
Flowing Relaxes POP - Proof

(supplementary material for Modelling the ARMv8 Architecture, Operationally:
Concurrency and ISA)

1 Notation

For a set A, let T (A), the hierarchical partitioning of A, denote a tree whose nodes are labeled with
subsets of A subject to:

• there are exactly |A| many leaves and each leaf has a unique label from A,

• the label of a parent node is the (disjoint) union of the labels of its children nodes.

Note that with those constraints the label of the root node has to be A. We will consider a
hierarchical partitioning of the set of thread identifiers of a given Flowing (or POP) system, and
denote it as T . Each node in T is called a segment, ranged over by S, S′, S1, We write S ≥ S′

whenever S is an ancestor of S′ and S > S′ whenever S is a proper ancestor of S′. Let S ⊕ S′

denote the minimal common ancestor of S and S′; i.e. the segment contained in every segment
which contains S ∪ S′.

In Table 1, we list the symbols used to denote frequently occurring components about Flowing
and POP systems.

F System states of Flowing, ranged over by f, fi, f
′, . . .

P System states of PoP, ranged over by p, pi, p
′, . . .

Q Generic system states (Flowing or PoP), ranged over by q, qi, q
′, . . .

ss(q) The storage subsystem state of the system state q

ts(q) The thread subsystem state of the system state q

Table 1: Some notation for the main components of Flowing and POP systems.

2 The Simulation Relation, σ

That POP relaxes Flowing will be established by constructing a simulation relation σ ⊆ F×P. The
proof will be by induction on the length of a Flowing trace, rF . The inductive step is to prove that
if f is any Flowing state reached by a Flowing trace rF of length k, there is a POP state p such

that (f, p) ∈ σ and there is some Flowing transition f
t
−→F f ′, then there is a POP state p′ such that

p
µ(t)
−−→P

∗ p′ and (f ′, p′) ∈ σ.

1

2.1 Flowing state components

Let f ∈ F be a Flowing system state. The relevant components of the state, along with the notation
we are going to use in the rest of this document given in square brackets, are the following:

• thread_ids [f.T id] – set of thread identifiers comprising the system.

• topology [f.T opo] – a hierarchical partitioning of f.T id, representing the segment intercon-
nections.

• thread_to_segment [f.T ofS] – maps each thread t to the leaf segment that (exclusively)
contains t.

• buffers [f.Buf] – maps each segment S to the sequence of requests contained in S.

• reordered [f.Reord] – set of pairs of requests which have already been reordered.

• memory [f.Mem] – set of write requests, at most one per location, representing the most recent
write to reach the memory.

Additionally, we introduce the following auxiliary components:

• [f.Evtact] – set of requests that are currently in the storage subsystem.

• [f.Evt] – set of requests that are either in f.Evtact or have completed execution1.

• [f.Seg] – maps each request in f.Evtact to some segment in f.T opo.

• [Smem] – segment containing all requests that have flown into memory (with the requirement
that Smem not a segment in f.T opo). We assume that for any f, f.T id ⊆ Smem and that f.Buf
is extended to include Smem.

We also define a partial order ≻f over requests in f.Evt such that for any two requests e, e′ ∈ f.Evt
e ≻f e

′ holds if one of the following condition holds:

• f.Seg(e) > f.Seg(e′),

• f.Seg(e) = Smem and f.Seg(e′) 6= Smem,

• there is some segment S ∈ f.T opo∪{Smem} such that S = f.Seg(e) = f.Seg(e′) and f.Buf(S)
is of the form E1 · e

′ · E2 · e · E3 for some sequences of requests Ei over f.Evt.

Finally, for any read/write request e we use Addr(e) to denote the address e accesses.

2.2 POP storage subsystem states

Let p ∈ P be a POP system state. The relevant components of the state, along with the notation
we are going to use in the rest of this document given in square brackets, are the following:

• thread_ids [p.T id] – set of thread identifiers comprising the system.

• requests_seen [p.Evt] – set of requests accepted by the storage subsystem.

1This means that in case e is a read request it has been satisfied; otherwise, it has flown into memory.

2

• order_constraints [p.Ord] – partial order over requests_seen (may include orderings be-
tween requests to different locations).

