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Attendees were welcomed to the Workshop by Frans Kaashoek and Peter
Druschel who reported that although the original plan had been to invite 35
people to a 1 1

2 day event, 99 papers had been submitted. The workshop had
therefore been scaled up to 50 authors with 32 position papers, 26 of which
would be presented over a two day program.

Session 1: DHT routing protocols: State of the art and
future directions. Chair: Scott Shenker

Scott Shenker gave a brief overview of the problem space, noting that a great deal
of work was being done on Distributed Hash Tables (DHTs) that were location
independent routing algorithms. Given a key, they would find the right node.

Ben Y.Zhao, Yitao Duan, Ling Huang, Anthony D. Joseph, John D.
Kubiatowitz, “Brocade: Landmark Routing on Overlay Networks”,
presented by Ben Y. Zhao. Recent advances in high-dimension routing re-
search guarantee a sub-linear number of hops to locate nodes. However, they
assume a uniformity of mesh that does not map well to the Internet. Brocade
extends Tapestry to address this by eliminating hops across the wide area and
by preventing traffic going through congested stub nodes. “Super-nodes” are
spotted within connected domains and a secondary overlay layer is then used to
transfer traffic between these super-nodes. Brocade is not useful for intra-domain
messages, so it is necessary to classify traffic by destination. Old results for lo-
cality are cached and the super-node keeps a “cover net”, an authoritative list
of which nodes are local. The local super-nodes are found by snooping peer-to-
peer traffic or by consulting the DNS. The super-nodes find each other by using
Tapestry, which has built-in proximity metrics. The super-nodes do not need to
be incredibly powerful. Simulations show that with 220M hosts, 20K AS’s and
10% of the super-nodes “coming and going” then about 9% of the super-nodes’
CPU time is spent dealing with changes. Publishing data about the changes
uses about 160K bits/sec in bandwidth, and super-nodes need only about 2MB
of storage. Simulations also show that the scheme halves delay for short hops
and improves overall bandwidth usage.



Discussion: Q: Doesn’t RON show the benefit of routing around problems in
the wide area? A: Brocade doesn’t preclude this and, naturally, Tapestry allows
for routing around problems in its discovery protocols. Q: What about the cost
of the Tapestry protocol itself? A: We try to optimize “behind the curtain” in
the background so as not to affect performance. Also a lot of the behavior is local
and nodes are replaced by a proximity network. Bottom line is we’re getting a
performance improvement of 50%, which is worth having and in the limit, you
can always fall back into normal routing.

David Liben-Nowell, Hari Balakrishnan, David Karger “Observations
on the Dynamic Evolution of Peer-to-peer Networks”, presented by
David Liben-Nowell. The existing approach to describing DHTs is to carefully
define an ideal state and show that whilst in that state the network has good
properties. However, since this ideal state never happens “who cares?” Networks
are dynamic and nodes come and go very frequently. One has to prove that the
system gets back to an ideal state “soon after all the changes”. Perhaps it would
be better to define an “almost ideal state” that would be achievable in practice.
One would require this state to be maintainable and for it to have good properties
like fast search, good balancing and lookups that succeed when they should. With
this approach traditional performance measures become meaningless. Because
the network never stabilizes, the time to recovery and number of maintenance
messages is infinite. A better measure would be to use the doubling time (until
the network is twice the size) or the halving time (until n/2 nodes fail). The
“half life” is the smaller of these and measures how long it is until only half of
the system is as it was before. It is possible to prove that all peer-to-peer systems
must be notified of Ω(log n) node changes every half-life and that systems will
stay connected if nodes discover log n new nodes per half-life. In Chord it is
possible to find a protocol that runs in O(log2n) messages – suggesting that
further work is needed. It would also be helpful to understand the notion of
half-life more clearly and measure some real values in the field.

Discussion: Q: Isn’t joining or leaving from real networks somewhat bursty?
A: If the changes aren’t massive the proposed Chord protocol will cope. Q: What
about things like BGP level events changing connectivity? A: The model may
be broad enough to cope with this. More work is called for.

Sylvia Ratnasamy, Scott Shenker, Ion Stoica, “Routing Algorithms
for DHTs: Some Open Questions”, presented by Scott Shenker. Rout-
ing algorithms for DHTs have more commonalities than differences. This is an
illustrative list of what the open research questions seem to be, along with some
initial answers:
Q1: What path lengths can you get with O(1) neighbors?

Viceroy seems to manage O(log n) and Small Worlds O(log2n).
Q2: Does this cause other things to go wrong?

We don’t yet know.



Q3: What are the costs and dynamics of full recovery? Viz: if some nodes fail
can you still reach the ones that remain?

It seems that most systems are remarkably good, losing 2% of routes
with a 20% node failure rate. However, maybe routing isn’t the issue, but
data replication is. Perhaps we will have lost 20% of the data?

Q4: Can we characterize the effectiveness of proximity (geographic) routing?
We’ve not yet got a good model to show that this works, although it

is clear that it does.
Q5: Is proximity neighbor selection significantly better than proximity routing?

Yes, a little better. But there’s no good model yet.
Q6: If we had the full n2 latency matrix would one do optimal neighbor selection

in algorithms not based on Plaxton trees?
Q7: Can we choose identifiers in a 1-D keyspace that adequately captures the

geographic nature of nodes?
Q8: Does geographic layout have an impact on resilience, hot-spots and other

aspects of performance?
We expect load balancing to be hard!

Q9: Can the two local techniques of proximity routing and proximity neighbor
selection achieve most of the benefit of global geographic layout?

We don’t yet have a way of doing this comparison.
Q10: Nodes have varied performance, by several orders of magnitude. If powerful

nodes pretend to be multiple less “able” nodes is this “cloning” effective?
Q11: How can we redesign routing algorithms to exploit heterogeneity?
and from this list, the burning questions are Q2, Q9 and Q11.

Discussion: Q: Doesn’t the improvement from proximity routing depend on
the number of nodes? A: We’re looking for asymptotic behavior. Q: Doesn’t load
balancing interact poorly with security? A: It would be very useful for papers
to clearly indicate how they felt security properties emerged from their routing
properties. If the system is extended or optimized one would like to check that
the security properties still hold. Q: Can you separate out two levels of behavior,
one for correctness and one for speed? A: We tried to do this with CAN. Q: Aren’t
we being unfriendly by designing our own routing level which is moving away
from the underlying TCP? A: This may not be unfriendly, but the way forward
may be to re-examine the notion of proximity to relate it to a graph of the actual
system, rather than to a mere count of hops.

