By permission of Cambridge University Press this paper saduced from the book
From semantics to Computer Science; Essays in Memory of Gilles Kahn, to be
published early in 2009.

Thetower of informatic models
Robin Milner

University of Cambridge

Abstract: Software science has always dealt with models of computatio
that associate meaning with syntactical construction. lirfebetween
software science and software engineering has for manys yesan ten-
uous. A recent initiativemodel-driven engineeringMDE), has begun
to emphasize the role of models in software constructiorthdttio, the
notions of 'model’ entertained by software scientists andireers have
differed, the former emphasizing meaning and the latterhasiging tool-
based engineering practice. This essay finds the two apgmeamnsis-
tent, and proposes to integrate them in a framework thawaltme model

to explainanother, in a sense that includes both implementation alird va
dation.

This essay is dedicated in admiration to the memory of GKlalsn, a friend and guide
for thirty-five years. | have been struck by the confidence wadnth expressed to-
wards him by the many French colleagues whom he guided. Asi@&renchman |
can also testify that colleagues in other countries hatdHelsame.

I begin by recalling two events separated by thirty years; mivate to him and me,
one publicin the UK. I met Gilles in Stanford University in1® when he was studying
for the PhD degree—which, | came to believe, he found unnacgss acquire. His
study was, | think, thwarted by the misunderstanding of igthewas working on two
different things: on computer-assisted reasoning in alofjiDana Scott based upon
domain theory, which inspired me, and on models of intesaetiwhich | believed
would grow steadily in importance (as indeed they have). r@heas hope to unite
the two. Yet it was hard to relate domain theory to the nomheinism inherent in
interactive processes. | remember, but not in detail, audison of this connection
with Gilles. The main thing | remember is that he ignited. Hullgot the idea of
the domain of streams which, developed jointly with Davidd@aeen, became one of
the most famous papers in informatics; a model of determingsocesses linked by
streams of data.

The public event, in 2002, was the launching workshop of tle Exercise in
Grand Challenges for Computing Research. It identifiedtedglso Grand Challenge
topics that now act as a focus for collaborative researctt;gbdheir effect is to unite
researchers who would otherwise never have communicatfdréBthe workshop we

had no doubt that Gilles Kahn was the one to invite as keyntalser. We knew his
unigue combination of encouragement and probing criticjsst what we needed for
the event. And so it turned out. His view of the future of cotipy, and his cautionary
remarks about artificially created goals, are well-remamatheEqually important were
his enthusiasm, and his encouragement to aim high.

Purpose

The purpose of this essay is to suggest, in simple terms, libarmonise the scientific
content of informatics with its engineering practice. Sachexposition should help
informaticians both to coordinate their work and to present it to other g@enand
to the wider public. It should also clarify the nature of infatics alongside, but in
contrast with, the natural sciences.

In attempting this general exposition, let us avoid terrtugy that is either new
or technical. Of course, each instance of modelling—suchngmeering a distributed
system, or modelling by intelligent agents, or optimiziagget code, or verifying a
program—has its own technical terms; but the terms used fcin @age unlikely to
cover all instances. And we should minimise the extra teagglage used to fit these
instances together into a whole, even if we use terms thatrgmescise.

Models

All scientists and engineers will agree that they work witbdals and modelling. The
word ‘model’ is both verb and noun. Used as a verb, ‘M modelsuflally means
that M that represents (some aspects of) R, a reality. Usadhasin, ‘M is a model’
means that M may represent one or more unspecified reafremxample, differential
equations model many realities. R and M may be singular: Reaip ship, e.g. the
Queen Mary, and M a specific plastic replica of R. Or they maplbeal; R a family
of realities, such as national economies, and M a pack ofeue@nd equations that
represent these economies. We shall avoid the singulardfintbdel, and say that a
model comprises

A family of entities and
What these entitiesnean

This is not a formal definition; it is rather a challenge toksaenotion of model that

unites the engineering and scientific aspects of inforrmafibe purpose of the ‘defini-
tion’ is to insist that a model should not merely enumeraeittities, as in a syntactic
definition, but should describe how they work, i.e. their mirg. On this basis we

shall propose how models should relate to each other.

