Irrotational motion of a compressible inviscid fluid

Robert Brady

University of Cambridge Computer Laboratory JJ Thomson Avenue, Cambridge CB3 OFD, UK
robert.brady@cl.cam.ac.uk

University of Warwick, January 2013

Irrotational motion of a compressible inviscid fluid

(1) Introduction
(2) Irrotational solutions

- Linear eddy
- Sonon quasiparticles
- Spin symmetry
(3) Equations of motion
- Experimental analogue
- Lorentz covariance
- Wavefunction
- Forces between quasiparticles
(4) Possible interpretation

5) Further work

Summary

Introduction

Compressible inviscid fluid eg air with no viscosity or thermal conductivity

- Equations by Leonhard Euler 1707-1783
- Taught to undergraduates - No special knowledge needed
- All equations completely classical - no quantum mechanics

Euler's equation for a compressible fluid

Euler's equation describes the air without viscosity

$$
\frac{\partial \mathbf{u}}{\partial t}+(\mathbf{u} \cdot \nabla) \mathbf{u}=-\frac{1}{\rho} \nabla P
$$

Reduces to wave equation at low amplitude

$$
\frac{\partial^{2} \rho}{\partial t^{2}}-c^{2} \nabla^{2} \rho=0
$$

where $c^{2}=\partial P / \partial \rho$

Rotational solutions

http://www.youtube.com/watch?v=bT-fctr32pE

- Rotational - defined by $\oint u . d l \neq 0$
- We will examine an irrotational equivalent of these

Irrotational motion of a compressible inviscid fluid

(1) Introduction

(2) Irrotational solutions

- Linear eddy
- Sonon quasiparticles
- Spin symmetry
(3) Equations of motion
- Experimental analogue
- Lorentz covariance
- Wavefunction
- Forces between quasiparticles

4. Possible interpretation
5. Further workSummary

Solutions to wave equation (low amplitude)

$$
\Delta \rho=A \cos \left(\omega_{o} t+m \theta\right) J_{m}\left(k_{r} r\right)
$$

(J_{m} - cylindrical Bessel function)

Solutions to wave equation (low amplitude)

$$
\Delta \rho=A \cos \left(\omega_{o} t+m \theta\right) J_{m}\left(k_{r} r\right)
$$

(J_{m} - cylindrical Bessel function)

$\mathrm{m}=0$ (approximate, 2D)

Solutions to wave equation (low amplitude)

$$
\Delta \rho=A \cos \left(\omega_{o} t+m \theta\right) J_{m}\left(k_{r} r\right)
$$

(J_{m} - cylindrical Bessel function)

$\mathrm{m}=0$ (approximate, 2D)

(animation)

$$
\begin{aligned}
& \mathrm{m}=1 \\
& \text { Irrotational }-\oint u \cdot d l=0
\end{aligned}
$$

Sonon quasiparticles

Curve the eddy into a ring

- Quasiparticle solution similar to Dolphin air ring - sonon

Sonon quasiparticles

Curve the eddy into a ring

- Quasiparticle solution similar to Dolphin air ring - sonon

(animation)

$$
\begin{gathered}
\xi=A e^{-i \omega_{o} t} R_{m n}(\mathbf{x}) \\
R_{m n}(\mathbf{x})=\oint \mathrm{e}^{-i\left(m \theta^{\prime}-n \phi\right)} j_{m}\left(k_{r} \sigma\right) R_{o} d \phi
\end{gathered}
$$

j_{m} - spherical Bessel function
Solution for $m=0,1$ (need Legendre polynomials for $m>1$)

Sonon quasiparticles

Curve the eddy into a ring

- Quasiparticle solution similar to Dolphin air ring - sonon

(animation)

(animation)

$$
\begin{gathered}
\xi=A e^{-i \omega_{o} t} R_{m n}(\mathbf{x}) \\
R_{m n}(\mathbf{x})=\oint e^{-i\left(m \theta^{\prime}-n \phi\right)} j_{m}\left(k_{r} \sigma\right) R_{o} d \phi
\end{gathered}
$$

j_{m} - spherical Bessel function
Solution for $m=0,1$ (need Legendre polynomials for $m>1$)