• requests_propagated_to [p.P rop] – maps each thread identifier t to the set of requests
(subset of the current value of requests_seen) that have already been propagated to t.

A POP state p is called T -conforming if for all e ∈ p.Evt, the set {t | e ∈ p.P rop(t)} is a
segment in T . In such a case, the set {t | e ∈ p.P rop(t)} is called the segment of e, written
p.Seg(e). Additionally, we introduce the auxiliary component p.Mem which is the dual of f.Mem
of a Flowing state.

2.3 Simulation invariant, Iσ

Let f and p be system states of the Flowing and the PoP systems, respectively. Let sf and sp be
shorthand for ss(f) and ss(p), respectively. Then the simulation invariant Iσ(f, p) is defined as the
conjunction of the following invariants:

Itss(f, p): ts(f) = ts(p)

Itid(f, p): f.T id = p.T id

Ievt(f, p): f.Evt = p.Evt

Iord(f, p): for any two requests e, e′ ∈ p.Evt, (e, e′) ∈ p.Ord implies e ≻f e
′,

Iseg(f, p): p is f.T opo-conforming and p.Seg(e) = S iff f.Buf(S) contains e.

We define the simulation relation σ by the following equivalence:

∀f, p . σ(f, p) ⇔ Iσ(f, p)

3 The Transitions

In this section, the transitions of the Flowing and PoP storage subsystems will be listed and a
correspondence between them, i.e. µ : TrF 7→ Tr∗P , will be given.

3.1 The Flowing Storage Subsystem Transitions, TrF

〈99K e〉F Moves request e into the storage subsystem (actually a side-effect of a thread subsystem
transition).

〈e →〉F Pulls e from the head of some segment and pushes onto the tail of the next segment.

〈e ↔ e′〉F Swaps the positions of two requests e and e′ both located in the same segment.

〈r ` w〉F Matches the read request r with the write request w, consecutively located in some
segment.

〈r 99K〉F Matches the read request r with the contents of the memory, when r is at the head of the
root segment.

3

〈w 99K〉F Moves the write request w at the head of the root segment to the memory.

〈b 99K〉F Removes the barrier request b from the head of the root segment.

〈99K wx ⌣ w〉F Moves the write exclusive request wx which is paired with the write request w
located in some segment into the storage subsystem.

〈99K wx ⌣〉F Moves the write exclusive request wx which is paired with the memory (i.e. the
write request which has most recently updated the contents in the memory) into the storage
subsystem.

3.2 The POP Storage Subsystem Transitions, TrP

〈99K e〉P Moves an request e into the storage subsystem; similar to 〈99K e〉F .

〈e1 coh e2〉P Modifies the extended coherence relation by ordering two hitherto unordered requests
e1 and e2.

〈e t〉P Propagates request e to thread t.

〈t : r ` w〉P Sends thread t the value observed by read request r which is matched with the write
request w.

〈99K wx ⌣ w〉P Similar to the dual Flowing transition.

3.3 The transition mapping, µ

Here we list each transition of the Flowing storage subsystem and the corresponding sequence of
transitions that are to be done by the POP storage subsystem.

t µ(t)
〈99K e〉F 〈99K e〉P
〈e →〉F 〈e t1〉P · 〈e t2〉P . . . 〈e tk〉P ,

where S′ \ S = {ti}
〈e ↔ e′〉F ε
〈r ` w〉F 〈t : r ` w〉P ,

where t is the thread which has issued r
〈r 99K〉F 〈t : r ` ŵ〉P ,

where t is the thread which has issued r, ŵ
is the most recent complete write to Addr(r)

〈w 99K〉F ε
〈b 99K〉F ε
〈99K wx ⌣ w〉F 〈99K wx ⌣ w〉P
〈99K wx ⌣〉 〈99K wx ⌣ ŵ〉P ,

where ŵ is the most recent complete write to
Addr(r)

4

4 Proof of Simulation

In this section, we prove by induction that the simulation invariant Iσ is preserved. Formally, we
show that for any Flowing state f and transition t enabled at f, the transition sequence µ(t) from
p = σ(f) is enabled and for the respective end states f ′ and p′, we have σ(f ′) = p′.

