
≅  is equality up to renaming of IDs (of events and instructions) and the ID state of the system,
and the value of the next_read_order  field of the thread state. The next_read_order  value
orders read events but as long as the relation between values is preserved the exact value does
not matter.
the proof assumes:

apply_tree_context does a correct update of the tree
the pending_read cleanup for T_only transitions  will only be done for reads from
forwarded writes
instructions returned from list_old_instructions  can be removed from the instruction
tree without affecting the possible transitions.

('Non-memory instruction' means no memory read or write and no barrier.)

Define:

p1 = function
| T_only_trans _ _ _ (T_internal _)
| T_only_trans _ _ _ (T_finish _)
| T_only_trans _ _ _ (T_register_read _)
| T_only_trans _ _ _ (T_potential_mem_write _)
| T_only_trans _ _ _ (T_register_write _)
    -> true
| _ -> false

p1' = function
| TSS_fetch _ ioid _ _ _ _ -> (ioid is a branch register instruction)
| _ -> false

p2 = function
| TSS_fetch _ ioid _ _ fdo _ -> 
        (ioid is not a branch register instruction
          ∧ fdo is of the form FDO_success)
| _ -> false

Assume the model is POP.

Let t, t' in enumerate_transitions_of_system s_0  such that t ≠ t' , the condition p1 t
holds and p1' t'  does not hold, and let system_state_after_transition s_0 t = s  and
system_state_after_transition s_0 t' = s' . Then:

Caveats:

Theorem 1



( t in enumerate_transitions_of_system s' ∧
  t' in enumerate_transitions_of_system s ∧
  system_state_after_transition s' t ≅ system_state_after_transition s t' )

∨

( t' in enumerate_transitions_of_system s ∧
  system_state_after_transition s t' ≅ s' )

Assume the model is POP.

Let t, t' in enumerate_transitions_of_system s_0  such that t ≠ t'  and p2 t  holds, and
let system_state_after_transition s_0 t = s  and
system_state_after_transition s_0 t' = s' . Then:

( t in enumerate_transitions_of_system s' ∧
  t' in enumerate_transitions_of_system s ∧
  system_state_after_transition s' t ≅ system_state_after_transition s t' )

∨

( t' in enumerate_transitions_of_system s ∧
  system_state_after_transition s t' ≅ s' )

Let t = T_only_trans tid ioid ids tt  and inst  the instruction instance with
inst.ioid = ioid .

Then by definition of system_state_after_transition
s = s_0 with thread_states tid = thread_state_after_transition tt .

Because of t' in enumerate_transitions_of_system s_0 , by definition of
enumerate_transitions_of_system :

t' = SS_only st 
    in enumerate_transitions_of_storage_subsystem s_0.storage_subsystem =
       enumerate_transitions_of_storage_subsystem s'.storage_subsystem

s' = s_0 with storage_subsystem = st.

Because of t in enumerate_transitions_of_storage_subsystem s_0 , by definition of
enumerate_transitions_of_system :

Theorem 2

Proof of Theorem 1

1. Case t' = SS_only_trans t st



(ioid, (T_only, idstate')) 
    in enumerate_transitions_of_thread (s_0.thread_states tid)
     = enumerate_transitions_of_thread (s'.thread_states tid)
⟹ t in enumerate_transitions_of_system s'

system_state_after_transition s' t =
system_state_after_transition (s_0 with storage_subsystem st) t ≅
s_0 (with storage_subsystem = st
             thread_states tid = thread_state_after_transition tt) ≅
system_state_after_transition (s_0 with thread_states tid = 
                                                thread_state_after_transition tt) t
' =
system_state_after_transition s t'

then by definition of enumerate_transitions_of_system :

SS_interact_lazy in pop_ss_enumerate_transitions (s_0.storage) =
                    pop_ss_enumerate_transitions (s.storage)

⟹ t' in enumerate_transitions_of_system s

Let inst'  be the instruction instance with inst'.ioid = read.r_ioid .

By definition of pop_satisfy_read_action t' , for any instruction inst'' : either inst''  in
s'  is unchanged from inst''  in s_0 ; or inst'' = inst'  and is updated according to
pop_satisfy_read_action ; or inst''  is restarted by t' .

Then inst ≠ inst'  has to hold: Two cases of inst.micro_op_state  that can enable a T_only
transition:

1. MOS_plain _

2. MOS_pending_mem_read sr c _

Assume inst = inst'

1. pop_satisfy_read_action_trans  requires inst'.micro_op_state  to be of the form
MOS_pending_read . Contradiction to inst = inst' .

2. The only T_only  transition enabled in inst.micro_op_state  is
actually_satisfy_transitions  and requires sr.sr_not_yet_requested = []  and
sr.sr_requested = [] . Because t'  is enabled, as an invariant of the system state
sr.sr_not_yet_requested ≠ []  or sr.sr_requested ≠ []  holds. Contradiction to
inst = inst' . Therefore inst ≠ inst' .

Two cases: Taking t'  in state s  restarts inst  or not.

2. Case t' = SS_lazy_trans (SS_POP_read_response read source st)

2.1. Case inst restarted by t'



Then tt  cannot be of form T_commit_simple  or T_finish  because by definition of
system_state_after_transition  and enumerate_transitions_of_instruction  for
t in {T_only tid ioid ids (T_commit_simple _), T_only tid ioid ids (T_finish _)}  and
inst.committed = true  in s  and committed instructions are not restarted.

By definition of system_state_after_transition , enumerate_transitions_of_thread ,
enumerate_transitions_of_instruction ,

s = s_0 with (thread_state tid).instruction_tree with inst updated
             next_read_order updated in the case of tt = T_potential_mem_write _

By definition of system_state_after_transition , pop_satisfy_read_action_trans , and
pop_satisfy_read_action , and by assumption that inst  is restarted:

s' = s_0 with [ (thread_states tid).instruction_tree
                      with inst' updated and
                           dependent instructions restarted ]
                 storage_subsystem cleaned up from old read_requests

≅ (s_0 with (thread_state tid).instruction_tree with inst updated
          with next_read_order updated in the case of tt = T_potential_mem_write _)
               with [ (thread_states tid).instruction_tree
                         with inst' updated and
                              dependent instructions restarted ]
                    storage_subsystem cleaned up from old read_requests

≅ (s_0 with next_read_order updated in the case of tt = T_potential_mem_write _)
               with [ (thread_states tid).instruction_tree
                         with inst' updated and
                              dependent instructions restarted ]
                    storage_subsystem cleaned up from old read_requests

= system_state_after_transition s t' (up to next_read_order value)

By definition of system_state_after_transition , pop_satisfy_read_action_trans , and
pop_satisfy_read_action , by inst ≠ inst' , and the assumption that inst  is not restarted,
inst  is not changed by t' .

Check that t  is enabled in s'  by case analysis on inst  state in s_0  that enabled t :

Then by definition of enumerate_transitions_of_instruction  the condition
pop_memory_read_request_cand  holds in s_0 . Then pop_memory_read_request_cand  also holds

in s' : The conjuncts of pop_memory_read_request_cand  are of two forms:

1. requiring all po-before instructions of certain types to be committed
2. The following:

2.2. Case inst not restarted by t'

2.2.1. Case inst.micro_op_state = MOS_plain with interpreter outcome Read_mem



 forall (prev_inst in inst_context.active_prefix).
 is_load_acquire prev_inst ⟹ 
     (prev_inst.committed ∨ not (Set.null prev_inst.writes_read_from) ∨
     match prev_inst.micro_op_state with
     | MOS_pending_mem_read sr _ -> sr.sr_not_yet_requested = []
     | _ -> false

All requirements of the first form also hold in s'  because t'  cannot restart committed
instructions.

The second condition concerns load-acquire instructions prev_inst  po-before inst . Assume
condition 2 no longer holds. Then there is a load-acquire instruction prev_inst  in
inst.active_prefix  that has been restarted by t' . But then by definition of
pop_satisfy_read_action , restart_dependent_subtrees , dependent_suffix_to_restart ,

and dependent_suffix_to_restart_helper  the clause load_after_load_acquire_dependent
would have caused inst  to be restarted as well, which contradicts the assumption.

Because inst  is unchanged by t'  and pop_memory_read_request_cand  holds in s'  transition
t  is enabled in s' .

No conditions to check: inst  is unchanged, so t  is still enabled.

Doesn't produce transitions t  for which p1 t  holds -- nothing to check.

No conditions to check: inst  is unchanged, so t  is still enabled.

Doesn't produce transitions t  for which p1 t  holds -- nothing to check.

Need to check that find_reg_read r  in s'  still finds the same value:

For find_reg_read  to return a different value, by definition of
enumerate_transitions_of_instruction , find_reg_read , and
reg_writes_to_this_register , the reg_writes  field of instructions in
inst.active_prefix ++ inst.old_prefix  has to have been changed by t' . The instructions

2.2.2. Case inst.micro_op_state = MOS_plain with interpreter outcome Write_mem

2.2.3. Case inst.micro_op_state = MOS_plain with interpreter outcome Write_ea

2.2.4. Case inst.micro_op_state = MOS_plain with interpreter outcome Write_memv

2.2.5. Case inst.micro_op_state = MOS_plain with interpreter outcome Barrier

2.2.6 Case inst.micro_op_state = MOS_plain for interpreter outcome Read_reg r



that have been changed by t'  are inst'  and the instructions insts  that have been restarted. By
definition of pop_satisfy_read_action  inst'.reg_writes  in s'  is the same as in s_0 .
Assume some instruction inst'  in insts  has an updated reg_writes  field, so it cannot be
inst'  and thus must have been restarted by t' . As in s_0  instruction inst  reads from
inst''  (by assumption that find_reg_read  yields a different result), there must be a register in
inst.regs_in  that is contained in inst'.regs_out , but then by definition of
dependent_suffix_to_restart_helper  instruction inst  must have been restarted as well, which

contradicts the assumption. Therefore find_reg_read r  in s_0  and find_reg_read r  in s
return the same value, and t  is also enabled in s' .

No conditions to check: inst  is unchanged, so t  is still enabled.

No conditions to check: inst  is unchanged, so t is still enabled.

Doesn't produce transitions t  for which p1 t  holds -- nothing to check.

If inst  is committed, there is nothing to check and t  is enabled in s' . So assume inst  is not
committed. Then by assumption inst  is not a memory instruction.

Need to check if pop_commit_cand  still holds in s' . For non-memory instructions
pop_commit_cand  requires commitDataflow  and commitControlflow  to hold. commitDataflow

requires instructions directly feeding into inst 's registers to be committed, more formally: Let
iprevs  be the set of po-previous instructions iprev  for which there exists a register
r in iprev.regs_out  such that r  is in inst.regs_i  and there is no po-between instruction
ibetween  with r in ibetween.regs_out . Then all instructions in iprevs  have to be committed.

Let iprevs  be this set for s  and iprevs'  for s' .

Assume iprev'  is an instruction in iprevs'  which is not committed, and rs'  all registers in
iprev'.regs_out  and inst.regs_in  that witness the membership of iprev'  in iprevs' .

