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Abstract

The irrotational motion of a compressible inviscid fluid is studied in the field of analogue
gravity, where its metric is compared to that in general relativity [1], a fluid analogue of an evap-
orating black hole [2] has been realized experimentally [3], and there are symmetries related to
the standard model [4]. Here we show the analogy also extends quantitatively to electromag-
netic and quantum mechanical phenomena. We discuss a candidate model to account for the
number and precision of these analogies.

1 Introduction

We will show that Euler’s equation for a com-
pressible fluid has irrotational solutions which
superficially resemble smoke rings. Their equa-
tions of motion through the fluid are completely
classical, and the resulting trajectories obey sta-
tistical equations which are identical to those of
the Copenhagen interpretation of quantum me-
chanics. A similar mechanism accounts for the
emergence of quantum phenomena from classical
motion in experiments where a droplet is made
to bounce on a liquid surface, exhibiting quan-
tised energy levels, single-slit diffraction, double-
slit diffraction and tunnelling [5–9]. Some of the
ring-like solutions are chiral. Opposite chirali-
ties attract and like chiralities repel with an in-
verse square force which has the same fluid dy-
namic origin as the effect used for degassing oil
by subjection to ultrasonic vibration [10, §4.4].
The interaction obeys Maxwell’s equations and
its strength is characterized by a fine structure
constant, α . 1/49.

Consider a compressible inviscid fluid such as
the air in the idealization it is continuous and

has no viscosity or thermal conductivity. Such a
fluid obeys Euler’s equation [10]

∂u

∂t
+ (u.∇)u = − 1

ρ
∇P (1)

where the pressure P (x, t) is a function of the
density ρ(x, t) and ∂ρ/∂t = −∇(ρu). At low
amplitude this reduces to the wave equation

∂2ρ

∂t2
− c2∇2ρ = 0 (2)

where c2 = ∂P
∂ρ

. In addition to describing sound
waves, this equation has cylindrical solutions,
the simplest of which is present in the surface
waves just after a raindrop has hit a puddle. In
cylindrical coordinates (r, θ, s)

ξ = A e−i(ωot+mθ−kss) Jm(krr) (3)

where ρ
ρo

= 1+Re(ξ) and ρo is the mean density,
Jm is a cylindrical Bessel function of the first
kind, m an integer and ω2

o = c2(k2s + k2r). It may
be verified by substitution that this obeys the
wave equation. The flow pattern is irrotational,
that is,

∮
u.dl = 0 for any closed path, as shown

in the appendix.
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Figure 1: Sketch of an eddy, described by (3)
with m = 1 and ks = 0. The compressions
(red, schematic and not to scale) and rarefac-
tions (green) rotate as shown. Note the contrary
direction of fluid flow near the rarefaction.

Figure 1 sketches the m = 1 solution. There
are families of solutions, superficially resembling
smoke rings, which can be obtained by curving
it into a torus. Two such solutions, which we
call ‘sonons’, are sketched in Figure 2.

(b)(a)

Figure 2: Two sonons obtained by curving the
eddy of Figure 1 into a torus. The compressions
(red) and rarefactions (green) rotate as shown.
(a) R10 (see equation 6) (b) R11, obtained by
adding a twist. This solution is chiral and the
motion resolves into a spin about the axis.

In the case m = 0 or 1, the Appendix shows
that the associated density pattern can be writ-
ten to a good approximation as a sum of spher-
ical harmonic solutions to the wave equation in
the coordinates of figure 3:-

ξ = ψo(t) Rmn(x) (4)

where
ψo = A e−iωot (5)

Rmn =

∫ 2π

0

e−i(mθ
′−nφ)jm(krσ)krRodφ (6)

where n is an integer and jm is a spherical Bessel
function of the first kind.

ϕ

θ'
σz

R
o

Figure 3: The coordinates used in (6)

1.1 Dimensions of a sonon

If the eddy in Figure 1 is terminated on two pla-
nar surfaces, they will attract one another due
to the reduced Bernoulli pressure. This must
be due to an attraction along the length of the
eddy, similar to the attraction in a vortex.

When an ordinary vortex is curved into a
smoke ring, this force is balanced by Mag-
nus forces (like the lift of an aircraft wing)
as the structure moves forward through the
fluid [10]. However a sonon cannot experience
Magnus forces because it is irrotational, and con-
sequently its radius will shrink, causing the am-
plitude A in (5) to grow due to the conserva-
tion of fluid energy. Nonlinear effects will halt
the shrinking before A reaches about 1 since the
density cannot become negative.

x

z y

(a)
(b)

aR
o

2b
R o

βc
/2

Figure 4: (a) The fluid flows (blue) near a R11

sonon reinforce in the y direction at the instant
shown. (b) The nonlinear region of reinforce-
ment approximates to a cylinder. If it has di-
ameter is aRo, length 2bRo and mean flow speed
1
2
βc, a reasonable estimate is a ≈ b ≈ β ≈ 1

Very near a R11 sonon, shown in Figure 4, the
main component of the flow derives from the ra-
dial flow speed due to an eddy with m = 1,
which is ur ∝ ∂

∂r
J1(krr) (see the appendix).

These flows reinforce provided the diameter of
the sonon is less than the first zero of ur, which
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is 2× 0.92. Neglecting curvature and nonlinear-
ities, the lowest energy (unexcited) state has, as
an upper estimate,

Ro .
0.92

kr
(7)

1.2 Spin symmetry

The integral in (6) can be factorised into Rmn =
[Br.Φr(r)][Bθ.Φθ(θ)][Bφ.Φφ(φ)], where Bi and Φi

are vectors.
At large distance, the components of Φr can

be obtained by expanding the Bessel function at
large r and neglecting small terms

Φr =
1

r
[ sin(krr), cos(krr) ] (8)

Notice that

i

(
0 −i
i 0

)
∂Φ

∂r
= krΦ

where we have defined Φ = ΦrΦθΦφ. The other
eigenvector, [sin(krr),− cos(krr)], has an eigen-
value of the opposite sign.

