Advanced Network Security

Richard Clayton

Check Point Course
25 June 2010
Outline

• Traceability
 – and how edge devices fail to help
• Stealing service
 – and how edge devices make it easier
• Is the infrastructure secure?
 – attacks on DNS
 – attacks on BGP
Traceability: who did that?
(Almost) all you need to know about TCP/IP

- Source address
- Destination address
- Sequence number
- Acknowledgement number
Traceability

- Destination address is always valid
- Can send bad packets with 1-way traffic
- Source address is valid for 2-way traffic
- Locate ISP of sender by consulting RIR (RIPE, ARIN, APNIC, LACNIC, AfriNIC) whois records
- Ask ISP to reveal usage at the specific time
- Lots of assumptions underlie this process, but it’s usually accurate (if logs exist) – except at the very last stage, identifying the user
Spoofing

• 3-way handshake
 --> SYN client offset
 <-- SYN-ACK server offset
 --> ACK

• If offset (and other info) is predictable don’t need to see the return traffic to have a successful conversation

• Described by Morris (85) and CERT (95)

• Fix by making sequence numbers random and perhaps by suitable packet filtering at borders
Traceability fails at the edge

- Network Address Translation
 - may be part of a firewall, or router solution
 - used to preserve IP address space
 - used to hide network architecture
 - unlikely to be logged

- DHCP
 - dynamic allocation of addresses
 - logging can also be problematic
 - underlying assumption that MAC addresses constant
Mobile IP providers

• Data phones and Internet “dongles” for laptops mean millions of new TCP/IP users
• BUT providers cannot obtain huge blocks of IP address space (IPv4 will soon be exhausted)
• So they are using NAT, with many (hundreds) of users sharing the same IP address
• Hence need to provide IP address + timestamp (& timezone) PLUS port number
• Existing security logging often inadequate
• AND not addressed by Data Retention Directive
Stealing service
“Practical anonymity”

- Steal a password
- Use a free account and withhold your CLI
- Use a pre-paid WAP phone
- Use a cybercafé
- Use someone else’s WiFi
- Multiple jurisdictions will slow tracing down
 - though perhaps avoid the USA
- NB: Best Practice is far from universal
- or you could just go into work and use the LAN
Complex identity theft

• Borrow IP address and MAC address
 – if real owner isn’t present then will work just fine!
 – all the logs (if any) will point at them
• Investigators will have to resort to CCTV footage, building entry records or holes in the record of activity of your machine
• So wait until real owner is at their desk
 – sniff traffic (easy on WiFi, complex if switched)
 – their TCP/IP stack will notice unexpected packets
 – so need to do something about their TCP resets...
TCP resets

Start to talk to a mail server

1028 > smtp [SYN] Seq=0 Ack=0 Win=32768 MSS=1460
smtp > 1028 [SYN, ACK] Seq=0 Ack=1 Win=17520 MSS=1460

But real owner of identity sends reset to the mail server

1028 > smtp [RST] Seq=1 Ack=4087568586 Win=0

So when we do third packet of handshake we are rebuffed

1028 > smtp [ACK] Seq=1 Ack=1 Win=32768
smtp > 1028 [RST] Seq=1 Ack=207398712 Win=0
Software firewalls

- In 2004 built a rule-breaking ethernet interface that collided with unwanted RSTs
- Device worked, so put into PhD thesis in 2005
- Encountered an unexpected difficulty generating dumps of RST packets for thesis chapter
- Eventually found that “ZoneAlarm” was discarding incoming SYN/ACK (and other segments) for an unknown connection
 - TCP/IP stack didn’t see packets so no RSTs generated!
- Microsoft XP firewall does the same
Stealth mode: an urban myth

- Bastion firewalls try and hide machines
 - slow down the hackers by obscuring detail
- Copied by “software firewalls”
 - despite them serving a different purpose
- Shields Up! made “stealth mode” a virtue
 - assumes that attackers probe and then pounce
 - assumes attackers are single threaded
Wireless hotspots