Since t'  does not change the regs_in  or regs_out  fields of r_inst  and only sets regs_in
and regs_out  of restarted instructions to the empty set, for any r'  in rs'  the instruction
iprev'  must be po-before instructions iprev  from iprevs  that have r'  in
iprev.regs_out but are restarted by t'  and thus have an empty regs_out  field in s'  so that

2.2.7. Case inst.micro_op_state = MOS_plain with interpreter outcome Write_reg

2.2.8. Case inst.micro_op_state = MOS_plain with interpreter outcome Internal

2.2.9. Case inst.micro_op_state = MOS_plain with interpreter outcome Footprint

2.2.10. Case inst.micro_op_state = MOS_plain with interpreter outcome Done



iprev'  becomes the "closest" instruction with regs_out  determined to contain r' . But then, the
restart of any such instruction iprev  by definition of dependent_suffix_to_restart_helper
would cause the restart of inst , which contradicts the assumption. Therefore iprevs = iprevs' ,
which have all been committed in s_0  and thus also in s' . Thus commitDataflow  still holds in
s' .

commitControlFlow  requires all previous branch instructions to be committed. Since this is true in
s_0  it still holds in s' .

Therefore t  is also enabled in s' .

The only kind of transition t  for which p1 t  holds that is enabled in this state is described in
actually_satisfy_transitions . Since inst  is unchanged by t'  the conditions in
actually_satisfy_transitions  still hold and t  is still enabled in s' .

In all cases t  is still enabled in s' .

Now show system_state_after_transition s t' ≅ system_state_after_transition s' t .
since t  and t'  obviously update separate parts of the system state.

Let tid'  be the thread that enables t'  and inst'  the instruction with inst'.ioid = ioid'

Then

t' = TSS_Flowing_POP_commit_mem_write_exclusive_successful 
                writes prev_bare_write (thread_cont true) 
      in enumerate_transitions_of_system s_0

from which follows that

tie = (ioid', (T_interact_eager T_POP_commit_mem_write_exclusive 
                        writes prev_writes thread_cont, ist')) 
        in enumerate_transitions_of_thread tid' in s_0

for ioid'.micro_op_state = MOS_potential_mem_write wk ws c ; that wk  is of the form
Write_exclusive , Write_exclusive_release  or Write_conditional ; that pop_commit_cand

holds for tid' ; and that pop_ss_accept_write_exclusive_success_cand  holds for
s_0'.storage_subsystem .

From the definition of enumerate_transitions_of_instruction  follows inst ≠ inst'  because
for t  to be enabled inst.micro_op_state  cannot be MOS_potential_mem_write .

2.2.11. Case inst.micro_op_state = MOS_pending_mem_read

3. Case t' = TSS_Flowing_POP_commit_mem_write_exclusive_successful

Show t' in enumerate_transitions_of_system s



If t  is po-before t' , then t  cannot be of the form T_only T_commit_simple  for an
uncommitted branch: Assume t  commits an uncommitted branch. Then by definition of
commitControlflow  condition pop_commit_cand  cannot hold, because inst' 's prefix contains

an uncommitted branch. Thus when a branch that is inconsistent with the inst 's NIA  is discarded
after taking transition t  no instructions are removed from the instruction tree that are po-before
inst' . t  only changes instruction inst .

Therefore, since inst ≠ inst'  is the only instruction po-before inst'  changed by t  is inst
itself, in case it is in inst' 's prefix.

As inst'  is unchanged by t , if pop_commit_cand  also holds in s , then tie  is in
enumerate_transitions_of_thread s .

By definition of enumerate_transitions_of_instruction , the folllowing kinds of conditions are
checked by pop_commit_cand  and hold in s_0 :

1. commitDataflow

2. certain kinds of instructions po-before inst'  are committed
3. there is a load-exclusive po-before inst'
4. all previous memory access addresses have been fully determined and for po-earlier reads to

overlapping addresses it is determined which writes they read from (and they cannot be restarted
any more)

1 to 4 still hold in s:

1. All instructions that directly feed into inst' 's input registers have been committed. Since the
regs_in  and regs_out  fields of instruction po-before inst'  are not changed by t  and

committed instructions remain committed this condition is preserved by t .
2. As 2 holds in s_0  this also holds in s  since committed instructions are not restarted (or

"uncommitted").
3. Since t  does not remove or restart instructions po-before inst'  and it holds in s_0  3 also

holds in s .
4. As 4 holds in s_0  and t  does not restart or remove any po-before inst'  instructions this

also holds in s' : Taking t  only progresses the instruction state of inst  and does not change
the state of other instructions po-before inst' .

As 1 to 4 still hold in s  transition tie  is still in enumerate_transitions_of_thread .

Since pop_ss_accept_write_exclusive_success_cand  holds in s_0  and
s.storage_subsystem = s_0 storage_subsystem  the condition
pop_ss_accept_write_exclusive_success_cand  also holds in s  so that
t' in enumerate_transitions_of_system s .

Show t in enumerate_transitions_of_system s' or progress by t overwritten by t'



By definition of pop_commit_mem_store_action ,

s'.thread_states tid' = 
    s_0.thread_state tid' with 
        (inst' updated to include writes in committed_mem_writes,
                with committed = true
                      micro_op_state updated)
        dependent instructions restarted

Two cases: inst  restarted or inst  not restarted.

Then system_state_after_transition s t' ≅ s'  (up to IDs and next_read_order ). The proof
is the same as in 2.1.

By definition of pop_commit_mem_store_action  any instruction changed by transition t'  is
either inst'  or is restarted by t' .

Then t in enumerate_transitions_of_system s'  and
system_state_after_transition s t' ≅ system_state_after_transition s' t .

The proof is the same as in Case 2.2.

Then by definition of enumerate_transitions_of_system s_0

tfetch = (ioid',(T_interact_eager T_fetch addr tc,ids')) 
    in enumerate_transitions_of_thread tid'

and fdo = s_0.program_memory addr . Then by definition of
enumerate_transitions_of_thread tfetch  is either in
enumerate_fetch_transitions_of_instruction iic'  for some iic'  with
iic'.iic_instance.instance_ioid = ioid'  or
enumerate_initial_fetch_transitions_of_thread tid' .

If tfetch  is in enumerate_initial_fetch_transitions_of_thread tid' , then from the
definition of enumerate_initial_fetch_transitions_of_thread  follows tid ≠ tid' , because
the function requires an empty instruction tree. Thus t ≠ t'  cannot be enabled in tid'  and
tid ≠ tid'  follows. In Case tfetch  is enabled by

3.1. Case inst restarted

3.2. Case inst not restarted.

4. Case t' = TSS_fetch tid' ioid' ids' addr' fdo' tc'

Case tfetch in enumerate_initial_fetch_transitions



enumerate_initial_fetch_transitions_of_thread . Thus by assumption
t' in enumerate_transitions_of_system s  as well, because by tid ≠ tid' :
s.thread_states.tid' = s_0.thread_states.tid'  and
s.storage_subsystem = s_0.storage_subsystem .

Now there are two cases: fdo  of the form
FDO_success address opcode inst init_instruction_state  or otherwise.

In case fdo is of the form FDO_success  state s'  is s_0  with thread_states tid'  updated to
include inst  in initial instruction state in its instruction tree. From the fact that thread tid  is not
changed by t'  follows that t in enumerate_transitions_of_system s'  and because t  and
t'  update separate parts of the system state
system_state_after_transition s t' ≅ system_state_after_transitions s' t

In Case fdo  has the form of a fetch decode outcome error, s'  is an error state. Since this error
state does not have any information that depends on the threads state of tid ,

system_state_after_transition s t' ≅ s' .

Now assume tfetch  is not in enumerate_initial_fetch_transitions_of_thread tid'  but in
enumerate_fetch_transitions_of_instruction iic'  for some iic' . Let
inst' = iic'.iic_instance .

Now there are two cases: fdo  of the form
FDO_success address opcode inst init_instruction_state  or otherwise.

In Case fdo  has the form of a fetch decode outcome error, s'  is an error state. Since this error
state does not have any information that depends on the threads state of tid  it follows that
system_state_after_transition s t' ≅ s' .

By definition of enumerate_fetch_transitions_of_instruction  and
system_state_after_transition  transition t'  does not affect inst  or any instruction po-

before inst .

Check that t  is enabled in s'  by case analysis on inst  state in s_0  that enabled t:

Case tfetch in enumerate_fetch_transitions_of_instruction

4.1. fdo is fetch decode outcome error

4.2. fdo is of the form FDO_success.

Show t in enumerate_transitions_of_system s'



Then by definition of enumerate_transitions_of_instruction  the condition
pop_memory_read_request_cand  holds in s_0 . Then pop_memory_read_request_cand  also holds

in s' : The conjuncts of pop_memory_read_request_cand  are of two forms:

1. requiring all po-before instructions of certain types to be committed
2. The following:

 (forall (prev_inst in inst_context.active_prefix).
     is_load_acquire prev_inst ⟹ 
         prev_inst.committed ∨ not (Set.null prev_inst.writes_read_from) ∨
         match prev_inst.micro_op_state with
         | MOS_pending_mem_read sr _ -> sr.sr_not_yet_requested = []
         | _ -> false)

Both requirements still hold in s'  as t'  does not change any instruction po-before inst .

No conditions to check: inst is unchanged, so t  is still enabled.

Doesn't produce transitions t  for which p1 t  holds -- nothing to check.

No conditions to check: inst  is unchanged, so t  is still enabled.

Doesn't produce transitions t  for which p1 t  holds -- nothing to check.

Need to check that find_reg_read r  in s'  still finds the same value:

For find_reg_read  to return a different value, by definition of
enumerate_transitions_of_instruction , find_reg_read , reg_writes_to_this_register , the
reg_writes  field of instructions in inst.active_prefix ++ inst.old_prefix  has to have been

changed by t' . t'  does not change any instruction in inst 's prefix, so this condition still holds
in s' .

4.2.1. Case inst.micro_op_state = MOS_plain with interpreter outcome Read_mem in s_0

4.2.2. Case inst.micro_op_state = MOS_plain with interpreter outcome Write_mem

4.2.3. Case inst.micro_op_state = MOS_plain with interpreter outcome Write_ea

4.2.4. Case inst.micro_op_state = MOS_plain with interpreter outcome Write_memv

4.2.5. Case inst.micro_op_state = MOS_plain with interpreter outcome Barrier

4.2.6. Case inst.micro_op_state = MOS_plain with interpreter outcome Read_reg r



No conditions to check: inst  is unchanged, so t  is still enabled.

No conditions to check: inst  is unchanged, so t  is still enabled.

Doesn't produce transitions t  for which p1 t  holds -- nothing to check.

If inst  is committed, there is nothing to check and t  is enabled in s' . So assume inst  is not
committed. Nothing to check either, since this case does not produce any transitions t  for which
p1 t  holds.

The only kind of transition t  for which p1 t  holds that is enabled in this state is described in
actually_satisfy_transitions . Since inst  is unchanged by t'  the conditions in
actually_satisfy_transitions  still hold and t  is still enabled in s' .

In all cases t  is still enabled in s' .