We omit the transitions of the thread subsystem which is identical for Flowing and POP systems.
The only action of the transition system that implicitly involves the storage subsystem state is the
removal of a request from the storage subsystem. Assume that e is the request to be removed
from the storage subsystem at state f and that (f, p) ∈ σ(f, p). Observe that Iσ(f, p) implies that
ts(f) = ts(p) so the POP state p is able to perform the same transition which results in the removal
of e from ss(p). Since f ′.T id = f.T id and p′.T id = p.T id for all f ′ and p′ reachable from f and
p respectively, there is no transition that can invalidate Itid(f, p).

2 Since f ′.Evt = f.Evt \ {e},
p′.Evt = p.Evt \ {e} and f.Evt = p.Evt by the assumption that Ievt(f, p), we have Ievt(f

′, p′).
Similarly, it is straightforward to show that Iseg(f

′, p′) holds. Finally, the removal of e from p

means that p′.Ord = [(p.Ord \ {e})∩Dep]∗. We show in the next section (Lemma 1) that p.Ord is
always the transitive closure of a subset of Dep. This observation and the fact that p.Ord and ≻f

do not conflict by Iord(f, p) are enough to conclude that Iord(f
′, p′) also holds.

In what follows, we use Dep as a binary relation over requests capturing the reorder condition
used in the preconditions of storage subsystem transitions (see Sec.6.4 of the main submission).
That is, for any two requests e, e′, (e, e′) ∈ Dep if and only if the reorder condition is not satisfied
by e and e′.

4.1 Auxiliary Claims

We begin by stating several side results which will then be used in the simulation proof.

Lemma 1 (Ord ⊆ Dep∗). For all requests e, e′ and POP states p, if (e, e′) ∈ p.Ord, then there
exist e1, . . . , en such that e1 = e, en = e′ and for all i ∈ [1, n) we have (ei, ei+1).

Proof. Proof is done by induction on the length of trace. Base case is vacuously true since at
an initial state p0, p0.Ord = ∅. Now assume that the claim holds for all traces of length up to

k. Consider a trace p0
a1−→P p1 . . . of length k + 1 and let pk

ak+1

−−−→P pk+1 be its last (k + 1th)
transition. There are three cases to consider based on the transition with action ak+1.

• ak+1 is an accept request type, of request ê by thread t̂, into the storage subsystem. By
definition of the transition, pk.Ord ⊆ pk+1.Ord, and pk+1.Ord is derived from pk.Ord by first
adding all pairs (e, ê) such that e has propagated to t̂ and (e, ê) ∈ Dep, and then taking the
transitive closure. This implies that any pair (e1, e2) that is in pk+1.Ord \ pk.Ord we have
ê 6= e1 and ê = e2. Assume (e, e′) is in pk+1.Ord. If (e, e′) is also in pk.Ord, then by the
induction hypothesis there exist e1, . . . , en satisfying the claim. If (e, e′) is not in pk.Ord, then
by the above observation we have e′ = ê. By construction, we must have either (e, ê) ∈ Dep
or some e′ such that (e, e′) ∈ pk.Ord and (e′, ê) ∈ Dep. By the induction hypothesis, there
must exist some e1, . . . , em such that e = e1, e

′ = em and (ei, ei+1) ∈ Dep for all i ∈ [1,m).
This immediately implies that e1, . . . , em, ê is the desired sequence of (e, ê).

2As a matter of fact, we will in the rest of the simulation proof ignore the preservation of Itid(f, p) which as

argued here is trivial.

5

• ak+1 is a propagate request type, of request ê by thread t̂ to thread t′. By definition of
the transition, pk.Ord ⊆ pk+1.Ord, and pk+1.Ord is derived from pk.Ord by first adding all
pairs (ê, e) such that e has propagated to t′ but not to t̂ and (ê, e) ∈ Dep, and then taking
the transitive closure. Assume (e, e′) is in pk+1.Ord. If (e, e′) is also in pk.Ord, then by the
induction hypothesis there exist e1, . . . , en satisfying the claim. If (e, e′) is not in pk.Ord, then
there exists a request e′′ such that (e, ê) ∈ pk.Ord, (ê, e′′) ∈ Dep and (e′′, e′) ∈ pk.Ord. By the
induction hypothesis, we have the sequences e1, . . . , en and e′1, . . . , e

′
m for (e, ê) and (e′′, e′),

respectively. Then, the sequence e1, . . . , en, e
′
1, . . . , e

′
m is the desired sequence for (e, e′).