Density pattern at large r

$$
\oint e^{-i\left(m \theta^{\prime}-n \phi\right)} j_{m}\left(k_{r} \sigma\right) R_{o} d \phi
$$ factorise at large r $\left[B_{r} \cdot \Phi_{r}(r)\right]\left[B_{\phi} \cdot \Phi_{\phi}(\phi)\right]\left[B_{\theta} \cdot \Phi_{\theta}(\theta)\right]$

Density pattern at large r

$$
\Phi_{\theta}=\left[e^{-i m \theta}+e^{i m \theta}, e^{-i m \theta}-e^{i m \theta}\right]
$$

Density pattern at large r

$\oint e^{-i\left(m \theta^{\prime}-n \phi\right)} j_{m}\left(k_{r} \sigma\right) R_{o} d \phi$ factorise at large r $\left[B_{r} . \Phi_{r}(r)\right]\left[B_{\phi} . \Phi_{\phi}(\phi)\right]\left[B_{\theta} . \Phi_{\theta}(\theta)\right]$

$$
\begin{array}{cc}
\Phi_{r}=\frac{1}{r}\left[\sin \left(k_{r} r\right), \cos \left(k_{r} r\right)\right] & i\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \cdot \frac{\partial \Phi}{\partial r}=k_{r} \Phi \\
\Phi_{\phi}=\left[e^{-i n \phi}, e^{i n \phi}\right] & i\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \cdot \frac{\partial \chi}{\partial \Phi}=n \Phi \\
\Phi_{\theta}=\left[e^{-i m \theta}+e^{i m \theta}, e^{-i m \theta}-e^{i m \theta}\right] & i\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \cdot \frac{\partial \Phi}{\partial \theta}=m \Phi
\end{array}
$$

Pauli spin matrix

Irrotational motion of a compressible inviscid fluid

(1) Introduction
(2) Irrotational solutions

- Linear eddy
- Sonon quasiparticles
- Spin symmetry
(3) Equations of motion
- Experimental analogue
- Lorentz covariance
- Wavefunction
- Forces between quasiparticles

4) Possible interpretation
(5) Further work
?
Summary

Experimental analogue in 2D

(particle drawn just for illustration)

Droplet bouncing on the surface of the same liquid
(Bath vibrated vertically)
http://www.youtube.com/watch?v=B9AKCJjtKa4
S Protiere, A Badaoud, Y Couder Particle wave association on a fluid interface J Fluid Mech 544 85-108 (2006)

Experimental analogue in 2D

Droplet bouncing on the surface of the same liquid
(Bath vibrated vertically)
http://www.youtube.com/watch?v=B9AKCJjtKa4

(particle drawn just for illustration)
Main difference from sonons

- 2D driven dissipative system
- Effective c reduced near droplet
- Droplet itself does not obey Euler's equation

S Protiere, A Badaoud, Y Couder Particle wave association on a fluid interface J Fluid Mech 544 85-108 (2006)

Lorentz covariance

Sonon quasiparticle $\xi=A e^{-i \omega_{0} t} R_{m n}(\mathbf{x})$

Lorentz covariance

Sonon quasiparticle $\xi=A e^{-i \omega_{0} t} R_{m n}(\mathbf{x})$
$A \ll 1$

- Obeys the wave equation
- The wave equation is unchanged by Lorentz transformation
- If $\xi(x, t)$ is a solution then so is $\xi\left(x^{\prime}, t^{\prime}\right)$
- $\xi\left(x^{\prime}, t^{\prime}\right)$ moves at velocity v, Lorentz-Fitzgerald contraction