Need to show that iic'  is still in unold_instructions , and tfetch is still in
enumerate_fetch_transitions_of_instruction iic'  in state s .

Assume iic'  is not in unold_instructions  anymore. Then t  moved inst'  from the
instruction tree to old_instructions , which by definition of list_old_instruction  means that
inst'  must have been committed after taking transition t  and its successor instruction must have

been fetched. By definition of p1  and enumerate_transitions_of_instruction  transition t
does not commit any instructions and does not fetch new instructions, so that inst' 's unique
successor must already have been fetched in s_0 , which by
enumerate_fetch_transitions_of_instruction  contradicts the assumption that t'  was enabled

in s_0 . Assume therefore, that iic'  is still in unold_instructions .

Remains to show that tfetch  is in enumerate_fetch_transitions_of_instruction iic'  in
state s , which by definition reduces to showing that

4.2.7. Case inst.micro_op_state = MOS_plain with interpreter outcome Write_reg

4.2.8. Case inst.micro_op_state = MOS_plain with interpreter outcome Internal

4.2.9. Case inst.micro_op_state = MOS_plain with interpreter outcome Footprint

4.2.10. Case inst.micro_op_state = MOS_plain with interpreter outcome Done

4.2.11. Case inst.micro_op_state = MOS_pending_mem_read

Show t' in enumerate_transitions_of_system s



1. the value of potential_fetch_addresses  remains the same,
2. already_fetched_addresses  in state s  does not contain any elements that

already_fetched_addresses  in state s_0  does not contain, and
3. that fetch_transition_of_address  returns the same values.

1. As t'  is enabled in s_0  the condition is_stop_fetch_instruction  cannot hold for iic' .

1. Case iic'  is committed. By definition of p1'  transition t  does not commit any
instruction. Therefore iic'  must have been committed in s_0  and cannot have written to
the PC, so that next_address_of_committed_instruction  returns the same value in s'
as in s_0 .

2. Case iic'  is not committed. As inst'  is not the direct po-successor of a branch
instruction the function returns the same successor_fetch_address  value as in s_0 .

2. This condition holds because t  does not add new elements to the instruction tree or change any
instruction's program_loc  field.

3. This reduces to showing that ioids_feeding_address  and therefore
starting_inst_instance  returns the same value in state s  as in s_0 . An instruction
inst'' 's reg_writes  field might have been changed by t  when doing a register write, but

that does not change inst' 's ioids_feeding_address  list, as the exhaustive interpreter
already finds the the register write already when initially analysing inst'' .

Therefore t' in enumerate_transitions_of_system s .

This simply follows from the fact that t  and t'  update separate parts of the system state.

Then by definition of enumerate_transitions_of_system ,

tlazy = (ioid',(T_interact_lazy tt',ids')) in enumerate_transitions_of_thread tid'

in state s_0 . Let inst'  be the instruction instance with inst'.instance_ioid = ioid' .

Then by definition of enumerate_transitions_of_system ,
pop_ss_accept_event_cand s_0.storage_subsytem (FRead rr rr_slices [])  holds and
(ioid', (T_interact_lazy (T_mem_read_request rr rr_slices t'), ist'))  is in
enumerate_transitions_of_instruction inst'  for
micro_op_state = MOS_pending_mem_read sr c .

Show system_state_after_transition s t' ≅ system_state_after_transition s' t

5. Case t' = T_lazy_trans tid' ioid' ist' tt'

5.1. Case tt' = T_mem_read_request rr rr_slices t



Because inst' 's micro_op_state  is MOS_pending_mem_read  it follows that inst ≠ inst'  must
hold, since the only transition t  for which p1 t  holds that is enabled for
inst.micro_op_state = MOS_pending_mem_read  requires sr.sr_not_yet_requested  to be

empty whereas for tt'  to be enabled sr.not_yet_requested  must be non-empty. So assume
inst ≠ inst' .

Since pop_ss_accept_event_cand  holds in s_0 , it must also hold in s  because
s.storage_subystem = s_0.storage_subsystem . Remains to check that
tt' in enumerate_transitions_of_instruction  in s .

By definition of enumerate_transitions_of_instruction  and the fact inst ≠ inst'  transition
t  does not change inst'  so that tt'  is still enabled in s . Therefore
t' in enumerate_transitions_of_system .

By definition of enumerate_transitions_of_system , pop_ss_accept_event_action , and
enumerate_transitions_of_instruction  transition t'  only updates inst'  and the storage

subsystem state.

Check that t in enumerate_transitions_of_instruction in s'  by case analysis on the
micro_op_state  that enabled t  in s_0 .

Then pop_memory_read_request_cand  holds in s_0 . pop_memory_read_request_cand  requires

1. instruction of certain type po-before inst  to be comitted
2. that all load-require instructions inst''  are either committed; or if

inst'' = MOS_pending_mem_read sr' _  then sr.sr_not_yet_requested = []  must hold; or
inst''.writes_read_from  not empty.

The only instruction updated by t'  is inst' . As 1 and 2 hold in s_0  1 is still true in s  and 2 is
still true for all instructions inst'' ≠ inst' . Check that 2 holds for inst' .

By definition of enumerate_transitions_of_instruction  instruction inst'  cannot be
committed in s_0  and cannot have sr.sr_not_yet_request = [] , otherwise t'  wouldn't be
enabled in s_0 .Therefore if condition 2 was true for inst'  in s_0  the field
inst'.writes_read_from  must have been non-empty. Since t'  does not change inst' 's
writes_read_from  field, pop_memory_read_request_cand  must still hold in s' .

Therefore t in enumerate_transitions_of_instruction s' .

Show t' in enumerate_transitions_of_system s

Show t in enumerate_transitions_of_system s'

5.1.1. Case inst.micro_op_state = MOS_plain for interpreter outcome Read_mem



No condition to check. From the fact that inst  is not changed by t'  follows
t in enumerate_transitions_of s' .

No condition to check. Since inst is not changed by t'  it follows
t in enumerate_transitions_of s' .

Then pop_commit_cand  holds in s_0 . Check that pop_commit_cand  still holds in s' :

pop_commit_cand  checks:

1. commitDataflow inst_context

2. commitControlflow inst_context

3. pop_commit_barrier_cand

1. still holds, since t'  does not change any instruction's regs_in  or regs_out  fields and does
not "uncommit" instructions.

2. requires conditional branches po-before inst  to be committed. inst'  does not affect those
instructions and 2 still holds in s' .

3. requires instructions of certain type po-before inst  to be committed and that the memory
access of all po-before memory_access are determined. If this was true in s_0 , this still holds in
s'  since t'  only progresses inst' , by which its memory accesses don't become

undetermined.

Therefore pop_commit_cand  still holds in s'  and
t in enumerate_transitions_of_instruction  in state s' .

Only need to check that find_reg_read  returns the same value.

For find_reg_read  to return a different value, by definition of
enumerate_transitions_of_instruction , find_reg_read , reg_writes_to_this_register , the
reg_writes  field of instructions in inst.active_prefix ++ inst.old_prefix  has to have been

changed by t' . Since t'  does not change any instruction's reg_writes  field, find_reg_read
will return the same value and t  is enabled in enumerate_transitions_of_instruction  in s' .

5.1.2. Case inst.micro_op_state = MOS_plain for interpreter outcome Write_mem

5.1.3. Case inst.micro_op_state = MOS_plain for interpreter outcome Write_memv

5.1.4. Case inst.micro_op_state = MOS_plain for interpreter outcome Barrier

5.1.5. Case inst.micro_op_state = MOS_plain for interpreter outcome Read_reg

5.1.6. Case inst.micro_op_state = MOS_plain for interpreter outcome Write_reg



No condition to check. Since inst  is not changed by t'  it follows
t in enumerate_transitions_of s' .

No condition to check. Since inst  is not changed by t'  it follows
t in enumerate_transitions_of s' .

No condition to check.

Only need to check that sr.sr_not_yet_request = [] . Since this condition was true in s_0
transition t'  only changes inst' , and inst' ≠ inst , this must still be true in s' .

In all cases t in enumerate_transitions_of_instruction  in state s'  and therefore in
enumerate_transitions_of_system s' .

Since inst ≠ inst' , by definition of enumerate_transitions_of_instruction  and
enumerate_transitions_of_system  transitions t  and t'  update separate parts of the system

state. Therefore
system_state_after_transition s t' ≅ system_state_after_transition s' t .

Then by definition of enumerate_transitions_of_system  the condition
pop_ss_accept_event_cand (FWrite write)  holds in s_0 ,

tlazy = (ioid',(T_interact_lazy (T_commit_mem_write ws t'), ist')) 
    in enumerate_transitions_of_instruction inst'

and in state s_0  the conditions inst'.micro_op_state = MOS_potential_mem_write wk ws  and
pop_commit_cand  hold.

From the definition of enumerate_transitions_of_instruction  follows inst ≠ inst'  since for
t  to be enabled inst  cannot have micro_op_state  of form MOS_potential_mem_write .

5.1.7. Case inst.micro_op_state = MOS_plain for interpreter outcome Internal

5.1.8. Case inst.micro_op_state = MOS_plain for interpreter outcome Done

5.1.9. Case inst.micro_op_state = MOS_pending_mem_read sr c

Show system_state_after_transition s t' ≅ system_state_after_transitions s' t

5.2. Case tt' = T_commit_mem_write ws t

Show t' in enumerate_transitions_of_system s



Since s.storage_subsystem = s_0.storage_subsystem  the condition
pop_ss_accept_event_cand  also holds in s . Therefore still need to check that tlazy  is in
enumerate_transitions_of_thread  in state s .

Check that find_committed_writes  returns the same value. This follows from the fact that by
definition of enumerate_transitions_of_instruction  transition t  does not change the
committed_mem_writes  field of any instruction.

Check that pop_commit_cand  still holds: check the following requirements:

1. commitDataflow inst_context

2. commitControlflow inst_context

3. pop_commit_mem_access_cand

1. Still holds in state s  because t  does not change the regs_in  or regs_out  fields of
instructions and does not "uncommit" instructions.

2. Still holds because comitted instructions are not uncommitted by t .
3. checks that instructions of certain kinds po-before inst'  are committed, that all previous

memory accesses are fully determined, and the condition
aarch64_write_commitPrevMightSameAddress_helper . Since t  does not uncommit

committed instructions the first condition is preserved by t .

t  only progresses inst  so that inst 's memory accesses remain determined and the second
condition still holds.

Since t  only in the case of the actually_satisfy_transitions  transition changes the
micro_op_state  from MOS_pending_mem_read  to a different micro_op_state , only need to

check if this transition preserves condition 3. The actually_satisfy_transitions  transition is
only possible for micro_op_state = MOS_pending_mem_read sr c  with
sr.sr_not_yet_requested = []  which in turn requires read-satisfy transition, but by

definition of pop_satisfy_read_action  any read-satisfy transition updates
writes_read_from  to include the source of the read.

Therefore when t  changes micro_op_state  from MOS_pending_mem_read  to a different
micro_op_state  the writes_read_from  field has to be non-empty and the third condition

holds.

