
Route Fingerprinting in Anonymous Communications

George Danezis
K.U. Leuven, ESAT/COSIC

Kasteelpark Arenberg 10
B-3001 Leuven-Heverlee, Belgium
George.Danezis@esat.kuleuven.be

Richard Clayton
University of Cambridge

Computer Laboratory, JJ Thomson Ave.
Cambridge, CB3 0FD. United Kingdom

Richard.Clayton@cl.cam.ac.uk

Abstract

Peer discovery and route set-up are an integral part of
the processes by which anonymizing peer-to-peer systems
are made secure. When systems are large, and individual
nodes only gain random knowledge of part of the network,
their traffic can be detected by the uniqueness of the infor-
mation they have learnt. We discuss this problem, which
occurred in the initial design of Tarzan, and other related
problems from the literature.

1. Introduction

In Chaum’s original work on mix networks [1] it is as-
sumed that if every participant in the mix network also acts
as a mix for others, this will improve the overall security of
the network. Recent interest in peer-to-peer networking has
influenced some researchers to re-examine networks with a
large number of transient mixes.

In particular, Freedman et al designed Tarzan [4], a peer-
to-peer network in which every node is a mix. A node initi-
ating the transport of a stream through the network creates
an encrypted tunnel to another node, and asks it to connect
the stream to the next node that the initiator has chosen. By
repeating this process a few times it is possible to have an
onion-encrypted connection, relayed through a sequence of
intermediate nodes.

The original Tarzan design, presented at IPTPS 2002 [5]
only required each node to learn about a random subset of
other nodes in the network. This is clearly desirable be-
cause of the very dynamic nature of peer-to-peer networks,
and the volatility of node presence. We found two attacks
against this strategy at that time and communicated them
privately to Freedman and his colleagues. The final version
of Tarzan [4] avoids these attacks, but does so partly by re-
quiring each node to learn the identity of all others, which
is clearly less practical in a peer-to-peer setting.

We have recently noted that other anonymity designs ei-
ther fail to discuss in detail the relevant issues around node
discovery and route (re)construction, or have avoided the
attacks by means of a fortunate side-effect of some other
mechanism, introduced for some other purpose. We there-
fore believe that recording our attacks in the literature, even
at this late stage, will prevent other system designers from
falling prey to them.

2. Attacks against the original Tarzan design

The Tarzan system aims to provide anonymous transport
for streams of data. To achieve this it implements the ideas
of mixes [1] over a peer-to-peer network.

Traditional mixes are dedicated routers that batch to-
gether many messages, or streams, in such a way that in-
puts are difficult to unambiguously link to outputs. Public-
key cryptography is used to ensure that an observer cannot
match the messages based on their contents, and the tim-
ings of messages are disrupted to foil traffic analysis. In
addition, a message or stream is typically relayed through
many mixes, and if even just one of them is ‘honest’ some
anonymity is provided. In order to relay messages through
these chains of mixes, a client needs to learn their network
addresses and their public keys. Centralised servers, often
called ‘directory servers’, provide this information for all
mixes in the network. The security of the system relies on
the lists of mixes and keys not being manipulable by an ad-
versary. Such an adversary could attempt to exclude all hon-
est mixes from the list, or impersonate the honest ones by
substituting their public keys.

Tarzan allows all nodes, in a potentially very large (mil-
lions of machines) peer-to-peer network to mix traffic for
each other. In line with the typical assumptions of peer-to-
peer networks, all nodes are assumed to be transient. Both
the number of nodes, and the consequent high churn, make
keeping track of all nodes in the network very difficult and
expensive, even for a well-resourced centralised directory.
Such a centralised directory is also counter to the spirit of



peer-to-peer networking that tries to decentralise all func-
tionality. Therefore, the original Tarzan design assumed
that each node would only learn about a small, randomly
chosen, subset of other network nodes. This design deci-
sion leads directly to our node knowledge profiling attack.

A high rate of churn of peers means that there must be
frequent reconstruction of routes, which is potentially very
expensive. So if one of the nodes making up the route fails
or leaves the network, the initially presented Tarzan design
opted for ‘mending’ just the part of the route with a prob-
lem. This is, in theory, less costly than reconstructing a
broken route from scratch, but it also leads directly to our
route reconstruction attack.

2.1. Route reconstruction attack

The early design of Tarzan [5] proposed that nodes
should start off by learning the identity of a number of nodes
by performing random lookups on a Chord ring [11]. This
list of nodes is periodically added to by further lookups, per-
haps once a minute. When the Tarzan network is to be used
for anonymous communication, some nodes are randomly
chosen from the set that has been learnt and a route is then
constructed through these nodes.