- Airports (etc) charge for wireless access
- Hence can borrow the identity of nearby Windows XP (etc) user – whose firewall is almost certainly enabled “to be safe”
- Airport could (probably) spot the subterfuge by analysis of port number usage etc
 - cf: counting hosts behind a NAT
- Economic analysis interesting: no incentive on software firewall maker to develop a fix
Robert in India

- Could see backbone wireless AP but not those meant to be used by customers
- Spoofed the IP address and MAC of an AP
- Identified gateway address (eventually)
- Ensured did not send RSTs or ICMPs

 net.inet.tcp.blackhole = 2
 net.inet.udp.blackhole = 1

- Bob’s your uncle! 😊
Take homes

- TCP must use truly random initial values to avoid spoofing
- Ethernet addressing works through convention and cooperation
- Switched networks reduce opportunities for identity theft – but 802.11 WiFi can bring them right back again
- Firewalls don’t always make you safer!
All your mailserver are belong to us
Threat scenario

• I wish to capture a significant amount of incoming email to a major ISP mail server
 – email may contain passwords etc
 – email can be made to contain passwords etc
 – answering email often “proves” identity
 – obvious opportunity to blackmail the ISP, or just trash their reputation as being secure

• Attack should “scale” to many ISPs
 – 0-day exploit on sendmail not considered here
Resources

• Back bedroom attackers
 – can now have control of a reasonable size botnet

• Criminal entrepreneurs
 – may own (or 0wn!) a smallish ISP in Ruritania

• Organised crime ??
 – simpler for them just to bribe an employee!

• I am NOT assuming that BGP or DNS are too obscure to be attacked effectively
Underlying strategies

• Cannot just steal packets – people notice
 – cf YouTube outage in February 2008 (Pakistan Telecom)

• Accept email, resend to the correct ISP
 – top 50 senders is a give-away, so use botnet

• Reject email end of data with a 4xx response
 – email generally re-delivered after a delay, so suitable for intermittent attacks

• Tunnel SMTP packets to correct place
 – either a peer of target or customer within target
DNS (I): active attacks

- DNS server asks for data
 - checks answer has correct identifier field
 - attacker supplies incorrect answer first
 - 16 bit identifier is not long enough!
 - hence modern software randomises request port
- Older software is flawed
 - predictable random numbers!
 - or even accepts non-authorised data!
- No-one monitors for attacks
 - however this scales badly, so of limited interest
 - BUT WAIT!
DNS (II): Kaminsky

• Ask for multiple sub-domains (sub1, sub2 etc.)
 – neat way of ensuring resolver always has to ask
• Attacker tries to get their answer in first
 – BUT of course only poisons some obscure sub-domain
• Kaminsky realised could supply NS data as well
 – “in-bailiwick” data (extra info from authoritative server)
 – relied upon for some purposes! So devastating attack!
• Mitigate (only) with lots of entropy (as before)
 – and what of clever servers behind dumb firewalls?
 – only real fix is DNSSEC
DNS (III): phishing

• “Rock-phish” gang spoofed GoDaddy Aug07
 - probably just wanted some cheap domains
 - BUT control of a registrar account permits changes to
 name server identities

• Registrars for grown-ups will check validity of
 changes out-of-band, $10 hosting will not
 - significant number of US banks were vulnerable

• Attack vector might also be malware...
DNS (IV): root of trust

- 13 top level name servers (A-M)
 - maximum that will fit in a DNS response
- Included with BIND (etc) as a text file
 - you have to start bootstrapping somewhere!
- L moved from 198.32.64.12 to 199.7.83.42
 - moved 1 Nov 2007 (warnings sent 24 Oct 2007)
 - AS20144 (ICANN) announced route until 2 May 2008
- BUT other AS’s announced route in 2008/9
 - Dec 15 (AS42909), Mar 18 (AS 4555), Apr 1 (AS9584)
 - all serving the right thing (through May, we think!)
Attacks on BGP

• Basic idea: announce a /32 for mailserver
 – BGP prefers a “more specific” announcement

• Traffic then flows to Ruritania
 – email contents are available for inspection

• /32 may not propagate, so /24 may be better
 – leads to complexity if other hosts or services on /24
 – hence tunnelling packets back to ISP may be best (and just sniff them as they pass)

• Sniffing possible anyway at other ISPs
 – difference here is scale and remoteness
More specifics...