By inspection of (6) there is an eigenvector
Φφ = [e−inφ, einφ], which obeys

i

(
1 0
0 −1

)
∂Φ

∂φ
= nΦ

Reversing the sign of n corresponds to revers-
ing the spin direction, and it produces the other
eigenvector with the opposite sign of eigenvalue.

In the θ direction, the contributions from the
near and far sides of the sonon produce wave
patterns which propagate in opposite directions
at the calculation position in Figure 3. The two
orthogonal components are Φφ = [Φ+,Φ−] where
Φ± = e−imθ ± eimθ. Thus

i

(
0 1
1 0

)
∂Φ

∂θ
= mΦ

Notice that these matrices are the same as the
Pauli spin matrices. The appendix discusses a
possible physical interpretation of the associated
spin-half symmetry, and also the analogy with
the Dirac equation.

1.3 Boundary condition

Taking one of the components of Φr in (8), the
kinetic energy 1

2

∫
ρu2 can be calculated in the

usual way in fluid dynamics. The value must
be doubled to account for the potential energy
of motion. The total energy inside a sphere of
radius R is (see the appendix)

Efluid ≈ πR2
o R ρoc

2 (9)

This approximates to the energy in the fluid
motion of sonon since A and Bri are of order 1
and the others diminish rapidly with radius.

Even without container walls, there will still
be a boundary condition due to other sonons,
since the energy in (9) will be reduced if they
align themselves so they interfere destructively
at large distance. The coupling mechanism
which allows the lowest energy state to be
reached was first reported in pendulum clocks
by Huygens in 1665 [11] – see the appendix.

Figure 5 shows two R11 sonons which are
aligned so they interfere destructively at large
distance. The spherical Bessel function j1(r)
changes phase by π compared to a freely propa-
gating wave when going through the centre, and
it follows that destructive interference at large
distance means there must be constructive inter-
ference in the region between the sonons. There
is consequently an antinode of density on the
mirror line. Notice that the spin vectors in Fig-
ure 5 are opposed.

M(a)

M
(b)

z

x
y

Figure 5: Pairs of R11 sonons of (a) opposite
(b) the same chirality, aligned so their waves in-
terfere destructively at large distance on an ex-
tended line joining them. There is an antinode
of density on the mirror line M .
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Suppose the sonons in a region are brought
closer together to form a denser body where the
typical distance R between them is reduced. If
the process is adiabatic then, from (9), RR2

o will
remain constant, and consequently the sonons
will become enlarged, with a greater value of Ro.
These enlarged structures are valid solutions to
Euler’s equation provided their frequencies are
also redshifted, since if ξ(x, t) is a solution then
it may be verified by substitution into (1) that
ξ(ax, at) is also a solution where a is an arbitrary
scale factor (noting that the velocity u is unaf-
fected by the scaling). A similar redshift near a
massive body is studied in analogue gravity, as
discussed further in the appendix.

2 Lorentz covariance

From (9), most of the fluid energy of a sonon
is at large distance, where the motion obeys the
wave equation because it is low amplitude. Since
the wave equation is Lorentz covariant, so is this
motion. Thus, if ξ(x, t) is a solution then ξ(x′, t′)
is also a solution where x′ = γ(x − vt), y′ = y,
z′ = z, t′ = γ(t− vx/c2) and 1

γ
=
√

1− v2/c2.
Very near the sonon, the amplitude of mo-

tion is not negligible and the Lorentz symmetry
might, in principle, be perturbed by the non-
linear term (u.∇)u in (1). However, consider
adding a constant velocity to all motion. Re-
placing u by u + v where v is constant gives
a perturbation ε = (v.∇)u. This perturbation
vanishes over a cycle because the fluid motion
is oscillatory and returns to its starting-point,∫
u dt = 0 and so∫

ε dt =

∫
(v.∇)u dt = 0

Expectation values are usually defined to con-
verge on the long term measurement. For preci-
sion we define an ‘ordinary’ expectation value
where this measurement encompasses one or
more complete cycles. It follows that no devia-
tions from Lorentz covariance can be discovered
by measuring any ordinary expectation value.

Another potential perturbation arises because
the speed c =

√
∂P/∂ρ varies over the cycle.

However, in the absence of external influences,
the speed of a propagating wave is unperturbed
because its leading edge cannot travel faster
than the low amplitude speed, as is known for
sound waves which obey similar equations [10].

Finally, a sonon might be perturbed by the
mean variation in c2 = ∂P

∂ρ
. However, the effect

is third-order, as can be seen by expanding P (ρ)
in terms of s = (ρ − ρo)/ρo: the mean of ∂P

∂ρ

is only perturbed by the odd-order terms, start-
ing with s3. Even if the effect were to rise above
noise levels, we will see it would be manifested as
an adjustment to the effective mass of the quasi-
particle, which would be difficult to distinguish
from other effects such as thermal energy.

It follows that all ordinary expectation values
are Lorentz covariant to a very good approxima-
tion at all amplitudes.

3 Equations of motion

From (5), ∇2ψo = 0 and ∂2

∂t2
ψo = −ω2

oψo. We
have seen the sonon is Lorentz covariant to a
very good approximation, so this must be a
special case of a Lorentz covariant relationship
which is velocity-independent, namely

∂2ψ

∂t2
− c2∇2ψ = − ω2

oψ (10)

which is analogous to the Klein-Gordon equation
for a relativistic particle. At low velocity, (10)
can be approximated by defining ψ = e−iωotψ′

and neglecting ∂2

∂t2
ψ′, giving

i~
∂ψ′

∂t
+

~2

2m
∇2ψ′ = V ψ′ (11)

where, in a change of units to match convention,
we have defined m = ~ω

c2
and V is a constant.