From pop_commit_cand  also holds in s  follows
tlazy in enumerate_transitions_of_thread in s .

Two cases: t'  restarts inst or t'  doesn't restart inst .

Since s ≅ s_0 with inst updated  (up to old_instructions  and next_read_order )

5.2.1. Case t' restarts inst



system_state_after_transition s t' ≅ 
    system_state_after_transition (s_0 with inst updated) t'

As by assumption and by definition of pop_commit_mem_store_action  transition t'  overwrites
inst 's state with restart_inst_instance  it follows that
system_state_after_transition s t' ≅ s' .

By definition of enumerate_transitions_of_instruction  and pop_commit_mem_store_action
transition t'  only changes instructions that are restarted and inst' . As by assumption inst  is
not restarted and because of inst ≠ inst'  instruction inst  is unchanged.

This requires showing t in enumerate_transitions_of_instruction  in state s'  by case
analysis on the micro_op_state  that enabled t  in s_0 .

Then by definition of enumerate_transitions_of_instruction  the condition
pop_memory_read_request_cand  holds in s_0 . Then pop_memory_read_request_cand  also holds

in s' : The conditions of pop_memory_read_request_cand  are of two forms:

1. requiring all po-before instructions of certain types to be committed
2. The following:

forall (prev_inst in inst_context.active_prefix).
 is_load_acquire prev_inst ⟹ 
 (prev_inst.committed ∨ not (Set.null prev_inst.writes_read_from) ∨
 match prev_inst.micro_op_state with
 | MOS_pending_mem_read sr _ -> sr.sr_not_yet_requested = []
 | _ -> false)

All requirements of the first form also hold in s'  because t'  cannot restart committed
instructions.

The second condition concerns load-acquire instructions prev_inst  po-before inst . Assume
condition 2 no longer holds. Then there is a load-acquire instruction prev_inst  in
inst.active_prefix  that has been restarted by t' . (Committed instructions are not changed,

and other than by restarting t'  does not change the writes_read_from  or micro_op_state
fields.) But then by definition of pop_commit_mem_store_action , restart_dependent_subtrees ,
dependent_suffix_to_restart , and dependent_suffix_to_restart_helper  the clause
load_after_load_acquire_dependent  would have caused inst  to be restarted as well, which

contradicts the assumption. Because inst  is unchanged by t'  and
pop_memory_read_request_cand  holds in s'  transition t  is enabled in s' .

5.2.2. Case t' does not restart inst

Show t in enumerate_transitions_of_system s'

# 5.2.2.1. Case inst.micro_op_state = MOS_plain with interpreter outcome Read_mem



No conditions to check: inst  is unchanged, so t  is still enabled.

Doesn't produce transitions t  for which p1 t  holds -- nothing to check.

No conditions to check: inst is unchanged, so t  is still enabled.

Doesn't produce transitions t  for which p1 t  holds -- nothing to check.

Need to check that find_reg_read r  in s'  still finds the same value:

For find_reg_read  to return a different value, by definition of
enumerate_transitions_of_instruction , find_reg_read , reg_writes_to_this_register , the
reg_writes  field of instructions in inst.active_prefix ++ inst.old_prefix  has to have been

changed by t' . The instructions that have been changed by t'  are inst'  and the instructions
insts  that have been restarted. By definition of pop_commit_mem_store_action  the field
inst'.reg_writes  in s'  is the same as in s_0 . Assume some instruction inst''  in insts

has an updated reg_writes  field, so it cannot be inst'  and thus must have been restarted by
t' . As in s_0  instruction inst  reads from inst''  (by assumption that find_reg_read

returns a different result), there must be a register in inst.regs_in  that is contained in
inst''.regs_out , but then by definition of dependent_suffix_to_restart_helper  instruction
inst  must have been restarted as well, which contradicts the assumption. Therefore
find_reg_read r  in s'  and find_reg_read r  in s  return the same value, and t  is also

enabled in s' .

No conditions to check: inst  is unchanged, so t  is still enabled.

No conditions to check: inst  is unchanged, so t  is still enabled.

# 5.2.2.2. Case inst.micro_op_state = MOS_plain with interpreter outcome Write_mem

# 5.2.2.3. Case inst.micro_op_state = MOS_plain with interpreter outcome Write_ea

# 5.2.3.4 Case inst.micro_op_state = MOS_plain with interpreter outcome Write_memv

# 5.2.3.5. Case inst.micro_op_state = MOS_plain with interpreter outcome Barrier

# 5.2.3.6. Case inst.micro_op_state = Read_reg r

# 5.2.3.7. Case inst.micro_op_state = MOS_plain with interpreter outcome Write_reg

# 5.2.3.8. Case inst.micro_op_state = MOS_plain with interpreter outcome Internal



Doesn't produce transitions t  for which p1 t  holds -- nothing to check.

If inst  is committed, there is nothing to check and t  is enabled in s' . If inst  is not
committed, it doesn't produce transitions t  for which p1 t  holds -- nothing to check.

The only kind of transition t  for which p1 t  holds that is enabled in this state is described in
actually_satisfy_transitions . Since inst  is unchanged by t'  the conditions in
actually_satisfy_transitions  still hold and t  is still enabled in s' .

In all cases t  is still enabled in s' .

This follows from the fact that t  and t'  update separate parts of the system state: by definition of
enumerate_transitions_of_instructions , pop_commit_mem_store_action , and
system_state_after_transitions , t'  changes the storage subsytem state, updates inst'  and

restarts dependent instructions.

By definition of enumerate_transitions_of_instruction  transition t  only updates inst ,
old_instructions  and tid 's next_read_order  field. Because of inst ≠ inst'  and by

assumption that inst  is not restarted t  and t'  update separate parts of the system state, so that
system_state_after_transitions s t' ≅ system_state_after_transitions s' t .

Then by definition of enumerate_transitions_of_system  and
enumerate_transitions_of_instruction  condition pop_ss_accept_event_cand (FBarrier b)

holds in s_0 ,

tlazy = (ioid', (T_interact_lazy (T_commit_barrier b t),ist')) 
    in enumerate_transitions_of_instruction

in s_0  and inst' 's micro_op_state  is MOS_plain  with interpreter outcome Barrier bk is'
with bk ≠ ISB , and pop_commit_cand  holds in s_0 .

Then inst ≠ inst'  as to enable t  instruction inst 's micro_op_state  cannot enable
interpreter outcome Barrier bk is'  for a non-ISB barrier.

# 5.2.3.9. Case inst.micro_op_state = MOS_plain with interpreter outcome Footprint

# 5.2.3.10. Case inst.micro_op_state = MOS_plain` with interpreter outcome Done

# 5.2.3.11 Case inst.micro_op_state = MOS_pending_mem_read

Show system_state_after_transition s t' ≅ system_state_after_transition s' t

5.3. Case tt' = T_commit_barrier b t



As s.storage_subsystem = s_0.storage_subsystem  condition
pop_ss_accept_event_cand (Fbarrier b)  also holds in s . Remains to show
tlazy in enumerate_transitions_of_instruction  in state s , which because of inst ≠ inst'

reduces to showing that pop_commit_cand  still holds in s . The conditions required by
pop_commit_cand  are

1. commitDataflow

2. commitControlflow

3. pop_commit_barrier_cand

The proof that 1 and 2 still hold is the same as in Case 5.2. Remains 3: for non-ISB barriers condition
3 only requires instructions of particular kinds be committed. Since t  does not "uncommit" any
instructions this still holds in s .

Therefore tlazy in enumerate_transitions_of_instruction  in state s  and thus
t' in enumerate_transitions_of_system s .

This reduces to showing t in enumerate_transitions_of_instruction  in state s' .

By definition of system_state_after_transition , enumerate_transitions_of_instruction ,
and pop_commit_barrier_action

s' = s_0 with storage_subsytem updated
              inst' updated.

Proof by case analysis on the micro_op_state  in s_0  that enabled t .

Then by definition of enumerate_transitions_of_instruction  the condition
pop_memory_read_request_cand  holds in s_0 . Then pop_memory_read_request_cand  also holds

in s' : The conditions of pop_memory_read_request_cand  are of two forms:

1. requiring all po-before instructions of certain types to be committed
2. The following:

 forall (prev_inst in inst_context.active_prefix).
 is_load_acquire prev_inst ⟹ prev_inst.committed ∨
 (Set.null prev_inst.writes_read_from) ∨ match prev_inst.micro_op_state with
 | MOS_pending_mem_read sr _ -> sr.sr_not_yet_requested = []
 | _ -> false)

Show t' in enumerate_transitions_of_sytem s

Show t in enumerate_transitions_of_sytem s'

5.2.3.1. Case inst.micro_op_state = MOS_plain with interpreter outcome Read_mem



Both requirements also hold in s'  because t'  cannot restart committed instructions, and because
t'  does not "uncommit" any instructions, changes the writes_read_from  or
sr.sr_not_yet_requested  fields or the form of the micro_op_state . Therefore t  is enabled in
s' .

No conditions to check: inst  is unchanged, so t  is still enabled.

Doesn't produce transitions t  for which p1 t  holds -- nothing to check.

No conditions to check: inst  is unchanged, so t  is still enabled.

Doesn't produce transitions t  for which p1 t  holds -- nothing to check.

Need to check that find_reg_read r  in s'  still finds the same value:

For find_reg_read  to return a different value, by definition of
enumerate_transitions_of_instruction , find_reg_read , reg_writes_to_this_register , the
reg_writes  field of instructions in inst.active_prefix ++ inst.old_prefix  has to have been

changed by t' . As t  does not change any instruction's reg_writes  fields, t  is still enabled in
s' .

No conditions to check: inst  is unchanged, so t  is still enabled.

No conditions to check: inst  is unchanged, so t  is still enabled.

5.2.3.2. Case inst.micro_op_state = MOS_plain with interpreter outcome Write_mem

5.2.3.3. Case inst.micro_op_state = MOS_plain with interpreter outcome Write_ea

5.2.3.4. Case inst.micro_op_state = MOS_plain with interpreter outcome Write_memv

5.2.3.5. Case inst.micro_op_state = MOS_plain with interpreter outcome Barrier

5.2.3.6 Case inst.micro_op_state = MOS_plain with interpreter outcom Read_reg r

5.2.3.7. Case inst.micro_op_state = MOS_plain with interpreter outcome Write_reg

5.2.3.8. Case inst.micro_op_state = MOS_plain with interpreter outcome Internal

5.2.3.9. Case inst.micro_op_state = MOS_plain with interpreter outcome Footprint



Doesn't produce transitions t  for which p1 t  holds -- nothing to check.

If inst  is committed, there is nothing to check and t  is enabled in s' . If inst  is not
committed, it doesn't produce transitions t  for which p1 t  holds -- nothing to check.

The only kind of transition t  for which p1 t  holds that is enabled in this state is described in
actually_satisfy_transitions . Since inst  is unchanged by t'  the conditions in
actually_satisfy_transitions  still hold and t  is still enabled in s' .

In all cases t  is still enabled in s' .