Session 2: Deployed peer-to-peer systems Chair: Roger
Dingledine/Steve Gribble

Matei Ripeanu, Ian Foster, “Mapping the Gnutella Network: Macro-
scopic Properties of Large-Scale Peer-to-Peer Systems”, presented by
Matei Ripeanu. Gnutella is a large, fast growing peer-to-peer system. Further
growth is being hindered by inefficient resource use: the overlay network does not
match the underlying network infrastructure. This study examined the network
during a period of rapid change from 1,000 nodes in November 2000 to 50,000



nodes in May 2001. By March 2002 the Gnutella network was about 500,000
nodes. The network grew partly because its users were prepared to tolerate high
latency and low quality results for file searches. Also, DSL connected users were
25% of the network at the start of the study and about 40% at the end.

Gnutella was originally a power-law graph (with the number of nodes pro-
portional to L−k for some value of k), but by May 2001, at the end of the study,
it had become bi-modal (there were too many nodes with low connectivity).
Also, the average path length had grown only 25% rather than the expected
55%. This made Gnutella more resilient to random node failures. Each link was
transferring 6-8 Kbytes/sec so the overall administrative traffic in May 2001 was
about 1 Gbyte/sec, about 2% of the US “backbone” traffic levels. 90% of this
volume is query and ping traffic. The overall topology does not match the In-
ternet topology with 40% of the nodes in the 10 largest ASs and the “wiring” is
essentially random.

Discussion: Q: Why were there some periods of very rapid change? A: Bear-
share changed their protocol so that saturated nodes no longer answered pings.
Over about a week Gnutella stopped being a power-law network as the Morpheus
system started using it. Q: Are clients maturing and allowing more scaling? A:
Gnutella is now a two-layer system, which was a change. Improvements have
mainly come from the protocol changes (pings dropped from 50% of traffic to
5%) but also to some extent from better engineered clients.

Qin Lv, Sylvia Ratnasamy, Scott Shenker, “Can Heterogeneity Make
Gnutella Scalable?”, presented by Sylvia Ratnasamy. The most common
application of fielded Peer-To-Peer systems is file sharing. The current solutions
are unstructured, the overlay is ad hoc (you can connect as you wish) and files
may be placed almost anywhere. The only approach possible is random probing
and unfortunately, poorly scaling ways of doing this have been chosen. DHTs
are very structured and very scalable so they are good for finding a “needle in a
haystack”. But perhaps the unstructured solutions are “good enough”, especially
when one is looking for “hay”, i.e. material of which there are many copies in the
network. DHTs are bad at keyword searches (because they do exact matches) and
cope poorly with rapid changes of network membership. A system like Gnutella
has no structure to lose if many nodes leave or crash.

Gnutella would perform better with a scalable search – multiple “flood to
one” random walks give a big performance gain. Biasing this to deal with node
heterogeneity (Gnutella nodes have differences of 4 orders of magnitude in avail-
able bandwidth) or transient load changes would also help with the desirable
state of “big nodes do more work”. The idea is for nodes to have a capacity
measure and replicate files and dump traffic onto less full neighbors. Where traf-
fic cannot be dumped, the sender is asked to slow down. Results from simulations
are encouraging, suggesting that although having “super-nodes” is a good idea,
it may not be necessary to be explicit about having exactly two levels of traffic.

Discussion: Q: Can you measure performance directly rather than relying
on a neighbor telling you that you’re slow? A: Yes, we’re aiming to do that. Q:



What are DHTs good for? A: “needles”. Some problems are like that, though
the type of improved Gnutella we want to build will be better at needles than
Gnutella currently is. If DHTs were required to do keyword searches then they
might be just as expensive.

Bryce Wilcox-O’Hearn, “Experiences Deploying a Large-Scale Emer-
gent Network”, presented by Bryce Wilcox-O’Hearn. Mojo Nation was
originally inspired by Ross Anderson’s Eternity paper in the mid 90s. In 1998 it
was put onto a commercial footing as a distributed data haven, but ran out of
money in 2001. Mnet is the open source descendant.

Mojo Nation was an ambitious and complex system that incorporated digital
cash as payment for resources. The digital cash worked and most of the rest
did not. It didn’t scale (never reaching 10,000 simultaneous nodes). 20,000 new
people tried it each month, but its half-life was less than an hour. There were
significant problems with the first connection to the system, which was needed to
locate any neighbors. When the system was publicized the ensuing wave of people
overwhelmed the server (“Slashdot killed my network”). “Original introduction”
is an important and non-trivial issue and other systems such as LimeWire can be
seen to be having problems with it. Of those who did connect 80% came, looked
and left forever. This appears to be because there was no content they cared
about on the system. Data had to be explicitly published and nodes didn’t do
this. The content was distributed as a 16 of 32 “erasure code” scheme, but 80%
of all nodes were offline most of the time, so files could not be recreated. There
were also problems with ISPs (“my enemy”) who throttled bandwidth, forbade
servers or changed their IP addresses on a regular basis. The original design was
tunable to suggest network neighbors based on reliability and closeness (Round
Trip Time). This formula was progressively updated until eventually RTT was
scored at an extremely low level of significance.

Discussion: Q: How important was the mojo? A: This Chaumian blinded
digital cash determined who could store files. It was complicated to make it se-
cure, and people were always trying to steal it by exploiting bugs. It was also
hard to verify whether services were actually performed. You needed something
to discriminate against newcomers Q: Do we need a lightweight rendezvous pro-
tocol to solve this original introduction problem? A: Yes, but it needs to have
no single points of failure or control, because people will want to control it. Q:
Why use shares rather than multiple copies of documents? A: Less disk usage
overall. Q: Would low churn have helped? A: Yes, it did work well sometimes,
when nodes weren’t coming and going quite so much. Q: Can one actually run
a commercial file storing service? A: I’m not the person to ask.

Session 3: Anonymous overlays Chair: Roger Dingledine

Andrei Serjantov, “Anonymizing Censorship Resistant Systems”, pre-
sented by Andrei Serjantov. The idea of censorship resistance is to make it
hard for someone more powerful to remove content from a distributed filestore.



Anonymity is also important, for publishers, readers and whoever may be stor-
ing the file. Issues such as searching or efficiency are of less concern – it matters
more that the material is available than that it took a long time to arrive.