This is analogous to the Schrödinger equation
for motion in a constant potential.

To complete the description, applying a
Lorentz boost to the density pattern Rmn in (6)
and neglecting its time dependence (which is sec-
ond order in v) gives the same equation with r
replaced by r′ where r′x = γ(rx − vt), r′y = ry
and r′z = rz. We will refer to this as χ(x). Its
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peaks and troughs also move through space at
the velocity v, and consequently the sonon will
remain aligned with them if it is unperturbed.
This coherence is likely to be reinforced by non-
linearities in the medium. We will first examine
the coherent case, and then examine the effects
of decoherence.

An expression for the velocity v in terms of
ψ follows by applying a Lorentz boost to (5),
giving ψ = AeiS where S = k.x − ωt and, from
the Lorentz transformation, ω = γωo and k =
(γωo/c

2)v. These combine to ~k = mv where
we have defined m = ~ω

c2
. This leads immediately

to

v =
~
m

Im

(
∇ψ
ψ

)
(12)

The significance of this expression can be under-
stood by following Bohm [12], who rearranged
the Shrödinger equation into the form

∂|ψ|2

∂t
+ ∇(|ψ|2v) = 0 (13)

where v is given by (12). Bohm noticed that (13)
is the standard equation for a conserved quantity
moving at velocity v, and concluded that |ψ|2
must be the probability (averaged over nearby
trajectories) that a hypothetical particle mov-
ing at velocity v will pass through a given posi-
tion at a given time. These particle trajectories
are the same as those of sonons. However the re-
sulting de Broglie-Bohm or ‘pilot wave’ model of
quantum mechanics [12, 13] describes only part
of the motion of sonons because it omits the car-
rier waves.

Suppose, conterfactually, that a sonon
changes state and becomes de-localized in some
unspecified way, and then suddenly rematerial-
izes just before any measurement, without af-
fecting the trajectory. It follows from the above
that the probability of rematerialization at any
given position must be |ψ|2. This is analogous to
the Copenhagen interpretation of quantum me-
chanics, where the wavefunction and its collapse
obey identical equations.

The foregoing can be described in the termi-
nology of telecommunications theory. At veloci-
ties significantly smaller than c, the wavelength

of χ (the carrier wave) is significantly shorter
than that of ψ (the modulation). Note that ψ
must be complex-valued to describe both ampli-
tude and phase.

A similar emergence of quantum phenomena
from completely classical motion is exhibited by
small droplets which are made to bounce on a
bath of the same liquid by oscillating the con-
tainer vertically [5]. The droplet’s horizontal
motion is determined by nonlinear interactions
with the surface waves, which obey the wave
equation and are a two-dimensional analogue of
the disturbance ξ = χψ. The principal differ-
ences are that the effective speed c might be
modified near the bouncing droplet due to the
mass of the droplet and amplitude-related ef-
fects, and the experiment is a driven dissipative
system rather than a lossless one. The videos
show the droplets maintaining phase coherence
with the surrounding waves due to nonlineari-
ties. Single-slit diffraction, double-slit diffrac-
tion, unpredictable tunnelling and quantized en-
ergy levels are observed [6–9].

A sonon may be modelled as a classical os-
cillator of high Q. In interactions between such
oscillators, Mead shows that the sum of the fre-
quencies is conserved, since otherwise the inter-
action would average out to zero [14]. It follows
from the definition E = ~ω (note, E is not the
same as energy in the fluid motion Efluid referred
to above) that E is conserved. The conservation
of momentum, defined by p = ~k, follows from
the conservation of E and Lorentz covariance.

It follows from the above that the equations of
motion for a sonon are completely classical, but
they reduce to the established equations for a
relativistic quantum mechanical particle of mass
~ω
c2

if the carrier wave is neglected.

4 Long range force

In the bouncing droplet experiments [7], the
edge of the container can be modelled as
an image droplet bouncing antiphase, leaving
the meniscus undisturbed. Stroboscopic pho-
tographs show a droplet moves in a straight line
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until it approaches the edge, when it is deflected
away. We interpret this to indicate a repulsive
force from the antiphase image. Conversely, in-
phase droplets form crystalline lattices, indicat-
ing an attractive force.

A similar phenomenon in three dimensions is
used for degassing oils by subjection to ultra-
sonic vibration. As the bubbles expand and con-
tract in response to the pressure waves, they in-
duce flows in the fluid. When two bubbles are in-
phase, no fluid will cross the mirror line between
them, from symmetry, but the flows parallel to it
reinforce, resulting in a reduced Bernoulli pres-
sure and a force of attraction. The bubbles con-
sequently merge and rise to the surface.

The calculation of the force, adapted from
Faber’s textbook [10, §4.4], is as follows. If a
vacuum cleaner hose operates in the wind, it
will ingest momentum along with the air par-
ticles, and experience a force F = ρoUQ1 where
Q1 is the flow and U the wind velocity. If the
wind is due to a similar hose with flow Q2, then
U = Q2/(4πr

2), giving an inverse square force
of attraction

F = − ρo
Q1Q2

4πr2
(14)

The direction of flow, and of the force on both
hoses, will be reversed if one of them is set to
blow (with a baffle for spherical symmetry). If
both are set to blow they will attract again.
More generally, oscillatory motion results in an
attractive force if it is in-phase, and a repulsion
if it is antiphase. The phase alignment is most
easily assessed from the flow across the mirror
line between the sources.