This route is set up by communicating with each node
in turn (using the route as set up so far) and recording a
flow identifier, the identities of the adjacent hops and an en-
cryption key for return traffic. This route is then used by
creating an ‘onion’ for each packet of data. The interme-
diate nodes each remove a layer of the onion (using their
knowledge of their own private key) and use the flow iden-
tifier to obtain the next hop for the traffic. Eventually the
packet will reach the far end. The reverse traffic is passed
back along the route, but is re-encrypted at each stage of the
return journey. When it emerges from the system the mul-
tiple layers of encryption are removed by the tunnel-builder
and the data exposed.

In order to achieve resilience against intermediate nodes
leaving the network, or proving unreliable, a route recon-
struction protocol is provided. This protocol is designed to
be low cost and just routes around the failed node. Rebuild-
ing the entire route would be expensive, so the working hops
are retained and only the failing connections are replaced.

However, by the use of active attacks on intermediate
nodes, an attacker who can inspect traffic leaving these
nodes will be able to exploit the protocol so as to infil-
trate the chain and to ultimately compromise the entire path
through the Tarzan network.

Let us assume that the attacker controls a fraction c of
subverted nodes. The initial probability that a chain of
length l is totally controlled by an attacker is, for a large
network, cl.

However, if the attacker can cause one of the good nodes

(that he does not control) to fail, then the Tarzan route re-
construction protocol will replace that single node by mak-
ing another selection from the pool.

The attacker can induce such a failure either by launch-
ing a denial of service attack directly across the Internet or
by overloading the node by routing large amounts of traf-
fic across the Tarzan network, with all of this traffic going
through the node. The latter scheme would be preferable
because the attacker should find it simpler to hide.

The attacker can then cause the replacement node to fail
in a similar manner until eventually the user selects one of
the subverted nodes.

The attacker then turns their attention to the next node
along the path (which they will now be aware of) to try to
make the user select a malicious node for that position as
well. This attack can be mounted in a linear fashion either
from the source towards the destinations it is accessing, or
from the destination towards the sources of traffic.

The attack can be made even simpler, once the attacker
controls one node in the path. There is no longer a need
to mount active denial-of-service attacks, since the mali-
cious node can merely discard traffic packets. Once the
source realises that its traffic flow has ceased it will send
out ‘ping’ packets to attempt to determine which hop has
failed. The attacker also discards pings for subsequent hops
and the user will erroneously conclude that the next hop has
failed, and will try to route around it.

The attack is rather faster to mount than might naı̈vely
be expected. The expected number of nodes that must be
disabled before a subverted node is selected has a geometric
distribution with a mean of m = 1/c. The attack operation
needs to be repeated l times, once for each node along the
chain. Therefore, on average, the attacker needs to disable
l/c nodes until the path is fully controlled.

Note that the attack can be applied to subvert all traffic
from all users or, by using knowledge about which nodes
a particular user has learnt about, it can be directed at one
particular user’s traffic.

2.2. Node knowledge profiling

In the early design of Tarzan the user discovers the iden-
tity of participating nodes by using a pseudo-random num-
ber generator as an index into a Chord ring that returns the
node identities. Tarzan uses this random selection process
because it is intended to scale to networks so large that it
would not be feasible for every node to have a complete
view of the network.

An attacker is able to observe the node selection process,
either by seeing the messages from the Chord ring or by in-
specting the traffic subsequently exchanged with the nodes
that the Chord ring has identified. Clearly if the user solely
established the identity of the nodes that were to be used



to forward messages then this would compromise the path.
Tarzan avoids this trap by arranging to discover a large num-
ber of nodes but only using a small subset for a particular
path. Unfortunately, the attacker can exploit their knowl-
edge of which nodes were known to the user to probabilisti-
cally identify traffic as it passes across the Tarzan network.

Let us suppose that there are N nodes in the Tarzan net-
work and the user establishes the identity of a random sub-
set of size k. The attacker can now inspect traffic at any
of the k nodes that the user is aware of. There is no need
to decode any traffic – just inspect the source and destina-
tion. The attacker needs to determine if any traffic is arriv-
ing from a node that is known to the user and also if any
traffic is departing to another node known to the user. If the
node is not both sending and receiving such traffic then the
user is not currently using it. If it is both sending and receiv-
ing such traffic then the user may be using it – and where k
is small compared to N it is very likely indeed that it is the
user’s traffic being observed and not some other participant
in the network.

We will calculate the expected number of nodes that
could have constructed a path including three observed in-
termediate nodes (the triplet).