The protocol assumes a DHT system that can store keys and inter-node
communication via anonymous addressing “onions”. The basic idea is to split the
document into shares and ask for the item to be stored. Nodes called forwarders
encrypt the shares, select the actual storage points and return identifiers that
will later be used to identify the routes to these storage locations. The identifiers
are combined by the publisher and the resulting address is then publicized out-
of-band, perhaps by anonymously posting it to Usenet. Retrieval again uses
the forwarders, but the stored shares are returned to the retriever via separate
nodes that remove the encryption. The various roles in the storage/retrieval
protocol have strong guarantees. The storers of the document are unaware what
they are storing. The nodes that forward requests can deny doing this and the
publisher and any retriever can deny almost anything. Future work will prove
the properties of the system in a formal way and will demonstrate the resistance
of the system to attacks.

Discussion: Q: Doesn’t the forwarder know what’s going on? A: They’re just
moving random numbers around. Q: Why not publish the storer onions directly?
A: This would allow an attacker to take out the start of the MIX chain and deny
access to the document. It’s also possible to adjust the protocol to prevent the
forwarders being vulnerable in this way.

Steven Hazel, Brandon Wiley, “Achord: A Variant of the Chord Look-
up Service for Use in Censorship Resistant Peer-to-Peer Publishing
Systems”, presented by Brandon Wiley. The idea was to create a Chord
variant that would provide a DHT with anonymity properties. This ideas are #1
not to report intermediate lookup progress (so that the storer remains hidden),
#2 make node discovery harder by restricting find successor, #3 to be careful
about how finger tables are updated by restricting the information flow. This
third property proves to be hard because “stuff for my finger table that would
be best for me” will vary and therefore, over time, nodes will learn more and
more identifiers for participants in the Chord ring. Rate limiting merely delays
this process. The other properties mean that nodes can hide, which makes them
wonderfully anonymous, but may collapse the system to a small number of nodes.
Finally, all these changes make Chord rather slower and this may mean that
stability is rarely achieved.

Discussion: Q: Why do you want to restrict learning of other nodes? A: If
you know the identity of a storer then you can censor them. Q: Can’t you use
TCP to ensure that nodes are who they say they are? A: Yes, that helps a lot
with authentication. Q: Won’t IPv6 mess this up by letting people choose their
own IP addresses and enter the Chord ring close to what they want to learn
about and censor? A: We need another identifier with the right properties. We
aren’t alone in wanting this!



David Mazières gave a talk on “Real World Attacks on Anonymizing
Services”. Anonymous speech can upset people, so they try to shut down the
systems that propagate it. They try to exploit software vulnerabilities, they
use the system to attack someone powerful enough to themselves attack the
system, they try to marginalize the system, they attract spam to the system,
and they try to make life intolerable for the operator. Some attacks can be
defeated by short-term logging or by providing some logs to users. Overloading
can be addressed by trying to force the attacker to put a human into the loop, so
as to increase the cost. Content based attacks can be countered by ensuring that
it is easy for people to ignore anonymous content and by never storing or serving
objectionable content. These issues must all be factored into the design of any
anonymous service, where the most precious resource will be human time. This
can be used by the defenders to slow down attackers, but also by attackers to
wear down the operator of the service. Future work is looking at Tangler, which
will entangle multiple documents together to make them harder to censor.

Michael J. Freedman, Emil Sit, Josh Cates, Robert Morris, “Tarzan:
A Peer-to-Peer Anonymizing Network Layer”, presented by Michael
Freedman. Tarzan provides a method for people to talk to servers without
anyone knowing who they are. Millions of nodes will participate and bounce
traffic off each other in an untraceable way. Peer-to-peer mechanisms are used
to organize the nodes and the mechanism works at the IP layer so that existing
applications will not need modification. Because so many nodes take part, it will
not be practical to block them all. Because everyone is relaying for everyone else,
there is no “network edge” at which to snoop traffic, and because relayed traffic
cannot be distinguished from originated traffic there is plausible deniability.

When you join the system you make random requests from a Chord ring to
determine a list of possible peers and select a small number of these to create
a source routed UDP based tunnel with each hop secured by a symmetric key.
The nodes on the path hold a flow identifier to determine what action to take
with incoming traffic. NAT is used both within the tunnel and also at the far
end where a connection is made to the true destination. Tarzan can also support
anonymous servers. A C++ based prototype has been created that was able to
saturate a 100Mbit/sec Ethernet. The overhead for setup is ∼20ms/hop and for
packet forwarding ∼1ms/hop (each plus the data transmission time).

Discussion: Q: How well does TCP run over the tunnel? A: There are no
detailed figures yet, and it is hard to say what effect rebuilding tunnels will
have. Q: How capable does an observer have to be to break this system? A: Few
are big enough. Q: How reliable does the PNAT at the end of the tunnel need
to be? A: For things like SSH this is an issue. We may need to have a bit less
heterogeneity in node selection. Q: What about cover traffic? A: We need traffic
in the network to hide our traffic. So we create a sparse overlay network with
this traffic and mix this with longer hops. Q: If you know two ends A and B can
you say that you cannot link A with B? A: Yes, we hope to do this reasonably
well, but it depends what “cannot” means.



Session 4: Applications I Chair: Frans Kaashoek

Steven Hand, Timothy Roscoe, “Mnemosyne: Peer-to-Peer Stegano-
graphic Storage”, presented by Steven Hand. Mnemosyne (pronounced
ne moz’nē) concentrates on high value, small size, information. It is not an ef-
ficient global storage system, but is aimed instead at providing anonymity and
anti-censorship properties. The basic idea is that blocks within the (highly dis-
tributed) system are filled with random data. The file is encrypted so that it too
looks like noise and the data is then placed pseudo-randomly into the store. Col-
lisions are clearly a problem, and although these could be dealt with by writing
each block several times, it is preferable to use Rabin’s Information Dispersal Al-
gorithm instead. Traffic analysis is a problem, but it can be countered by routing
data through many nodes, avoiding fetching all of the shares and by reading in-
formation that isn’t required. Writes are more of a problem since specious writes
would damage data unnecessarily. A working prototype has been created using
Tapestry as an underlying peer-to-peer system; it runs at about 80Kbytes/sec
reading and 160Kbytes/sec writing. The crypto aspects are currently being as-
sessed. The longer-term aim is to use multiple DHTs and ensure they anonymize
traffic. It is hoped to construct a commercial multi-homed data storage system.

Discussion: Q: Are locations chosen randomly? A: Not entirely, there is some
directory and file structure present. Q: Do you need to check if data is still there?
A: Yes, because after a while it disappears. For some levels of availability the
files may need to be refreshed. However, disappearing may be an appropriate
fit with an application such as a personal messaging system. Q: How does it
compare with OceanStore? A: It’s not solving the same problem.

