! 1:X3=1 A 1:X4=0 \

Whdata=1 R flag=1

b b

W flag=1 R data=0

17/30

Forcing In Order Execution

‘ Initial state: X0=¢data, X1=gflag

Thread 0 Thread 1
MOV X2,#1 LDR X3, [X1]
STR X2, [X0] AND X4,X3,#0//address

DMB SY//barrier |LDR X5, [X0,X4]
STR X2, [X1]

] Final state: 1:X3=1 A 1:X5=0

18/30

Forcing In Order Execution

’ Initial state: X0=&data, X1=&flag

Thread 0 Thread 1
MOV X2,#1 LDR X3, [X1]
STR X2, [X0] AND X4,X3,#0//address

DMB SY//barrier |LDR X5, [X0,X4]
STR X2, [X1]

] Final state: 1:X3=1 A 1:X5=0

W data=1 R flag=1

ldm% laddr

W flag=1 R data=0

18/30

Forcing In Order Execution

Thread 0

MOV X2,#1 LDR X3,
STR X2, [X0]
DMB SY//barrier

R flag=1

W flag=1 R data=0

18/30

Speculative Execution (Load)

‘ Initial state: X0=¢data, X1=gflag

Thread 0 Thread 1

MOV X2,#1 LDR X3, [X1]

STR X2, [X0] |CBZ X3,end//branch
DMB SY LDR X4, [X0]

STR X2, [X1] |end:

]Final state: 1:X3=1 A 1:X4=0

19/30

Speculative Execution (Load)

’Initial state: X0=&data, X1=&flag

Thread 0 Thread 1

MOV X2,#1 LDR X3, [X1]

STR X2, [X0] |CBZ X3,end//branch
DMB SY LDR X4, [X0]

STR X2, [X1] |end:

]Final state: 1:X3=1 A 1:X4=0 \

W data=1 R flag=1

ld m% lctrl

W flag=1 R data=0

19/30

Speculative Execution (Load)

‘ Initial state: X0=¢data, X1=gflag

Thread 0 Thread 1

MOV X2,#1 LDR X3, [X1d

STR X2, [X0] |CBZ X3 .,end//branch
DMB SY LDR_X4,[%0]

STR X24[X1] |end:

]Final state: 1:X3=1 /\ 1:X4=0 \

Whdata=1 R flag=1

ld m% lctrl

W flag=1 R data=0

19/30

Speculative Execution (Store)

|Initial state: X0=za, X1=tb

Thread 0 Thread 1
LDR X2,[X0] |LDR X2, [X1]
DMB SY CBZ X2,end
MOV X3,#1 MOV X3,#1
STR X3, [X1] |STR X3, [X0]

end:

Final state: 0:X2=1 A 1:X2=1

20/30

Speculative Execution (Store)

|Initial state: X0=za, X1=tb

Thread 0 Thread 1

LDR X2, [X0] |LDR X2, [X1]
DMB SY CBZ X2,end
MOV X3,#1 MOV X3,#1
STR X3, [X1] |STR X3, [X0]
end:

| Final state: 0:x2=1 A 1:x2=1 |

’ Thread 0 ‘ ’ Thread 1 ‘

R a=1 R b=1
rf ldi lctrl
W b=1 W a=1

20/30

Speculative Execution (Store)

Thread 0

LDR X2, [X0] |LDR
DMB SY

MOV X3,#i¢@
STR X3, [X1]

k‘ [Thread 1]
R b=1
Q rf ld my' lctrl

W b=1 W a=1

20/30

Write Forwarding

Initial state: X0=¢data, X1=&flag,

X2=&temp
Thread 0 Thread 1

MOV X3,#1 LDR X3, [X1]

STR X3, [X0] |CBZ X3,end

DMB SY MOV X4 ,#1

STR X3, [X1] |STR X4, [X2]
LDR X5, [X2]
AND X6,X5,#0
LDR X7, [X0,X6]
end:

