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Introduction

Compressible inviscid fluid
eg air with no viscosity or thermal
conductivity

Equations by Leonhard Euler
1707-1783
Taught to undergraduates
– No special knowledge needed
All equations completely classical
– no quantum mechanics
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Euler’s equation for a compressible fluid

Euler’s equation describes the air without viscosity

∂u
∂t

+ (u.∇)u = −1
ρ
∇P

Reduces to wave equation at low amplitude

∂2ρ

∂t2 − c2∇2ρ = 0

where c2 = ∂P/∂ρ
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Rotational solutions

http://www.youtube.com/watch?v=bT-fctr32pE

Rotational - defined by
∮

u.dl 6= 0
We will examine an irrotational equivalent of these
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Solutions to wave equation (low amplitude)

∆ρ = A cos(ωot + mθ) Jm(kr r)

(Jm – cylindrical Bessel function)

m=0 (approximate, 2D)

+

-

(animation)

m = 1
Irrotational –

∮
u.dl = 0
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Sonon quasiparticles

Curve the eddy into a ring

Quasiparticle solution similar to Dolphin air ring – sonon

R
10

(animation)

ϕ

θ'
σz

R
o

R
11

(animation)

ξ = A e−iωo t Rmn(x)

Rmn(x) =

∮
e−i(mθ′−nφ)jm(krσ) Rodφ

jm – spherical Bessel function
Solution for m = 0, 1 (need Legendre polynomials for m > 1)
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Density pattern at large r

R
11

ϕ

θ'
σz

R
o

∮
e−i(mθ′−nφ)jm(krσ) Rodφ

factorise at large r

[Br .Φr (r)] [Bφ.Φφ(φ)] [Bθ.Φθ(θ)]

Φr =
1
r

[sin(kr r), cos(kr r)] i
(

0 −i
i 0

)
.
∂Φ

∂r
= kr Φ

Φφ = [e−inφ,einφ] i
(

1 0
0 −1

)
.
∂χ

∂Φ
= nΦ

Φθ = [e−imθ+eimθ,e−imθ−eimθ] i
(

0 1
1 0

)
.
∂Φ

∂θ
= mΦ

Pauli spin matrix
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Experimental analogue in 2D

Droplet bouncing on the surface of
the same liquid
(Bath vibrated vertically)
http://www.youtube.com/watch?v=B9AKCJjtKa4

(particle drawn just for illustration)

Main difference from sonons
2D driven dissipative system
Effective c reduced near
droplet
Droplet itself does not obey
Euler’s equation

S Protiere, A Badaoud, Y Couder Particle wave association on a fluid interface J Fluid Mech 544 85-108 (2006)
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Lorentz covariance

Sonon quasiparticle ξ = A e−iωo t Rmn(x)

A� 1
Obeys the wave equation
The wave equation is unchanged by Lorentz transformation
If ξ(x , t) is a solution then so is ξ(x ′, t ′)
ξ(x ′, t ′) moves at velocity v , Lorentz-Fitzgerald contraction

Finite amplitude
perturbed by ε = (v .∇)u if moving at constant velocity v
but the sonon is oscillatory:

∫
udt = 0 over a cycle

Therefore
∫
εdt = 0, ie perturbation vanishes over a cycle

Expectation values converge on long term average
Lorentz covariant at all amplitudes
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Experimental analogue - walker

‘Walker’

Increase amplitude
Droplet bounces higher
Frequency reduces
Velocity v increases

v = c′
√

A−Ao
A where c′ < c

Rearrange
Approximate τ ∝

√
A

ω ≈ ωo
γ where 1

γ =
√

1− v2

c′2

Time dilation

A Eddi et al ‘Information stored in Faraday waves: the origin of a path memory’ J Fluid Mech. 674 433-463 (2011)
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Equation for ψ

ξ = A e−iωo t Rmn(x)
= ψo χ

∇2ψo = 0, ∂2

∂t2ψo = −ω2ψo

Must be Lorentz covariant

∂2ψ

∂t2 − c2∇2ψ = −ω2
oψ

Klein-Gordon equation

Low velocity
ψ = exp(−iωot)ψ′, neglect ∂2

∂t2ψ
′

i~
∂

∂t
ψ′ +

~2

2m
∇2ψ′ = Vψ′

units where m = ~ωo/c2

Schrödinger equation
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Equation of motion for particle

Quasiparticle aligned with wave
troughs (n.b. easily disrupted)

Speed v of the wave troughs k = ω
c2 v

v =
~
m

Im
(
∇ψ
ψ

)

1952 - Bohm rearranged Schrödinger’s

∂|ψ|2

∂t
= −∇(|ψ|2v)

Continuity equation for |ψ|2

|ψ(x, t)|2 = probability of reaching (x, t)
(averaged over nearby trajectories)

