Violation of Bell's inequality in fluid mechanics

Robert Brady and Ross Anderson

University of Cambridge Computer Laboratory JJ Thomson Avenue, Cambridge CB3 0FD, UK

robert.brady@cl.cam.ac.uk
ross.anderson@cl.cam.ac.uk

Warwick, June 2013

Motivation

To understand the quantum-like behaviour observed in collective phenomena in fluid mechanics

Bouncing droplet on a vibrating bath of silicone oil

Y Couder, E Fort 'Single-Particle Diffraction and Interference at a Macroscopic Scale' PRL 97 154101 (2006) A Eddi, E Fort, F Moisi, Y Couder 'Unpredictable tunneling of a classical wave-particle association' PRL 102, 240401 (2009) E Fort et al 'Path-memory induced quantization of classical orbits' PNAS 107 41 17515-17520 (2010) http://www.youtube.com/watch?v=B9AKCJItKa4

Bell violation

Agenda

How can a classical fluid system display this quantum-like behaviour?

- The Bell tests rule out classical models
- 2 The motion isn't Lorentz covariant
- There aren't corresponding phenomena in fluids in 3 dimensions
- Classical systems don't have spin-half symmetry

There are two hypotheses about 'locality'

J. S. Bell. On the Einstein-Podolsky-Rosen paradox Physics, 1(3):195–200, 1964.

No-signalling hypothesis

Signals cannot travel faster than a maximum speed (eg sound in the air, or light in relativity)

X Bell's hypothesis

"the result of a measurement on one system be unaffected by operations on a distant system with which it has interacted in the past"

- consistent with experiment
- x falsified by the Bell tests

Robert Brady and Ross Anderson

A B b 4 B b

Why does this rule out classical fluid models?

"Now we make the hypothesis, and it seems one at least worth considering.."

J. S. Bell. On the Einstein-Podolsky-Rosen paradox Physics, 1(3):195–200, 1964.

Not considered if it applies in classical fluids

No longer seems worth considering

"I wish to clarify that, on the particular question of whether you can violate the Bell inequality with a classical local-realist model – involving fluid dynamics or anything else – I'm 100% as close-minded as Lubos. Here we're not talking physics but math, and simple math at that. Either your model involves faster-than-light interactions, or you mistake a delocalized phenomenon (like a scissors closing) for a particle, or you mangle the statement of the Bell inequality itself, or there's some other boring problem ..."

Scott Aaronson, MIT 2013 (with permission)

Why did Bell think his hypothesis worth considering?

Einstein's principle of locality

"But on one supposition we should, in my opinion, absolutely hold fast: the real factual situation of the system S_2 is independent of what is done with the system S_1 which is spatially separated from the former"

cited in J. S. Bell. On the Einstein-Podolsky-Rosen paradox Physics, 1(3):195-200, 1964.

We reaffirm this principle

Why did Bell think his hypothesis worth considering?

Einstein's principle of locality

"But on one supposition we should, in my opinion, absolutely hold fast: the real factual situation of the system S_2 is independent of what is done with the system S_1 which is spatially separated from the former"

cited in J. S. Bell. On the Einstein-Podolsky-Rosen paradox Physics, 1(3):195-200, 1964.

We reaffirm this principle

rel·e·vance [rel-uh-vuhns] noun the condition of being relevant, or connected with the matter at hand

Is it relevant to collective fluid phenomena?

The fluid motion is correlated over large distances, so collective phenomena whose centres are far apart might not be "spatially separated" in the way intended.