1. We assume, for simplicity, that all participants choose
k nodes from the total set of N . Tarzan ensures this
selection is uniformly random by requiring users to
query a Chord ring.

2. Each node can generate
(

k
3

)

triplets out of the
(

N
3

)

that
exist, where

(

n
m

)

is the number of possible ways of se-
lecting m elements from n. Therefore given a random
triplet of nodes the probability it is known to a given
node is p =

(k

3)
(N

3 )
.

3. For any particular triplet, the number of nodes that
could choose that triplet will follow a binomial dis-
tribution with parameters p and N . Each out of the
N nodes has a probability p of knowing the particular
triplet. The expected number of nodes1 µ that know
the particular triplet is:

µ = N

(

k
3

)

(

N
3

) =
k(k − 1)(k − 2)

(N − 1)(N − 2)
≈

k3

N2
(1)

We can now calculate when a node is vulnerable to the
attack. If we wish the expected number of nodes that know
a particular triple to be one or less (i.e. they are, on average,
uniquely identifiable) then we need the result of equation
(1) to be less than or equal to 1.

k3

N2
≤ 1 ⇒ k ≤ N2/3 (2)

1The variance is σ
2

= N

 
“

k

3

”

“

N

3

”

! 

1 −

“

k

3

”

“

N

3

”

!

≈
k
2
N

3
−k

5

N5

This result is extremely strong. For example, if there
are 1000 nodes in the network, then if all nodes learn the
identity of 100 or less participants then any triple they use
will (more often than not) be unique to them.

Of course an attacker may be able to establish that traffic
is flowing through a sequence of hops. Generalising equa-
tion (1) we can see that the average number of nodes that
will know about a particular hop sequence of length l is:

N
(

k
l

)

(

N
l

) =
k(k − 1)(k − 2) . . . (k − l + 1)

(N − 1) . . . (N − l + 1)
≈

kl

N l−1
(3)

Thus, if the attacker has the ability to observe many
nodes they will be able to test all possible combinations
of routes against the target node profiles. Even though
the combinations of potential routes to trace might seem
to grow exponentially, most of the paths can be discarded
during the early stages of analysis.

3. Vulnerability of other designs

The final Tarzan design [4] was immunised against our
attacks (after a private communication with the authors).
The route reconstruction protocol has been abandoned in
favour of reconstructing routes from scratch. Naturally, this
eliminates our route reconstruction attack. Nodes in Tarzan
are also assumed to discover and maintain knowledge of the
full network of peers, instead of just a subset, which elim-
inates the node knowledge profiling attack. The need to
know all other peers does not scale well in the size of the
network and is likely to be very expensive in practice.

Tor [3] has a very similar architecture to Tarzan, since
they both relay bi-directional streams, yet it embraces a
client-server architecture. As in a traditional mix system,
a (distributed and redundant) directory service provides a
complete list, network addresses and public keys, for every
Tor router. This approach is feasible because those routers
are assumed to be reliable, with a high up-time. Clearly,
having full information defeats the node knowledge attack,
and routes are rebuilt from scratch after (relatively unex-
pected) failures so the route reconstruction attack does not
apply either.

However, many other peer-to-peer anonymizing net-
works have been proposed in the literature [9, 12, 8]. All
of them need to address the problem of peer discovery, but
most designs do not provide any details as to how they en-
visage that this would be implemented! In particular many
designs make reference to the fact that routes through the
mix network might be constructed by nodes selected “at
random”, which suggests that if these designs were to ma-
ture and be implemented they would be faced with the at-
tacks we describe.



Aside from the difficulty in choosing nodes “at random”
out of large, distributed and transient population, such a sys-
tem would also be faced with the difficulty of making the
selection mechanism resistant to attack. Tarzan proposed
using a random look-up into a Chord ring, but this is vul-
nerable to an attacker flooding the network with malicious
nodes, or using malicious nodes in the Chord ring to make
the look-up return a malicious node [2].

Rennhard and Plattner [10] introduced a peer-to-peer
anonymizing overlay, MorphMix, which shares a very simi-
lar architecture and threat model with Tarzan. A crucial dif-
ference is that the route through the network is not specified
by the source but chosen by intermediate nodes, observed
by user specified and trusted witnesses. While our attacks
do not apply directly to route selection, variants might apply
to the choice of witness nodes. Other systems such as Won-
Goo [6, 7] and SAS [13] also allow nodes along the route
to determine the path, and are therefore, by good fortune,
immune to the node knowledge profiling attacks.

MorphMix realises that leaving the intermediate nodes
to choose the route through the network might lead to route
capture, whereby the first subverted mix on the path only
chooses amongst other subverted mixes. Therefore Mor-
phMix includes a collusion detection mechanism, that mon-
itors for any cliques in the selection of nodes. This prevents
subverted nodes from routinely running attacks on the net-
work but does not provide security in every case.