Turning to R11 sonons, their flows are shown
in Figure 4 and their preferred alignments in Fig-
ure 5. From the mirror symmetry in 5(a) there is
no flow across the mirror line and consequently
sonons of opposite chiralities will attract one an-
other. In 5(b) the direction of flow is reversed
and like chiralites repel. The magnitude of the
force is calculated in the appendix by substitut-
ing the idealised fluid flows of Figure 4(b) into
(14) and calculating the cylinder’s acceleration

(a calculation which is only approximate)

F ≈ a2β2

64b
C sin2(C)

~c
r2

(15)

where a, b and β are defined in Figure 4, and
C =

√
k2rR

2
o + 1. Substituting the estimates a ≈

b ≈ β ≈ 1 and krRo . 0.92 from (7) gives

F .
1

49

~c
r2

(16)

This inverse square force among R11 sonons and
their chiral twins is analogous to the Coulomb
force among electrons and positrons. The fine
structure constant α . 1/49 matches the elec-
tromagnetic value to the accuracy of calculation.

4.1 Radiation

The interaction in (16) can be generalized by ap-
plying a Lorentz boost. We can borrow from the
usual extension of the Coulomb force by requir-
ing it to be Lorentz covariant, which produces
Maxwell’s equations, as shown in the appendix.

Maxwell’s equations have solutions corre-
sponding to propagating waves. We now show
these waves are emitted when a sonon is accel-
erated. Without loss of generality we will only
consider the component R1 in (8) – a similar
analysis applies to R2.

If a sonon is made to oscillate so its position
is x = xo sin(Ωt), where xo is small, then substi-
tuting into (4) gives (see the appendix)

ξ = ψwχw

where

ψw =
ARo

r
krxo sin

[
Ω
(
t− r

c

)]
chiw = B1 e−iωot cos(krr) cos Θ (17)

and Θ is the angle from the direction of oscilla-
tion. Here ψw describes amplitude modulation
of a carrier wave χw, but in general there will be
phase modulation as well for larger amplitude
motion.
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The momentum of the wave can be calculated
by writing (17) as a sum of propagating waves

χw =
iB1

2
[e−iωo(t+r/c) + e−iωo(t−r/c)] (18)

These propagating solutions can be extended
all the way to the particle (more precisely using
a sum of Hankel functions). Extended in this
way, they comprise the entire solution. Their
sum must have the same energy and momentum
as the particle, at all velocities, which enables
a relationship between the energy Ew and mo-
mentum pw of the waves to be calculated

pw =
Ew
c

See the appendix for the calculation. This also
applies to the radiating waves described above,
which are a superposition of such waves. Notice
the analogue with light, which carries the same
momentum.

4.2 Constructive interference

In very shallow water on a sandy beach, the
wave speed increases with depth, and a wave
travelling close behind another will propagate in
the deeper water of the wave in front and travel
faster, catching it up [10].

A similar effect will occur in the waves un-
der consideration due to the speed c =

√
∂P/∂ρ

varying over the cycle. The trailing wave will be
perturbed by the wave in front, which remains
in phase over a long time, and therefore it does
not cancel over a cycle. This effect is not an or-
dinary expectation value (as defined in §2) and
therefore it is not precisely Lorentz covariant.

There is an analogy with light waves, which
also tend to come into coherence, such as in
lasers. The underlying components of the waves
in (18) will interfere constructively if one over-
takes the other by about half a wavelength of the
carrier wave. For comparison, an oscillating elec-
tron would have about 1012 half-wavelengths per
metre in its carrier wave. On a crude model, two
waves of modulation will reach coherence after
about 1m if the speed difference is ∆c ∼ 10−12c,
which corresponds to about 0.0003ms−1.

5 Causality and localization

Euler’s equation is deterministic, and therefore
chance and dice cannot be involved at a fun-
damental level in the behaviour of sonons in a
closed system. The difficulty of predicting out-
comes arises, among other causes, from errors or
uncertainties in the initial measurements, which
are magnified in processes such as diffraction and
tunnelling.

In a closed deterministic system, its state at
some time to completely dictates its state at
some other time t. This is true even when to > t,
which could be interpreted non-causally. Such
solutions are valid because Euler’s equation is
symmetric under time reversal.

In practice, these coherent solutions are easily
disrupted by influences from outside the closed
system. In particular, the coherence between a
sonon and its surrounding waves is fragile. The
process of decoherence is most easily pictured
in the droplet experiments, where a disturbance
causes a droplet to bounce out of its local wave
trough, magnifying the effect of the perturba-
tion.

Nevertheless, the time-reversed motions are
valid solutions if decoherence can be controlled.
See Mead’s analysis [14] from first principles
on the interactions between classical oscillators
through forward and time-reversed waves which
are solutions to the (time-symmetric) wave equa-
tion. Interacting sonons obey similar equations.
Provided phase coherence can be maintained
during the transition, Mead shows that the in-
teraction produces effects which are closely anal-
ogous to the quantisation of the photon, among
other observed phenomena.

Mead’s model is related to Cramer’s more gen-
eral transactional interpretation of quantum me-
chanics [15], which was designed to be consistent
with experiments on Bell’s inequality [16–18] by
exploiting the property that the equations are
symmetric under time reversal. Cramer’s model
is completely local and time reversal symmetric,
symmetries which are shared by Euler’s equa-
tion. It might be possible to interpret the mo-
tion of sonons (still consistent with experiments
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on Bell’s inequality) in a different way, without
needing to invoke the time-reversal symmetry,
by exploiting the fact that spin-related informa-
tion is carried by the carrier waves. This trans-
mission of information is not usually considered
in the interpretation of the experiments. See
[19] for further discussion.