This follows from the fact that t  and t'  update separate parts of the system state: by definition of
enumerate_transitions_of_instruction , pop_commit_barrier_action , and
system_state_after_transitions  transition t'  changes the storage subsytem state and updates
inst' . By definition of enumerate_transitions_of_instruction  transition t  only updates
inst , old_instructions  and tid 's next_read_order  field. Because of inst ≠ inst'  and by

assumption that inst  is not restarted t  and t'  update separate parts of the system state, so that
system_state_after_transitions s t' ≅ system_state_after_transitions s' t .

then either (Case 6.1)

t' = T_only_trans tid' ioid' ist' tt' 
    for tt' = (T_POP_commit_mem_write_exclusive_fail writes' (thread_cont' false))

and pop_ss_accept_write_exclusive_success_cand'  does not hold and

tie = T_interact_eager (T_POP_commit_mem_write_exclusive writes' prev_writes') 
        in enumerate_transitions_of_thread

and pop_commit_cand  holds in s_0 .

or

(Case 6.2) (ioid',(T_only tt',ids')) in enumerate_transitions_of_thread

5.2.3.10. Case inst.micro_op_state = MOS_plain with interpreter outcome Done

5.2.3.11. Case inst.micro_op_state = MOS_pending_mem_read

Show system_state_after_transition s t' ≅ system_state_after_transition s' t

6. Case t' = T_only_trans tid' ioid' ids' tt'

6.1.



Since s.storage_subsystem = s_0.storage_subsystem  the condition
pop_ss_accept_write_exclusive_success_cand  still holds in s . From the definition of p1

follows ioid ≠ ioid'  because for t  to be enabled inst 's micro_op_state  cannot be of the
form MOS_potential_mem_write . Therefore inst'  is unchanged by t  and it remains to show
that pop_commit_cand  still holds.

Check that pop_commit_cand  still holds: check the following requirements:

1. commitDataflow inst_context

2. commitControlflow inst_context

3. pop_commit_mem_access_cand

1. Still holds in state s  because t  does not change the regs_in  or regs_out  fields of
instructions and does not "uncommit" instructions.

2. Still holds because comitted instructions are not uncommitted by t .
3. checks that instructions of certain kinds po-before inst'  are committed, that all previous

memory accesses are fully determined, and
aarch64_write_commitPrevMightSameAddress_helper  holds. Since t  does not uncommit

committed instructions the first condition is preserved by t .

t  only progresses inst  so that inst 's memory accesses remain determined, so the second
condition still holds.

Since t  only in the case of the actually_satisfy_transitions  transition changes the
micro_op_state  from MOS_pending_mem_read  to a different micro_op_state , only need to

check if this transition preserves condition 3. The actually_satisfy_transitions  transition is
only possible for a micro_op_state  of the form MOS_pending_mem_read sr c  with empty
sr.sr_not_yet_requested = [] . This in turn requires a read-satisfy transition which by

definition of pop_satisfy_read_action  updates writes_read_from  to include the source of
the read.

Therefore when t  changes the micro_op_state  from MOS_pending_mem_read  to a different
micro_op_state  the writes_read_from  field has to be non-empty. Therefore also the third

condition holds.

Since pop_commit_cand  also holds in s  transition tie  in enumerate_transitions_of_thread
in s  and therefore t'  in enumerate_transitions_of_system s .

Show t' in enumerate_transitions_of_system s

Show t in enumerate_transitions_of_system s' or progress made by t overwritten by t'



According to the definition of pop_commit_mem_store_action  with parameter maybe_successful
set to (Just false)  transition t'  updates inst'  and restarts instructions that have read from
the writes'  set.

Now there are two cases: inst  is restarted by t'  or not. For the case where inst  is restarted
t 's progress is overwritten by t'  and system_state_after_transition s t' ≅ s' . The proof

is the same as for Case 2.1.

For the case where inst  is not restarted, t  in enumerate_transitions_of_system s'  holds and
system_state_after_transition s t' ≅ system_state_after_transition s' t . The proof is

the same as for Case 2.2.

Cases of inst'.micro_op_state  and interpreter outcome that enable t'  in s_0 :

Then inst ≠ inst' , since by definition of enumerate_transitions_of_instruction  this
micro_op_state  enables only one transition.

Since inst ≠ inst'  instruction inst'  is not changed by t , so the proof reduces to showing that
pop_memory_read_request_cand  still holds in s .

This requires

1. That certain kinds of instructions po-before inst' are committed and
2. The following:

 forall (prev_inst in inst_context.active_prefix).
 is_load_acquire prev_inst ⟹ 
     (prev_inst.committed ∨ not (Set.null prev_inst.writes_read_from) ∨
      match prev_inst.micro_op_state with
      | MOS_pending_mem_read sr _ -> sr.sr_not_yet_requested = []
      | _ -> false)

1. Still holds in s  because t  does not "uncommit" instructions.
2. t  does not change any instruction's committed , or writes_read_from  field. Therefore, if

either of the first clauses of the disjunction was true in s_0  it is still true in s . If both were
false, then the third one must have been true. But then inst  cannot be po-before inst'  since
for t  to be enabled the micro_op_state  must be MOS_plain . Therefore t  does not affect
the third clause.

6.2.

6.2.1. Case of inst'.micro_op_state= MOS_plain and interpreter outcome Read_mem

Show t' in enumerate_transitions_of_system s



From the fact that pop_memory_read_request_cand  holds in s  follows
t' in enumerate_transitions_of_system .

Since inst ≠ inst'  instruction inst  is not changed by t' .

Check that t  is enabled in s'  by case analysis on inst  state in s_0  that enabled t :

The proof is symmetrical to what was just proved.

No conditions to check: inst  is unchanged, so t is still enabled.

Doesn't produce transitions t  for which p1 t  holds -- nothing to check.

No conditions to check: inst  is unchanged, so t  is still enabled.

Doesn't produce transitions t  for which p1 t  holds -- nothing to check.

Need to check that find_reg_read r  in s'  still finds the same value:

For find_reg_read  to return a different value, by definition of
enumerate_transitions_of_instruction , find_reg_read , reg_writes_to_this_register , the
reg_writes  field of instructions in inst.active_prefix ++ inst.old_prefix  has to have been

changed by t' . Because t'  does not change any instruction's reg_writes  field, this
find_reg_read  returns the same value in s' .

No conditions to check: inst  is unchanged, so t  is still enabled.

Show t in enumerate_transitions_of_system s'

6.2.1.1. Case inst.micro_op_state = MOS_plain with interpreter outcome Read_mem

6.2.1.2. Case inst.micro_op_state = MOS_plain with interpreter outcome Write_mem

6.2.1.3. Case inst.micro_op_state = MOS_plain with interpreter outcome Write_ea

6.2.1.4. Case inst.micro_op_state = MOS_plain with interpreter outcome Write_memv

6.2.1.5. Case inst.micro_op_state = MOS_plain with interpreter outcome Barrier

6.2.1.6. Case inst.micro_op_state = MOS_plain with interpreter outcome Read_reg r

6.2.1.7. Case inst.micro_op_state = MOS_plain with interpreter outcome Write_reg



No conditions to check: inst  is unchanged, so t  is still enabled.

Doesn't produce transitions t  for which p1 t  holds -- nothing to check.

If inst  is committed, there is nothing to check and t  is enabled in s' . So assume inst  is not
committed. Then by assumption inst  is not a memory instruction.

For inst.committed = false  there is nothing to do, since this does not produce a transition t
for which p1 t  holds.

The only kind of transition t  for which p1 t  holds that is enabled in this state is described in
actually_satisfy_transitions . Since inst  is unchanged by t'  the conditions in
actually_satisfy_transitions  still hold and t  is still enabled in s' .

In all cases t  is still enabled in s' .

Now system_state_after_transition s t' ≅ system_state_after_transition s' t  follows
from the fact that t  and t'  update separate parts of the system state

Now there are two cases:

inst = inst'  or inst ≠ inst'

Then by definition of enumerate_transitions_of_instruction  and p1 ,

t  = (ioid,  (T_only (T_potential_mem_write ws t_potential), ist))
t' = (ioid', (T_only (T_POP_commit_mem_write_exclusive_fail ws t_fail), ist'))

for

   tfail = pop_commit_mem_store_action m t iic ws (c false) (Just false)

6.2.1.8. Case inst.micro_op_state = MOS_plain with interpreter outcome Internal

6.2.1.9. Case inst.micro_op_state = MOS_plain with interpreter outcome Footprint

6.2.1.10. Case inst.micro_op_state = MOS_plain with interpreter outcome Done

6.2.1.11. Case inst.micro_op_state = MOS_pending_mem_read

6.2.2. Case of inst'.micro_op_state = MOS_plain and interpreter outcome Write_mem

6.2.2.1. Case inst = inst'



According to enumerate_transitions_of_instruction  transition t  updates inst 's
micro_op_state  to MOS_potential_mem_write wk ws c .

Then, in s  either pop_commit_cand  holds for

(ioid, (T_interact_eager (T_POP_commit_mem_write_exclusive ws 
            load.writes_read_from thread_continuation), ist)))

or not. If it does not hold, then

[ (T_only (T_POP_commit_mem_write_exclusive_fail ws t_fail), ist)) 
  for tfail = pop_commit_mem_store_action m t iic ws 
        (c false) (Just false) ]
in enumerate_transitions_of_instruction

and therefore t' in enumerate_transitions_of_system .

If it does hold, then

T_only_trans tid ioid ist (T_POP_commit_mem_write_exclusive_fail ws 
    (thread_continuation false)) =
T_only_trans tid ioid ist (T_POP_commit_mem_write_exclusive_fail ws t_fail 
    for tfail = pop_commit_mem_store_action m t iic ws (c false) (Just false) ] 

in enumerate_transitions_of_instruction

and therefore t' in enumerate_transitions_of_system .

From the definition of enumerate_transitions_of_instruction  follows s = s_0  with
inst.micro_op_state = MOS_potential_meM_write wk ws c .

By definition of pop_commit_mem_store_action

s' = s_0 with inst.micro_op_state of form MOS_plain (c false)
              inst.committed_mem_writes = [] and
              inst.committed = true
              depedent instructions restarted

Therefore

system_state_after_transition s t' = 
system_state_after_transition 
    (s_0 with inst.micro_op_state = MOS_potential_meM_write wk ws c.)
    with inst.micro_op_state of form MOS_plain (c false)
         inst.committed_mem_writes = [] and
         inst.committed = true
         depedent instructions restarted ≅

system_state_after_transition s_0
    with inst.micro_op_state of form MOS_plain (c false)
    inst.committed_mem_writes = [] and
    inst.committed = true
    depedent instructions restarted

Show t' in enumerate_transitions_of_system s



Since by definition of dependent_suffix_to_restart_helper  taking t'  in s  will restart the
same instructions as in s_0  and t'  overwrites the changes t  made to inst 's
micro_op_state : system_state_after_transition s t' ≅ s' .

Since inst ≠ inst'  transition t  does not change inst' , and from the fact that there are no
other preconditions to enabling t'  follows t' in enumerate_transitions_of_system s .

By case analysis on the state of inst  in s_0  that enables t .