The imprecise term ‘meaning’, synonymous with ‘semanticsinterpretation’, is
meant to be inclusive. If the entities are automata or prograr processes, it includes
their activity or behavior; if the entities are the sentenoé a logic it includes the
truth-valuation of those sentences via an interpretatiotn® function and predicate

1Loosely speaking, informatics is a synonym for computer seand hence informatician (or infor-
maticist) is a synonym for computer scientist. The ‘info’ welthve an advantage: they express the insight
that informatic behavior is wider than what computers do, oatdomputing is.

symbolg; if the entities are differential equations, it includes ihterdependence of
the variables and their derivatives. But the term ‘meanalgd includes an informal
description of how the entities work.

We avoid a sharp distinction between ‘model’ and ‘realitytVe may wish to say
that a reality, say ‘clouds and their movement’, isextremalmodel: it doesn’t rep-
resent anything else. But some realities—e.g. a plastiéceepf a ship—are models
of other realities, so it is a mistake to say th#trealities—considered as models—are
extremal.

Our informal definition admits artificial realities as webB aatural ones; thus it
includes all engineered artifacts. In particular, it ird#s ‘computers and what their
screens display’; a model of it can then be ‘assembly progrand their semantics’.
Part of what contrasts engineering with natural sciendeasthe realities are artificial
in the first case and natural in the second.

Explanation

The phrase ‘modedf ...’ needs discussion. Thef’ relationship, between a model
and the reality it explains, is central to the whole of scesribe same relationship holds
in any engineering discipline between a model and the yeidléxplains. Just as we
say that Newton's lawsxplainthe movement of bodies with mass, so we can say in
informatics that a model consisting of programs and themmegexplainsthe reality
of computers and what their screens display.

The artifacts of informatics are not always (physical)itezd; they can also be (and
are more often) syntactic or symbolic. In fact, they are nedé&/hat distinguishes the
science of informatics is that its artifacts demand exgianat many levels. Consider
Fortran, one of the most influential models in computingdrist The model ‘Fortran
and its behavior’ (even though this behavior was informaiscribed) explains the
model ‘assembly programs and their behavior’; at leastxpians those assembly
programs that are the translations of Fortran programs. r@ysitivity, Fortran also
explains the real behavior of the computers on which thesenalsly programs run. As
we shall see later, Fortran—and other symbolic construstietemand explanation at
still higher levels; we begin to see why the term ‘tower of relstlis appropriate. We
shall also argue that the towers have breadth as well astheigh

One may feel uneasy about this use of the term ‘explanatimec¢ause realities
normally precede the models that explain them. But infoitsadeals with artifacts,
whether real or symbolic, so the explanation often precedes its explains. One
may then be happier to use ‘specify’ rather than ‘explainut Bhere are cases where
the artifact precedes the explanation; if a reverse-eegisgcceeds in reconstructing
the lost Cobol source-code of a legacy assembly-code progheen she would find it

2Logics are models in the sense of this essay, so we should certigaway we use the term ‘model’
with the logicians’ usage. The striking difference is thédgician speaks of modetsf a logic and that we
(so far) take a logic to be a moda&f something elseThe logicians’ usage is close to what we call ‘meaning’.
Thus the two usages differ but can be reconciled.

3In this paper, we use ‘reality’ to mean ‘physical reality’.iF s for brevity, rather than from a conviction
that all reality is physical.

natural to call the former an explanation of the lafter.

We shall therefore assume tleaxiplanatioris the principal relationship—with many
manifestations—that cements the tower of models that wéntafimatics. Using near-
synonyms we can express ‘modekxplains modeB’ in many ways; for example

modelA representsor specifiesor abstracts frommodelB; or
modelB realises or implementsor refines modelA.

As a simple illustration, suppose thatis a programming language, whose behavior
is defined in one of the usual ways. One way is by structuredatipeal semantics
(SOS), which is formal; another way is informal—a descriptiio natural language of
how the runtime state changes. An example of the latter isttiggnal description of
Algol60, an outstanding example of lucid prose.

Now let A be a specification logic, such & its entities are sentences, and its
meaning defines the interpretation of each sentence. Thermanation of the lan-
guageB by the logicA comprises—for each program of B—a setS of A-sentences
concerning the operations, types, variables, inputs atplitaiof P. The explanation
provides a way to prove that each sentencg of satisfied by the behavior & as de-
scribed inB. If S pre-existsP then it may be called a specification Bf It is unlikely
to determineP uniquely; the larger the sét, the more accurately iB determined.