6 Conclusion

The irrotational motion of a compressible in-
viscid fluid is studied in the field of analogue
gravity, where there are phenomena related to
general relativity and the standard model [1–4].
The main contribution of this paper has been
to extend the analogy to quantum and electro-
magnetic phenomena. We introduced the sonon,
a quasiparticle with a twist, which behaves like
a relativistic quantum mechanical particle with
spin-1

2
symmetry, and which experiences an in-

teraction, due ultimately to Bernoulli forces,
that obeys Maxwell’s equations.

The number and precision of these analo-
gies suggests there might be a wider explana-
tion. One candidate arises from an argument
advanced by Einstein in 1920 [20]. Unlike linear
motion, acceleration and rotation are intrinsi-
cally discoverable. For example, a gyroscope’s
axis tends to remain aligned with the distant
stars. Believing all interactions to be local, Ein-
stein reasoned these correlations between distant
objects must be mediated by a substance occu-
pying the space between them, which he called
a “medium for the effects of inertia” or “ether of
the general theory of relativity”. By requiring
the medium to be consistent with special rela-
tivity he deduced that it cannot have any me-
chanical properties if it is a solid or a semi-solid.

A fluid medium was not considered at the
time because it cannot support transverse waves,
which were thought to be needed to model po-
larised light. However, this assumption cannot
be justified because a compressible inviscid fluid
supports, not transverse waves, but waves of
modulation which obey Maxwell’s equations.

These observations are consistent with the hy-

pothesis, which we now advance, that Einstein’s
inertial medium behaves as a nonrelativistic
barotropically compressible inviscid fluid. The
hypothesis is testable because it predicts all ob-
servable quantities are completely determined
by the solutions to Euler’s equation for such a
medium.

The observable – and observed – quantities
described above in general relativity, particle
symmetries, quantum mechanics and electro-
magnetism can be derived from this single hy-
pothesis. In addition, it predicts that all ordi-
nary expectation values (as defined in §2) must
be Lorentz covariant to a very good approxi-
mation at all amplitudes. This is consistent
with the original paper on special relativity [21],
which specifies that the postulates apply to the
speed of light in empty space and the phenom-
ena of electrodynamics and mechanics (we inter-
pret this to refer to the corresponding ordinary
expectation values). However, our hypothesis is
not consistent with a possible extension to the
original postulates, in which all motion is pre-
sumed to be Lorentz covariant. In particular,
there are rare expectation values which do not
average over a cycle but still have observable
consequences. These are not precisely Lorentz
covariant and, as described in §4.2, such devia-
tions contribute to, or may be responsible for,
the coherence effects observed in lasers.

The calculation of the fine structure constant
might be improved by computer simulation and
compared to the observed electromagnetic value.
The families of quasiparticles and the redshift
near a massive body in §1.3 might be studied
further and related to analogue gravity.

I warmly thank Andrew McLachlan, Keith
Moffatt, Graziano Brady, Peter Landrock, and
especially Robin Ball and Ross Anderson for im-
mensely helpful comment and discussion.
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Appendices

A Symbols

Symbol Meaning

(x, t) Cartesian coordinates
(r, θ, s) Cylindrical coordinates
φ Angle around torus

P (x, t) Fluid pressure
u(x, t) Fluid velocity
ρ(x, t) Fluid density
ρo Mean fluid density
ξ(x, t) Excess density

defined by ρ/ρo = 1 +Re(ξ)
c Speed of propagation

defined by c2 = ∂P/∂ρ

Jm(r) Cylindrical Bessel function
of the first kind

jm(r) Spherical Bessel function
of the first kind

Rmn Spatial dependence of a sonon

v Velocity of Lorentz boost

γ Lorentz factor 1/
√

1− v2/c2

ψ(x, t) Copenhagen wavefunction
χ(x, t) Carrier wave ξ = χψ
(ω,k) Angular frequency, wavevector

B Flow pattern of an eddy

The article discusses a solution to Euler’s equa-
tion at low amplitude, given by

ξ = A e−i(ωot+mθ−kss) Jm(krr)

where here, and throughout this appendix, the
symbols have the meanings in the table above.

At low amplitude the quadratic term in
Euler’s equation can be neglected, giving
ρo∂u/∂t = −∇P . Substituting the definition
c2 = ∂P/∂ρ gives ρo∂u/∂t = c2∇ρ or

u =
c2

ρo

∫
∇ρ dt (19)

This flow is irrotational [10], as can be seen
by rearranging (19) into the form u = ∇φ where
φ = c2

∫
s dt where s = (ρ− ρo)/ρo.

Stagnation point

+-

Centre of eddy

Fluid flow

+ Density maximum (+) 
or minimum (-)

Cross-section

Figure 6: Flow pattern of an eddy (equation 3
where m = 1 and ks = 0) at the instant t = 0

Figure 6 sketches the flow pattern near such
an eddy with m = 1, which can be calculated by
expressing (19) in cylindrical coordinates

ur =

∫
c2

ρo

∂ρ

∂r
dt

uθ =

∫
c2

ρor

∂ρ

∂θ
dt

Substituting into (3) and integrating gives

ur = A
c2

ωo

∂

∂r
Jm(krr) sin(ωot+mθ − kss)

uθ = A
c2

ωo

m

r
Jm(krr) cos(ωot+mθ − kss)

