Trends in Sophisticated Hacking

Dr Richard Clayton

Berlin
14th December 2011
“Security Economics”

Security Group,
Computer Laboratory,
University of Cambridge

- Big focus on “security economics” the new (since about 2000) approach to the understanding of computer security
- Looks more at the “economics”; less at the “computer science”
- e.g. Who loses money if this security problem is not addressed (and therefore has an incentive to fix it) ? Who did the security design ? and who is now actually in a position to fix it ?
Trends in sophisticated hacking

I was given this title to talk to ...

... but in practice I’m going to try and persuade you that almost all of the bad things aren’t especially sophisticated!
Malware

- Malware is general term for “malicious software”
 - never was very useful to distinguish virus / worm / trojan etc.
 - lots of history: Brain, LeHigh, Melissa, ILoveYou
 - first spread on floppy disks & then email
 - every copy was the same, and it was mostly harmless

- Malware today spread by many different vectors:
 - email (still! lots of examples stopped by your spam filter)
 - drive-by infection (on both good and bad websites)
 - over the network and via memory sticks (eg Stuxnet of course)

- Often every sample is different (so AV stats are meaningless)
 - “server side polymorphism” gives everyone a different copy
 - “if you see two samples the same, it’s a false positive”

- Harm is credential theft and botnet membership
 - for corporates, insiders and intruders matter more than malware
Understanding malware

- Impression still given of diligent AV analysts slaving into the small hours to tease out every detail of new attack
 - sample is merely run within virtual machine (VM) [in a huge farm]
- Very little malware is actually analysed
 - once it’s detected/removable, AV company’s job is done
- Very little malware is correctly categorised
 - names have no value to AV company, so no effort to make correct
- Much malware is yesterday’s binary repacked
 - but, there is almost no tracking of when improvements occur
 - but, would be enlightening to know what changed since yesterday
- Behavioural analysis has significant limitations
 - stuxnet spreading via network printers was missed for some time
 - assumption is that malware will not spot it is in a VM!
Is AV relevant any more?

- AV detection rates reported (Cyveillance) to start around 20%
 - surprising that is so high, when criminals test before shipping
- Mass-market malware just asks for permission to be installed
 - this entirely sidesteps operating system controls
 - much success with codecs to view Britney Spears video
 - some cheats for online games steal credentials
 - foto 😊 http://www.x-facebook.com/album.php?richard@yahoo.com
- Detection of commercial monitoring software is poor
 - many products sold for child/employee monitoring...
 - ... also used by stalkers, ex-partners etc.
 - AV generally doesn’t detect this – they’d have to purchase samples; and would end up embroiled in lawsuits
- What most people need is “desktop protection” not AV per se
Was Stuxnet different?

- Delivery mechanism: nothing especially remarkable
 - but clear that thought put into spreading mechanisms
 - did not contain lots of brand-new attacks
 - codebase likely to have been purchased (or stolen, or work for hire?)
 - some attention paid to obfuscation
 - seems to have been tested beforehand

- Payload was carefully designed
 - much attention paid to avoiding collateral damage
 - crypto certificates were stolen to order
 - tested beforehand

- Undoubtedly not the first professionally developed malware
 - the 2004 “Witty Worm” was very unusual as well
 - hallmark of malware from a “nation state” may be the availability of their own internet (small I) on which to test!
Hacking into machines

• Impression (now mainstream in Hollywood) of lone experts with poor social skills and extreme levels of technical ability

• “War Games” may be closer – limited skill and some luck

• Underground Economy has led people to make their own luck
 ▪ mass compromises of insecure WordPress installs
 ▪ evil searches (no longer any need for “scanning”)
 ▪ magelangcyber.web.id (9 months, 110K machines, 27 people > 1K)

• Payloads have been deskilled
 ▪ PHP shells, PHP mailers, PHP scanner, PHP relays
 ▪ phishing kits (many with backdoors)
 ▪ Zeus, SpyEye etc. (malware with a support contract)

• 2011 notable for rise of the “hacktivist”
 ▪ often SQL injections attacks (OWASP #1) to extract databases
Zone-H defacement data
Kevin Mitnick (a quick case study)

• Portrayed as an über-hacker; and was FBI Most Wanted (cyber)

• His main skillset was social engineering
 ▪ RSA token story is illustrative

• Difficult to protect against people like Mitnick
 ▪ requires your receptionists to be rude to everyone
 ▪ requires you to refuse to assist random colleagues
 ▪ requires you to distrust CLI to distinguish internal phonecalls

• This is now echoed in advice about preventing spear phishing
 ▪ discard attachments from colleagues unless they ring you first
 ▪ don’t put any details of staff on your webpages
 ▪ don’t keep pages with links to internal resources
 ▪ never mention your job when interacting in social media
 ▪ of course, this is what intelligence operatives always did...
The “Myth of the Superuser”

• Paul Ohm, 2008
 ▪ identifies “Superusers”, those with “power” that most don’t have
 ▪ the “myth” is that online conflicts cannot be resolved without dealing with the Superusers
 ▪ he gives lots of examples of stories about supposed Superusers which were exaggerations or apocryphal
 ▪ argues that the myth is leading to unjustified loss of civil liberties

• There’s something very similar going on with “hacking”
 ▪ often said that the APT attacker will always succeed
 - c.f. Stanley Baldwin 1932 “the bomber will always get through”
 ▪ APT attackers seen as highly skilled deployers of 0-days
 - some disappointment when clicks are on perfectly ordinary malware
 ▪ multi-stage attacks regarded with undue awe
 - #1 hack RSA, #2 hack Lockheed etc.
 ▪ i.e. excitement about the A in APT (whereas P is what’s relevant)
Cyberwar/Cybersecurity and Cybercrime

- Cyberwar is being rebranded as Cybersecurity
 - rather as the “War Office” is now the “Ministry of Defence”
 - what we actually see is some cyber-espionage and some cyber-riots
 - events in Estonia and Georgia of limited technical interest
- Contrast with Cybercrime, which is all around us
 - but most attacks fairly low value, so hard to justify investigating
 - evidence is difficult to collect (the private firms that run the infrastructure have difficulty collaborating with agents of the State)
 - much crime is cross-border, so traditional policing struggles
- In the “Wild West” a key role was played by the Pinkertons
 - current ad hoc industry “trust groups” are making a real difference
 - so maybe we should abandon efforts to reform policing?
 - but note their role in strike-breaking from 1870s onwards, so there’s a risk to a privatised Internet security approach
Conclusions

• “It’s the economy stupid” (Carville, 1991)
 ▪ but it’s psychology that makes individuals do stupid things

• “Any sufficiently advanced technology looks like magic”

• Since we haven’t yet created a compelling model for explaining security, we ply our trade using fireside “war stories”
 ▪ and stories are much more fun if the people in them are clever and innovative and achieve surprising things that we didn’t forsee

• This leads us to believe that concentrating on defeating advanced attacks will make us all secure
 ▪ whereas the real damage is from boring run-of-the-mill stuff
 ▪ especially when the attacks can be productionised ...
 - but we’re not even sure about that, because we are woefully short of wide-ranging, unbiased, reliable data (because collecting data is less fun than telling each other exciting stories as we huddle in the darkness)