This requires

1. That certain kinds of instructions po-before inst'  are committed and
2. The following:

 forall (prev_inst in inst_context.active_prefix).
 is_load_acquire prev_inst ⟹ 
     (prev_inst.committed ∨ not (Set.null prev_inst.writes_read_from) ∨
     match prev_inst.micro_op_state with
     | MOS_pending_mem_read sr _ -> sr.sr_not_yet_requested = []
     | _ -> false)

1. still holds in s'  because t'  does not "uncommit" instructions.
2. t'  does not "uncommitted" any instruction, does not change any instruction's

writes_read_from  or sr_not_yet_requested  field, and does not change any instruction's
micro_op_state  from MOS_pending_mem_read  to a different one. Therefore 2 still holds in
s' .

No conditions to check: inst  is unchanged, so t  is still enabled.

Doesn't produce transitions t  for which p1 t  holds -- nothing to check.

6.2.2.2. Case inst ≠ inst'

# 6.2.2.2.1. Case t' = T_only T_potential_mem_write

## Show t in enumerate_transitions_of_system s'

### 6.2.2.2.1.1. Case inst.micro_op_state = MOS_plain with interpreter outcome Read_mem

## 6.2.2.2.1.2. Case inst.micro_op_state = MOS_plain with interpreter outcome Write_mem

## 6.2.2.2.1.3. Case inst.micro_op_state = MOS_plain with interpreter outcome Write_ea

## 6.2.2.2.1.4. Case inst.micro_op_state = MOS_plain with interpreter outcome Write_memv



No conditions to check: inst  is unchanged, so t  is still enabled.

Doesn't produce transitions t  for which p1 t  holds -- nothing to check.

Need to check that find_reg_read r  in s'  still finds the same value:

For find_reg_read  to return a different value, by definition of
enumerate_transitions_of_instruction , find_reg_read , reg_writes_to_this_register , the
reg_writes  field of instructions in inst.active_prefix ++ inst.old_prefix  has to have been

changed by t . Because t  does not change any instruction's reg_writes  field, find_reg_read
returns the same value in s' .

No conditions to check: inst  is unchanged, so t  is still enabled.

No conditions to check: inst  is unchanged, so t  is still enabled.

Doesn't produce transitions t  for which p1 t  holds--nothing to check.

If inst  is committed, there is nothing to check and t  is enabled in s' . So assume inst  is not
committed. Then by assumption inst  is not a memory instruction.

For inst.committed = false  there is nothing to do, since this does not produce a transition t
for which p1 t  holds.

The only kind of transition t  for which p1 t  holds that is enabled in this state is described in
actually_satisfy_transitions . Since inst  is unchanged by t'  the conditions in
actually_satisfy_transitions  still hold and t  is still enabled in s' .

## 6.2.2.2.1.5. Case inst.micro_op_state = MOS_plain with interpreter outcome Barrier

## 6.2.2.2.1.6. Case inst.micro_op_state = MOS_plain with interpreter outcome Read_reg r

## 6.2.2.2.1.7. Case inst.micro_op_state = MOS_plain with interpreter outcome Write_reg

## 6.2.2.2.1.8. Case inst.micro_op_state = MOS_plain with interpreter outcome Internal

## 6.2.2.2.1.9. Case inst.micro_op_state = MOS_plain with interpreter outcome Footprint

## 6.2.2.2.1.10. Case inst.micro_op_state = MOS_plain with interpreter outcome Done

## 6.2.2.2.1.11. Case inst.micro_op_state = MOS_pending_mem_read



In all cases t  is still enabled in s' .

Now system_state_after_transition s t' ≅ system_state_after_transition s' t  follows
from the fact that t  and t'  update separate parts of the system state.

Two cases: Taking t'  in state s  restarts inst  or not.

Then t'  overwrites t's  progress and system_state_after_transition s t' ≅ s' . The proof
is the same as for Case 2.1.

Then t in enumerate_transitions_of_system s'  and
system_state_after_transition s t' ≅ system_state_after_transition s' t . The proof is

the same as for Case 2.2.

From the definition of enumerate_transitions_of_instruction  follows inst ≠ inst' . Since
t'  does not have other preconditions and because inst'  is unchanged by t :

t' in enumerate_transitions_of_system s .

And:

t in enumerate_transitions_of_system s' . Proof by case analysis on the state of inst  in s_0
that enables t . The proof is the same as for case 6.2.2.2.1.

Because t  and t'  update separate parts of the system state:
system_state_after_transition s t' ≅ system_state_after_transition s' t .

The proof here is the same as for Case 6.2.

6.2.2.2.2. Case t' = T_only T_POP_commit_mem_write_exclusive_fail

# 6.2.2.2.2.1. Case inst restarted by t'

# 6.2.2.2.2.2. Case inst not restarted by t'

6.2.3. Case of inst'.micro_op_state = MOS_plain and interpreter outcome Write_ea

6.2.4. Case of inst'.micro_op_state = MOS_plain and interpreter outcome Write_memv

6.2.5. Case of inst'.micro_op_state = MOS_plain and interpreter outcome Barrier



By definition of enumerate_transitions_of_system  and
enumerate_transitions_of_instruction  transition t'  has to be of the form
T_only_trans _ _ (T_commit_simple Nothing Nothing tt')  for
tt' = pop_commit_barrier_action m t iic' b is'  and pop_commit_cand m t iic'  holds for
inst' .

By definition of enumerate_transitions_of_instruction inst ≠ inst' .

Since inst ≠ inst'  transition t  does not change inst'  and the proof reduces to showing
pop_commit_cand  still holds in s .

pop_commit_cand  checks:

1. commitDataflow inst_context

2. commitControlflow inst_context

3. pop_commit_barrier_cand

1. Still holds, since t'  does not change any instruction's regs_in  or regs_out  fields and does
not "uncommit" instructions, this is still true in s .

2. requires conditional branches po-before inst  to be committed. inst'  does not affect those
instructions and 2 still holds in s' .

3. requires instruction of certain type po-before inst  to be committed and that all po-before
memory accesses are be determined. If this was true in s_0 , this still holds in s  since t  only
progresses inst' , by which its memory accesses don't become undetermined.

Therefore t' in enumerate_transitions_of_system s .

The proof of t in enumerate_transitions_of_system s'  and
system_state_after_transition s t' ≅ system_state_after_transition s' t  is the same as

for 6.2.2.2.1.

From the definition of enumerate_transitions_of_instruction  follows inst ≠ inst'  and the
proof of t' in enumerate_transitions_of_system  only requires showing that find_reg_read
returns the same value in s_0  and in s .

Assume find_reg_read  returns a different value. Then by definition of find_reg_read ,
reg_writes_to_this_register  must return a different value for an instruction in inst' 's prefix,

which requires t  to have changed the reg_writes  or reg_outs  field of an instruction. The only
transition t  for which p1 t  holds that changes either of these is of the form
T_only T_register_write  and only changes inst 's reg_writes  field. So assume t  is of that

Show t' in enumerate_transitions_of_system s

6.2.6) Case of inst'.micro_op_state = MOS_plain and interpreter outcome Read_reg



form and writes to the register r  that t'  reads from. Since all instructions only write to every
register once inst  cannot have written to r  before, but analyse_instruction  must have
included r  in inst 's regs_out  field. Therefore find_reg_read  must have returned
FRRO_blocked  in s_0 . But then by definition of enumerate_transitions_of_instruction

transition t'  would not have been enabled in s_0 .

Therefore t' in enumerate_transitions_of_system s' .

The proof of t in enumerate_transitions_of_system s'  and
system_state_after_transition s t' ≅ system_state_after_transition s' t  is the same as

for 6.2.2.2.1.

From the definition of enumerate_transitions_of_instruction  follows inst ≠ inst' .

Since t'  does not have any precondition and t  does not change inst' ,
t' in enumerate_transitions_of_instruction .

Show t in enumerate_transitions_of_instruction :

Case inst.micro_op_state = MOS_plain  with interpreter outcome Read_mem  See proof of
6.2.2.2.1.1. Case inst.micro_op_state = MOS_plain  with interpreter outcome Write_mem  See
6.2.2.2.1.2. Case inst.micro_op_state = MOS_plain  with interpreter outcome Write_ea  See
6.2.2.2.1.3. Case inst.micro_op_state = MOS_plain  with interpreter outcome Write_memv  See
6.2.2.2.1.4. Case inst.micro_op_state = MOS_plain  with interpreter outcome Barrier  See
6.2.2.2.1.5.

Case inst.micro_op_state = MOS_plain  with interpreter outcome Read_reg r

Need to check that find_reg_read r  in s'  still finds the same value: The proof is symmetrical to
the one in 6.2.6.

Case inst.micro_op_state = MOS_plain  with interpreter outcome Write_reg  See 6.2.2.2.1.7.
Case inst.micro_op_state = MOS_plain  with interpreter outcome Internal  See 6.2.2.2.1.8.
Case inst.micro_op_state = MOS_plain  with interpreter outcome Footprint  See 6.2.2.2.1.9.
Case inst.micro_op_state = MOS_plain  with interpreter outcome Done  See 6.2.2.2.1.10. Case
inst.micro_op_state = MOS_pending_mem_read . See 6.2.2.2.1.11.

Since t  and t'  update separate parts of the system state:
system_state_after_transitions s t' ≅ system_state_after_transition s' t .

6.2.7. Case of inst'.micro_op_state = MOS_plain and interpreter outcome Write_reg

6.2.8. Case of inst'.micro_op_state = MOS_plain and interpreter outcome Internal



From the definition of enumerate_transitions_of_instruction  follows inst ≠ inst' .
Therefore t  does not change inst'  and since t'  has no other precondition, t'  in
enumerate_transitions_of_systems s .

The proof of t in enumerate_transitions_of_system s'  and
system_state_after_transition s t' ≅ system_state_after_transition s' t  is the same as

for 6.2.2.2.1.

This does not produce a transition t'  for which p1 t'  holds.

From enumerate_transitions_of_instruction 's definition follows inst ≠ inst' . Therefore t
does not change inst'  and the proof of t' in enumerate_transitions_of_system s  reduces to
showing that pop_commit_cand  still holds. The proof of this is the same as in 5.1.4.

Now there are two cases:

t'  commits a branch instruction and discards a subtree that contains inst  or otherwise.

Since s ≅ s_0 with inst updated  (up to old_instructions  and next_read_order ) and t'
removes inst  from the instruction tree, system_state_after_transition s t' ≅ s' .

The proof of t in enumerate_transitions_of_system s'

and system_state_after_transition s t' ≅ system_state_after_transition s' t  is the
same as for 6.2.2.2.1.

From the definition of enumerate_transitions_of_instruction  follows inst ≠ inst' : Assume
inst = inst' . Since p1 t  holds, t must be an actually_satisfy_transitions  transition.
There is only one transition of this type and it requires sr.sr_not_yet_requested  to be empty
whereas the write_forward_transitions  requires sr.sr_not_yet_requested  to be non-empty.
Contradiction. Therefore assume inst ≠ inst' .