Sameer Ajmani, Dwaine Clarke, Chuang-Hue Moh, Steven Richman,
“ConChord: Cooperative SDSI Certificate Storage and Name Reso-
lution”, presented by Sameer Ajmani. SDSI is a proposed decentralized
public key infrastructure that allows for mapping of principals (keys) to locally
specified names and the use of chains of certificates to delegate trust to other
organizations via the use of groups of principals. Name resolution becomes a key
location problem that turns out to be hard because of the local namespaces,
global loops and other complications. ConChord computes derived certificates
to eliminate loops and make lookups fast, but this means significant extra work
is needed for insertions and significant additional storage is required. This pays
off if the number of resolutions is high as compared to insertions. A central-
ized resolver might be possible, but it turns out to be hard to locate servers
(SPKI/SDSI recommends embedding URLs into keys to fix this) and it is un-
clear where derived certificates are to be stored. A DHT looks like a good match
to the problem both for lookup and storage, and trust issues don’t arise because
the certificates are all self-signed.

ConChord was developed using Chord as the DHT. Two main problems arose.
Firstly, maintaining closure (derived certificates) while supporting concurrent
updates proved difficult because of the lack of atomic updates or locking. The



solution is to provide eventual consistency using periodic replays of the updates.
Secondly, large datasets cause load imbalance, but traditional (CFS-style) data
distribution does not support concurrent updates to those datasets. The solution
here is to distribute the sets over multiple nodes but serialize updates through
a single node.

A system has been built and evaluation is very promising with fast resolu-
tion, single lookups for membership checks and insertion that is quick enough.
Resolvers can also use ConChord to share resolutions and thus save work. Future
work will tackle replication of data, malicious clients and storage limiting.

Discussion: Q: What about revocation? A: Planned for future work. Re-
vocation (and revalidation) lists can be stored in ConChord. SPKI specifies
that proofs that contain revocable certificates must also contain the relevant
CRL(s). Q: What about deletions (certificate expirations)? A: We serialize dele-
tions through a single node, which simplifies this. Q: Is there a better solution
than DHTs? A: We did need some extra code on the DHT nodes to do some
application-specific stuff to provide invariants, handle expirations, etc. We’d like
to soften the closure ideas as part of future work.

Russ Cox, Athicha Muthitacharoen, Robert Morris, “Serving DNS
using Chord”, presented by Russ Cox. The idea was to rework the Domain
Name Service so that it runs over a Chord, but unfortunately the result “sucked”.
This was unexpected because DNS was originally created to replace a distributed
file called hosts.txt, but the new system meant that everyone had to become a
DNS administrator, everyone needed a 24x7 running machine and data can now
be locally correct, yet globally wrong. Peer-to-peer should address these issues
by providing simple ways to distribute data to a permanently running system
that has a single view of what is stored. The arrival of DNSSEC means that the
data can be distributed to untrusted systems. Furthermore, DNS data is entirely
“needles”, so it ought to be a killer app for DHTs!

The idea was to lookup SHA-1{hostname, data type} on the Chord ring.
But latency on cache misses is O(log n) whereas DNS effectively has log base
one million. Using Chord is five times slower on average. Robustness should
be a plus, but DNS is already very robust and the new design introduces new
vulnerabilities. Network outages also cause significant problems with no locality
of storage for local names. Examining the O’Reilly “Bind and DNS” book shows
thirteen common errors, but 9 are arguably bugs in BIND, 3 are at the protocol
level (and reoccur here, albeit in different forms) and only 1 disappears entirely
(there are no slave servers to make a mess of configuring). DNS has evolved
over the last twenty years to include server-side computation; it’s not just a
distributed hosts.txt anymore. DHTs will be unable to replace distributed
databases that include server-side computation, unless that can be expanded to
include some form of mobile code. Questions also arise as to how much systems
can be trusted to continue working without any incentives for doing this; there’d
be no-one to blame if one’s DNS disappeared.



Discussion: Q: So your conclusion is that DNS does not work well with
DHTs? A:(from the floor)“I disagree that other DHTs would be as bad, Tapestry
wouldn’t have the same latency on lookup.” “If you used Pastry then you would
get less latency and a better fit.” “Maybe DHTs are a good tool if they’re being
used for the wrong things?”

Session 5: Are we on the right track? Chair: John
Kubiatowicz

Stefan Saroiu, P. Krishna Gummadi, Steven D. Gribble, “Exploring
the Design Space of Distributed and Peer-to-Peer Systems: Compar-
ing the Web, TRIAD, and Chord/CFS”, presented by Stefan Saroiu.
Peer-to-peer has arrived, but will these systems stay? They do many things well
but crucial “ilities” are missing: securability, composability and predictability.
Because in DHTs a name is an address, this means that the name of content
dictates which node it has to be placed upon, which might not be secure. Be-
cause routing is name based and servers are routers, you cannot trust routers
more than servers. Because topology is dictated by keys you can surround and
hijack content. Equally, it’s hard to provide extra resources for “hot content”
– you don’t control your neighbors, but they are providing the Quality of Ser-
vice. A Chord network with 20% modems has 80% slow paths. Moving forward
it is necessary to enforce who publishes or participates, engineer according to
specific load and value of content, and it must be possible to delegate, engineer
responsibilities and isolate failures in a predictable way.

Discussion: Q: When the systems stop being overlays and start becoming
infrastructure does this change things? A: Yes, that’s exactly what I hope to
influence. Q: For censorship resistance you may not want controllability? A: You
need to think before losing that sort of property.

Pete Keleher, Bobby Bhattacharjee, Bujor Silaghi, “Are Virtualized
Overlay Networks Too Much of a Good Thing?”, presented by Bobby
Bhattacharjee. Material is published by one node on a DHT, but stored by
another. The virtualization provided by the overlay network gives relatively short
paths to any node and load balancing is straightforward. These are clean elegant
abstractions with provable properties. However, locality of access is lost. One
cannot prefetch, search nearby or do other useful things with application specific
information or with names that are naturally hierarchical. The choices are to add
locality back at higher levels, use a higher granularity of exports, or to get rid
of the virtualization.