• ak+1 is a remove request type, of requeset ê by thread t̂. By definition of the transition,
pk+1.Ord ⊆ pk.Ord, and pk+1.Ord is derived from pk.Ord by first removing all pairs con-
taining e, i.e. (e′, e) or (e, e′), of those remaining pairs retaining only pairs in Dep and then
taking the transitive closure. Since it is obtained by taking the transitive closure of a subset
of Dep, the claim holds pk+1.Ord.

Lemma 2 (Ord and propagate). Let p0
a1−→P p1 . . .

an−−→P pn be a POP trace and e1, e2 be two
requests such that for some 1 ≤ j ≤ n we have (e1, e2) ∈ pj .Ord. Let t ∈ pj .T id be a thread to
which neither request has propagated; i.e. {e1, e2} ∩ pj .P rop(t) = ∅. If for all i ∈ [j, n] we have
(e1, e2) ∈ pi.Ord and e1 /∈ pn.P rop(t), then e2 /∈ pn.P rop(t).

Proof. Follows directly from the definition of the propagate transition 〈e t〉P .

Lemma 3 (Dep and Flow). Let f0
a1−→F f1 . . .

an−−→F fn be a Flowing trace and e1, e2 be two requests
such that (e1, e2) ∈ Dep. If for some j ∈ [1, n] we have e1 ≻fj e2 and e1 is in fn.Evt (so e1 is
neither restarted nor removed), then for all j ≤ i ≤ n, e2 ∈ fi.Evt implies that e1 ≻fi e2.

Proof. Follows directly from the fact that reordering of e1 with e2 is not possible when e1 is in front
of e2 due to (e1, e2) ∈ Dep.

Lemma 4 (Conflict and Ord). Let p0
a1−→P p1 . . .

an−−→P pn be a POP trace. Let e, e′pn.Evt be two
fully conflicting requests; i.e. both (e, e′) and (e′, e) are in Dep. If {e, e′} ⊆ pn.P rop(t) holds for
some thread t, then either (e, e′) ∈ pn.Ord holds or (e′, e) ∈ pn.Ord holds.

Proof. Consider the maximal suffix in which the condition {e, e′} ⊆ pn.P rop(t) holds for at least
one thread t. Let pj be the state which begins this suffix. Without loss of generality assume that
e was already propagated to t prior to pj and e′ is propagated to t by the transition aj . There
are two cases to consider. One case is when aj is an accept request transition. In this case, by
the definition of the accept request transition, Ord will be updated to incude the pair (e, e′). The
other case is when aj is a propagate request transition. In this case, again by the definition of the
transition, Ord will be updated to include the pair (e′, e). In either case, the pair remains in Ord,
that is pi.Ord includes the pair for all i ≥ j unless either e or e′ is removed which we assumed does
not happen in the suffix.

Corollary 1. If e and e′ are fully conflicting and either one is fully propagated (for all t, e ∈
p.P rop(t)), then either (e, e′) ∈ p.Ord or (e′, e) ∈ p.Ord.

Proof. Follows immediately from Lemma 4.

6

Lemma 5 (Thread Partitions). Let p be a T -conforming POP state. Let e, e′ be two requests in
p.Evt.

• If there exists some thread t such that e, e′ ∈ p.P rop(t), then either p.Seg(e) ≥ p.Seg(e′) or
p.Seg(e′) ≥ p.Seg(e).

• If there does not exist a thread t such that e, e′ ∈ p.P rop(t), then p.Seg(e) and p.Seg(e′) are
proper descendants of p.Seg(e)⊕ p.Seg(e′).

Proof. Both results follow immediately from the definition of hierarchical partitioning.

4.2 Base Case – Initial System States

A Flowing state f0 is initial implies that f0.Buf(S) = ∅ for all S ∈ f0.T opo; f0.Reord = ∅;
f0.Mem[l] = wl for all addresses l where wl is a hypothetical write request representing the ini-
tial value at address l. Furthermore, we set the auxiliary components such that f0.Evtact = ∅,
f0.Evt = f0.Buf(Smem) = W where W is a sequence of all wl.