1:X7=0

Final state: 1:X3=1 A 1:X5=1 A

21/30

Write Forwarding

Initial state: X0=¢data, X1=&flag,

X2=&temp
Thread 0 Thread 1 ’ThmadO‘ Thread 1
MOV X3,#1 |LDR X3, [X1] W data=1 R flag=1
STR X3, [X0] |CBZ X3,end
DMB SY MOV X4,#1 Lﬂnb rf ctrl
STR X3, [X1] [STR X4, [X2] y
LDR X5, [X2] W flag=1 W temp=1
AND X6,X5,#0
LDR X7, [X0,X6] of
end: \
Final state: 1:X3=1 A 1:X5=1 A R temp=1
1:X7=0
.\rj ‘addr
R data=0

21/30

Write Forwarding

Initial state: X0=¢data, X1=&flag,

X2=&temp
Thread 0 Thread 1 ’ThmadO‘ Thread 1
MOV X3,#1 |LDR X3, [X1] W, data=1 R flag=1
STR X3, [X0] |CBZ X3,end
DMB SY MOV X4&,#1 Lﬁnb rf ctrl
STR X3, [X1] [STR X4.,[x2] y
LDR X5, [X2] W flag=1 W temp=1
AND %6, X5, #0
LDR X7, [X0,X6] of
cnd \
Final state: 1:X3=1 A 1:X5=1 A R temp=1
1:X7=0
'\rj ‘addr
R data=0

21/30

Model State

Thread Subsystem

write
read req. read value
barrier

Storage Subsystem

Thread 0 Thread 1 --- Thread n
Memory

22/30

Model State

Thread Subsystem

write
read req. read value
barrier

Storage Subsystem

I

Thread 0 Thread 1 --- Thread n

:

Memory

22/30

Model State

Thread Subsystem

write
read req. read value
barrier

Storage Subsystem

I

Thread 0 Thread 1 --- Thread n

:

Memory

22/30

Model State

Thread Subsystem

L)

write
read req. read value
barrier

Storage Subsystem

I

Thread 0 Thread 1 --- Thread n

:

Memory

22/30

Model State

Thread Subsystem

B

write
read req. read value
barrier

Storage Subsystem

I

Thread 0 Thread 1 --- Thread n

:

Memory

22/30

Model State

Thread Subsystem

BB
o

T ry

write
read req. read value
barrier

Storage Subsystem

I

Thread 0 Thread 1 --- Thread n

:

Memory

22/30

Model State

Thread Subsystem

write
read req. read value
barrier

Storage Subsystem

Thread 0 Thread 1 --- Thread n
Memory

22/30

Model State

Thread Subsystem

|-

write
read req. read value
barrier

Storage Subsystem

Thread 0 Thread 1 --- Thread n
Memory

22/30

Model State

Thread Subsystem

|-

write
read req. read value
barrier

Storage Subsystem

Thread 0 Thread 1 --- Thread n
Memory

22/30

Model State

Thread Subsystem

|-

write
read req. read value
barrier

Storage Subsystem

Thread 0 Thread 1 --- Thread n
Memory

22/30

Thread transitions
Execute a store
Condition: a store can be executed if
1. all previous stores and loads to the same location have been
executed;
2. all previous branches are determined; and
3. all previous barriers have been executed.
Action: add a write to the top of the buffer associated with the
thread.

Execute a barrier
Condition: a barrier can be executed if
1. all previous stores and loads to the same location have been
executed; and
2. all previous branches are determined;
Action: add a barrier to the top of the buffer associated with the
thread.

23/30

Storage transitions

Flow event

The bottom most event of a non-root buffer can flow to the top of
the root buffer, and the bottom most event of the root buffer can
flow into memory.

Satisfy a read
A read that is adjacent to a write (read is higher) to the same
location can be satisfied by the write.

Reorder events
Two adjacent memory accesses in a buffer can be reordered with
each other, if they are to different memory locations.

24 /30

Example

Initial state: X0=&data, X1=&flag,
0:X2=1
Thread 0 Thread 1

STR X2, [X0] |[LDR X3, [X1]
DMB SY AND X4,X3,#0
STR X2, [X1] |[LDR X5, [X0,X4]

’Forbidden: 1:X3=1 A 1:X5=0 ‘

W data=1 R flag=1

ldm% laddr

W flag=1 R data=0

25/30

Example

Thread 0

Thread 1

ofetch

fetch

I

’datazO ‘flagzO ‘

26/30

Example

Thread 0 Thread 1
STR X2, [X0] read reg. X0=&data fetch
ofetch
I
I
’datazO ‘flagzO ‘