Lorentz covariance

Sonon quasiparticle $\xi=A e^{-i \omega_{0} t} R_{m n}(\mathbf{x})$
$A \ll 1$

- Obeys the wave equation
- The wave equation is unchanged by Lorentz transformation
- If $\xi(x, t)$ is a solution then so is $\xi\left(x^{\prime}, t^{\prime}\right)$
- $\xi\left(x^{\prime}, t^{\prime}\right)$ moves at velocity v, Lorentz-Fitzgerald contraction

Finite amplitude

- perturbed by $\epsilon=(v . \nabla) u$ if moving at constant velocity v
- but the sonon is oscillatory: $\int u d t=0$ over a cycle
- Therefore $\int \epsilon d t=0$, ie perturbation vanishes over a cycle

Lorentz covariance

Sonon quasiparticle $\xi=A e^{-i \omega_{0} t} R_{m n}(\mathbf{x})$
$A \ll 1$

- Obeys the wave equation
- The wave equation is unchanged by Lorentz transformation
- If $\xi(x, t)$ is a solution then so is $\xi\left(x^{\prime}, t^{\prime}\right)$
- $\xi\left(x^{\prime}, t^{\prime}\right)$ moves at velocity v, Lorentz-Fitzgerald contraction

Finite amplitude

- perturbed by $\epsilon=(v . \nabla) u$ if moving at constant velocity v
- but the sonon is oscillatory: $\int u d t=0$ over a cycle
- Therefore $\int \epsilon d t=0$, ie perturbation vanishes over a cycle Expectation values converge on long term average
- Lorentz covariant at all amplitudes

Experimental analogue - walker

(c)

'Walker'

Increase amplitude

- Droplet bounces higher
- Frequency reduces
- Velocity v increases
$v=c^{\prime} \sqrt{\frac{A-A_{o}}{A}}$ where $c^{\prime}<c$

A Eddi et al 'Information stored in Faraday waves: the origin of a path memory' J Fluid Mech. 674 433-463 (2011)

Experimental analogue - walker

(c)

'Walker'

Increase amplitude

- Droplet bounces higher
- Frequency reduces
- Velocity v increases

$$
v=c^{\prime} \sqrt{\frac{A-A_{o}}{A}} \text { where } c^{\prime}<c
$$

Rearrange

- Approximate $\tau \propto \sqrt{A}$
$\omega \approx \frac{\omega_{0}}{\gamma}$ where $\frac{1}{\gamma}=\sqrt{1-\frac{v^{2}}{c^{\prime 2}}}$
Time dilation

A Eddi et al 'Information stored in Faraday waves: the origin of a path memory' J Fluid Mech. 674 433-463 (2011)

Equation for ψ

$$
\begin{array}{rlcc}
\xi & =A e^{-i \omega_{0} t} & R_{m n}(\mathbf{x}) \\
& =\psi_{0} & \chi
\end{array}
$$

Equation for ψ

$$
\begin{array}{rlcc}
\xi & =A e^{-i \omega_{0} t} & R_{m n}(\mathbf{x}) \\
& =\psi_{0} & \chi
\end{array}
$$

$\nabla^{2} \psi_{0}=0, \frac{\partial^{2}}{\partial t^{2}} \psi_{0}=-\omega^{2} \psi_{0}$
Must be Lorentz covariant

$$
\frac{\partial^{2} \psi}{\partial t^{2}}-c^{2} \nabla^{2} \psi=-\omega_{o}^{2} \psi
$$

Klein-Gordon equation

Equation for ψ

$$
\begin{array}{rlcc}
\xi & =A e^{-i \omega_{0} t} & R_{m n}(\mathbf{x}) \\
& =\psi_{0} & \chi
\end{array}
$$

$\nabla^{2} \psi_{0}=0, \frac{\partial^{2}}{\partial t^{2}} \psi_{0}=-\omega^{2} \psi_{0}$
Must be Lorentz covariant

$$
\frac{\partial^{2} \psi}{\partial t^{2}}-c^{2} \nabla^{2} \psi=-\omega_{o}^{2} \psi
$$