Example - vortex in a compressible fluid

Fluid speed $u = \frac{C}{r}$

1. Linear operations

- Insert a rod into the eye
- Observe forces as rod is moved

2. Rotational operations

- Couple to the rotational motion
- Large paddles must be used

T. E. Faber. Fluid dynamics for physicists. Cambridge University press, Cambridge, UK, 1995.

Example - vortex in a compressible fluid

Fluid speed $u = \frac{C}{r}$

Kinetic energy $E = \int \frac{1}{2} \varrho u^2 \cdot 2\pi r dr \approx \pi \varrho C^2 \log r$

Angular momentum $L = \int \varrho ur. 2\pi r dr \approx \pi \varrho C r^2$

Approximate (Bernoulli terms reduce density at small r)

1. Linear operations

- Insert a rod into the eye
- Observe forces as rod is moved

2. Rotational operations

- Couple to the rotational motion
- Large paddles must be used

E and L reside at large distance

correlated out to large distance

Boundary condition: *E* and *L* finite

• not satisfied at large r

T. E. Faber. Fluid dynamics for physicists. Cambridge University press, Cambridge, UK, 1995.

Boundary condition - vortices created in pairs

- No net angular momentum L
- Energy *E* is finite
 - Fluid velocities reinforce between the centres
 - but opposed at large distance

(schematic) Most energy is in shaded region

Boundary condition - vortices created in pairs

(schematic) Most energy is in shaded region

Circulations precisely opposed

- No net angular momentum L
- Energy *E* is finite
 - Fluid velocities reinforce between the centres
 - but opposed at large distance

Intertwined whatever the separation

• since *E* and *L* must be finite

Physical picture:

• Vortices are large compared to the distance between the cores

or from scale-free symmetry of Euler's equation If $\rho(\mathbf{x}, t)$ is a solution, then so is $\rho(a\mathbf{x}, at)$

< ロ > < 同 > < 回 > < 回 >

Bell violation

Rotational operations

You can't affect the rotation of one system without affecting the other

- If you could alter only one system, then *E* and *L* would be unbounded (boundary condition not met)
- To couple to the rotation, a fluid mechanic might imagine inserting a horizontal wall (or using large paddles) both systems are affected.

.

Rotational operations

You can't affect the rotation of one system without affecting the other

- If you could alter only one system, then *E* and *L* would be unbounded (boundary condition not met)
- To couple to the rotation, a fluid mechanic might imagine inserting a horizontal wall (or using large paddles) both systems are affected.

Bell's hypothesis

"the result of a measurement on one system be unaffected by operations on a distant system with which it has interacted in the past"

- Linear operations (rods)
- x rotational operations (horizontal walls/paddles)

R. Brady and R. Anderson. Violation of Bell's inequality in fluid mechanics. ArXiv 1305.6822 (2013)

< ロ > < 同 > < 回 > < 回 >

For philosophers

"Your conclusion contradicts Einstein's principle of locality"

• Einstein's principle is about systems which are spatially separated. The rotational motion is not spatially separated.

"Special relativity forbids violating Bell's inequality in a classical system."

• Special relativity is about measuring events. Events do not couple to the rotational motion because they are too small.

"If you suddenly perturb one system, the other can't react instantaneously"

• Either the perturbation overlaps both systems, or it is too small to affect the rotational motion significantly.

Robert Brady and Ross Anderson

Agenda

How can a classical fluid system display this quantum-like behaviour?

- The Bell tests rule out classical models
- 2 The motion isn't Lorentz covariant
- There aren't corresponding phenomena in fluids in 3 dimensions
- Classical systems don't have spin-half symmetry

Experimental measurement

A Eddi et al 'Information stored in Faraday waves: the origin of a path memory' J Fluid Mech. 674 433-463 (2011)

Increase amplitude of vibration A

- Droplet bounces higher
- Frequency reduces below driving frequency
- Velocity v increases $v \approx c' \sqrt{(A A_o)/A}$

< ロ > < 同 > < 回 > < 回 >

Experimental measurement

A Eddi et al 'Information stored in Faraday waves: the origin of a path memory' J Fluid Mech. 674 433-463 (2011)

Increase amplitude of vibration A

- Droplet bounces higher
- Frequency reduces below driving frequency
- Velocity v increases $v \approx c' \sqrt{(A A_o)/A}$

Rearrange

- Approximate period $\tau \propto \sqrt{A}$
- $\tau \approx \gamma \tau_o$ where $\gamma = 1/\sqrt{1 v^2/c'^2}$
- Lorentz time dilation

< ロ > < 同 > < 回 > < 回 >

Experimental measurement

A Eddi et al 'Information stored in Faraday waves: the origin of a path memory' J Fluid Mech. 674 433-463 (2011)