26/30

Example

Thread 0

Thread 1

STR X2, [X0] read reg. X0=&data
DMB SY

ofetch

fetch

l

’datazO ‘flagzO ‘

26/30

Example

Thread 0 Thread 1

STR X2, [X0] read reg. X0=&data ofetch
DMB SY
STR X2, [X1] read reg. X1=&flag

I
’ data=0 ‘ flag=0 ‘ ‘ o

26/30

Example

Thread 0

Thread 1

STR X2, [X0] read reg. X0=&data| |LDR X3, [X1]
DMB SY
STR X2, [X1] read reg. X1=&flag

read reg. X1=&flag

ofetch

l

’ data=0 ‘ flag=0 ‘ ‘ o

26/30

Example

Thread 0 Thread 1

STR X2, [X0] read reg. X0=&data| |LDR X3, [X1]
DMB SY AND X4,X3,#0
STR X2, [X1] read reg. X1=&flag

read reg. X1=&flag

ofetch

l

’ data=0 ‘ flag=0 ‘ ‘ o

26/30

Example

Thread 0 Thread 1
STR X2, [X0] read reg. X0=&data| |LDR X3, [X1] read reg. X1=&flag
DMB SY AND X4,X3,#0
STR X2, [x1] read reg. X1=&flag LDR X5, [X0,X4Jeread reg. X0=&data

I
’ data=0 ‘ flag=0 ‘ ‘ o

26/30

Example

Thread 0

Thread 1

STR X2, [X0] read reg. X0=&data| |LDR X3, [X1]

DMB SY

AND X4,X3,#0

STR X2, [X1] read reg. X1=&flag LDR X5, [X0,X4]

eread reg. X1=&flag

I
’ data=0 ‘ flag=0 ‘ ‘ o

26/30

Example

Thread 0

Thread 1

STR X2, [X0] read reg. X0=&data| |LDR X3, [X1]

DMB SY

AND X4,X3,#0

STR X2, [X1] read reg. X1=&flag LDR X5, [X0,X4]

erequest read flag

I
’ data=0 ‘ flag=0 ‘ ‘ o

26/30

Example

Thread 0 Thread 1
STR X2, [X0] read reg. X0=&data| |LDR X3, [X1]
DMB SY AND X4,X3,#0
STR X2, [X1leread reg. X1=&flag LDR X5, [X0,X4]

read flag

I
’ data=0 ‘ flag=0 ‘ ‘ o

26/30

Example

Thread 0 Thread 1
STR X2, [X0] read reg. X0=&data| |LDR X3, [X1]
DMB SY AND X4,X3,#0
STR X2, [X1Jeread reg. X2=1 LDR X5, [X0,X4]
read flag
|
I
I
’ data=0 ‘ flag=0 ‘ ‘ e

26/30

Example

Thread 0 Thread 1
STR X2, [X0Jeread reg. X0=&data| |LDR X3, [X1]
DMB SY AND X4,X3,#0
STR X2, [X1] LDR X5, [X0,X4]
read flag
|
I
I
’ data=0 ‘ flag=0 ‘ ‘ e

26/30

Example

Thread 0

Thread 1

STR X2, [X0Jeread reg. X2=1
DMB SY
STR X2, [X1]

LDR X3, [X1]
AND X4,X3,#0
LDR X5, [X0,X4]

read flag

l

’ data=0 ‘ flag=0 ‘ ‘ o

26/30

Example

Thread 0

Thread 1

STR X2, [X0Jewrite mem. data=1
DMB SY
STR X2, [X1]

LDR X3, [X1]
AND X4,X3,#0
LDR X5, [X0,X4]

read flag

l

’ data=0 ‘ flag=0 ‘ ‘ o

26/30

Example

STR X2, [X0]

Thread 0 Thread 1
finished! LDR X3, [X1]
ebarrier AND X4,X3,#0

DMB SY
STR X2, [X1]

LDR X5, [X0,X4]

write data=1 read flag

I
’ data=0 ‘ flag=0 ‘ ‘ o

26/30

Example

Thread 0 Thread 1
STR X2, [X0] finished! LDR X3, [X1]
DMB SY finished! AND X4,X3,#0

STR X2, [X1lewrite mem. flag=1

LDR X5, [X0,X4]

barrier
write data=1

read flag

l

’ data=0 ‘ flag=0 ‘ ‘ o

26/30

Example

Thread 0 Thread 1
STR X2, [X0] finished! LDR X3, [X1]
DMB SY finished! AND X4,X3,#0
STR X2, [X1] finished! LDR X5, [X0,X4]
write flag=1 read flag
barrier
ewrite data=1

I
’ data=0 ‘ flag=0 ‘ ‘ o

26/30

Example

Thread 0 Thread 1
STR X2, [X0] finished! LDR X3, [X1]
DMB SY finished! AND X4,X3,#0

STR X2, [X1] finished!