6.2.9. Case of inst'.micro_op_state = MOS_plain and interpreter outcome Footprint

6.2.10. Case of inst'.micro_op_state = MOS_plain and interpreter outcome Done

6.2.10.1: t' discards inst

6.2.10.2: t' does not discard inst

6.2.11. Case of inst'.micro_op_state = MOS_pending_mem_read

6.2.11.1.



In the case that t'  is an actually_satisfy_transitions  transition it only has the precondition
that sr.sr_not_yet_requested  is empty. Since inst ≠ inst'  transition t  does not change this
and t'  is still enabled in in s .

The proof of t in enumerate_transitions_of_system s'  and
system_state_after_transition s t' ≅ system_state_after_transition s' t  is the same as

for 6.2.2.2.1.

If t'  is a write_forward_transitions  transition, then the only precondition to t'  being
enabled in s  is that sr.sr_not_yet_requested  in s  is the same as in s' . Because of
inst ≠ inst'  transition t  does not change inst'  and this is still true in s .

Now there are two cases: inst  is restarted by t'  or not.

In the case that inst  is restarted by t'  transition t 's changes are overwritten by t'  and
system_state_after_transition s' t ≅ system_state_after_transition s t' . For the proof

see Case 2.1.

Otherwise t in enumerate_transitions_of_system s'  and
system_state_after_transition s t' ≅ system_state_after_transition s' t . For the proof

see Case 2.2.

Let t = TSS_fetch tid ioid ist' addr fdo tc  such that p2 t , and let
fdo = FDO_success addr opcode inst'' init_instruction_state . By definition of
enumerate_transitions_of_system  this means

tfetch = (ioid,(T_interact_eager T_fetch addr tc,ids')) in 
    enumerate_transitions_of_thread tid

for some tid .

Then

s = s_0 with thread_states tid updated with inst'' added as a leaf in the instruction tree

The proof is the same as for Case 1 in the proof of Theorem 1.

6.2.11.2.

Proof of Theorem 2

1. Case t' = SS_only_trans t st



then by definition of enumerate_transitions_of_system :

SS_interact_lazy in pop_ss_enumerate_transitions (s_0.storage) =
                    pop_ss_enumerate_transitions (s.storage)

and t' in enumerate_transitions_of_system s .

Let inst'  be the instruction instance with inst'.ioid = read.r_ioid .

By definition of enumerate_transitions_of_thread  transition tfetch  is either in
enumerate_fetch_transitions_of_instruction iic  for some iic  with
iic.iic_instance.instance_ioid = ioid  or
enumerate_initial_fetch_transitions_of_thread tid .

If tfetch  is in enumerate_initial_fetch_transitions_of_thread tid , then from the definition
of enumerate_initial_fetch_transitions_of_thread  follows tid ≠ read.r_thread , because
the function requires an empty instruction tree which cannot have enabled t' . From the fact that
thread tid  by definition of pop_satisfy_read_action_trans  is not changed by t'  follows
t in enumerate_transitions_of_system s'  and because t  and t'  update separate parts of

the system state
system_state_after_transition s t' ≅ system_state_after_transitions s' t .

Now assume tfetch  is not in enumerate_initial_fetch_transitions_of_thread tid  but in
enumerate_fetch_transitions_of_instruction iic  for some iic . Let
inst = iic.iic_instance .

By definition of pop_satisfy_read_action , for any instruction inst''' : either inst'''  in
s' is unchanged from inst'''  in s_0 , inst''' = inst'  and is updated according to
pop_satisfy_read_action , or inst'''  is restarted by t' .

2. Case t' = SS_lazy_trans (SS_POP_read_response read source st)

Show t' in enumerate_transitions_of_system s

Show t in enumerate_transitions_of_system s'

Case tfetch in enumerate_initial_fetch_transitions

Case tfetch in enumerate_fetch_transitions_of_instruction



Therefore, only need to show that and tfetch  is still in
enumerate_fetch_transitions_of_instruction iic  in state s' , which by definition reduces to

showing that

1. the value of potential_fetch_addresses  remains the same,
2. already_fetched_addresses  in state s  does not contain any elements that

already_fetched_addresses in state s'  does not contain.
3. fetch_transition_of_address  returns the same value

1. As t  is enabled in s_0  the condition is_stop_fetch_instruction  cannot hold for iic .

1. Case iic  is committed. Then it cannot write to the PC and
next_address_of_committed_instruction  returns the same value in s'  as in s_0 .

2. Case iic  is not committed. As iic  is no branch instruction, successor_fetch_address
returns iic.program_loc + 4 . Since t'  does not change any instruction's program_loc
field this value is the same in s  and s_0 .

2. This condition holds because t'  does not add new elements to the instruction tree or change
any instruction's program_loc  field.

3. This reduces to showing that ioids_feeding_address  and therefore
starting_inst_instance  returns the same value in state s'  as in s_0 . An instruction
inst''' 's reg_writes  field might have been changed by t  when it is restarted, but that does

not change the ioids_feeding_address  list, as the exhaustive interpreter already finds the
register write already when initially analysing inst''' .

Therefore t in enumerate_transitions_of_system s' .

Now system_state_after_transition s t' ≅ system_state_after_transition s' t  follows
from the fact that t  and t'  update separate parts of the system state.

Let tid'  be the thread that enables t' .

Then

t' = TSS_Flowing_POP_commit_mem_write_exclusive_successful writes prev_bare_write
            (thread_cont true) 
        in enumerate_transitions_of_system s_0

from which follows that

tie = (ioid', (T_interact_eager T_POP_commit_mem_write_exclusive writes 
                    prev_writes thread_cont, ist'))
        in enumerate_transitions_of_thread tid' in s_0   
                for ioid'.micro_op_state = MOS_potential_mem_write wk ws c

3. Case t' = TSS_Flowing_POP_commit_mem_write_exclusive_successful



and that wk  is of the form Write_exclusive , Write_exclusive_release  or
Write_conditional ; that pop_commit_cand  holds for tid' ; and that
pop_ss_accept_write_exclusive_success_cand s.model.ss storage write prev_bare_write

holds for s_0'.storage_subsystem .

t  does not change the state of any instruction in s_0 's instruction tree, only adds a leaf to the
instruction tree for the instruction that was fetched. Therefore inst'  and any instruction po-before
inst'  is not changed by t .

As inst'  is unchanged by t , if pop_commit_cand also holds in s , then tie  is in
enumerate_transitions_of_thread s . Show pop_commit_cand  still holds in s .

By definition of enumerate_transitions_of_instruction , the folllowing kinds of conditions are
checked by pop_commit_cand  and hold in s_0 :

1. instructions directly feeding into inst' 's input registers are committed
2. certain kinds of po-before instructions of inst'  are committed
3. there is a po-before inst'  load-exclusive
4. all previous memory access addresses have been fully determined and for po-earlier reads to

overlapping addresses it is determined which writes they read from (and they cannot be restarted
any more)

Since all conditions refer to instruction po-before inst'  which are unchanged by t  condition
pop_commit_cand  still holds in s .

Since pop_ss_accept_write_exclusive_success_cand  holds in s_0  and
s.storage_subsystem = s_0.storage_subsystem ,
pop_ss_accept_write_exclusive_success_cand  also holds in s  so that t'  in
enumerate_transitions_of_system s .

By definition of enumerate_transitions_of_thread  transition tfetch  is either in
enumerate_fetch_transitions_of_instruction iic  for some iic  with
iic.iic_instance.instance_ioid = ioid  or
enumerate_initial_fetch_transitions_of_thread tid .

Show t' in enumerate_transitions_of_system s

Show t in enumerate_transitions_of_system s'

Case tfetch in enumerate_initial_fetch_transitions



If tfetch  is in enumerate_initial_fetch_transitions_of_thread tid , then from the definition
of enumerate_initial_fetch_transitions_of_thread  follows tid ≠ read.r_thread , because
the function requires an empty instruction tree which cannot have enabled t' . From the fact that
thread tid  by definition of pop_satisfy_read_action_trans  is not changed by t'  follows
t in enumerate_transitions_of_system s'  and because t  and t'  update separate parts of

the system state
system_state_after_transition s t' ≅ system_state_after_transitions s' t .

Now assume tfetch is not in enumerate_initial_fetch_transitions_of_thread tid  but in
enumerate_fetch_transitions_of_instruction iic  for some iic . Let
inst = iic.iic_instance .

By definition of pop_commit_mem_store_action , for any instruction inst'' : either inst''  in
s'  is unchanged from inst''  in s_0 , inst'' = inst'  and inst''  is updated according to
pop_commit_mem_store_action , or inst''  is restarted by t' .

Showing that tfetch  is still in enumerate_fetch_transitions_of_instruction iic  in state
s' , which by definition reduces to showing that

1. the value of potential_fetch_addresses  remains the same,
2. already_fetched_addresses  in state s  does not contain any elements that

already_fetched_addresses  in state s'  does not contain.
3. fetch_transition_of_address  returns the same value

1. As t  is enabled in s_0  the condition is_stop_fetch_instruction  cannot hold for iic .

1. Case iic  is committed. Then it cannot write to the PC and
next_address_of_committed_instruction  returns the same value in s'  as in s_0 .

2. Case iic  is not committed. As iic  is no branch instruction, successor_fetch_address
returns iic.program_loc + 4 . Since t'  does not change any instruction's program_loc
field this value is the same in s  and s_0 .

2. This condition holds because t'  does not add new elements to the instruction tree or change
any instruction's program_loc  field.

3. This reduces to showing that ioids_feeding_address  and therefore start_inst_instance
returns the same value in state s'  as in s_0 . As t'  does not change any instruction's
reg_out , or reg_writes  fields this still holds in s' .

Therefore t in enumerate_transitions_of_system s' .

Now system_state_after_transition s t' ≅ system_state_after_transition s' t  follows
from the fact that t  and t'  update separate parts of the system state.

Case tfetch in enumerate_fetch_transitions_of_instruction



Two cases: at least one of the transitions is enabled by
enumerate_initial_fetch_transitions_of_thread  or both are enabled by
enumerate_fetch_transitions_of_instruction .

Then tid ≠ tid'  as the enumerate_initial_fetch_transitions  requires an empty instruction
tree, in which case there is only one transition enabled for the thread.

Then s.thread_state tid' = s_0.thread_state tid' . Therefore t'  in
enumerate_transitions_of_system s .

Now there are two cases: fdo  is an error fetch decode outcome or not.

If fdo  is an error fetch decode outcome, then taking transition t'  leads to a whole-system error
state and system_state_after_transition s t' ≅ s' .

If fdo  is a FDO_success  outcome, then s'.thread_state tid = s_0.thread_state tid  so that
t in enumerate_transitions_of_system s' .

As t  and t'  update separate parts of the system state:

system_state_after_transition s t' ≅ system_state_after_transition s' t .

By assumption t ≠ t' , and by definition of enumerate_fetch_transitions_of_instruction  for
t  and t'  to be different, addr ≠ addr' . (As already_fetched_addresses ,
outstanding_fetch_addresses , and fetch_transition_of_address  are functions only different

addresses can produce different transitions).