In Figure 6 the x axis is aligned with θ = 0
and the flow pattern is sketched at the instant
t = s = 0. The flow is stationary at the
points marked with a small dot on the diagram.
On the x-axis this stationary flow occurs when
J1(krr) = 0, or krx = {3.83, 7.01, 10.71..}. On
the y-axis it occurs when (∂/∂r)J1(krr) = 0, or
kry = {1.84, 5.33, 8.53..}.
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C A sonon as a sum of

spherical harmonics

A sonon is obtained by curving an eddy (3) into
a ring. This is a good description at small r, but
the curvature of the s axis makes the analysis
more difficult at larger r. We now describe a
solution to the wave equation which behaves in
the same way at large distance, and uses more
tractable coordinates.

s σ

θ
r

Figure 7: The coordinates used in (20)

In the coordinates of Figure 7, we begin by
showing that

Jm(r) =

∫ ∞
−∞

jm(σ) ds (r →∞) (20)

Expanding the spherical Bessel function at
large distance, the dominant term is

jm(σ) =
1

σ
sin
(
σ −mπ

2

)
(r →∞)

The integral in (20) can be evaluated by Fres-
nel’s method, that is, using

σ = r

(
1 +

s2

2r2

)
(r →∞)

Choosing m = 0, in the first instance, gives the
Fresnel integral

∫
jm(σ) ds ≈ 1

r

∫ ∞
−∞

sin

(
r +

s2

2r

)
ds (r →∞)

which evaluates to

∫
jm(σ) ds ≈ −

√
2

πr
cos
(
r +

π

4

)
(r →∞)

which is the same as the largest term in the ex-
pansion of the cylindrical Bessel function. It
may be verified that this is true for all values
of m.

This demonstrates (20). Substituting into the
equation (3) for an eddy gives

ξ =

∫ ∞
−∞

Ae−i(ωot+mθ−kss)jm(krσ) krds (21)

The substitution is valid in the case ks = 0, and
the equivalence of the two expressions for ks 6= 0
follows by applying a Lorentz boost.

When m = 0 or 1, which are the cases of inter-
est in the article, the Legendre polynomial Pm
reduces to Pm(cosθ) = cos(mθ) and the inte-
grand is a solution to the wave equation. For
larger values of m an expansion in terms of Leg-
endre polynomials is required.

Given that the integrand is a solution to the
wave equation, the path of integration need not
be restricted to a straight line. Any path of in-
tegration, corresponding to any curving of the
eddy, can be taken, and the result will still be
a solution to the wave equation (strictly speak-
ing, an approximation is involved if ks 6= 0 be-
cause we have used a Lorentz boost in the above
derivation, which is restricted to a straight line,
but we will neglect the perturbation).

In the coordinates of Figure 3, replacing kss in
(21) by nφ because the motion must be single-
valued gives

ξ = A e−iωot Rmn

Rmn ≈
∫
e−i(mθ

′−nφ)jm(krσ) Rodφ

which are the equations used in the article.

D Spin symmetry

The main text shows that the density pattern
associated with a R11 sonon has the symmetry
of the Pauli matrices. A possible physical inter-
pretation of the associated spin-half symmetry
is as follows.
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It is shown in the main text that two iden-
tical sonons have a preferred alignment where
there is an antinode of density between them
and their spins are opposed. Refer to Figure
8, which considers the effect of rotating such a
pair in space whilst maintaining this alignment.
It may be noted that one complete rotation as
drawn reverses the sign of the density pattern.
This symmetry may be relatred to the spin-half
symmetry associated with the Pauli matrices.

+ +

+ +

+ +

(a)

(b)

(c)

Figure 8: Two R11 sonons maintaining their
preferred alignment (with an antinode between
them), drawn as if they were close to one an-
other for clarity. A complete rotation is pro-
duced by the following idealised steps: (a) the
blue sonon remains stationary whilst the white
one rolls around it by half a turn, as if locked
by gears, producing (b). The entire structure
then rotates rigidly through a further half turn,
producing (c). Observe the sign is reversed after
what is effectively a complete rotation.

E Dirac equation

The expressions related to the Pauli matrices in
the main text can be written in Cartesian coor-
dinates at large r

i σj .
∂Φ

∂xj
= ± krΦ (22)

where σj are the Pauli matrices and summation
over j is implied. The contributions from the an-

gular components have been neglected because
of the term 1

r
which appears when transforming

the angular components from spherical to Carte-
sian coordinates.

Notice that (22) is analogous to the Dirac
equation in the case of a stationary particle,
where the time derivative is assumed to vanish.

The main text shows that the irrotational so-
lutions to Euler’s equation are Lorentz covariant
to a very good approximation at all amplitudes.
Consequently (22) can be generalised to an equa-
tion which applies at all velocities, by writing it
in a Lorentz covariant form (using the procedure
which is shown in detail in the main text for a
scalar field). It may be noted that there is an
analogue with the Dirac equation, which is also
Lorentz covariant and reduces to (22) when sta-
tionary.

F Fluid energy near a sonon

Here we obtain an approximate expression for
the kinetic and potential energy in the fluid mo-
tion within a sphere of radius R of a sonon.

In the main text it is shown that the density
pattern at large distance from a sonon is given
approximately by

Rmn ≈ RoB.Φ

where B is of order 1. Here we will calculate the
energy for the term Φ = sin(krr)/r (the term
in cos(krr)/r behaves the same), replacing the
constants which are of order 1, A and B, simply
by 1.

The amplitude of these standing waves is
∆ρ = ρoRo/r at their peak. Substituting into
the fluid speed [10], which is c∆ρ/ρo, gives

upeak ≈
Ro

r
c

The kinetic energy density ρou
2/2 is equalled

by the potential energy density when averaged
over a cycle, and so the total energy inside a
sphere of radius R is

Efluid =

∫ R

0

4πr2ρou
2dr
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The spatial integral gives a factor of 1/2, and
averaging over time gives another factor of 1/2
giving

Efluid ≈ πR2
o R ρoc

2

which is the equation used in the main text.