TerraDir is a non-virtualized overlay directory service that assumes a static
rooted hierarchical namespace. It caches paths and also returns a digest of ev-
erything else at an accessed node. This allows more/less specific queries to be
done within the digest without further communication. Another important de-
sign feature is that the higher something is placed in the hierarchy, the more it
is replicated. The system has been simulated. It was found that higher levels did



more work, but as cache was added load balancing improved, as did the latency
on requests. The system was resilient with >90% successful searches with 30%
of systems failed. Current work is looking at load adaptive replication (where
the main issue is consistency) and at improving searches where there is no good
match between the search and the name hierarchy.

Discussion: Q: Why are there only 32K nodes in your simulation? A: We
only had 24 SPARCs, though they did all have loads of RAM. We wanted the
simulation to finish!

Session 6: Searching and indexing Chair: Robert Morris

Adriana Iamnitchi, Matei Ripeanu, Ian Foster, “Locating Data in
(Small-World?) Peer-to-Peer Scientific Collaborations”, presented by
Adriana Iamnitchi Scientific collaborations are characterized by groups of
users sharing files and mainly reading them. Other group members will also
wish to see any new files, so there is strong group locality and also time locality,
in that the same file may be requested multiple times. It is an open problem as
to whether scientific collaborations exhibit particular patterns and whether they
can be exploited to create self-configuring networks that match the collaboration
network characteristics. The Fermi high-energy physics collaboration was stud-
ied. It consists of 1000+ physicists at 70 institutions in 18 countries. Examining
file usage it could be seen that path lengths were similar to a random network,
but there was significant clustering of connections. This is the classic definition
of a “small world”.

A small world can be seen as a network of loosely connected clusters. The
idea was to build a search system to take advantage of usage patterns. The search
combines information dissemination within clusters and query routing/flooding
among clusters. Gossip is used to maintain cluster membership and disseminate
location info. Bloom filters are used to compress file location information. Re-
quests are flooded to the same cluster and then to other clusters if requested
information is not found locally. The system needs to adapt to the users’ chang-
ing data interests, which is done by connecting nodes if they share many files in
common or disconnecting them as the number of shared files drops. This ensures
that the network mirrors the usage patterns. For future work it remains to be
seen if there are general lessons or if this approach is domain specific.

Discussion: Q: What information is disseminated? The data itself by repli-
cating files, or the file location? A: The data is large and dynamic as new files
are inserted into the network, so copying and indexing is expensive. Q. Are there
many new files? A. Yes, it is characteristic of scientific collaborations that new
files are created. Q. Is there any software available or in development? A. This
problem came from Grid computing where there is a lot of effort in sharing
computational resources (not only files). The Globus toolkit www.globus.org is
freely available software for creating and collaborating in Grids.



Matthew Harren, Joseph M. Hellerstein, Ryan Huebsch, Boon Thau
Loo, Scott Shenker, Ion Stoica, “Complex Queries in DHT-based Peer-
to-Peer Networks”, presented by Ryan Huebsch. There is a poor match
between databases and peer-to-peer systems. The former have strong semantics
and powerful queries, the latter, flexibility, fault-tolerance and decentralization.
However, query processing is better matched to peer-to-peer systems. A keyword
search corresponds to a simple “canned” SQL query and the idea is to add more
types of query. For example, a “join” can be done by hashing and hoping to get
the data back from the node where a local join is performed. The motivation is
to provide a decentralized system, not to provide improved performance or to
replace relational databases.

A system called PIER has been developed on top of CAN. It has a sim-
ple API: “publish”, “lookup”, “multicast” (restricted to particular namespaces
rather than the whole network), “lscan” (to retrieve data from a local names-
pace) and when new data is added a callback mechanism is used. Current work is
on the effect of particular algorithms and looking for new types of operation. Sev-
eral issues arise which are common across the peer-to-peer community: caching,
using replication, and security. Specific database issues are when to pre-compute
intermediate results, how to handle continuous queries and alerters, choice of
performance metrics, and query optimization as it relates to routing.

Discussion: Q: What’s the difference between this and distributed databases?
A: They haven’t taken off. What is actually built is parallel databases under one
administrator, whereas this is decentralized. Q: Astrolabe focuses on continuous
queries and aims to have constant loading. Won’t these joins have a nasty com-
plexity in terms of communications loading? A: This is the realm of performance
metrics, and yes we’re concerned about these. Q: Surely users will remove the
application if its resource requirements are intrusive? A: It might well be impor-
tant to see what users will tolerate, we haven’t looked at this yet. Q: Is this a
read-only system? A: One reads the raw data, but it is also necessary to keep
track of indexes and optimize them.

David Karger gave a talk on “Text Retrieval in Peer-to-Peer Sys-
tems”. The traditional approach to text retrieval is to observe that the ma-
jority of the information base is text. The user formulates a text query (often
inaccurately), the system processes the corpus and extracts documents. The user
then refines the query and the procedure iterates.

The procedure has two metrics, “recall” is the percentage of relevant doc-
uments in the corpus that are retrieved and “precision” is the percentage of
retrieved documents that have relevance. There is always a trade-off between per-
formance on these two metrics. The procedure is speeded up by pre-processing,
since users notice delays of more than 0.5sec and give up after 10 seconds. Search-
ing the web has non-traditional aspects. People care more about precision than
about recall, and they are prepared to wait rather longer for results.

Boolean keyword searches are done by using inverted indexes and performing
intersections and joins. They can also be done by direct list merging, which



gives a complexity of O(size of list of smallest term). Problems arise with
“synonymy” (several words for the same thing – fixed by using a thesaurus to
increase recall but lower precision), and “polysemy” (one word means several
things, increasing precision but lowering recall – unfortunately asking for the
user’s assistance may just confuse).

Further issues are “harsh cutoffs” (relevant documents are missed because
they don’t contain all the required keywords – fixed by quorum systems such as
Altavista’s) and “uniform influence” (no allowance in the scoring for multiple
usage of a word, and rare terms have no special influence). These latter problems
can be addressed by vector space models where each co-ordinate has a value
expressing occurrence and the “dot product” measures similarity. These systems
inherently provide rankings of results and are easy to expand with synonyms. In
some systems, if the user indicates that a particular document located by a first
search is relevant then a refined search can be done with hundreds or thousands
of terms taken from that document.

Google has a corpus of about three billion pages, average size 10K (i.e. 30TB
of data). Their inverted index is of similar size. They use a boolean vector space
model. Experience has been that most queries are only two terms and queries
have a Zipf distribution so caching helps a bit. Their scoring scheme also looks at
links, raising the relevance of highly linked pages and observing that the anchor
text in the link may be a better description of the contents than the actual page.
Google uses a server farm of several thousand machines. In principle a moderate
sized peer-to-peer system of perhaps ∼30,000 nodes should be able to perform
the same function. . .