Increase amplitude of vibration A

- Droplet bounces higher
- Frequency reduces below driving frequency
- Velocity v increases $v \approx c' \sqrt{(A A_o)/A}$

Rearrange

- Approximate period $\tau \propto \sqrt{A}$
- $\tau \approx \gamma \tau_o$ where $\gamma = 1/\sqrt{1 v^2/c'^2}$
- Lorentz time dilation

Perturbed in this experiment

- Characteristic speed c' reduced near the droplet (eg by its mass)
- Perturbation evident in the wake

A (10) A (10)

Solutions obey the wave equation to first order

•
$$\frac{\partial^2 h}{\partial t^2} - c^2 \nabla^2 h = 0$$
 where *h* is the wave height

æ

イロト イヨト イヨト イヨト

Solutions obey the wave equation to first order

• $\frac{\partial^2 h}{\partial t^2} - c^2 \nabla^2 h = 0$ where *h* is the wave height

Wave equation invariant under Lorentz transformation $x \rightarrow x', t \rightarrow t'$

• where
$$x' = \gamma(x - vt)$$
, $t' = \gamma(t - vx/c^2)$, $\gamma = 1/\sqrt{1 - v^2/c^2}$

イロト イ団ト イヨト イヨト

Solutions obey the wave equation to first order

• $\frac{\partial^2 h}{\partial t^2} - c^2 \nabla^2 h = 0$ where *h* is the wave height

Wave equation invariant under Lorentz transformation $x \to x', t \to t'$

• where
$$x' = \gamma(x - vt)$$
, $t' = \gamma(t - vx/c^2)$, $\gamma = 1/\sqrt{1 - v^2/c^2}$

Solutions Lorentz covariant

- If h(x, t) is a solution, so is h(x', t')
- Hence observed time dilation

Solutions obey the wave equation to first order

• $\frac{\partial^2 h}{\partial t^2} - c^2 \nabla^2 h = 0$ where *h* is the wave height

Wave equation invariant under Lorentz transformation $x \to x', t \to t'$

• where
$$x' = \gamma(x - vt)$$
, $t' = \gamma(t - vx/c^2)$, $\gamma = 1/\sqrt{1 - v^2/c^2}$

Solutions Lorentz covariant

- If h(x, t) is a solution, so is h(x', t')
- Hence observed time dilation

Extended in the field of analogue gravity

- 'Acoustic metric' for irrotational motion of a compressible inviscid fluid is analogous to the metric in general relativity
- Deviations from Lorentz covariance average to zero (related to d'Alambert's paradox 1752 – no drag on a solid object if flow is irrotational)

C. Barceló, S. Liberati, and M. Visser. Analogue gravity. Living Reviews in Relativity, 14(3), 2011. R. Brady. The irrotational motion of a compressible inviscid fluid. ArXiv 1301.7540, 2013.

Agenda

How can a classical fluid system display this quantum-like behaviour?

- The Bell tests rule out classical models
- 2 The motion isn't Lorentz covariant
- There aren't corresponding phenomena in fluids in 3 dimensions
- Olassical systems don't have spin-half symmetry

Quasiparticles in semiconductors (eg holes) - basis of electronics

(4) (5) (4) (5)

Quasiparticles

Quasiparticles in semiconductors (eg holes) - basis of electronics

Toplogical dynamics

- Quasiparticles in an abstract fluid
- Research in biology, physics and string theory
- In general, wind up tightly due to tension

.

A D M A A A M M

Quasiparticles

Quasiparticles in semiconductors (eg holes) - basis of electronics

The Hindux & Boldosical Society

Toplogical dynamics

- Quasiparticles in an abstract fluid
- Research in biology, physics and string theory
- In general, wind up tightly due to tension

Lord Kelvin's vortex atoms 1867

Vortex loops

• Pinned to the medium by the circulation

click to watch

Quasiparticles

Quasiparticles in semiconductors (eg holes) - basis of electronics

Remedical & Boldoscal Socio

Toplogical dynamics

- Quasiparticles in an abstract fluid
- Research in biology, physics and string theory
- In general, wind up tightly due to tension