- Route should not be accepted
 - mnt-lower prevents creation of new route objects
 - so everyone ought to notice that route isn’t valid
 - complexities with multiple route registries
- Route may be spotted by monitoring
 - MyASN @ RIPE, Renesys & some academic projects
 http://iar.cs.unm.edu/alerts.php
 http://phas.netsec.colostate.edu
 - note that bogon filtering hides route from owner! and so
 Best Practice prevents give-away failures
Unauthorised announcements

- Existing route: hope to be a shorter AS path
 - BGP counts AS’s to determine preference
 - so more effective in Ruritania than London
- May help to forge origin for peer to accept the route (entirely dependent on filters)
- Once again, monitoring detects wickedness
 - but registry data error-prone and incomplete so can perhaps only consider changes?
 - and of course you need to know all about multi-homed customers! Is this possible?
SMTP Defence I: encryption

- Opportunistic encryption (RFC3207)
 - uses STARTTLS capability & command
 - negotiate mutually acceptable algorithm
- Plus points:
 - works out of the box for major MTAs
 - only end-points can decrypt the traffic
- Minus points:
 - increases processing load (may not matter)
 - no “man-in-the-middle” protection

25th June 2010

Advanced Network Security
SMTP Defence II: authentication

- Check certificates before sending email
 - prevents man-in-the-middle

- Plus points:
 - works out of the box for major MTAs

- Minus points:
 - increases processing load (albeit may not matter)
 - needs a Public Key Infrastructure (or a lot of bilateral arrangements), so perhaps store in DNS?
Network level defences

• Anti-spoofing filters on customer links
 – motherhood! (but tedious for custom customers)

• Much harder to do on border routers
 – unicast reverse path forwarding (RPF) can help
 – but at IXPss this may not be practicable

• Can check if traffic coming from correct peer
 – straightforward(ish) sFlow/Netflow analysis
Secure DNS/BGP

• Secure DNS almost here
 – some TLDs already signed, more to come
 – unlikely that will be fully deployed for years
 – BUT Kaminsky exploit has given it a huge boost

• Secure BGP(s) experimental at present
 – concerns about performance (cf MD5)
 – concerns about key distribution
 – when will it be stable and inter-working?
Blended attacks

- Some key distribution schemes use DNS
- Attack the DNS and you may be able to compromise systems that are “secure”
- Best use of a BGP attack may be to capture the DNS servers (think long TTL), and then you can go after the mail servers at leisure!
- ...and of course you may just want to DoS
 - so you don’t mind if your attack is noticed
But why not just attack the customer directly?
Customer equipment

- Windows machines may keep name server identities in registry – easy for malware to change
- But in practice, usually set by DHCP
- Hence only need to compromise home routers
 - may have no password at all (and insecure wireless)
 - may be configurable from “the outside”
 - may be insecure, with buffer overflows &c
 - may still have the standard password
- With wireless as well, some researchers postulate an out-of-band worm!

25th June 2010
Negligence

- The failure to use reasonable care

- Current test for “duty of care”:
 - harm must be (1) reasonably foreseeable
 - (2) there must be a relationship of proximity between the plaintiff and defendant and
 - (3) it must be “fair, just and reasonable” to impose liability

- If one of my attacks is effective on a mailserver, because of firewall failings, are you negligent?

- Short term specific: if your router/firewall makes DNS IP-IDs predictable, are you negligent?
Advanced Network
Security

Richard Clayton

http://www.lightbluetouchpaper.org

Check Point Course
25 June 2010