G Boundary condition:

coupling mechanism

In the main text, it is shown that the energy in
the waves surrounding a sonon is given by (9),
which will be minimised if sonons align them-
selves so their waves interfere destructively at
large distance. Here we describe a coupling
mechanism which allows this lowest energy state
to be reached. Huygens discovered a similar
mechanism in pendulum clocks in 1665 [11].

Two similar sonons will behave as oscillators
which are weakly coupled through he nonlinear
term in Euler’s equation. They will consequently
have two modes of coupled oscillation, in-phase
and antiphase, of frequencies

f = fo ± ν (23)

where ν depends on the strength of the coupling.

If both modes in (23) are present, there will
be a component of motion at the difference fre-
quency 2ν, which will be coupled to longitudinal
waves by the nonlinear term in Euler’s equa-
tion. The lower energy state can be reached
by these waves carrying energy away, which
will be favoured because of entropy considera-
tions (assuming a low temperature at large dis-
tance). The mechanism will be efficient because
the waves have a frequency which is significantly
different from the natural frequency fo of the
nearby sonons of a given type, and so they will
have a long mean free path.

Notice that this mechanism will also have the
effect of locking together the frequencies of the
sonons of similar types in a local region, even
if they initially have slightly different sizes and
frequencies.

H Redshift near a massive

body

In the main text it is shown that the sonons
near a massive body become enlarged and their
frequencies redshifted. These are still solutions
to Euler’s equation, since if ξ(x, t) is a solution
then so is ξ(ax, at) where a is a scale factor. In
units where a = 1 at large distance, then a < 1
near the body.

Here we outline a possible relationship be-
tween this redshift and the gravitational forces
which are studied in analogue gravity. The treat-
ment here uses the analogue with quantum me-
chanical and classical motion which is set out in
the main text, and it is only intended to apply
at large distance.

In a uniform situation, the frequency f of the
sonons of a particular type at any given position
will be the average of the frequencies in the vicin-
ity, due to transport processes, giving ∇2f = 0.
This applies to all types of sonons and therefore

∇2a = 0

The spherically symmetric solution to this
equation can be written in the form

a = 1− 2ro
r

where ro is to be found.
A test particle will be perturbed by this field,

since its frequency will be redshifted by a due to
the Huygens correlation discussed in §G. This
corresponds to the relationship

ω = ωo

(
1− 2ro

r

)
and multiplying by ~ gives an equivalent ex-

pression for the energy perturbation, which is
propotional to the natural frequency or inertial
mass of the sonon and inversely proportional to
distance.

At large distance, this perturbation corre-
sponds to an inverse square force proportional
to the inertial mass of the test particle. From
the conservation of momentum there must be an

13



equal force on the attracting object, and, from
symmetry, it must be proportional to the prod-
uct of the inertial masses. This is analogous to
Newton’s law of gravitation. The effects of the
redshift have been neglected and consequently
this is only true at large distance.

I Analogue of the Coulomb

force

Here we calculate the fluid dynamical force be-
tween two stationary R11 sonons when they are
in their preferred alignment shown in Figure 5.

We will also use the calculation of the fluid
dynamical force between two identical sources or
sinks of magnitude Q which are distance r apart,
which is found in Faber’s textbook [10, §4.5]:-

F = ρo
Q2

4πr2

The flow pattern near a R11 sonon is sketched in
Figure 4(a). There is a region where the flows
reinforce and the nonlinearity is significant. This
will be modelled as a cylinder as shown in Figure
4(b). Density variations are rolled up into the
effective mean flow speed.

In this idealisation, the external flow derives
from a source and a sink at the ends of the cylin-
der in Figure 4(b), each of magnitude

Qi = ± π
(
aRo

2

)2
βc

2
(24)

These sources and sinks rotate with the sonon
at angular speed ωo. When viewed from large
distance in the x direction the flows cancel one
another at the instant shown, as may be seen
from the symmetry in Figure 4. However, when
viewed from large positive y there will be incom-
plete cancellation at the instant shown because
of the time delays associated with information
crossing the structure as it rotates. The incom-
plete cancellation is quantified by the approxi-
mate factor

cos

(
ωo

[
t− bRo

c

])
− cos

(
ωo

[
t+

bRo

c

])

and the resulting effective source becomes

Q =
πa2R2

o

8
βc 2 sin(ωot) sin(ωobRo/c) (25)

Substituting into (14) gives the force between
these sonons

F =
ρo

64r2
πa4R4

oβ
2c2 sin2(ωot) sin2

(
b ωoRo

c

)
Now, sin2(ωot) averages to 1/2 over a cycle, and
the volume of the cylinder is V = πa2bR3

o/2,
giving the mean force

F =
1

64r2
a2

b
ρoV β

2c2 Ro sin2

(
b ωoRo

c

)
(26)

The force produces an acceleration a = F/m
where m is the mass of the fluid in the cylin-
der (where the nonlinearities are concentrated),
which can be estimated as ρoV neglecting den-
sity fluctuations. In the corresponding calcula-
tion of the attraction between bubbles which are
subjected to ultrasonic vibration, the motion of
the displaced fluid and the associated dressed
mass is also taken into account [10]. This would
give an additional factor of order 1/2, but we
neglect it for simplicity, and it is likely to com-
pensate for our neglecting density fluctuations.
Thus we will use the approximate value

a =
F

ρoV

Expressed in conventional units, Fc =
(~ω/c2)a. Substituting into (26) gives

Fc =
a2β2

64b

~ωoRo

r2
sin2

(
b ωoRo

c

)
(27)

For a linear eddy, ω2
o = c2(k2r + k2s), as dis-

cussed in the main text. For a R11 sonon, which
has one twist around the torus, ks = 1/Ro ap-
proximately, and so