An obvious design would be to partition the documents between the nodes
and each node then builds the inverted index for its documents. The results then
need to be merged, which creates an n2 connectivity problem. Alternatively, a
DHT could be used to partition the terms and a query is done by talking to
appropriate nodes. The drawback is that the lists could be very long which
creates a bandwidth problem as the lists are merged. An improvement would be
to create an inverted index on term pairs (i.e. pre-answer all two term queries),
however this would generate n2/2 pairs and for a Google sized database would
create ∼15,000TB of index. However, the idea does work well for some special
cases where n is small (song titles) or where a windowing approach can be used
(relevant documents will tend to have the terms near to each other).

However, the economics favor a centralized approach and Google already uses
a type of peer-to-peer design in their data center where they can exploit high
inter-machine bandwidths. Their main bottleneck is content providers restricting
their rate of “crawl” across the web, which can make their index old and out-of-
date. Distributing the crawler function will not assist, but making the content
providers into peers might assist, assuming their input could be trusted.

Distributed systems do differ from “big iron” in that it is possible to gain a
feeling of privacy and to provide some anonymity from the partition of control
and knowledge. Expertise networks such as MIT’s Haystack or HP’s Shock try
to route questions to experts and the challenge is to index the experts’ abilities.



Session 7: Security in peer-to-peer systems Chair: Steve
Gribble

Emil Sit, Robert Morris, “Security Considerations for Peer-to-Peer
Distributed Hash Tables”, presented by Emil Sit. In a distributed peer-
to-peer system there is no “Trusted Computing Base”. Peers can only trust
themselves and the protocols need to be designed to allow peers to verify the
correct operation of others. A reasonable adversary model is that any node can
be malicious, discarding traffic or sending malicious packets. Malicious nodes
can collude with each other, but they do not have the ability to intercept and
read traffic for arbitrary users.

One idea is to develop system invariants and verify them. For example, in
Chord you expect to halve the distance to your goal on each step, so this should
be verified. If recursive queries were allowed then this might improve latency but
a malicious node could cause incorrect results or cause traffic to loop forever. If
progress is being monitored then bad behavior can be detected. If one wishes to
know whether a node is the correct endpoint – and hence its answer cannot be
bettered – then the rule assigning keys to nodes needs to be verifiable so that one
can check that the value hashes correctly to the node and that the node is placed
correctly according to some relatively hard to forge value such as an IP address.
Malicious nodes may conspire to suck nodes or queries into an “evil ring” which
does not contain all the participants in the system. New nodes being added into
the DHT needs to cross-check the answers with other nodes to ensure they are
consistent. Independent routes to resources (such as in CAN) can be utilized for
checking. Another important problem is that malicious nodes may fail to create
the replicas that they should and this may not be detected if a single node is
responsible for this action.

General design principles for security are: #1 define verifiable system invari-
ants, and verify them; #2 allow the querier to observe lookup progress; #3 assign
keys to nodes in a verifiable way; #4 be wary of server selection in routing; #5
cross-check routing tables using random queries; and #6 avoid single points of
responsibility.

Discussion: Q: What do you do when you detect an error? A: You may be
able to route in another way. Q: Can you tell what the spacing in a Chord ring
should be? A: Yes, you can look at the number of participants or just look at
the spacing of your own successors.

John R. Douceur, “The Sybil Attack”, presented by John R. Douceur.
In large distributed systems you can make assumptions about what percentage
of the participants are conspiring against you. However, it is hard to substanti-
ate these assumptions and in fact, all other participants may be under a single
opponent’s control. The “Sybil Attack” (named after a 1973 book on multiple
personalities) is an attempt to break down the determination of identity dis-
tinctness, where an identity is an abstract notion connected in a provable way
to a persistent item such as a public key.



An obvious source of identity information is a trustworthy authority such
as Verisign or, more subtly when using IP addresses or DNS, ICANN. Another
source of information would be yourself, in that you can test if two remote
systems can do something that they couldn’t manage if they were a single entity.
You might also be able to get others to assist in this testing and accept identities
that others have endorsed. The type of tests that could be attempted would be
a communications resource challenge (can they handle large volumes of traffic),
a storage resource challenge (can they store lots of data) or a computational
resource challenge (can they do sums very fast). There are problems with such
tests – the challenges must require simultaneous solving by all the identities
(because otherwise the opponent can solve one problem at a time) and of course
the opponent may command more resources than a standard node anyway. You
might hope to leverage something from other people’s view of identities, but
of course the identities who are vouching for each other may all be under the
opponents control. The paper formalizes all of this, but the conclusion is that
distinctness can only be verified by means of a certificating authority or by
measurement of some, yet to be discovered, uniform constraint. At the moment
identity verification does not scale.

Discussion: Q: You can’t really fix this at the system level. In World War I
the entire German spy network in the UK was run by the British. In World War
II the Germans faked the SOE network in The Netherlands. You won’t be able
to tell if the rest of the network isn’t the 50,000 people at the NSA. A: Worse
than that, it could be just one person. Q: Where did you get all the marvelous
animated graphics you’ve used? A: Standard with PowerPoint 2002.

Jared Saia, Amos Fiat, Steve Gribble, Anna Karlin, Stefan Saroiu,
“Dynamically Fault-Tolerant Content Addressable Networks”, pre-
sented by Jared Saia. Napster was shut down by legal attacks on a central
server and research shows that Gnutella would shatter if a relative handful of
peers were removed. It is easy to shut down a single machine, which has lim-
ited bandwidth or a limited number of lawyers. However, it is harder to remove
large numbers of machines. The Deletion Resistant Network (DRN) is a scal-
able, distributed, peer-to-peer system that after the removal of 2

3 of the peers by
an omniscient adversary who can choose which to destroy, 99% of the rest can
access 99% of the remaining data. However, DRN is only robust against a static
attack. If all the original peers are removed, then the system fails even if many
new peers have joined. The Dynamic DRN has stronger properties against the
same adversary, and for a fixed n and ε > 0, if there are O(n) data items in the
network then in any period where (1 − 2ε)n peers are deleted and n join, then
with high probability all but the fraction ε of the live peers can access a 1 − ε
fraction of the content.

These networks are based on butterfly networks (a constant degree version
of a hypercube). The network properties can be proved probabilistically using
expander graphs. Peer join time and search time require O(log n) messages, but
in the whole system O(log3n) storage and O(log3n) messages are needed, ie: the



network has some very desirable robustness properties, but the time and space
bounds remain comparable with other systems.