Lord Kelvin's vortex atoms 1867

Vortex loops

• Pinned to the medium by the circulation

We will examine

covariant

Loops with no circulation

Robert Brady and Ross Anderson

Bell violation

irrotational and Lorentz

click to watch

Irrotational vortex ('eddy')

 $\Delta \rho = A\cos(\omega_o t - m\theta) J_m(k_r r)$

Solution to the wave equation

Cylindrical Bessel function

click to watch Near-field, schematic only

Robert Brady and Ross Anderson

Bell violation

★ ∃ →

< 47 ▶

Irrotational vortex ('eddy')

Cylindrical Bessel function

click to watch Near-field, schematic only

 $\Delta \rho = A\cos(\omega_o t - m\theta) J_m(k_r r)$

Solution to the wave equation

Sound in a compressible fluid

Euler's equation

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} = -\frac{1}{\rho} \nabla P$$

Reduces to wave eqn at low amplitude

$$\frac{\partial^2 \rho}{\partial t^2} - c^2 \nabla^2 \rho = 0 \quad \left(c^2 = \frac{\partial P}{\partial \rho} \right)$$

T. E. Faber. Fluid dynamics for physicists. CUP 1995.

Robert Brady and Ross Anderson

Bell violation

Warwick, June 2013 16 / 26

Boundary condition - similar to vortices

Eddies are created in opposed pairs

No angular momentum

Boundary condition - similar to vortices

Eddies are created in opposed pairs

No angular momentum

Waves opposed at large distance

- Boundary condition
- E bounded in the plane

Boundary condition - similar to vortices

Eddies are created in opposed pairs

No angular momentum

Waves opposed at large distance

- Boundary condition
- E bounded in the plane

4 eddies

• *E* also bounded on mirror plane due to cancellation at large distance

More eddies (if needed)

- Bragg mirror boundary condition
- 'Outgoing waves reflected back'

Robert Brady and Ross Anderson

Bell violation

Irrotational quasiparticles - similar to dolphin air rings

click to watch

Irrotational quasiparticles - similar to dolphin air rings

- 4 – 5

Irrotational quasiparticles - similar to dolphin air rings

Chiral quasiparticles created in pairs with no angular momentum

For mathematicians

More formal description than bending the z axis of the eddy

More formal description than bending the z axis of the eddy

A cylindrical Bessel function is a sum of spherical Bessel functions

 $J_1(r)$ cylindrical Bessel function $j_1(r)$ spherical Bessel function

 $\Delta \rho = \mathbf{A} \cos(\omega_o t + \theta) J_1(k_r r)$

 $= A' \int_{-\infty}^{\infty} \cos(\omega_o t + \theta) j_1(k_r \sigma) ds$

Integrand (at fixed s) obeys wave equation So does the integral More formal description than bending the z axis of the eddy

A cylindrical Bessel function is a sum of spherical Bessel functions

 $J_1(r)$ cylindrical Bessel function $j_1(r)$ spherical Bessel function

 $\Delta \rho = A \cos(\omega_o t + \theta) J_1(k_r r)$

 $= A' \int_{-\infty}^{\infty} \cos(\omega_o t + \theta) j_1(k_r \sigma) ds$

Integrand (at fixed s) obeys wave equation So does the integral

Quasiparticle – integrate on a circular path $\Delta \rho_{mn} = A \int \cos(\omega_o t + \theta' - n\phi') j_m(k_r \sigma) R_o d\phi'$ $n = +1 \ (\rho_{\uparrow}) - \text{angular momentum in } +z \text{ direction}$

n = -1 (ρ_{\downarrow}) – angular momentum in -z direction

Agenda

How can a classical fluid system display this quantum-like behaviour?