LDR X5, [X0,X4]

write flag=1 read flag
ebarrier

I
write data=1

l

’ data=0 ‘ flag=0 ‘ ‘ o

26/30

Example

Thread 0 Thread 1
STR X2, [X0] finished! LDR X3, [X1]
DMB SY finished! AND X4,X3,#0

STR X2, [X1] finished!

LDR X5, [X0,X4]

swrite flag=1 read flag

|

barrier
write data=1

l

’ data=0 ‘ flag=0 ‘ ‘ o

26/30

Example

Thread 0 Thread 1
STR X2, [X0] finished! LDR X3, [X1]
DMB SY finished! AND X4,X3,#0

STR X2, [X1] finished!

LDR X5, [X0,X4]

eread flag

1
write flag=1

barrier

write data=1

l

’ data=0 ‘ flag=0 ‘ ‘ o

26/30

Example

Thread 0 Thread 1
STR X2, [x0] finished! LDR X3, [X1] esatisfy read flag=1
DMB SY finished! AND X4,X3,#0

STR X2, [X1] finished!

LDR X5, [X0,X4]

I
read flag
write flag=1
barrier
write data=1

’datazO ‘flagzO ‘

26/30

Example

Thread 0 Thread 1
STR X2, [X0] finished! LDR X3,[X1] ewrite reg. X3=1
DMB SY finished! AND X4,X3,#0

STR X2, [X1] finished!

LDR X5, [X0,X4]

1
write flag=1

barrier

write data=1

l

’ data=0 ‘ flag=0 ‘ ‘ o

26/30

Example

Thread 0 Thread 1
STR X2, [X0] finished! LDR X3, [X1] finished!
DMB SY finished! AND X4,X3,#0 eread reg. X3=1

STR X2, [X1] finished!

LDR X5, [X0,X4]

1
write flag=1

barrier

write data=1

l

’ data=0 ‘ flag=0 ‘ ‘ o

26/30

Example

Thread 0 Thread 1
STR X2, [X0] finished! LDR X3, [X1] finished!
DMB SY finished! AND X4,X3,#0 ewrite reg. X4=0

STR X2, [X1] finished!

LDR X5, [X0,X4]

1
write flag=1

barrier

write data=1

l

’ data=0 ‘ flag=0 ‘ ‘ o

26/30

Example

Thread 0 Thread 1
STR X2, [X0] finished! LDR X3, [X1] finished!
DMB SY finished! AND X4,X%X3,#0 finished!

STR X2, [X1] finished!

LDR X5, [X0,X4Jeread reg. X4=0

1
write flag=1

barrier

write data=1

l

’ data=0 ‘ flag=0 ‘ ‘ o

26/30

Example

Thread 0 Thread 1
STR X2, [X0] finished! LDR X3, [X1] finished!
DMB SY finished! AND X4,X%X3,#0 finished!

STR X2, [X1] finished!

LDR X5, [X0,X4lerequest read data

1
write flag=1

barrier

write data=1

l

’ data=0 ‘ flag=0 ‘ ‘ o

26/30

Example

Thread 0 Thread 1
STR X2, [X0] finished! LDR X3, [X1] finished!
DMB SY finished! AND X4,X%X3,#0 finished!

STR X2, [X1] finished!

LDR X5, [X0,X4]

eread data

1
write flag=1

barrier

write data=1

l

’ data=0 ‘ flag=0 ‘ ‘ o

26/30

Example

Thread 0 Thread 1
STR X2, [X0] finished! LDR X3, [X1] finished!
DMB SY finished! AND X4,X%X3,#0 finished!

STR X2, [X1] finished!

