Content filtering: methods & failures

Dr Richard Clayton

London
30th November 2011
How a browser works

• User types in the “URL”
 ▪ http://www.example.com/page.html

• The hostname is translated into an “IP address”
 ▪ www.example.com is found to be at 172.16.17.18
 ▪ this is done by a “DNS server” (at your ISP)

• A request is sent to web server address (172.16.17.18)
 ▪ GET page.html
 ▪ HOST www.example.com

• Appropriate page is returned; repeat for embedded images etc.
 ▪ the web server will be at a “hosting company”
 ▪ there may be many websites on one machine (for small sites)
 ▪ or there may be many machines for one website (for big sites)
Simple blocking I (blackholing)

- Block all traffic to the IP address of the website
 - browser cannot connect, and user believes the website doesn’t exist

- Advantages
 - very cheap (although can’t be used for thousands of sites)

- Disadvantages
 - can result in “overblocking” (if many websites at same IP address)
 - assumes that the website has a stable IP address
 - “fast flux” phishing websites change IP address every few minutes; because the IPs they announce just relay traffic to the real website
 - assumes that the DNS tells everyone the same IP address
 - if you can identify the request made when configuring the blocking system you could tell it the wrong address to be blocked (eg the IP address of Google’s search engine)

- Evasion requires an indirect connection to the website
 - use a proxy (anonymous.com), a VPN, or “Tor”
Simple blocking II (DNS poisoning)

- Rig the DNS server so it says the website doesn’t exist
 - alternatively, user can be redirected to an explanatory page

- Advantages
 - very cheap (and scales pretty much indefinitely)

- Disadvantages
 - if done sloppily, can prevent block email for the blocked domain
 - assumes that you know all the names for a website
 - spammers have tens of thousands of names for pharmacy websites
 - using aardvark.aardvark.example.com might work

- Evasion requires using an honest DNS server
 - use 8.8.8.8 (Google’s DNS server)
 - run your own local DNS server
Simple blocking III (proxying)

• Pass traffic through a proxy which checks if URL is “bad”
 ▪ user can be shown an explanation if URL is “bad”

• Advantages
 ▪ can be as fine-grained as you wish (eg just specific image URLs)
 ▪ no overblocking

• Disadvantages
 ▪ far too expensive to send all traffic through the proxy
 ▪ proxy disrupts authentication mechanisms that check source IP

• Evasion requires that traffic avoids inspection
 ▪ use a proxy (anonymous.com), a VPN, or “Tor”
 ▪ use HTTPS (encrypted connection) if website supports it
 ▪ connect on an unusual port number (www.example.com:81)
 ▪ mangle your URL (%70a%67e.html ... just look inside email spam!)
Real blocking systems

- UK ISPs use two-stage systems
 - stage one - select traffic that might be going to “bad” site
 - stage two - pass selected traffic through the proxy

- Stage one is done by
 - inspecting the IP address (BT’s “CleanFeed” does this)
 - DNS poisoning (most large ISPs do this)
 - inspecting the traffic as it passes by (smaller ISPs do this)

- Evasion
 - as before – but you get a choice of evading stage one or two!

- The “Great Firewall of China” uses multiple mechanisms
 - blocks some IP addresses completely
 - widespread DNS poisoning
 - traffic inspection for “bad” words; connections are then reset
 - fingerprinting of destinations when traffic is encrypted
Peer to peer traffic

- Peer-to-peer not always blocked, may just be “traffic shaped”

- Originally peer-to-peer traffic used specific port numbers
 - so could tackle all traffic on “port 6000” to any IP address
 - P2P now uses random port numbers (or port 80, the HTTP port)

- Next generation of systems looked inside packets for the peer-to-peer protocol commands
 - so-called “deep packet inspection” (DPI)
 - cleverest systems could determine if payload was copyrighted!
 - so the P2P systems started to encrypt their traffic

- Latest systems look for hints that traffic is peer-to-peer
 - some parts of the protocol still occur “in the clear”
 - connection pattern can be distinctive
Email “spam”

• Email spam is detected (and blocked) by:
 ▪ counting how many similar emails are being seen
 ▪ considering the reputation of the sender
 ▪ considering the pattern of words in the message
 ▪ scoring the use of obfuscating content within the messages
 ▪ considering the reputation of the clickable URL

• So blocking of spam is a completely different realm!
 ▪ people say “but ISPs can block spam” ...
 – yes they can, albeit not 100% accurately
 ▪ ... “and so they can block bad websites”
 – so they can only serve free range eggs in the canteen!
 – i.e. it’s a non sequitor
Webpage labelling

- Idea is that websites rate their content
- Doesn’t scale, and was far too expensive to get right
- ICRA.org now shut down
- DCMS still has their logo, and their tags
 - and still has one page with the word “fuck” on it, rated incorrectly
- Filtering systems actually use low-wage humans to rate pages
 - http://www.ispreview.co.uk/story/2011/10/18/students-responsible-for-deciding-which-adult-websites-uk-isps-block.html
 - "I think it’s a fairly popular job for students. The training is basically going through a number of websites and the various ratings so they get a basic idea. I’m not quite sure how exactly they work, but it would normally be one person who does a rating and one person who double checks it. You could probably start rating websites after one day of seeing various categories. It’s really not that difficult." (McAfee)
Blocking is a consensus activity

- ISPs can block material if
 - they concentrate on getting the details right
 - the websites don’t cheat (e.g. by moving around)
 - the users don’t try to evade the blocks!

- Blocking on end-user systems is generally more effective
 - still a consensus activity, but families run on consensus
 - can operate on the content directly
 - can be applied to different protocols (e.g. chat systems)

- BUT if there isn’t consensus
 - you don’t need to be a rocket scientist to follow instructions
 - systems “evolve” to evade blocks (lots of evidence from P2P)
 - blocking in schools has taught the new generation what a proxy is
 - blocking in corporates helps fund VPN sites
 - the “Arab Spring” has put pressure on Tor to be more robust