- The Bell tests rule out classical models
- 2 The motion isn't Lorentz covariant
- There aren't corresponding phenomena in fluids in 3 dimensions
- Olassical systems don't have spin-half symmetry

Two-valued degree of freedom

Ordinary propagating waves can be superposed

Linear terms don't interact

Quadratic interactions average to zero (unless resonantly coupled)
$$\begin{split} h_1 &= A_1 \cos(\omega_1 t - k_1 x) \\ h_2 &= A_2 \cos(\omega_2 t - k_2 x) \\ E &\propto \int (h_1 + h_2)^2 dx^3 \\ E &\propto A_1^2 + A_2^2 \end{split}$$

Two-valued degree of freedom

Ordinary propagating waves can be superposed

Linear terms don't interact

Quadratic interactions average to zero (unless resonantly coupled)

$$h_1 = A_1 \cos(\omega_1 t - k_1 x)$$

$$h_2 = A_2 \cos(\omega_2 t - k_2 x)$$

$$E \propto \int (h_1 + h_2)^2 dx^3$$

$$E \propto A_1^2 + A_2^2$$

Quasiparticle solutions can be superposed

Two-valued degree of freedom $\Delta \rho = A_1 \rho_{\uparrow} + A_2 \rho_{\downarrow}$ rotating in \uparrow and \downarrow directions $E \propto A_1^2 + A_2^2$

Two-valued degree of freedom

Ordinary propagating waves can be superposed

Linear terms don't interact

Quadratic interactions average to zero (unless resonantly coupled)

$$h_{1} = A_{1} \cos(\omega_{1} t - k_{1} x)$$

$$h_{2} = A_{2} \cos(\omega_{2} t - k_{2} x)$$

$$E \propto \int (h_{1} + h_{2})^{2} dx^{3}$$

$$E \propto A_{1}^{2} + A_{2}^{2}$$

Quasiparticle solutions can be superposed

Two-valued degree of freedom $\Delta \rho = A_1 \rho_{\uparrow} + A_2 \rho_{\downarrow}$ rotating in \uparrow and \downarrow directions

 $E \propto A_1^2 + A_2^2$

Continuum of degenerate states of constant energy parametrised by ϑ *E* constant since $\cos^2 \vartheta + \sin^2 \vartheta = 1$ $\Delta \rho = (\cos \vartheta) \rho_{\uparrow} + (\sin \vartheta) \rho_{\downarrow}$

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Degenerate states of constant E parametrised by ϑ

 $\Delta \rho = (\cos \vartheta) \rho_{\uparrow} + (\sin \vartheta) \rho_{\downarrow}$

θ	Δho	Net angular momentum in z direction
0	$ ho_\uparrow$	\uparrow
$\pi/4$	$(ho_\uparrow+ ho_\downarrow)/\sqrt{2}$	_
$\pi/2$	$ ho_{\downarrow}$	\downarrow
$3\pi/4$	$(- ho_\uparrow+ ho_\downarrow)/\sqrt{2}$	_
π	$- ho_\uparrow$	\uparrow

- One period of the angular momentum ρ reverses sign
- Spin-half formalism is very convenient for describing this (completely classical) system

Rotational symmetry

Degenerate states of constant E parametrised by $\frac{1}{2}\theta$

 $\Delta \rho = (\cos \frac{1}{2}\theta)\rho_{\uparrow} + (\sin \frac{1}{2}\theta)\rho_{\downarrow}$

• One period of the angular momentum – ρ reverses sign

• Spin-half formalism is very convenient for describing this (completely classical) system

$\frac{1}{2}\theta$ convention used in Bloch formalism

Continue the excess density $\Delta \rho$ into the complex plane

- $\Delta \rho_{mn} = \Re(\xi_{mn})$ where \Re means real part
- $\xi_{mn} = A \int e^{-i(\omega_o t + m\theta' n\phi')} j_m(k_r \sigma) R_o d\phi'$
- $\xi = \alpha_1 \xi_{\uparrow} + \alpha_2 \xi_{\downarrow}$
- α_i complex number. $|\alpha_i|$ is amplitude of component, $\arg(\alpha_i)$ its phase

Continue the excess density $\Delta \rho$ into the complex plane

- $\Delta \rho_{mn} = \Re(\xi_{mn})$ where \Re means real part
- $\xi_{mn} = A \int e^{-i(\omega_o t + m\theta' n\phi')} j_m(k_r \sigma) R_o d\phi'$
- $\xi = \alpha_1 \xi_{\uparrow} + \alpha_2 \xi_{\downarrow}$