Discussion: Q: What happens when the system becomes so big that you
need a new level of butterfly linkage? A: We don’t yet have any good ideas
how to deal with large changes in size. Best we can do is O(n2) messages and
O(n) broadcasts. Q: This structure protects the network, but what about the
data items? A: We’re not protecting any particular data item against attacks
directed specifically at it, but they can be duplicated.

Session 8: Applications II Chair: Ion Stoica

Sridhar Srinivasan, Ellen Zegura, “Network Measurement as a Co-
operative Enterprise”, presented by Sridhar Srinivasan. Network mea-
surement is undertaken to improve performance and to assess the utilization of
resources. The challenge is to deploy an Internet-wide service, keep the overhead
low (to avoid perturbing the network) and to be assured about the accuracy of
reported values. M-Coop is a peer-to-peer measurement architecture. Each peer
has an area of responsibility (AOR) which it reports upon, ideally at least as
small as an AS. An overlay network is constructed, with peers selecting neigh-
bors in adjacent ASs. A second overlay network is built within the AS, the nodes
of which peer entirely within the AS and have AORs of parts of the AS. When
measurement queries are made they are passed over the overlay network and
it is the data collected from the experiences of these packets which is reported
back as the metric. Data is also given a “trust” component, which is a measure
of past reliability. This is done by comparing results with other measurements
of the link to a neighbor as well as “pings” of nearby machines.

Future challenges are to improve the composition of measurements (the path
through the overlay may not be the same as the general experience for other
traffic); to deal with colluding malicious nodes; to verify all measurements; to
assess what level of participation is needed to get a good answer to queries; and
to determine how useful the information will be in practice.

Discussion: Q: Latency is easy to verify but bandwidth isn’t? A: Exactly so.

Venkata N. Padmanabhan, Kunwadee Sripanidkulchai, “The Case for
Cooperative Networking”, presented by Kunwadee Sripanidkulchai.
CoopNet is a peer-to-peer system that is intended to complement and work in
conjunction with existing client-server architectures. Even when making minimal
assumptions about peer participation it provides a way of dealing with “flash
crowds” on web sites such as occurred on news sites on 9/11 or the notorious
Slashdot effect. The bottleneck in such cases is not disk transfer, since everyone
is fetching the same “hot” content. CPU cycles are an issue, though chang-
ing from dynamic to static content fixes this. The main problem is bandwidth,
so the idea is to serve the content from co-operating peers, with clients being
redirected to an appropriate peer – the redirection being a relatively small (1%)
bandwidth imposition. The co-operating peers announce themselves as they fetch



the content by means of an HTTP pragma, and the server can then record their
identities in case their assistance is needed. Returning appropriate alternative
sites is a complex problem. Using BGP prefix clusters is lightweight but crude
and various better schemes are under investigation. Simulations using the traces
of the MSNBC website on 9/11 show that good results can be obtained with
just 200 co-operating peers. The peers were busy just 20% of the time and the
bandwidth they had to donate was low. Unfortunately, there were long tails on
some of the resource usage distributions and further work is needed to minimize
these.

Discussion: Q: How does this compare with DHTs? A: This is push tech-
nology oriented. Q: When do you decide to start redirecting? A: Preferably just
as you start to be overloaded Q: How does this compare with systems such as
Scribe? A: Those systems require you to commit what you belong to ahead of
time, rather than dynamically. Q: Aren’t there concerns with privacy here? A:
This is only for popular documents and the server is always in control of when
it redirects.

Ion Stoica, Dan Adkins, Sylvia Ratnasamy, Scott Shenker, Sonesh
Surana, Shelley Zhuang, “Internet Indirection Infrastructure”, pre-
sented by Ion Stoica. Today’s Internet has a point-to-point communications
abstraction. It doesn’t work well for multicast, anycast or mobility. Existing
solutions to these problems change IP (into mobile IP or IP multicast). These
solutions are hard to implement whilst maintaining scalability, they do not in-
teroperate or compose, and people may not be incentivized to provide them. The
result has been provision of facilities at the application layer (such as Narada,
Overcast, Scattercast. . . ) but efficiency is hard to achieve. It should be noted
that all previous schemes have used indirection, so perhaps there should be an
indirection layer as an overlay network placed over the IP layer.

The service model is “best efforts” and data is exchanged by name. To receive
a packet a trigger is maintained in the overlay network by the end-point that
owns it. This trigger will know how to reach the end point. This scheme is capable
of supporting many different types of services. Mobility is simple, the end-point
tells the trigger where it has moved to. In multicast many hosts all insert the same
named trigger. For anycast there is an exact match on the first part of a name
and a longest prefix match on the last part. Composable services can be done
by having a stack of triggers and sending packets off to each service in turn (e.g.
sending data via an HTML→WML converter before delivering it to a wireless
device). These stacks can be built by both sender and receiver without the other
needing to be aware of the processing. Load balancing or location proximity can
be expressed by putting semantics into red tape bits in the trigger. An early
prototype has been implemented based on Chord. Each trigger is stored on a
server and the DHT is used to find the best matching trigger. The results can
be cached and further packets sent to the server directly.

Discussion: Q: What about authorizations? A: You can have public and
private identifiers, and this leads to the idea of changing from a public to a



private trigger once authorization has been given. Q: Does this system defend
against Denial of Service attacks? A: At the old layer, yes, but there are new
possibilities at the overlay layer such as creating circular routes. Q: Perhaps you
are putting too much into this new layer? A: Many problems can be solved in
a new way by using this indirection layer. For example you can now seriously
consider providing a reliable multicast.

Tyron Stading, Petros Maniatis, Mary Baker, “Peer-to-Peer Caching
Schemes to Address Flash Crowds”, presented by Tyron Stading. Non-
commercial sites do not usually expect flash crowds and do not have the resources
to pay for commercial systems to mitigate their effects. “Backslash” is a peer-to-
peer collaborative web mirroring system suitable for use by collectives of websites
to provide protection against unusually high traffic loads. The idea is to create
a load balancing system that will usually direct requests to the main site for
page content. If it perceives that an overload is about to occur, the pages are
rewritten into the load-balancing collective and further requests are served from
there until the overload condition finishes.

