Overview of Economic Models

Richard Clayton
richard.clayton@cl.cam.ac.uk

ITAT
4th December 2013
Why SHIM6 is likely to fail

Richard Clayton
richard.clayton@cl.cam.ac.uk
How is Internet routing failing?

- Companies want to be multi-homed for reasons of resilience
 - IPv4 approach: publish specific route in global table
- Global routing table is growing super-linearly
 - ongoing for 20 years! and so routers need constant upgrading
 - major cause of growth is multi-homing
- Can estimate cost of each route as $23bn / 300000 = $77K
 - $23bn estimate from router count & cost of different size networks
 - ALSO almost exactly twice the annual router industry sales
- Actual cost of obtaining an AS and publishing a route is low
 - RIPE: € 2300 in first year, € 1300 thereafter
- i.e.: local decision has global consequences
 - global cost is $77K, but cost to individual business is low
- viz: a “tragedy of the commons”
How does SHIM6 work?

- SHIM6 is the chosen way of doing multi-homing in IPv6
 - chosen after lots of technical analysis of competing schemes
 - SHIM6 RFCs finally published in June 2009

- Multi-homed company gets IPv6 address space from each provider and all machines are configured to have multiple addresses, one IPv6 address from each provider

- Nothing special put into global routing table

- When a long-lived connection is made to a remote machine the other end is told “if I happen to disappear, then try this alternative address instead”
 - long-lived => 20+ packets (avoid overhead for short conversation)
 - lots of extra complexity to ensure that machines do not mislead and thereby impose a denial-of-service attack on a third party
Why will SHIM6 fail?

- Multi-homed IPv6 site has incentive to deploy SHIM6
 - think of this as an incentive to push suppliers for the functionality, as well as doing all the complex issues of configuration
- But site only gets a benefit if remote sites also deploy SHIM6
- These remote sites have no incentive to bother

oops!!!

- So to get the full benefits of being multi-homed the site needs to become an AS and announce routes in the global table
- Hence they no longer have an incentive to deploy SHIM6
- No “first mover advantage” means no movement occurs
No surprise to WEIS attendees

• WEIS 2006:
 Bootstrapping the Adoption of Internet Security Protocols
 Andy Ozment & Stuart E Schechter

• They started by reviewing the value of networks
 ▪ Metcalfe’s law: benefit rises as square of participants; i.e. n^2
 ▪ albeit, Odlyzko & Tilley suggested perhaps just $n \log n$

• BUT this is the long term value – so the interesting question for them is how do you bootstrap the growth of the network?

• If there is an immediate “first mover” advantage then easy!
 ▪ well not quite, they still need someone to talk to!

• So what strategies are available for bootstrapping, especially when benefits do not accumulate for some time?
Approaches to bootstrapping

• #1 Global mandate
 ▪ fine/disconnect people who do not adopt the new protocol
 ▪ TCP successfully replaced NCP on 1 Jan 1983

• #2 Partial mandate
 ▪ force some to adopt, hoping thereby to reach a “tipping point”
 ▪ credit card companies insisted on HTTPS (but no tipping point yet)
 ▪ US .gov mandated the use of DNSSEC

• #3 Bundling complements
 ▪ get something completely different if you adopt
 ▪ e.g. deploying DNSSEC means that you can then use DANE

• #4 Facilitate sub-network adoption
 ▪ can you get a benefit from deploying within an organisation?
 ▪ e.g. fax machines were originally bought to connect offices within each individual organisation
Approaches to bootstrapping II

• #5 Coordination
 ▪ a coalition of the willing agree to use a new approach
 ▪ this is where most of the analysis pre O&S was focussed
 – so still worth analysing this issue BUT NOT solely this issue

• #6 Subsidization
 ▪ a government or similar rewards you for adoption
 ▪ someone finances development (e.g. S/MIME)
 ▪ the .SE registry produced an overnight step change in DNSSEC adoption by charging less for DNSSEC enabled domains

• Original O&S paper has lots of equations and graphs showing exactly why each of these approaches are effective!
(d) Subnetwork adoption

(f) Subsidization
O&S examples: SSH & email signing

- SSH is low cost (many free implementations)
- SSH is easy to learn and does not reduce functionality
- BUT ALSO NOTE
 - could be mandated within organisations (most use is internal)
 - full benefits available once the sub-network has adopted it
 - could use out of band approaches to announce the adoption, and out-of-band bootstrapping of trust (or just TOFU!)
- Email authentication is also low cost (both PGP & S/MIME)
- Authentication is easy to use & functionality basically OK
 - albeit key creation/distribution must be done by someone...
- BUT
 - much email goes external to organisations
 - SO hard to tell if you should expect mail to be signed/encrypted
So let’s talk more about email

- Long tradition of reviewing anti-spam proposals from an economic perspective:

 You might be an anti-spam kook if... Vernen Schryver (2003)
 - describes common failure modes of the “FUSSP”

- A common view is that email is impossible to change because it is so widely deployed. Is that actually true?

- Perhaps you think mail submission looks like this?

 telnet smtp.example.com 25
 220 mail.example.com at your service
 HELO richard.local
 250 What can I do for you today?
 MAIL FROM: etc etc
Modern email submission

```
openssl s_client -starttls
    smtp -connect smtp.gmail.com:587 -crlf -ign_eof
250 CHUNKING
ehlo richard.local
250-mx.google.com at your service, [128.232.110.14]
250-SIZE 35882577
250-8BITMIME
250-AUTH LOGIN PLAIN XOAUTH XOAUTH2 PLAIN-CLIENTTOKEN
250-ENHANCEDSTATUSCODES
250 CHUNKING
auth plain AGRvSWxvb2tsaWtlPw==
235 2.7.0 Accepted
mail from: etc etc
```
Perhaps you meant the email itself?