Bohmian trajectories
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Aditional (superfluous) assumption

Sonon changes state or delocalizes in some undefined way

Suddenly reappears before measurement, without changing path
Probability of reappearing at (x, t) is |ψ(x, t)|2

Analogue of Copenhagen interpretation
– same equations for ψ and collapse
– assumption superfluous in the case of sonons

Reminder
– Euler’s equation and all sonon motion is completely classical
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Classical experiment – diffraction

Single slit

Double slit

Y Couder, E Fort ‘Single-Particle Diffraction and Interference at a Macroscopic Scale’ PRL 97 154101 (2006)
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Classical experiment – tunnelling

A Eddi, E Fort, F Moisi, Y Couder ‘Unpredictable tunneling of a classical wave-particle association’ PRL 102, 240401 (2009)
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Classical experiment – Landau levels

E Fort et al ‘Path-memory induced quantization of classical orbits’ PNAS 107 41 17515-17520 (2010)
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Classical experiment – incapable of quantum collapse

Wavefunction collapse superfluous

ξ = A e−i(ωt−kx) Rmn(x′)
= ψ χ

modulation carrier
Modulation of a carrier wave
amplitude and phase – complex valued

ψ obeys same equations as quantum mechanical wavefunction
ψ modulates χ (usually omitted) – localisation
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Forces between quasiparticles – 2D

Stroboscopic photograph

Meniscus at boundary
Image droplet antiphase
Repulsive force

In-phase attraction

S Protiere, A Badaoud, Y Couder Particle wave association on a fluid interface J Fluid Mech 544 85-108 (2006)
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Forces between quasiparticles – 3D

Ultrasonic degassing of oil
(5 seconds)

Switch on ultrasonic
transducer
Bubbles expand and
contract in phase
Fluid dynamic attraction
Inverse square force

Fluid dynamic calculation for R11 (results)
Opposite chiralities attract
Like chiralities repel
Inverse square force
Lorentz covariant→ same equations
to electromagnetism

Magnitude of the force
Characterised by dimensionless
number α . 1

49

Could be calculated more accurately
by computer simulation
Experimental fine structure constant
α = 1

137.035999074
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Extends field of ‘analogue gravity’

Irrotational motion of a compressible
inviscid fluid

‘Acoustic metric’ like general relativity
1981 Unruh proposed sonic
experiment: Hawking radiation

Acoustic black hole

2003 – Volovik, model based on superfluid Helium-3
– symmetries of general relativity and standard model

2010 – Experimental black hole analogue in Bose-Einstein condensate

C Barceló et al ‘Analogue Gravity’ arXiv:gr-qc/0505065v3 (2011) (review)
W G Unruh. ‘experimental black hole evaporation?’. Phys Rev Lett, 46:1351-1353, (1981)

G E Volovik. ‘The Universe in a Helium Droplet’. Clarendon Press, Oxford, (2003)
O Lahav et al ‘realization of a sonic black hole analog in a Bose-Einstein condensate’ Phys. Rev. Lett, 105(24):401-404 (2010)
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Possible interpretation

Why do gyroscopes remain aligned with the fixed stars?

Superconducting gyroscope
(and me with hair)

Einstein’s answer (1920)
All interactions are local
Correlation due to a substance
occupying the space between them
medium for the effects of inertia
Can’t be solid if consistent with
special relativity

Euclidian space, compressible fluid
Spin-1

2 quasiparticles
Obey special relativity
Diffract like quantum particles
Electromagnetic force between them

A Einstein, ‘Ether and the Theory of Relativity’ Sidelights on Relativity Methuen pp 3–24 (1922)
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Irrotational motion of a compressible inviscid fluid

1 Introduction

2 Irrotational solutions
Linear eddy
Sonon quasiparticles
Spin symmetry

3 Equations of motion
Experimental analogue
Lorentz covariance
Wavefunction
Forces between quasiparticles

4 Possible interpretation

5 Further work

6 Summary
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Limits to coherence

Coherence between particles needs coherence with carrier wave

One correlation per dimension = 3 independent correlations

Quantum computing
– major multi-year research effort

Relies on multiple correlations
(or possibly entanglement)
Proxies for qubits, but
no calculations with > 3 qubits

R Anderson, R Brady ‘Why quantum computing is hard’ in preparation
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Irrotational solutions to Euler’s equation

R
10 R

11

Lorentz covariant spin-1
2 quasiparticles

Move and diffract like quantum particles of mass ~ω/c2

Maxwell’s equations with α . 1/45

Just ordinary Newton’s equations applied to a fluid

No wavefunction collapse, multiverses, cats or dice
No distortion of space and time
– Lorentz covariance a symmetry of Euler’s equation
No action at a distance – ordinary forces mediated by the fluid
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