4. Conclusions

Our analysis of the node knowledge profiling attacks
shows that the random selection of nodes, out of a small
subset, to provide routing through the network is extremely
unwise. A very significant fraction of the nodes must be
discovered; i.e. k must be large enough that the attacks be-
come impractical, although it should be noted that any value
short of N will always cause some information to leak. Our
attacks could be prevented if the discovery of participant
nodes was to be made unobservable, or the subsets of nodes
known by users are correlated.

Similarly our path reconstruction attack is not possible if
the entire path is reconstructed after a failure. This defeats
Tarzan’s original design goal of avoiding excess expense in
such circumstances. Alternative designs avoid the problem
by distributing the work of reconstructing routes, but most
systems seem to just assume that nodes are reliable and so
the amortized cost of reconstructing all routes from scratch
is not too excessive.

Acknowledgements

We would like to thank the Cambridge-MIT Institute for
supporting our visit to MIT, which led to this paper, and

to Michael Freedman, Frans Kaashoek, Robert Morris and
Emil Sit for their hospitality and valuable discussions.

References

[1] D. Chaum. Untraceable Electronic Mail, Return Addresses,
and Digital Pseudonyms. Communications of the ACM,
24(2):84–88, February 1981.

[2] G. Danezis, C. Lesniewski-Laas, M. F. Kaashoek, and
R. Anderson. Sybil-resistant DHT routing. In S. D. C.
di Vimercati, P. F. Syverson, and D. Gollmann, editors, ES-
ORICS, volume 3679 of Lecture Notes in Computer Science,
pages 305–318. Springer, 2005.

[3] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The
Second-Generation Onion Router. In Proceedings of the
13th USENIX Security Symposium, August 2004.

[4] M. J. Freedman and R. Morris. Tarzan: A Peer-to-Peer
Anonymizing Network Layer. In V. Atluri, editor, ACM
Conference on Computer and Communications Security
(CCS 2002), pages 193–206, Washington, DC, November
2002. ACM.

[5] M. J. Freedman, E. Sit, J. Cates, and R. Morris. Introduc-
ing Tarzan, a Peer-to-Peer Anonymizing Network Layer. In
P. Druschel, M. F. Kaashoek, and A. I. T. Rowstron, editors,
International workshop on Peer-to-Peer Systems (IPTPS),
volume 2429 of Lecture Notes in Computer Science, pages
121–129, Cambridge, MA, March 2002. Springer.

[6] T. Lu, B. Fang, Y. Sun, and X. Cheng. Performance Analy-
sis of WonGoo System. In CIT, pages 716–723. IEEE Com-
puter Society, 2005.

[7] T. Lu, B. Fang, Y. Sun, and L. Guo. Some Remarks on
Universal Re-encryption and A Novel Practical Anonymous
Tunnel. In X. Lu and W. Zhao, editors, ICCNMC, volume
3619 of Lecture Notes in Computer Science, pages 853–862.
Springer, 2005.

[8] A. Mislove, G. Oberoi, A. Post, C. Reis, P. Druschel, and
D. S. Wallach. AP3: Cooperative, decentralized anonymous
communication. In Proc. SIGOPS-EW, Leuven, Belgium,
September 2004.

[9] O. Landsiedel, H. Niedermayer, and K. Wehrle. An In-
frastructure for Anonymous Internet Services. In IWI2005,
Chiba/Tokyo, Japan, May 2005.

[10] M. Rennhard and B. Plattner. Introducing MorphMix: Peer-
to-Peer based Anonymous Internet Usage with Collusion
Detection. In Workshop on Privacy in the Electronic Society
(WPES 2002), Washington, DC, USA, November 2002.

[11] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
akrishnan. Chord: A Scalable Peer-to-peer Lookup Service
for Internet Applications. In Conference on Applications,
Technologies, Architectures, and Protocols for Computer
Communications (ACM SIGCOMM 2001), pages 149–160,
San Diego, CA, USA, 27-31 August 2001. ACM Press.

[12] L. Xiao, Z. Xu, and X. Zhang. Low-Cost and Reli-
able Mutual Anonymity Protocols in Peer-to-Peer Networks.
IEEE Transactions on Parallel and Distributed Systems,
14(9):829–840, 2003.

[13] H. Xu, X. Fu, Y. Zhu, R. Bettati, J. Chen, and W. Zhao. SAS:
A Scalar Anonymous Communication System. In Proceed-
ings of ICCNMC, pages 452–461, 2005.