Message-ID: <3rHmRHA7+r9vEAO$@turnpike.com>
Date: Sun, 2 Jul 1995 16:48:11 +0100
From: Richard Clayton <betatest@turnpike.com>
To: betatest@turnpike.com
Subject: Turnpike version 1.03
Sender: Richard Clayton <richard@turnpike.com>
X-Mailer: Turnpike v1.03 <U2yaxlNz9m7tpk5wwfqeW1so7>
Today’s email is authenticated/traceable...

DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=yahoo.com; s=s1024; t=1385997947; bh=/AcAUoWn+kYTxc0Gexd92FS2H3doRWjNFRP0uFiwWqi=; h=X-YMail-OSG:Received:X-Rocket-MIMEInfo:X-Mailer:Message-ID:Date:From:Reply-To:Subject:To:MIME-Version:Content-Type; b=6gkqGHO/xdfaCryJx7qGGSNhqSeJ09+48EX7NyoFyN1QsiHh3tIoQbT/w+nbNf18Cnmo27ewcPDJBjMoWNLiCX+fp0U5RNbc99Mqi4R9PBQjdzYJ4wHvCCa0EcKBzAkF6Kq6ttVh3BplymYHUTrqlCJ1/Jm05vHcgNy49rLYs=

DomainKey-Signature: a=rsa-shal; q=dns; c=nofws;

h=X-YMail-OSG:Received:X-Rocket-MIMEInfo:X-Mailer:Message-ID:Date:From:Reply-To:Subject:To:
MIME-Version:Content-Type;
b=WHlytFUSpap954ttCSq4jud92j+Dp9m1QgznfXvMItsaowQFeb6otoKp7Qvha4tzLE3CVWKgQWhuUDIDkcMxOiXiFYULxu

Ds+wAJ9uYTssBBF/XadPXRbpKtCzWKmmn6LgPDLH1n1CQh7mBH6R9xPPFRID/zHUuo6f35jTdg=;

X-YMail-OSG: oh0wTqAVMln43_fmfoWs1unYe5MIs7nrE6OUkM3.V_e3wS.Mo5espzRj8_xdgk4k8ePP1rUYQQev.u1Fz2QyAnvoxS.P7RhQEtamaHIZSFw1ZGafT5hnmVNLyr7nMN8vwtmznZ2NZWqkdulxg2DtvVQFoSYsEs2GwVtsJmU67ziZn58KhneVqWEpFniuhd_C0bpB78KIqmtriHB4qL0wHX6qrwjkhelXheBNYhQvKKEGaCR5CPJ34IXNPaYU80GOpTfK5wXuSTmqLJe9MayiR.T2Thdlagn3y8KegfHXolWvTYCG.2NYY_3yXJOjP.AhDVzun7Dxe8YIaNH0cd0qTsJK1WPFy30IyIK1IIgPxul4mVThAV4TOMh6U8re7XV95XYRqvpJDRmFYt4hSn.EBk6NtDOdt9IkiTjHswp177JRM0o1iUVK9YzptTXp2wLzyS6NmVFEx7Vt8qF_HwQloskgTz7t17Ybsh926LwArBeCpcwLw4wSdwbQAapmb1G7I3qX1PQ3TA1BAZQutw81qzzDKaMwsUnnRsA--
Why has email evolved?

- **MIME** – richer content
 - works well in sub-networks & within organisations
 - benefits for early adopters
- **ESMTP** – improved control of SMTP sessions
 - authentication permits mobility
 - benefits for early adopters
- **DKIM/SPF**
 - (threat of) mandates
 - benefits for early adopters (even the spammers)
- **DMARC** ("my DKIM/SPF policy is...")
 - coordination (70% of mailboxes adopted this almost overnight)
 - benefits for early adopters
TCP/IP – the name remains the same

• Compare a classic TCP/IP header from 1990 with what you’ll see on the wire today:
 ▪ No IP options (they look like hacking!)
 ▪ MTU discovery (so almost no IP fragments)
 ▪ Carrier Grade NAT
 ▪ Timestamps
 ▪ Window scaling
 ▪ SACK
 ▪ Congestion control (of various interacting kinds)
 ▪ Explicit Congestion Notification
 ▪ Tight windows on RST validity
 ▪ Multipath (deployed in IOS7)
 ▪ All packets in order
 ▪ and all that’s before we consider how smart interface cards change how packets look in Wireshark...
Middleboxes – optimise & lose generality!

- The actual ossification issue with TCP/IP is middleboxes
 - many types: NAT, firewalls, proxies, application gateways, VPNs, load balancers, etc. etc.

- Multi-path TCP designers did lots of tests
 Is it still possible to extend TCP? Honda et al. (2011)
 - MP_CAPABLE options removed from SYN packets (14%)
 - servers cannot initiate sub-flows (because clients behind NATs)
 - Initial sequence numbers rewritten (10%)
 - “holes” in TCP data blocks further transmission (11%)
 - ACKs not passed on if data not seen (33%)
 - middleboxes will re-segment data (as will hardware at sender!)
 - NATs can rewrite content (e.g. FTP IP addresses)
Conclusions

• In my SHIM6 paper I recommended that RFCs for new protocols should have an “economic considerations” section (c.f. security)

• Ozment & Schechter have a good template for this:
 1. global mandate
 2. partial mandate
 3. bundling complements
 4. facilitate sub-network adoption
 5. coordination
 6. subsidization

• It is lazy to claim that it’s the installed base that’s the problem, or that nothing ever changes in key protocols
 ▪ but optimising today’s traffic may damage tomorrow’s

• TAKEAWAY: it’s all about incentives – why should people want to use your protocol rather than an alternative (or nothing)
It’s the Economics, Stupid!

http://www.lightbluetouchpaper.org