The POP initial state p0 corresponding to f0 is constructed by setting ts(p0) = ts(f0), p0.T id =
f0.T id, p0.Evt = f0.Evt, p0.Ord = ∅, p0.P rop(t) = {w ∈ W} for all t ∈ p0.T id, p0.Mem = f0.Mem.
This implies that Iσ(f0, p0) as required.

4.3 Inductive Step – Transitions

Let f be a state of the Flowing system and let p be the state of the POP system such that (f, p) ∈ σ

holds. We show that if f
a
−→F f ′ holds, then there exists p′ such that p

µ(a)
−−−→P

∗ p′ and (f ′, p′) ∈ σ
hold.

In the following, for each transition we specify the precondition for the transition (f and p have
to satisfy their corresponding preconditions for the transition to take place) and the next state
by stating only those components of the state that change. We use a predicate Block to abstract
the conditions which capture the blocking condition regarding the avoidance of deadlock’s in the
presence of exclusive writes. The intended meaning of Block(e, wx, w) is assumed to evaluate to
true exactly when the exclusive write wx is coupled with w and introducing e between these two
requests (by flowing into a parent segment in Flowing or propagating to a thread in POP) can
cause an eventual deadlock. We require Block(e, wx, w) evaluates to true only when e fully conflict
with both wx and w; i.e. any pair that has e and one of wx or w is in Dep. We choose this
more abstract depiction for write exclusive related transitions in order to show that as long as both
Flowing and POP use the same predicate, the simulation relation will hold (much like the Dep
relation abstracting the reordering conditions).

⋄ a = 〈99K e〉F

Flowing Precondition:

• Assuming e is issued by thread t, then e is not in the (leaf) segment f.T ofS(t) and t is in
f.T id.

Flowing Postcondition:

• f ′.T ofS(t) is set to e · (f.T ofS(t)).

7

• f ′.Evtact is set to f.Evtact ∪ {e}.

• f ′.Evt is set to f.Evt ∪ {e}.

• f ′.Seg(e) is set to f.T ofS(t).

⋄ µ(a) = 〈99K e〉P

POP Precondition:

• e is not in p.Evt and t is in p.T id.
This follows from Ievt(f, p) and Itid(f, p).

POP Postcondition:

• p′.Evt is set to p.Evt ∪ {e}.
This establishes Ievt(f

′, p′).

• p′.P rop(t) is set to p.P rop(t) ∪ {e}.
This establishes Iseg(f

′, p′).

• p′.Ord is set to p.Ord(t) ∪ {(e′, e) | e′ ∈ E} where E is a subset of requests that have been
propagated to t, i.e. E ⊆ p.P rop(t) such that (e, e′) ∈ Dep.
This establishes Iord(f

′, p′).

⋄ t = 〈e →〉F

Flowing Precondition:

• e is at the bottom of a segment S (f.Buf(S) is of the form E · e).

• S′ is the parent segment of S in f.T opo.

• Block(e, wx, w) evaluates to false for any exclusive couple wx and w such that if Sx = f.Seg(wx)
and Sw = f.Seg(w) where Sx 6= S′ is not a descendant of S and Sx⊕S = S′, and Sw > S (Sw

is a strict ancestor of S).

Flowing Postcondition:

• f ′.Buf(S) = E

• f ′.Buf(S′) = e · [f.Buf((S′)]

• f ′.Reord is set to f.Reord \ {(e1, e2) | e1 = e ∨ e2 = e}

• f ′.Seg(e) is set to S′.

⋄ µ(a) = 〈e t1〉P · 〈e t2〉P . . . 〈e tk〉P , where S′ \ S = {ti}

POP Precondition:

8

• e ∈ p.Evt.
By Ievt(f, p), e ∈ f.Evt implies e ∈ p.Evt.

• e /∈ p.P rop(ti) for all ti ∈ S′ \ S.
By Iseg(f, p), p is a T -conforming state and p.Seg(e) = f.Seg(e). This implies that for any
thread t′ if t′ /∈ S then e /∈ p.P rop(t′).