Klein-Gordon equation

Low velocity
$\psi=\exp \left(-i \omega_{0} t\right) \psi^{\prime}$, neglect $\frac{\partial^{2}}{\partial t^{2}} \psi^{\prime}$

$$
i \hbar \frac{\partial}{\partial t} \psi^{\prime}+\frac{\hbar^{2}}{2 m} \nabla^{2} \psi^{\prime}=V \psi^{\prime}
$$

units where $m=\hbar \omega_{0} / c^{2}$

Equation of motion for particle

Quasiparticle aligned with wave troughs (n.b. easily disrupted)

Speed v of the wave troughs $k=\frac{\omega}{c^{2}} v$

$$
v=\frac{\hbar}{m} \operatorname{lm}\left(\frac{\nabla \psi}{\psi}\right)
$$

Equation of motion for particle

Quasiparticle aligned with wave troughs (n.b. easily disrupted)

Speed v of the wave troughs $k=\frac{\omega}{c^{2}} v$

$$
v=\frac{\hbar}{m} \operatorname{lm}\left(\frac{\nabla \psi}{\psi}\right)
$$

1952 - Bohm rearranged Schrödinger's

$$
\frac{\partial|\psi|^{2}}{\partial t}=-\nabla\left(|\psi|^{2} v\right)
$$

Continuity equation for $|\psi|^{2}$
$|\psi(\mathbf{x}, t)|^{2}=$ probability of reaching (\mathbf{x}, t)
(averaged over nearby trajectories)

Equation of motion for particle

Quasiparticle aligned with wave troughs (n.b. easily disrupted)

Speed v of the wave troughs $k=\frac{\omega}{c^{2}} v$

$$
v=\frac{\hbar}{m} \operatorname{Im}\left(\frac{\nabla \psi}{\psi}\right)
$$

1952 - Bohm rearranged Schrödinger's

$$
\frac{\partial|\psi|^{2}}{\partial t}=-\nabla\left(|\psi|^{2} v\right)
$$

Continuity equation for $|\psi|^{2}$

Bohmian trajectories
$|\psi(\mathbf{x}, t)|^{2}=$ probability of reaching (\mathbf{x}, t)
(averaged over nearby trajectories)

Aditional (superfluous) assumption

- Sonon changes state or delocalizes in some undefined way

Aditional (superfluous) assumption

- Sonon changes state or delocalizes in some undefined way
- Suddenly reappears before measurement, without changing path

Aditional (superfluous) assumption

- Sonon changes state or delocalizes in some undefined way
- Suddenly reappears before measurement, without changing path
- Probability of reappearing at (\mathbf{x}, t) is $|\psi(\mathbf{x}, t)|^{2}$

Aditional (superfluous) assumption

- Sonon changes state or delocalizes in some undefined way
- Suddenly reappears before measurement, without changing path
- Probability of reappearing at (\mathbf{x}, t) is $|\psi(\mathbf{x}, t)|^{2}$
- Analogue of Copenhagen interpretation
- same equations for ψ and collapse
- assumption superfluous in the case of sonons

Aditional (superfluous) assumption

- Sonon changes state or delocalizes in some undefined way
- Suddenly reappears before measurement, without changing path
- Probability of reappearing at (\mathbf{x}, t) is $|\psi(\mathbf{x}, t)|^{2}$
- Analogue of Copenhagen interpretation
- same equations for ψ and collapse
- assumption superfluous in the case of sonons

Reminder

- Euler's equation and all sonon motion is completely classical

Classical experiment - diffraction

Single slit

Y Couder, E Fort ‘Single-Particle Diffraction and Interference at a Macroscopic Scale’ PRL 97154101 (2006)

Classical experiment - diffraction

Single slit

Double slit

Y Couder, E Fort ‘Single-Particle Diffraction and Interference at a Macroscopic Scale’ PRL 97154101 (2006)

Classical experiment - tunnelling

A Eddi, E Fort, F Moisi, Y Couder 'Unpredictable tunneling of a classical wave-particle association' PRL 102, 240401 (2009)