Since t  does not change any instruction's state, enumerate_fetch_transitions_of_instruction
in system state s  the function potential_fetch_addreses  returns the same set, including
addr'  the field already_fetched_addresses  contains the same elements as in state s_0 , but

with addr added, which has been fetch and added to the instruction tree by t . Since
addr' ≠ addr  the address addr'  cannot be in this set and therefore must be contained in
outstanding_fetch_addresses . Again, since t  does not change any instruction's state,
fetch_transition_of_address  produces the same result for addr'  as in s_0 , so that

t' in enumerate_transitions_of_system s .

4. Case t' = TSS_fetch tid' ioid' ist' addr' fdo' tc'

4.1. t or t' enabled by enumerate_initial_fetch_transitions_of_thread

4.2. t and t' enabled by enumerate_fetch_transitions_of_instruction



The proof for t in enumerate_transitions_of_system s'  is symmetrical. Since t  and t'
update separate parts of the system state:
system_state_after_transition s t' ≅ system_state_state_after_transition s' t .

Then by definition of enumerate_transitions_of_system ,

tlazy = (ioid',(T_interact_lazy tt',ids')) in
        enumerate_transitions_of_thread tid' in state s_0

Let inst'  be the instruction instance with inst'.instance_ioid = ioid' .

Then by definition of enumerate_transitions_of_system ,
pop_ss_accept_event_cand s_0.storage_subsytem (FRead rr rr_slices [])  holds and
(ioid', (T_interact_lazy (T_mem_read_request rr rr_slices t'), ist'))  is in
enumerate_transitions_of_instruction inst'  for
micro_op_state = MOS_pending_mem_read sr c.

Since pop_ss_accept_event_cand holds  in s_0 , it must also hold in s  because
s.storage_subystem = s_0.storage_subsystem . Remains to check that tt'  in
enumerate_transitions_of_instruction in s .

By definition of enumerate_fetch_transitions_of_instruction  and
enumerate_initial_fetch_transitions_of_thread  transition t  does not change inst'  so that
tt'  is still enabled in s . Therefore t' in enumerate_transitions_of_system s .

By definition of enumerate_transitions_of_system , pop_ss_accept_event_action , and
enumerate_transitions_of_instruction  transition t'  only updates inst'  and the storage

subsystem state.

Then t in enumerate_transitions_of_system s' , since t'  does fetch any instructions, remove
instructions from the instruction tree or change any instruction's regs_out  or reg_writes  fields.

By definition of enumerate_transitions_of_instruction  and
enumerate_transitions_of_system  t  and t'  update separate parts of the system state so that
system_state_after_transition s t' ≅ system_state_after_transition s' t .

5. Case t' = T_lazy_trans tid' ioid' ist' tt'

5.1. Case tt' is of form T_mem_read_request rr rr_slices t

Show t' in enumerate_transitions_of_system s

Show t in enumerate_transitions_of_system s'



Then by definition of enumerate_transitions_of_system  the condition
pop_ss_accept_event_cand (FWrite write)  holds in s_0 ,

tlazy = (ioid',(T_interact_lazy (T_commit_mem_write ws t'), ist')) 
        in enumerate_transitions_of_instruction inst'

in state s_0  and inst'.micro_op_state = MOS_potential_mem_write wk ws , and
pop_commit_cand  holds.

Since s.storage_subsystem = s_0.storage_subsystem  condition pop_ss_accept_event_cand
also holds in s . Therefore only need to check that tlazy  is in
enumerate_transitions_of_thread  in state s .

Check that find_committed_writes  returns the same value: follows from the fact that t  does not
change the committed_mem_writes  field of any instruction.

Check that pop_commit_cand  still holds: check the following requirements:

1. commitDataflow inst_context

2. commitControlflow inst_context

3. pop_commit_mem_access_cand

1 to 3 all check conditions for instructions po-before inst' . Since t  does not change inst' 's
prefix, all of them still hold in s . Since pop_commit_cand  also holds in s  transition
tlazy in enumerate_transitions_of_thread  in s .

By definition of enumerate_transitions_of_instruction  and pop_commit_mem_store_action
transition t'  only changes instructions that are restarted and inst' . t'  does fetch any
instructions, remove instructions from the instruction tree. The proof of
t in enumerate_transitions_of_system s'  is the same as in Case 2 of the proof of Theorem 2.

Therefore t in enumerate_transitions_of_system s' .

Because t  and t'  update separate parts of the system state:
system_state_after_transitions s t' ≅ system_state_after_transitions s' t .

5.2. Case tt' is of form T_commit_mem_write ws t

Show t' in enumerate_transitions_of_system s

Show t in enumerate_transitions_of_system s'

5.3. Case tt' is of form T_commit_barrier b t



Then by definition of enumerate_transitions_of_system  and
enumerate_transitions_of_instruction  condition pop_ss_accept_event_cand (FBarrier b)

holds in s_0 ,

tlazy = (ioid', (T_interact_lazy (T_commit_barrier b t),ist')) 
    in enumerate_transitions_of_instruction

in s_0 , inst' 's micro_op_state  is MOS_plain  with interpreter outcome Barrier bk is'  and
bk ≠ ISB , and pop_commit_cand  holds in s_0 .

As s.storage_subsystem = s_0.storage_subsystem  condition
pop_ss_accept_event_cand (Fbarrier b) also holds in s . Remains to show
tlazy in enumerate_transitions_of_instruction  in state s , which because inst'  is not

changed by t  reduces to showing that pop_commit_cand  still holds in s . The conditions require
pop_commit_cand  are

1. commitDataflow

2. commitControlflow

3. pop_commit_barrier_cand

The proof that 1 and 2 still hold is the same as in Case 5.2. Remains 3: 3 for non-ISB barriers only
requires instructions of particular kinds be committed. Since t  does not "uncommit" any
instructions this still holds in s .

Therefore tlazy in enumerate_transitions_of_instruction  in state s  and thus t'  in
enumerate_transitions_of_system s .

By definition of enumerate_transitions_of_instruction  and pop_commit_barrier_action
transition t'  only updates inst' 's micro_op_state , and changes the committed_barriers
and committed  fields, does not fetch new instructions or remove instructions from the instruction
tree. The proof of t in enumerate_transitions_of_system s'  now goes as in Case 2 of the proof
of Theorem 2.

Because t  and t'  update separate parts of the system state:
system_state_after_transitions s t' ≅ system_state_after_transitions s' t .

Show t' in enumerate_transitions_of_sytem s

Show t in enumerate_transitions_of_sytem s'

6. Case t' = T_only_trans tid' ioid' ids' tt'



For the cases for which p1 t'  holds the proof is the same as that of Case 4.2, since we always
proved t in enumerate_transitions_of_system , t' in enumerate_transitions_of_system
and system_state_after_transition s t' ≅ system_state_after_transition s' t .

Remains the proof for those cases of t'  for which p1 t'  doesn't hold:
T_only_trans ioid' tid' _ T_register_write for regissters LR or CTR ,
T_only_trans ioid' tid' _ T_POP_commit_mem_write_exclusive_fail

T_only_trans ioid' tid' _ T_POP_mem_write_footprint

T_only_trans ioid' tid' _ T_commit_simple

Two cases:

1. t  enabled by enumerate_initial_fetch_transitions_of_thread  or
2. t  enabled by enumerate_fetch_transitions_of_instruction

If t  is enabled by enumerate_initial_fetch_transitions_of_thread , then by definition of
enumerate_initial_fetch_transitions_of_thread : tid ≠ tid' , since otherwise t  would not

be enabled.

Then, from s.storage_subsystem = s_0.storage_subsystem
and s.thread_states tid' = s_0.thread_states tid'  follows
t' in enumerate_transitions_of_system s ; from s'.program_memory = s_0.program_memory

and s'.thread_states tid = s_0.thread_states tid  follows
t in enumerate_transitions_of_system s' .

Because t  and t'  update separate parts of the system state:

system_state_after_transition s t' ≅ system_state_after_transition s' t .

Now assume t  is enabled by enumerate_fetch_transitions_of_thread . Then t  in
enumerate_fetch_transitions_of_instruction iic for some iic . Let
inst = iic.iic_instance .

Proof by case analysis on t' :

The proof of t' in enumerate_transitions_of_system s  is the same as in Cases 6.1 and 6.2.2 of
the proof of Theorem 1, the proof of t in enumerate_transitions_of_system s'  and
system_state_after_transitions s t' ≅ system_state_after_transition s' t  is the same as

in Case 2 of the proof of Theorem 2.

6.2. T_POP_commit_mem_write_exclusive_fail

6.3. T_only T_POP_mem_write_footprint



The proof of t' in enumerate_transitions_of_system s  is the same as in Case 6.2.3 of the Proof
of Theorem 1, the proof of t in enumerate_transitions_of_system s'  and of
system_state_after_transition s t' ≅ system_state_after_transition s' t  is the same as

in Case 2 of the proof of Theorem 2.

There are two cases:

t'  is enabled by inst' 's micro_op_state  Barrier  or Done . In the case of
inst'.micro_op_state = Barrier  the proof for t' in enumerate_transitions_of_system s e

is the same as in Case 6.2.5 of the proof of Theorem 1, the proof of
t in enumerate_transitions_of_system s'  and
system_state_after_transition s t' ≅ system_state_after_transition s' t  is the same as

in Case 2 of the proof of Theorem 2.

Therefore, assume t'  enabled by inst'.micro_op_state = Done .

Since t  does not change inst' , only need to show that pop_commit_cand  still holds in s . But
since pop_commit_cand  only refers to instructions in inst' 's prefix and t  does not change t' 's
prefix, t  preserves pop_commit_cand  so that t' in enumerate_transitions_of_system s .

Now there are two cases: potential_fetch_addresses  in s'  returns the same value or a different
value than in s_0 .

Since t'  does not fetch any instruction out_standing_fetch_addresses  remains the same, and
since t'  does not change any instruction's regs_out  or reg_writes  fields
fetch_transitions_of_address  returns the same value as well. Therefore
t in enumerate_transitions_of_system s'  and as t  and t'  update separate parts of the

system state: system_state_after_transition s t' ≅ system_state_after_transitions s' t .

Because t'  does not change the instruction kind of inst' , does not change its reg_writes  or
nias  fields, is_stop_fetch_instruction  the find_reg_read  and inst.nias  fields must have

the same values in s'  and in s_0 . Therefore t'  must have committed inst'  and

6.4. T_only (T_commit_simple Nothing Nothing t'),ist')

Show t' in enumerate_transitions_of_system s

6.4.1. potential_fetch_addresses in s' returns the same value

6.4.2. potential_fetch_addresses in s' return a different value than in s.



potential_fetch_address  returns { next_address_of_committed_instruction iic }.  If
addr  is the member of this set, the proof goes as in 6.4.1, so assume addr  is not in this set.

Then t'  is the commit of a branch instruction with a now-determined successor address that is
different from adddr : By definition of commit_simple_action  transition t'  deletes any subtrees
with address different from next_address_of_committed_instruction . Therefore taking t'  in
state s  removes inst  from the instruction tree and undoes the progress made by transition t , so
that system_state_after_transition s t' ≅ s' .


