
“Hacking cash machines”
Extracting 3DES Keys from an

IBM 4758 running CCA software

(or, “Why I was wearing a tie on the telly”)

Richard Clayton

3UHVHQWHG�DW��-HVXV�&ROOHJH�
�WK�)HEUXDU\�����

Summary

• Keys and Ciphers

• The IBM 4758 Cryptoprocessor

• How PIN values work

• Mike Bond’s “API attacks”

• The low-cost hardware “DES cracker”

• How to extract 3DES keys from a IBM 4758

• Some thoughts on “full disclosure”

Keys and ciphers

• Kerckhoff’s doctrine (1883)
– the security of a system should depend upon its

key and not upon its design remaining obscure

• If there is no shortcut then the security of a
system depends upon its key length
– trying all possibilities @ 33 million keys/sec

• 240 = 9 hours

• 256 = 68.4 years

• 280 = 5 billion years

A History of Tamper Resistance

Problem: another program on the same
machine can access your sensitive data
• Put keys into separate microprocessor

• Put microprocessor into a tin box

• Photocells and tilt detection

• Epoxy “potting”

• Tamper detecting barriers

The IBM 4758

• Protective barrier with wires of chemically
similar compound

• Detectors for temperature & X-Rays

• “Tempest” shielding for RF emission

• Low pass filters on power supply rails

• Multi-stage “ratchet” boot sequence

= STATE OF THE ART PROTECTION!

CCA and PIN values

• Common Cryptographic Architecture
– runs on many IBM platforms

– available for free to run on a 4758

• A PIN value (in the CCA world) is the
account number encrypted with (112 bit)
3DES key and last few bytes made decimal

• Changing a PIN => changing an offset

Key Entry under CCA

• Each key is loaded in two parts, which are
then XORed together
– XOR means that knowing one part tells you

NOTHING about the final key value

• Two security officers, “trusted” not to
collude, are given one part of the key each.
– they authenticate themselves and then

separately load these into the 4758.

• This makes the key entirely secure...

Michael Bond’s “API attacks”

• New type of attack: use standard API in
non-standard way to cause dumb things
– Overloaded key types

– Unauthorised type casting

– 3DES binding attack

– Related keys

Mike’s PhD topic targets formal methods that
will detect (and avoid) these problems

The Meet-in-the-Middle Attack

Idea: Attack multiple keys in parallel

• Encrypt the same plaintext under each of
the multiple keys to get a “test vector”

• Attack by trying all keys in sequence but
check for a match against any test vector
value (check is faster than encrypt)

• Typical case: A 256 search for one key
becomes a 242 search for 214 keys

Attacking the CCA : Part 1

• Create unknown DES key part

• XOR in “...001”, “...002”, “...003” etc

• Encrypt zero value under each key

• Repeat to get 16384 (214) results

• Some complexity because of parity issues,
but essentially simple & takes 10 minutes.

• Use “brute-force” attack to get the DES key

zero

V1

V2

V3

V4

V5

V6

V7

V8

X xor 001

X xor 002

X xor 003

X xor 004

X xor 005

X xor 006

X xor 007

X xor 008

X

001

002

003

004

005

006

007

008

zero

$995
DES

Cracker

1,2,3.4,5,6,7...
Value

1,2,3,4,5,6,7...

V1

V2

V3

V4

V5

V6

V7

V8
= ? V9

V10

V11

V12

V13

V14

V15

etc etc etc

Low-cost DES Cracker

• $995 Excalibur kit (Altera 20K200 FPGA)
– chip cost is ~$5 (in volume; $178 one-off)

• 33MHz pipeline (& 60MHz possible)

• this is ~225 keys/second
– 56 bit DES = 68 years

• However... it looks for 16384 keys in parallel
– with average luck, find first key in 25.4 hours

Design Overview

PC Client

UART

16-Bit NIOS
Microprocessor

I/O
Instruction
Decoder

DES Pipeline

External
RAM

Test Vectors

A DES Pipeline Stage

DES Pipeline

Fitting the Design Onto the Chip

Max of 8320 LUTs … and using all except 17

• LFSR saves pipelining key values

• Careful attention to instruction decoder

• Minimal settings for NIOS processor

• Redesigned S-Boxes

A5 A4 A3 A2 A5 A4 A3 A2 A5 A4 A3 A2A5 A4 A3 A2

 A1 A0A1 A0

Can always achieve:
 6 LUTs / bit
 => 24 LUTs/S-Box

Some S-Boxes Have Structure

• SBOX4 : address : 543210 : 4 bit result =
 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,

13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14.