Classical experiment - Landau levels

E Fort et al 'Path-memory induced quantization of classical orbits' PNAS 10741 17515-17520 (2010)

Classical experiment - incapable of quantum collapse

Classical experiment - incapable of quantum collapse

Wavefunction collapse superfluous

Classical experiment - incapable of quantum collapse

Wavefunction collapse superfluous

$$
\begin{aligned}
\xi & =A e^{-i(\omega t-k x)} & & R_{m n}\left(\mathbf{x}^{\prime}\right) \\
& =\psi & & \chi
\end{aligned}
$$

ψ obeys same equations as quantum mechanical wavefunction ψ modulates χ (usually omitted) - localisation

Classical experiment - incapable of quantum collapse

Wavefunction collapse superfluous

$\xi=A e^{-i(\omega t-k x)} \quad R_{m n}\left(\mathbf{x}^{\prime}\right)$
$=\psi \quad \chi$
modulation carrier

Modulation of a carrier wave amplitude and phase - complex valued ψ obeys same equations as quantum mechanical wavefunction ψ modulates χ (usually omitted) - localisation

Forces between quasiparticles - 2D

- Meniscus at boundary
- Image droplet antiphase
- Repulsive force

Stroboscopic photograph

[^0]
Forces between quasiparticles - 2D

Stroboscopic photograph

- Meniscus at boundary
- Image droplet antiphase
- Repulsive force

In-phase attraction

[^1]
Forces between quasiparticles - 3D

Ultrasonic degassing of oil
(5 seconds)

- Switch on ultrasonic transducer
- Bubbles expand and contract in phase
- Fluid dynamic attraction
- Inverse square force

Forces between quasiparticles - 3D

Ultrasonic degassing of oil (5 seconds)

- Switch on ultrasonic transducer
- Bubbles expand and contract in phase
- Fluid dynamic attraction
- Inverse square force

Fluid dynamic calculation for R_{11} (results)

- Opposite chiralities attract
- Like chiralities repel
- Inverse square force
- Lorentz covariant \rightarrow same equations to electromagnetism

Forces between quasiparticles - 3D

Ultrasonic degassing of oil (5 seconds)

- Switch on ultrasonic transducer
- Bubbles expand and contract in phase
- Fluid dynamic attraction
- Inverse square force

Fluid dynamic calculation for R_{11} (results)

- Opposite chiralities attract
- Like chiralities repel
- Inverse square force
- Lorentz covariant \rightarrow same equations to electromagnetism

Magnitude of the force

- Characterised by dimensionless number $\alpha \lesssim \frac{1}{49}$
- Could be calculated more accurately by computer simulation
- Experimental fine structure constant $\alpha=\frac{1}{137.035999074}$

Irrotational motion of a compressible inviscid fluid

(4) Introduction

(2) Irrotational solutions

- Linear eddy
- Sonon quasiparticles
- Spin symmetry

3. Equations of motion

- Experimental analogue
- Lorentz covariance
- Wavefunction
- Forces between quasiparticles

4 Possible interpretation
5. Further work

6 Summary

Extends field of 'analogue gravity'

Irrotational motion of a compressible inviscid fluid

- 'Acoustic metric' like general relativity
- 1981 Unruh proposed sonic experiment: Hawking radiation

Acoustic black hole

Extends field of 'analogue gravity'

Irrotational motion of a compressible inviscid fluid

- 'Acoustic metric' like general relativity
- 1981 Unruh proposed sonic experiment: Hawking radiation

Acoustic black hole

2003 - Volovik, model based on superfluid Helium-3 - symmetries of general relativity and standard model

Extends field of 'analogue gravity'

Irrotational motion of a compressible inviscid fluid

- 'Acoustic metric' like general relativity
- 1981 Unruh proposed sonic experiment: Hawking radiation

Acoustic black hole

2003 - Volovik, model based on superfluid Helium-3 - symmetries of general relativity and standard model

2010 - Experimental black hole analogue in Bose-Einstein condensate

```
C Barceló et al ‘Analogue Gravity’ arXiv:gr-qc/0505065v3 (2011) (review)
W G Unruh. 'experimental black hole evaporation?'. Phys Rev Lett, 46:1351-1353, (1981)
G E Volovik. 'The Universe in a Helium Droplet'. Clarendon Press, Oxford, (2003)
O Lahav et al 'realization of a sonic black hole analog in a Bose-Einstein condensate' Phys. Rev. Lett, 105(24):401-404 (2010)
```


Possible interpretation

Why do gyroscopes remain aligned with the fixed stars?