Combination

The entities in a model need not be all of the same kind. Censidnodel of the
flight of informatically controlled aircraft. This heteregeus model combines at least
three parts: a model of the real world (locality, tempemtwind speed, ...) in which
the planes fly; an electro-mechanical model of the systenisetoontrolled; and a
specification (or explanation) of the controlling softwai@onsider also a model of
humans interacting with a computer; the model of the humampoments may involve
human attributes such as belief or sensation, as distioct the way the computer is
described. These two examples show the need not only to ceniformatic models,
but to combine them with others that are not informatic.

Suchcombinationis best seen as a construction, not a relationship; it coesbin
the entities of different models, with extra behavioralaggion of how they interact.
Combinations abound in informatics. Further examples:ridysystems mix differ-
ential equations with automata; coordination systems @oendlifferent programming
languages via shared data structures; and a distributgggmoning language may be
combined with a networking model to create a model of a péreaystem.

Towers

Let us declare d@ower of models¢o be a collection of models built by combination
and related by explanation. A tower may be tall and thin, artsand broad. Breadth

“We tend to useA explainsB’ as an abbreviation forA-entities explairB-entities’. This allows us to
dodge the question of how maRAyentities are involved in explaining eaBhentity. This surely varies from
case to case, but for this essay we shall use the abbrevatedA explainsB’ for all cases.

lai
5 C@ explains
explaini/ \'/ .
combine

E A
i explains
D

Figure 1: A possible tower of models

can arise partly via combination, and partly because egpilamis a many-many rela-
tion: different aspects of a modBlmay be explained by different models, A.,...;
equally, a modeh may explain different modeB1, B,,. ... However, a tower with no
explanations —one that is very short— is of little use.

What role does such a tower play in informatics? Natural se@smertain to re-
alities that are given. These sciences are anchored in &hevoeld; much of what a
natural scientist does is to validate or refute models of thality by experiment. In
contrast, except at the lowest level of silicon or opticaid® informatics builds its own
realities; also, crucially, it builds symbolic models tgéain these realities at many lev-
els, shading from reality to abstraction with no sharp ditton between the two. Such
levels are—roughly in order from less to more abstract—cosmguihemselves, memo-
ries, networks, low-level programming, high-level pragraing, algorithms, program-
ming frameworks (object-oriented, neural, intelligen¢ats), program transformation,
specification languages, graphical representationsgdpgiathematical theories,
There are many models at each of these levels.

Correspondingly, every model addresses a certain cladgeats those for whom
its explanations are intendédln the natural sciences many models are designed for
the scientist, but models designed for the general pubécatso essential for pub-
lic understanding. Clients for informatic models span aeéhtenge of concerns and
ability, ranging from the many millions of private end-usethrough executives in
client companies, through the technical staff in such cangsa through suppliers of
custom-assembled products, through programmers of suppitware, through soft-
ware architects, down to academic engineers and theorists.

No-one could attempt to describe tivoletower of informatic models. Although
the science of informatics has advanced enormously inxitg gears, new technologies
continually increase the possible realities, and theesifiecrease the challenge to build
models that explain them. But the notion of a tower, everimgiete and ever growing,
provides a path that the growth of our science can follow; eg tuild partial model-
towers, each representing a particular field, with modetsgied for different clients
and cohered by explanation.

Figure 1 shows a possible structure for a small model-tovés.a combination of
B with C; A explainsD; B explainsg; C explains itself. To see that self-explanation

SMore generally, every model has a distinct purpose. For examgpbingle client may use different
models of flight-control software for different forms of ansily.

makes sense, recall tha¥l‘explainsN’ is a short way of saying that the entities of
modelN—say programs—may be explained (e.g. specified) by entitiesoolel M—
say a logic. A good example o€' explains itself’ is provided by the refinement or-
dering invented at Oxford; to refine a specification is to ¢@ms its non-determinism.
Thus a coarser specification explains each of its refinem&uish a notion of refine-
ment is also built into Eiffel, an object-oriented langudge specification and pro-
gramming.

For M to explainN, there is no need to require thateryentity of N is explained
by entities ofM. For example flowcharts explain some programs, but not thdte
recursion. When we want more precision we can talk ahdluor partial explanations;
and the latter should allow that only some entitiedlare explained, or that only some
aspects of each entity are explained.