• Rearrange addressing in order 532104
 7, 14, 0, 9, 1, 8, 11, 4, 10, 9, 12, 7, 15, 3, 5, 8,

13, 11, 6, 0, 4, 2, 1, 14, 3, 0, 10, 13, 9, 5, 12, 2,
13, 3, 6, 10, 2, 5, 12, 15, 6, 0, 11, 13, 1, 14, 2, 4,
 8, 5, 15, 3, 7, 12, 10, 9, 15, 6, 1, 8, 4, 11, 7, 14.

and then feed it into the logic minimiser...

X1 = a[4] & (a[5] $ a[3] $ a[2])

 # !a[4] & (a[5] & a[2] # !a[5] & !a[3] & !a[2]);

X2 = a[4] & (a[5] & !a[3] # !a[5] & a[3] & !a[2])

 # !a[4] & (a[3] $ (!a[2] # !a[5]));

X3 = a[4] & a[2] & (a[3] # !a[5])

 # !a[4] & (a[2] $ (a[5] # a[3]));

X4 = a[4] & (a[5] & !a[3] & !a[2] # !a[5] & a[2])

 # !a[4] & (a[5] $!a[3]);

R0 = a[0] # a[1] & X4 # !a[1] & !X3;

R1 = a[0] # a[1] & !X1 # !a[1] & X2;

data0 = (a[1] & !X1 # !a[1] & X2 # !a[0]) & R0;

data1 = (a[1] & !X4 # !a[1] & X3 # !a[0]) & R1;

ie: SBOX4 uses just
16 LUTs, not 24

savings also on:

SBOX2: 23
SBOX3: 23
SBOX7: 23
SBOX8: 22

total = 13 LUTs
(* 16 stages = 208)

Why Use Hardware Anyway?
Hardware DES implementation is >>25 times faster

than the best software implementations.

• eg: Software [seeking any 1 of 64K keys]
– 6 modern PCs running in parallel

– £4500

– 84 hours (3.5 days)

• & Hardware [seeking any 1 of 16K keys]
– Altera evaluation board (no soldering required)

– $995

– 22.5 hours (for same example, NB: 1/4 parallelism)

Attacking the CCA : Part 2

• Recall we had 16K related DES keys

• We can crack one of these in ~1 day

• Now create 16K related 3DES keys with
“replicate” halves and “exporter” capability
– 3DES = EncryptA; DecryptB; EncryptA

• Export the DES key under the 3DES keys

• Since replicate can also crack in ~1 day

Attacking the CCA : Part 3

• Create non-replicate 3DES key by combining
two unequal halves with the replicate halves
that we’ve now determined

• Export all the CCA keys under this key

• Download list of PIN offsets

• Use magnetic stripe writer to create cards

• Use any ATM to extract money from accounts

• Go to Bermuda!

IBM’s Response

• Nov 2000 (Mike’s first results)
– nothing (typecasting seen as legitimate)

• May 2001 (Mike’s CHES paper)
– nothing

• Nov 2001 (Newsnight program)
– attack “infeasible in realistic system implementations”

– followed by advice to disable Combine_Key_Parts

• Real Soon Now
– new version of CCA available [+ bug fix]

“Full Disclosure”

• Should you tell vendor & keep quiet ?
– vendor has limited incentive to act

• Should you publish & be damned ?
– “black hats” may be unaware of problem

• Should exploits be published ?
– “script kiddies” & sysadmins both need them

• Current consensus is to tell vendor and
publish after pre-set delay. Recent decisions
to suppress exploit info are controversial.

Make Your Own!

http://www.cl.cam.ac.uk/~rnc1/descrack/