Superconducting gyroscope

 (and me with hair)A Einstein, 'Ether and the Theory of Relativity' Sidelights on Relativity Methuen pp 3-24(1922)

Possible interpretation

Why do gyroscopes remain aligned with the fixed stars?

Einstein's answer (1920)

- All interactions are local
- Correlation due to a substance occupying the space between them
- medium for the effects of inertia
- Can't be solid if consistent with special relativity

Superconducting gyroscope (and me with hair)

Possible interpretation

Why do gyroscopes remain aligned with the fixed stars?

Superconducting gyroscope (and me with hair)

Einstein's answer (1920)

- All interactions are local
- Correlation due to a substance occupying the space between them
- medium for the effects of inertia
- Can't be solid if consistent with special relativity
Euclidian space, compressible fluid
- Spin- $\frac{1}{2}$ quasiparticles
- Obey special relativity
- Diffract like quantum particles
- Electromagnetic force between them

Irrotational motion of a compressible inviscid fluid

(1) Introduction

(2) Irrotational solutions

- Linear eddy
- Sonon quasiparticles
- Spin symmetry
B. Equations of motion
- Experimental analogue
- Lorentz covariance
- Wavefunction
- Forces between quasiparticles
(4) Possible interpretation
(5) Further work
(6) Summary

Limits to coherence

Coherence between particles

needs coherence with carrier wave

One correlation per dimension = 3 independent correlations

Limits to coherence

Coherence between particles

needs coherence with carrier wave

One correlation per dimension $=3$ independent correlations
Quantum computing

- major multi-year research effort
- Relies on multiple correlations (or possibly entanglement)

Limits to coherence

Coherence between particles

needs coherence with carrier wave
One correlation per dimension = 3 independent correlations
Quantum computing

- major multi-year research effort
- Relies on multiple correlations (or possibly entanglement)
- Proxies for qubits, but no calculations with > 3 qubits

[^2]
Irrotational motion of a compressible inviscid fluid

(1) Introduction

(2) Irrotational solutions

- Linear eddy
- Sonon quasiparticles
- Spin symmetry
(3) Equations of motion
- Experimental analogue
- Lorentz covariance
- Wavefunction
- Forces between quasiparticles
(4) Possible interpretation
(5) Further work

6 Summary

Irrotational solutions to Euler's equation

Irrotational solutions to Euler's equation

- Lorentz covariant spin- $\frac{1}{2}$ quasiparticles
- Move and diffract like quantum particles of mass $\hbar \omega / c^{2}$
- Maxwell's equations with $\alpha \lesssim 1 / 45$

Irrotational solutions to Euler's equation

- Lorentz covariant spin- $\frac{1}{2}$ quasiparticles
- Move and diffract like quantum particles of mass $\hbar \omega / c^{2}$
- Maxwell's equations with $\alpha \lesssim 1 / 45$

Just ordinary Newton's equations applied to a fluid

- No wavefunction collapse, multiverses, cats or dice
- No distortion of space and time
- Lorentz covariance a symmetry of Euler's equation
- No action at a distance - ordinary forces mediated by the fluid

[^0]: S Protiere, A Badaoud, Y Couder Particle wave association on a fluid interface J Fluid Mech 544 85-108 (2006)

[^1]: S Protiere, A Badaoud, Y Couder Particle wave association on a fluid interface J Fluid Mech 544 85-108 (2006)

[^2]: R Anderson, R Brady 'Why quantum computing is hard' in preparation