• for any e′ such that (e′, e) ∈ p.Ord and e′ ∈ p.P rop(t), e′ ∈ p.P rop(ti) for all ti ∈ S′ \ S.
By Lemma 1, there exists a sequence e1, . . . , en of requests in p.Evt such that e1 = e′, en = e
and for all j ∈ [1, n) we have (ej , ej+1) ∈ Dep. By Lemma 3, each ej except for en = e must
be in some ancestor of S′; i.e. p.Seg(ej) ≥ S′. By the induction hypothesis, this implies that
all ei excluding en = e (but including e1 = e′) must satisfy p.Seg(ei) ≥ S′. But this implies
that for all t′ ∈ S′ \ S, we have ei ∈ p.P rop(t′) (except for en = e) as required.

• For any exclusive write wx such that wx ∈ p.P rop(t′) \ p.P rop(t) and its coupled write w
satisfies (w, e) ∈ p.Ord, Block(e, wx, w) evaluates to false.
By the requirement of Block (see its definition above), if w and e do not conflict, then
Block(e, wx, w) cannot be true. Assume that they do. By the assumption that (w, e) ∈ p.Ord
and by Iord(f, p), we must have w ≻f e. But under these conditions, Block(e, wx, w) must
also be checked for the Flowing transition; so it cannot be true.

POP Postcondition:

• p′.P rop(ti) is set to p.P rop(ti) ∪ {e}.
This establishes Iseg(f

′, p′).

• p′.Ord is the transitive closure of the minimal set that includes p.Ord and all pairs (e, e′) such
that p.Seg(e′) ≤ S′ \ S holds and (e, e′) ∈ Dep.
This establishes Iord(f

′, p′).

• p′.Evt is unchanged (equal to p.Evt).
This establishes Ievt(f

′, p′).

⋄ a = 〈e ↔ e′〉F

Flowing Precondition:

• there is some segment S such that S = f.Seg(e) = f.Seg(e′), (e, e′) /∈ f.Reord, f.Buf(S) is of
the form E1 · e · e

′E2.

• (e′, e) /∈ Dep.

Flowing Postcondition:

• f ′.Reord is set to f.Reord ∪ {(e, e′)}.

• f ′.Buf(S) is set to E1 · e
′ · e · E2.

⋄ ε, i.e. no transition

POP Precondition:

9

• True

POP Postcondition:

• p′ = p.
Observe that only Iord(f

′, p′) is affected by the corresponding Flowing transition. By Lemma 1
and Lemma 3 and the fact that e and e′ are adjacent in S, the only possibility of having
(e′, e) ∈ p.Ord is if (e, e′) ∈ Dep which is not true by the Flowing precondition. This implies
that e and e′ are not ordered in p′.Ord which establishes Iord(f

′, p′).

⋄ a = 〈r ` w〉F

Flowing Precondition:

• There exists some S such that f.Seg(r) = f.Seg(w) = S.

• r and w are consecutive in S; i.e. f.Buf(S) = E1 ·r ·w ·E2 for some request sequences E1, E2.

• r and w are to the same address; i.e. Addr(r) = Addr(w).

Flowing Postcondition:

• Send a read response (w.val) to thread t which issued r.

• Remove r; i.e. f ′.Evt is set to f.Evt \ {r}.

• Set f ′.Evtact to f.Evtact \ {r}.

⋄ µ(a) = 〈t : r ` w〉P

POP Precondition:

• r and w have been propagated to the same threads; i.e. for all t′, r ∈ p.P rop(t′) iff w ∈
p.P rop(t′).
By Iseg(f, p), for any requset e and thread t, t ∈ f.Seg(e) implies e ∈ p.P rop(t). The condition
is implied by the fact that f.Seg(r) = f.Seg(w).

• r and w are to the same address.
Implied by the Flowing precondition.

• (w, r) ∈ qp.Ord.
According to the definition of Dep, r and w are fully conflicting; i.e. both (r, w) ∈ Dep and
(w, r) ∈ Dep hold. By Lemma 4, we must either have (r, w) ∈ p.Ord or (w, r) ∈ p.Ord. By
Iord(f, p), for any two requests e, e′ ∈ p.Evt we have (e, e′) ∈ p.Ord implying e ≻f e

′. Since
w ≻f r holds, we must have (w, r) ∈ p.Ord.