Now recall that different models are designed for differelignts. For example,
if M is designed for senior executives then we may expahexplainsN’ into the
statementM explainsN for senior executives’. In the example pictured above, sup-
poseB consists of certain differential equations, a@ds a process calculus; then the
combinationA explains hybrid systems. Howev&s designed to explain onlg, the
electronic component &, to control engineers who need not be familiar with process
calculus. An important function for a model tower is to cahtite models designed for
different clients.

Examples

The variety of explanations may create unease; can we nuoibyr define what ‘ex-

planation’ means? Not yet: this paper aims to arouse diggus$that very question.
To feed the discussion, here are some examples that ilestra variety of explana-
tions. In each case we outline the structure of a small mtmedr. To establish firm
ground our first example, though elementary. will be definegtigely; it indicates
that model-towers can be rigorous. The other examples eatett more informally;
indeed, a main purpose of models and their relationship <ov informal insight

into how software science may be integrated with softwaggreering.

Programs We consider both specification and implementation for anfraigtary pro-
gramming language; this yields the small tower shown in Fedu Research over the
past four decades ensures that the same can be done fotigdaliguages; but as
far as | know these two activities—specification and impletaton—have not pre-
viously been presented as instances of the same genermah natiich we are calling
‘explanation’.

Let X = {xz1,...,x,} be a fixed set, the program variables. [Léte a set of
values, say the real numbers. A map: X — V is called a memory; led/ denote
the set of memories. Consider three models:

Programming language. An entityp is a sequence of assignment statements
like x1 := 321 + 225 — 4. Themeaningof p is a functionP[p] : M — M, and
is defined in the standard way.

PREDICATE LOGIC

specifieS‘v

PROGRAMMING LANGUAGE

implemented b$

ASSEMBLY CODE

Figure 2: a small tower of models for programming

Assembly codeC. An entity ¢ is a sequence of instructions of the foaaid,
mult,.. ., load,, fetch,, store, wherev € V andx € X. These instructions
manipulate a memory. € M and a stacls € V* in the familiar way, defining
themeaningof a codec as a functiorC[c] : M x V* — M x V*.

Predicate logid.. An entity ¢ is a logical formula with free variables iX
and bound variables distinct frofd. Themeaningof ¢ is a mapL[¢] : M —
{true, false}; this is a standard notion, called by logiciangaduationof ¢ in M.

To implement we define a compile€omp that translates each assignment= ¢ into
a sequence of stack operations, in the standard way. Theringpitation is validated
by a theorem stating that ®[p]m = m’ thenC[Comp(p)](m,s) = (m’, s) for any
stacks. Thus the implementation has a formal part—the compiler—tirgjaentities,
and a semantic part relating their meanings.

To explainP by L also involves a formal part and a semantic part. The formal pa
is a relation which may be called ‘satisfaction’, denoted-hybetween programsand
pairs¢, ¢’ of logical formulae. If we writer = ¢, ¢" as= {¢}p{¢'}, we recognise it a
‘Hoare triple’; a sentence of Hoare’s well-known logic. hrat logic such a triple may
be proved as a theorem, written{¢}p{¢’'}. The explanation is validated by relating
these formal triples to their meaning; it asserts that

Whenevert- {¢}p{¢’'} andP[p]m = m’, thenL[p]m = L[¢'|m" .

Thus we have seen how explanation may consist of a forma|ipatis case a com-
piler or a logical proof, that may be executed by a tool, andraantic part that gives
meaning to the work done by the formal part. Both parts arergisd to modelling.

Electrical installations The left-hand diagram of Figure 3 shows a small tower that
coheres two models of an electrical installation; one feralchitect and home-owner,
the other for the scientist. Architects understand a mofietquirements for an elec-
trical installation in a house in terms of performance—hegtlighting, refrigeration
etc—also taking account of locality, maintenance, cost dnerdactors. In these terms
they specify the appliances, and home-owners also undedr#itiés specification. On
the other hand the appliance designs are explained byieldcience, which more

INSTALLATION ELECTRICAL MESSAGE PROCESS

REQUIREMENTS SCIENCE SEQUENCE CALCULUS
. CHARTS
. explain _
specifie explains
specifie

APPLIANCES

DESIGNS CDL
. explains , i

realised by P implemented b>i explains
ELECTRICAL
PHENOMENA NETWORK PROGRAMS

Figure 3: Model towers for electrical installations and fetwork programs

generally explains the full range of electrical phenomértee left-hand diagram shows
these model relationships. An important aspect of the el@mphat a single model—
the appliance designs—is explained differently for twoetiint kinds of client: in one
case the architect or home-owner, in the other case theiel&ngineer or scientist.