 α_i – complex number. $|\alpha_i|$ is amplitude of component, $\arg(\alpha_i)$ its phase

Write the superposition as a vector

•
$$(\alpha_1, \alpha_2) = e^{i(s-\frac{1}{2}\phi)}(\cos\frac{1}{2}\theta, e^{i\phi}\sin\frac{1}{2}\theta)$$

Continue the excess density $\Delta \rho$ into the complex plane

- $\Delta \rho_{mn} = \Re(\xi_{mn})$ where \Re means real part
- $\xi_{mn} = A \int e^{-i(\omega_o t + m\theta' n\phi')} j_m(k_r \sigma) R_o d\phi'$
- $\xi = \alpha_1 \xi_{\uparrow} + \alpha_2 \xi_{\downarrow}$

 α_i – complex number. $|\alpha_i|$ is amplitude of component, $\arg(\alpha_i)$ its phase

Write the superposition as a vector

•
$$(\alpha_1, \alpha_2) = e^{i(s-\frac{1}{2}\phi)}(\cos\frac{1}{2}\theta, e^{i\phi}\sin\frac{1}{2}\theta)$$

The normalised net angular momentum in the z direction is

•
$$\sigma_z = \frac{\alpha^* \cdot \hat{\sigma}_z \alpha}{\alpha^* \cdot \alpha} = \cos^2 \frac{1}{2}\theta - \sin^2 \frac{1}{2}\theta = \cos \theta$$

where $\hat{\sigma}_z$ is the Pauli matrix.

Continue the excess density $\Delta \rho$ into the complex plane

- $\Delta \rho_{mn} = \Re(\xi_{mn})$ where \Re means real part
- $\xi_{mn} = A \int e^{-i(\omega_o t + m\theta' n\phi')} j_m(k_r \sigma) R_o d\phi'$
- $\xi = \alpha_1 \xi_{\uparrow} + \alpha_2 \xi_{\downarrow}$

 α_i – complex number. $|\alpha_i|$ is amplitude of component, $\arg(\alpha_i)$ its phase

Write the superposition as a vector

•
$$(\alpha_1, \alpha_2) = e^{i(s-\frac{1}{2}\phi)}(\cos\frac{1}{2}\theta, e^{i\phi}\sin\frac{1}{2}\theta)$$

The normalised net angular momentum in the z direction is

•
$$\sigma_z = \frac{\alpha^* \cdot \hat{\sigma}_z \alpha}{\alpha^* \cdot \alpha} = \cos^2 \frac{1}{2}\theta - \sin^2 \frac{1}{2}\theta = \cos \theta$$

where $\hat{\sigma}_z$ is the Pauli matrix.

Axis-independent description

• Extend to $\hat{\sigma}_y$ and $\hat{\sigma}_x$ in the usual way.

$\alpha \alpha'$ is a sum of components

- $\uparrow\downarrow$ couples as drawn, $\downarrow\uparrow$ in opposite horizontal direction
- Time required to form the resonance increases with the separation
- Can't get cross-coupling
- Directions are opposed, irrespective of make-up of $\alpha \alpha'$

$\alpha \alpha'$ is a sum of components

- $\uparrow\downarrow$ couples as drawn, $\downarrow\uparrow$ in opposite horizontal direction
- Time required to form the resonance increases with the separation
- Can't get cross-coupling
- Directions are opposed, irrespective of make-up of $\alpha \alpha'$

Extend to arbitrary axes using spin- $\frac{1}{2}$ formalism (see paper for detail)

If directions are a and b, correlation -a.b

R. Brady and R. Anderson. Violation of Bell's inequality in fluid mechanics. ArXiv 1305.6822 (2013)

< 回 > < 三 > < 三 >

Agenda

How can a classical fluid system display this quantum-like behaviour?

- The Bell tests rule out classical models
- 2 The motion isn't Lorentz covariant
- There aren't corresponding phenomena in fluids in 3 dimensions
- Olassical systems don't have spin-half symmetry

< 17 ▶