• if there is a request e ordered after w and before r, then e must be a fully propagated access
to a different address; i.e. if there is e ∈ p.Evt such that (w, e) ∈ p.Ord and (e, r) ∈ p.Ord,
then p.Seg(e) = Sroot and Addr(e) 6= Addr(r).
By Iord(f, p), (w, e) ∈ p.Ord and (e, r) ∈ p.Ord imply together that w and r cannot be
adjacent in f.Seg(r), contradicting the Flowing precondition.

10

POP Postcondition:

• Send a read response (w.val) to thread t which issued r.
This establishes Itss(f

′, p′).

• Remove r from p.Evt.
This establishes Ievt(f

′, p′) ∧ Iseg(f
′, p′).

• Set p′.Ord to the transitive closure of (p.Ord \ {(e1, e2 | e1 = r ∨ e2 = r}) ∩Dep.
This establishes Iord(f

′, p′).

⋄ a = 〈r 99K〉F

Flowing Precondition:

• r is at the bottom of Sroot; i.e. qf .Buf(Sroot) = E · r.

Flowing Postcondition:

• Send a read response (f.Mem[Addr(r)].val) to thread t which issued r.

• Remove r from storage subsystem; i.e. f ′.Evt is set to f.Evt \ {r}.

• Set f ′.Evtact to f \ {r}.

⋄ µ(a) = 〈t : r ` ŵ〉P , where ŵ = p.Mem[Addr(r)]

POP Precondition:

• r and w have been propagated to the same threads; i.e. for all t′, r ∈ p.P rop(t′) iff w ∈
p.P rop(t′).
By Iseg(f, p), p.Seg(r) = Sroot implying that for all t we have r ∈ p.P rop(t); i.e. r is fully
propagated. By definition, ŵ is also fully propagated.

• r and ŵ are to the same address.
Implied by the definition of ŵ.

• (ŵ, r) ∈ p.Ord.
According to the definition of Dep, r and ŵ are fully conflicting; i.e. both (r, ŵ) ∈ Dep and
(ŵ, r) ∈ Dep hold. By Lemma 4, we must either have (r, ŵ) ∈ p.Ord or (ŵ, r) ∈ p.Ord. By
Iord(f, p), for any two requests e, e′ ∈ p.Evt we have (e, e′) ∈ p.Ord implying e ≻f e

′. Since
ŵ ≻f r holds, we must have (ŵ, r) ∈ p.Ord.

• if there is a request e ordered after ŵ and before r, then e must be a fully propagated access
to a different address; i.e. if there is e ∈ p.Evt such that (ŵ, e) ∈ p.Ord and (e, r) ∈ p.Ord,
then p.Seg(e) = Sroot and Addr(e) 6= Addr(r).
Assume the contrary and let w be a write request to Addr(r) such that both (ŵ, w) ∈ p.Ord
and (w, r) ∈ p.Ord hold. By Iord(f, p), (ŵ, w) ∈ p.Ord and (w, r) ∈ p.Ord imply ŵ ≻f w and
w ≻f r, respectively. By Lemma 3 and the fact that both (ŵ, w) ∈ Dep and (w, r) ∈ Dep

11

hold, this implies that ŵ and w have both flown into memory before r reaches the bottom of
Sroot. In other words, the Flowing trace must be of the following form:

f0 ·
〈ŵ99K〉F
−−−−−→F · ·

〈w99K〉F
−−−−−→F · f

That is, ŵ must have left Sroot and reached memory before w did. However this implies that
p.Mem[Addr(r)] 6= ŵ contradicting the assumption that ŵ denotes p.[Addr(r)].

POP Postcondition:

• Send a read response (ŵ.val) to thread t which issued r.
Same as the Flowing postcondition; this establishes Itss(f

′, p′).

• Remove r.
Same as the Flowing postcondition; this establishes Ievt(f

′, p′) ∧ Iseg.

• Set p′.Ord to the transitive closure of (p.Ord \ {(e1, e2 | e1 = r ∨ e2 = r}) ∩Dep.
This establishes Iord(f

′, p′).

⋄ a = 〈w 99K〉F

Flowing Precondition:

• w is at the bottom of Sroot; i.e. f.Buf(Sroot) = E · w.

Flowing Postcondition:

• Update memory to map the address of w to point to w; i.e. f ′.Mem(Addr(w)) is set to w.

• Set f ′.Evtact is set to f.Evtact \ {w}.

• Set f ′.Buf(Sroot) = E.