Business protocols An analogous tower is shown in the right-hand diagram of Fig-
ure 3; it concerns a software platform for the computersasdienaction of business
processes. Such a platform is being designed by a workingpgod the Worldwide
Web consortium (W3C). The workhorse of this platform is th@f@ography Descrip-
tion Language (CDL), which has been designed and intelysaralysed by the work-
ing group. This collaboration allowed a rigorous explaoaif CDL in terms of pro-
cess calculus, which also explains network programs; tipdeimentation of CDL in a
low-level language can thus be validated.

The clients of CDL are application programmers, and therceons are different
from those of the scientists, who are clients of the procakautus. They differ again
from the concerns of executives in the client companiesglesecutives in turn under-
stand message-sequence charts, a simple graphical matigphesents at least some
of the communicational behavior defined in CDL.

Before leaving this example, it is worth mentioning that tight-hand tower ex-
tends naturally both ‘upwards’ (more abstract) and ‘dowrtdsa more concrete). Down-
wards, the low-level network programs are realised by a ¢oation of physical com-
puters and physical networks; upwards, a process calcafuseexplained by a special
kind of logic.

Theairbus Our final example applies rigorous modelling to a safetjieai system.
After the failed launch of the Ariane 5 spacecratft, the tnstNational de Recherche en
Informatique et en Automatique (INRIA) in France—of whichll& Kahn was then
Scientific Director—undertook to analyse the failure. Thalgsis was informative.
As a consequence, Kahn proposed that INRIA should condymtauis analysis for the
informatic aspects of the design of the forthcoming Airbus.

ABSTRACT INTERPRETATION

/explains
ELECTRO-MECHANICAL
ENVIRONMENT DESIGN EMBEDDED PROGRAMS

\/

combine
AIRCRAFT DESIGNS

realised by

AIRCRAFT

Figure 4: A simplified model tower for aircraft construction

Such an analysis can often be based upon a specificationidalogodel, perhaps
a temporal logic; the logical sentences are chosen to deasise the desired behav-
ior of the embedded software (the program model). This softwnodel has to be
combined—as remarked earlier—with an electro-mechanicalemof the plane, as
well as a model of the plane’s environment. Thus we arrivetater like that shown
in Figure 4; of course this is only a simplification. The methahosen for analysis,
based upombstract interpretationcan be seen as a refinement of the logic-based ap-
proach. An abstract interpretation of a program is a singgalifon of the program,
omitting certain details and making certain approximagjomith the aim of rendering
detailed analysis feasible. Such abstraction is essantgtuations where the state-
space is very large; but, to be sound, it must not conceal adgsirable behavior.
Thus, instead of choosing a fixed specification, one may eaonsbstraction specifi-
cally to match those aspects of behavior that are esselmtigile case of the Airbus, by
a careful choice of different abstractions, the analysigiired to validate the embed-
ded programs was reduced to the extent that, with the asséstd programmed tools,
it could be completed.

The Airbus example illustrates that explanations and thalidation can be cus-
tomised within the framework of a tower of models. It alsaslrates the importance
of programmed analytical tools.

This concludes our examples. Itis a good moment to answessikge criticism of our

notions of model and explanation. The criticism is that wevem a model is defined,
the meaning of its entities—which are often symbolic—has t@x@essed in some
formalism; thus a model does no more than translate betwa®mafisms, and our
search for real meaning leads to an infinite regress.

Our answer is in two parts. First, every model-designerrbldeassomemeaning
in mind. A programming language, or a logic, or a processutas; or a graphical
representation is never just a class of symbolic entitiesntended behavior is always
described, even if informally. Thus it is clearly inadeautd call such a class a model

in itself. Second, as we move from entities to meaning withimodel, or indeed as we
move from the entities of mod@ to those of modeA which explainB, we typically
move from a specialised entity-class to a class belonging noore general model.
This can be seen clearly in all our examples; e.g. CDL is mpeeific than a process
calculus, so in explaining it we move to a model for which éhisralready a body of
knowledge.