ωoRo = c
√
k2rR

2
o + 1

Substituting into (27) gives

Fc = −a
2β2

64b
C sin2(C)

~c
r2

where C =
√
k2rR

2
o + 1. This is used in the main

text, dropping the unnecessary suffix c.
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J Analogue of Maxwell’s

equations

The inverse square force in (15) has been cal-
culated for stationary quasiparticles. Here we
extend it to moving quasiparticles by using the
symmetry that the solutions are Lorentz covari-
ant. Our calculation is analogous to the usual
extension of the Coulomb force to all veloci-
ties, and it will be no surprise that the result-
ing equations are analogous to Maxwell’s equa-
tions. Whilst this function is formal, this section
may nevertheless be of interest because, along
the way, it also obtains the Lagrangian from the
properties of a sonon in a transparent way, and
it makes explicit the analogue between the phase
of a sonon and the quantum mechanical phase
which is measured in a superconductor using the
Josephson effect.

The force in (15) is curl-free, so it can be writ-
ten as a potential gradient, F = q∇Φ. The
quantity q is analogous to the charge on a test
particle and Φ to the sum of the potentials due
to all other charges.

Using Newton’s second law in the form

−∇ω =
∂k

∂t

gives q∇Φ = ~∂k/∂t = ~∇(∂S/∂t) where S is
the phase of the sonon, which integrates to

∂S

∂t
=

qΦ

~
+ constant (28)

This key equation is analogous to the phase evo-
lution in a charged superconductor, which obeys
the same equation with q = −2e and which is
measured experimentally using the Josephson ef-
fect

A sonon moving between two fixed events suf-
fers a phase change which must be stationary
with respect to path variations. There would
be destructive interference if this were not so.
In free space the phase change is ∆S = Eoτ/~
where τ is the proper time measured in a co-
moving frame. In a stationary frame, ~∆S =∫

(Eo +T )dt, where T = (γ− 1)Eo is the kinetic
energy.

This motion will be perturbed by the interac-
tion in (28). Defining the Lagrangian

L = T − qΦ
then ~∆S =

∫
(Eo + L)dt. If this phase dif-

ference is stationary with respect to path vari-
ations, δ(~∆S) = 0, then the Euler-Lagrange
relationship d/dt(∂L/∂vi) = ∂L/∂xi reduces to

dp

dt
= − q∇Φ

which recovers Newton’s second law for a par-
ticle of charge q near stationary electrostatic
charges.

Equation (28) can be extended to a moving
system by exploiting the symmetry that the so-
lutions are Lorentz covariant. The Lorentz co-
variant 4-vector is(

1

c

∂S

∂t
,∇S

)
=

Q

~

(
Φ

c
,A

)
+ Γ

Notice that A is analogous to the magnetic
vector potential and Γ the gauge. In a coherent
system, the phase change around a loop must be
quantised, so that∮

∇Sdl =
Q

~

∮
Adl = 2nπ

where n is an integer. This is analogous to the
flux quantisation which is observed in a super-
conductor.

The force in (15) is inverse square, and in gen-
eral such forces obey, in suitable units,

−εo ∇2Φ = ρc

where the charge density ρc represents the
sources. This equation can also be extended into
a Lorentz covariant form in the usual way, giving(

∇2 − 1

c2
∂2

∂t2

)
Φ = − ρc

εo

Likewise, extending the density to a 4-current
gives, more generally,(

∇2 − 1

c2
∂2

∂t2

)
A = − µoJ

where J is the current. These are analogous
to Maxwell’s equations for the electromagnetic
field.
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K Radiation from an oscil-

lating sonon

As discussed in the main text, the density pat-
tern of a sonon at large distance is given, without
loss of generality, by

ξ = AB1 e
−iωot

Ro

r
sin(krr) (29)

If a sonon oscillates so its position is x =
xo sin(Ωt) where xo is small and its velocity of
motion is much less than c, then this becomes

ξ = AB1 e
−iωot

Ro

r
sin[kr(r + r′)]

where

r′ = xo cos(Θ) sin
[
Ω
(
t− r

c

)]
and Θ is the angle from the direction of oscilla-
tion. This may be written in the form ξ = χwψw
where for low amplitude motion, using the first
term in the Taylor series expansion in krxo

ψw =
ARo

r
krxo sin

[
Ω
(
t− r

c

)]
χw = B1 e−iωot cos(krr) cos Θ

Notice that we have chosen to distribute the fac-
tors so that ψw is a solution to the wave equation
in its own right. This distribution differs (on a
technicality) from that used for a sonon. These
are the equations used in the main text.

L Energy and momentum

of a wave

This appendix calculates the ratio of energy to
momentum for a wave associated with a particle.

When at rest, the energy of a particle is E =
~ωo so each of the outgoing and incoming waves
must have energy Ew = ~ωo/2. This equivalence
also applies after a Lorentz boost. In the case of
parallel motion, the frequencies of the outgoing
and incoming waves are Doppler shifted to ωoD

and ωo/D respectively, where the Doppler shift
is

D =

√
c+ v

c− v
The total energy in this case is ~ωo(D +

1/D)/2 = γ~ωo, which matches the energy of
the moving particle. A similar calculation for
perpendicular motion shows this equivalence to
be independent of direction.

A similar consideration applies to momentum.
Suppose the momentum of each wave is pw =
βEw = β~ωo where β is to be determined. When
at rest, the waves have opposite momenta so
the total momentum vanishes. A Lorentz boost
changes this to p = β~ωo(D − 1/D) = 2βEv.
This must be the momentum of the particle,
p = Ev/c2, and therefore 2β = 1/c2 and

pw =
Ew
c
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