• Set f ′.Buf(Smem) to w · f.Buf(Smem).

⋄ µ(a) = ε3

POP Precondition:

• True.

POP Postcondition:

• p′.Seg(w) is set to Smem.
This establishes Iseg(f, p). The remaining invariants are not affected by the change to the f;
i.e. for all invariants I 6= Iseg, we have I(f, p) implies I(f ′, p′).

3To be more precise we do allow a silent transition which we use to update only the auxiliary components of p. In

this sense, our simulation is weak because it projects out observably stuttering steps. In order to relieve the reader

from extra technicalities not essential to the proof, we choose to omit explicit constructions to cover these stuttering

steps.

12

⋄ a = 〈b 99K〉F

Flowing Precondition:

• b is at the bottom of Sroot; i.e. f.Buf(Sroot) = E · b.

Flowing Postcondition:

• Set f ′.Evtact to f.Evtact \ {b}.

• Set f ′.Buf(Sroot) to E.

• Set f ′.Buf(Smem) to b · f.Buf(Smem).

⋄ µ(a) = ε

POP Precondition:

• True.

POP Postcondition:

• p′.Seg(b) is set to Smem.
This case is similar to the previous transition.

⋄ a = 〈99K wx ⌣ w〉F

Flowing Precondition:

• The preconditions of 〈99K wx〉F hold.

• The requests wx and w are to the same address; i.e. Addr(wx) = Addr(w).

• For all requests e such that both w ≻f e and e ∈ f.P rop(t) where t is the thread issuing wx

hold, e is not a full barrier (dmb sy), or a write barrier (dmb st), and if e is a write request and
Addr(e) = Addr(w), then e is issued by t, e is not a write-exclusive request and if there is a
write exclusive request w′

x such that Addr(w′
x) = Addr(e) and e ≻f w

′
x, then there is another

write request w′ such that Addr(w′) = Addr(w′
x), w ≻f w

′ ≻f w
′
x hold.

Flowing Postcondition:

• Same as 〈99K e〉F with e replaced with wx.

⋄ µ(a) = 〈99K wx ⌣ w〉P

POP Precondition:

• The preconditions of 〈99K wx〉P hold.
This is implied by the Flowing precondition and by the previous analysis of 〈99K e〉P .

13

• w is in the storage subsystem; w ∈ p.Evt.
This is implied by the Flowing precondition and by Ievt(f, p).

• w and wx are to the same address.
This is implied by the Flowing precondition.

• w is not the immediate predecessor of a different exclusive write request. That is, there does
not exist another exclusive write w′

x such that (w,w′
x) ∈ p.Ord and there is no write w′ to

Addr(w) such that (w,w′) ∈ p.Ord and (w′, w′
x) ∈ p.Ord.

If such an w′
x existed, then by the fact that they are fully conflicting and by Iord(f, p), the

Flowing precondition would not be satisfied.

• Any write request w′ such that (w,w′) ∈ p.Ord and w′ ∈ p.P rop(t), where t is the thread
that issued wx, and such that w′ is coupled with some exclusive write w′

x, is to a different
address; i.e. Addr(w′) 6= Addr(w).
If such an w′ did exist, then by the fact that w′ and w are fully conflicting and by Iord(f, p)
and Iseg(f, p), the Flowing precondition would not be satisfied.

• For every request e ∈ p.P rop(t) and (w, e) ∈ p.Ord hold, if e is issued by thread t′ 6= t, then
Addr(e) 6= Addr(wx), e is not a full barrier (dmb sy) or a write barrier (dmb st) unless e is
fully propagated.
If e is not fully propagated, then by Iord(f, p) and by the fact that e would be fully conflicting
in any of those cases, the Flowing precondition would also not hold.

POP Postcondition:

• Same as 〈99K e〉P with e replaced with wx.

⋄ a = 〈99K wx ⌣〉F

Flowing Precondition:

• Same as the previous case where w is replaced with f.Mem[Addr(wx)].

Flowing Postcondition:

• Same as 〈99K e〉F .

⋄ µ(a) = 〈99K wx ⌣ ŵ〉P , where ŵ = p.Mem[Addr(wx)]

POP Precondition:

• Same as the previous case.

POP Postcondition:

• Same as the previous case.

14