Our examples show that scientific work in informatics cotssi®t only in design-
ing models, but even more in relating them to each other. dhadr is essential, but
only the latter can provide the coherence that will enablé lather scientists and the
general public to grasp the quality of informatics.

Divergent approaches

Increasingly, over sixty years, informatic theory and éggilons have diverged from
each other. At present, their relationship is almost tatigkerfiew people understand
or practice both. On the one hand an impressive range ofdtiealrconcepts, inspired
by applications, have emerged and been developed. Heréris@nplete list, roughly
in order of discovery:

universal machines, automata theory, formal languageyhaotomation
of logics, program semantics, specification and verificadiisciplines, ab-
stract interpretation, object-orientation, type thesrgocess calculi, neu-
ral nets, temporal and modal logics, calculi for mobile sgst, intelligent
agents, semi-structured data, game-theoretic modelsfiuacomputing,
separation logic,

On the other hand the industrial production of software haslbped sophisticated
processes for implementation and management, stimulgitethbge and growing mar-
ket demand. These two developments, theoretical and inaustre largely indepen-
dent of one another. It is hard to see how this could have besided. No scientific
and technological discipline in human history has beengidrar so global. Respond-
ing to hungry demand has preoccupied the industrial wingfofimatics; competition
in the market has made it virtually impossible to win contsaghile maintaining a rig-
orous standard of validation, or even documentation, dixsot. On the other hand,
building models for rigorous analysis is a daunting intllel challenge, especially as
technological advance continually creates startling reslities—such as pervasive or
ubiquitous systems—to be modelled.

Despite the frequent delay and technical failure of softn&rstems, and despite
the fact that future software systems—especially pervespatems—uwill be larger
and more complex than ever, there is a danger that this disction between soft-
ware engineering and analysis becomes accepted as a noene i$tevidence for this
acceptance. For example, in a report entiflégt Challenge of Complex IT Systems
produced jointly by the UK’s Royal Academy of Engineeringdahe British Com-
puter Society, the phenomenon of defective IT systems wasiged in detail. Many
cases were studied, and valuable recommendations werefroadéhe point of view
of management and the software production process. Butalliytno mention was

10

made of the need for, and possibility of, rigorous analysisedl upon fully developed
theories.

Rapprochement?

Paradoxically, while the need for scientific system analiisis been neglected by some,
there is currently a strong drive in other quarters to bas$evace development and
production on models. This trend has been called ‘mod&kdrengineering’ (MDE).
The academic research carried out under this heading isveeisd, and the author is
not equipped to summarise it. An optimistic view is that, etthe MDE approach may
appear superficially incompatible with the framework pregub here, the approaches
differ only in terminology and emphasis. One purpose of tfesent essay is to induce
a rapprochement between the approaches; such a rappraahiemet only possible,
but absolutely necessary, for informatics to gain its prgusition as an integration of
scientific understanding with industrial construction.

An extreme form of MDE has, as its prime concern, that sofewaoduction be
based upon automatic tools which transform one class oéstintentities into another.
Sometimes such an entity-class, e.g. the syntax of a progiagrlanguage, is called a
model. This conflicts with the notion of model proposed hare while terminology is
conceptually unimportant, such a conflict may inhibit raggirement. In this particular
case, it may inhibit the union that | am advocating betweéense and engineering,
since the scientific sense of ‘model’ lays emphasis on thiemaif meaning, which is
absent from syntactic entities in themselves.

The MDE research community also—in varying degrees—seeksuttion. This
essay has proposed that the union can be found via a notiond#lmhich associates
meaning with every syntactic entity, and via a notion of exgltion between models
that includes not only a transformation between syntagsels, but also a represen-
tation between their corresponding meaning-classes. Betlransformation and the
representation can be highly engineered as tools; thusrtiom itself can be engi-
neered! This essay will have achieved its goal if it prom@esonstructive debate,
involving both engineers and scientists, upon the noticmoflel’.

Acknowledgements | am grateful to all those, including Gilles Kahn himself thwvi
whom | have discussed these questions, and to the anonyefeuses for their helpful
comments. They have made my suggestions (which are haidipal) seem plausible
to me, even though there are many difficulties to be overcosfier® convergence be-
tween the engineering and science of informatics beconaésNext steps on the path
must include reports of detailed case studies, with detdieliography, that appear to
contribute to the convergence.

11