LDR X5, [X0,X4]

I
sread data

write flag=1
barrier
write data=1

’ data=0 ‘ flag=0 ‘ ‘ o

26/30

Example

Thread 0 Thread 1
STR X2, [X0] finished! LDR X3, [X1] finished!
DMB SY finished! AND X4,X%X3,#0 finished!

STR X2, [X1] finished!

LDR X5, [X0,X4]

I
write flag=1
read data
barrier
swrite data=1

’ data=0 ‘ flag=0 ‘ ‘ o

26/30

Example

Thread 0 Thread 1
STR X2, [X0] finished! LDR X3, [X1] finished!
DMB SY finished! AND X4,X%X3,#0 finished!

STR X2, [X1] finished!

LDR X5, [X0,X4]

I
write flag=1
read data
sbarrier

l

| data=1 | flag=0 | -

26/30

Example

Thread 0 Thread 1
STR X2, [X0] finished! LDR X3, [X1] finished!
DMB SY finished! AND X4,X%X3,#0 finished!

STR X2, [X1] finished!

LDR X5, [X0,X4Jlesatisfy read data=1

I
write flag=1
read data

l

| data=1 | flag=0 | -

26/30

Example

Thread 0 Thread 1
STR X2, [X0] finished! LDR X3, [X1] finished!
DMB SY finished! AND X4,X%X3,#0 finished!

STR X2, [X1] finished!

LDR X5, [X0,X4Jewrite reg. X5=1

1
write flag=1

l

| data=1 | flag=0 | -

26/30

Example

Thread 0 Thread 1
STR X2, [X0] finished! LDR X3, [X1] finished!
DMB SY finished! AND X4,X%X3,#0 finished!

STR X2, [X1] finished!

LDR X5, [X0,X4] finished!

I
swrite flag=1

l

| data=1 | flag=0 | -

26/30

Example

Thread 0 Thread 1
STR X2, [X0] finished! LDR X3, [X1] finished!
DMB SY finished! AND X4,X%X3,#0 finished!

STR X2, [X1] finished!

LDR X5, [X0,X4] finished!

l

| data=1 | flag=1 | -

26/30

Multi-copy Atomicity

Behaviour that arise from buffer topologies other than the flat one:

Thread 0 Thread 1 Thread 2

This turned out to be more complicated than ARM expected.

27/30

Multi-copy Atomicity

Behaviour that arise from buffer topologies other than the flat one:

read 0 Thread 1 Threa

This turned out to be more complicated than ARM expected.

27/30

More Abstract Models

The Flat Model
» Similar thread sub-system

> Storage is a simple array (no buffers)

28/30

More Abstract Models

The Flat Model
» Similar thread sub-system

> Storage is a simple array (no buffers)

The Promising Model
» Instead of speculation, promise stores
» Instructions are executed in one step
» Instructions are executed in-order (almost)

» More suitable as basis for program logic

28/30

More Abstract Models

The Flat Model
» Similar thread sub-system

> Storage is a simple array (no buffers)

The Promising Model
» Instead of speculation, promise stores
» Instructions are executed in one step
» Instructions are executed in-order (almost)

» More suitable as basis for program logic

Axiomatic Model
» Very concise

» Appears in the ARM reference manual

28/30

Research Methodology

. Run tests ;
Read the Write lit- on hardware D.|scuss r§sults
manual mus tests with architects
T and model J7
Change yes Change
the model model?

A

29/30

Research Methodology

Discuss results

—> . .
with architects

!

Change

. Run tests
Read th Write lit-
C a <)—D rite i > on hardware
manual mus tests
T and model
Change 4 yes
the model
no

yesJ7

Model is
sound?

yes$
Done

Report to
vendor
29/30

model?

Generate tests
systematically

l

Run tests
<+— on hardware
and model

Contribution

» As a result of my work ARM has changed the memory model

v

A reliable model of the ARMv8 architecture
» Machine readable definitions

» A tool, derived from the definitions (RMEM)
» Bugs in commercial hardware

» Similar work for RISC-V

30/30

Contribution

» As a result of my work ARM has changed the memory model

v

A reliable model of the ARMv8 architecture
» Machine readable definitions

» A tool, derived from the definitions (RMEM)
» Bugs in commercial hardware

» Similar work for RISC-V

Thank you

30/30