The collective is based on a DHT (currently CAN) and the data (currently
assumed to be static) is distributed to members of the collective using cache dif-
fusion techniques. The idea is that popular content will be pushed out to more
nodes. This can produce a “bubble effect” where the inner nodes of the collec-
tive become idle and the outer nodes do all the serving. To prevent this, some
probabilistic forwarding of requests is done to try and use all of the collective
nodes. The system has been simulated handling two flash crowds at once and
it worked well in balancing the load. However, with too much diffusion agility
the second flash crowd caused competition for entries and performance suffered.
The probabilistic forwarding also worked less well than expected. Future work
will simulate the system at a higher fidelity and will look at the effect of cache
invalidation for changing content.

Discussion: Q: Who is going to use this service? What are the incentives?
A: We concentrated on non-profits because they are more likely to work to help
each other. Q: Do you need to copy ahead of time? A: Yes. If you don’t copy the
files before the flash crowd gets huge then there’s no guarantee the files will be
available.

Session 9: Data Management Chair: David Karger

Robbert Van Renesse, Kenneth Birman, “Scalable Management and
Data Mining Using Astrolabe”, presented by Robbert Van Renesse.
Astrolabe takes snapshots of the global state of a system and distributes sum-
maries to its clients. Its hierarchy gives it scalability, the use of mobile SQL
gives it flexibility, robustness is achieved by using epidemic (Gossip) protocols
and security comes from its use of certificates.

Astrolabe has a DNS-like domain hierarchy with domain names identified by
path names within the hierarchy. Each domain has an attribute list called a MIB



which identifies a domain, lists its Gossip contacts, lists server addresses for data
access and indicates how many local hosts there are. These MIBs can be aggre-
gated into parent domains. There is a simple API of Get MIB(domain name),
Get Children(domain name) and Set Attr(domain name, attribute, value).
All hosts hold their own MIB and also the MIBs of sibling domains, giving a
storage requirement of O(log n) per host. The MIBs are extensible with further
information as required. Standard SQL queries are gossiped to summarize data
into parents. This allows aggregation queries to be made such as “where is the
highest loaded host” or “which domains have subscribers who are interested in
this topic” or “have all hosts received the latest software update”.

The system works by passing messages using a simple epidemic protocol that
uses randomized communications between nearby hosts. This is fast (latency
grows O(log n) with probabilistic guarantees on maxima, assuming trees with
constant branching factors) and is robust even in the face of denial-of-service
attacks. Failure is detected when timestamps in MIB copies do not update and
new domains are found by gossiping, occasional broadcasts and by configuration
files.

Discussion: Q: Would an overlay network with a general tree structure be
better suited? A: We’re doing aggregation, and DHTs don’t help with that. We
started by trying to build a scalable multicast system and we needed ways to
get past firewalls etc. The routing is all proximity based and every aspect of the
system reflects locality. Q: What is being gained by the massive replication of
data? A: Results are available in a single step. Q: Aren’t some queries expensive?
A: We restrict join queries to make the load manageable.

Nancy Lynch, Dahlia Malkhi, David Ratajczak, “Atomic Data Access
in Content Addressable Networks”, presented by David Ratajczak.
This work shows that atomicity is useful and achievable in a peer-to-peer DHTs
with practical fault-tolerance. Atomicity can be seen as consistency with the
effect of having a single copy of a piece of data being accessed serially. It is a
crucial property where there are multiple writers and can be used as a building
block for many distributed primitive operations. The other important property
that is demonstrated is “liveness”, viz that any submission to an active node
is guaranteed a response. However, one cannot achieve atomicity or liveness
in an asynchronous failure-prone system and of course peer-to-peer systems are
dynamic and an unfortunate sequence of events can disconnect the network. The
asynchronous property means that you need to use timeouts to detect failures
and this can cause problems if the original request is still active. Therefore,
it is assumed that communication links are reliable FIFO channels and that
node failures do not occur. This can be done by local fault-tolerant, redundant,
hardware (a “replica group”) which turns failures into graceful disengagement
from the network.

The API for the system is Join(), Update() and Leave(), with the Leave
function now being a non-trivial operation. The guarantees provided include
atomicity and liveness. The algorithms are in the paper and repay careful study.



Future work will determine if consecutive nodes in the DHT ring can form a
replica group, with a multi-level structure around the ring. It looks as if setting
thresholds for splitting large replica groups and merging small ones can be set
in the O(log n) region – and then some good properties will result. At present
the algorithm presented does not fail especially gracefully and more details of
the fault-tolerance properties need to be worked out. The system will need to
be built before it can be fully understood.

Discussion: Q: Isn’t it hard to leave whilst you’re receiving constant updates?
A: In practice, all the operations in one node are in one thread. You can prove
that you will eventually make progress and leave (or indeed join) the network.

Yan Chen, Randy Katz, John Kubiatowicz, “Dynamic Replica Place-
ment for Scalable Content Delivery”, presented by Yan Chen. Content
Distribution Networks (CDNs) attempt to position data so as to have useful
things in local “replicas”, so as to improve the user experience of the web and
of streaming media, whilst minimizing resource consumption. The problem is
how to choose replica locations and then keep them up-to-date, viz: an adaptive
cache coherence system is required.

Previous work concentrated on static replica placement, assuming that the
clients’ locations and access patterns were known in advance. Data transfer can-
not be done by IP multicast because this is impractical from one domain to
another and application layer multicast (ALM) fails to scale. The usual solution
is to replicate the root of the ALM system, but this suffers from consistency
problems and communication overhead. This work uses a peer-to-peer overlay
location service for scalability and locality of search. Tapestry is used because it
already has some locality within it.

The system simultaneously creates a tree for disseminating data and decides
upon replica placement. The idea is to search for qualified local replicas first
and then place new replicas on the Tapestry overlay path. Two algorithms were
investigated. A näıve scheme allows a node that is holding the data to decide
whether it is a suitable parent to hold the data given the identity of the requesting
client and if so it then puts the replica as close to the client as possible. The
smart scheme is prepared to consider its parent, siblings and server children as
possible parents as well and then chooses the node with the lightest load. It
then places the replica a long way from the client. This latter scheme has a
higher overhead in messages, but results in better placement, with fewer replicas
required. It performs almost as well as in the ideal case where all requests are
known in advance. Future work will evaluate the system with diverse topologies
and real workloads. Dynamic deletion and insertion will be considered so that
the system can adapt as user interests change, and the system will be integrated
into the OceanStore project.

Discussion: Q: How important is Tapestry to this system? A: Tapestry is
providing proximity properties, identifying potential replica placement points,
and improving the scalability of the CDN for update dissemination so that each
node only has to maintain states for its parent and direct children.
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