
Mobile Processes in Bigraphs

Ole Høgh Jensen

October 2006

Abstract

Bigraphical reactive systems (BRSs) are a formalism for modelling mobile com-
putation. A bigraph consists of two combined mathematical structures: a place
graph that models locality, and a link graph that models connectivity. The com-
putation, or behaviour, of systems is modelled as reaction rules that prescribe
how bigraphs can change dynamically. A notion of bisimulation exists for
BRSs, based on a notion of contextual transitions derived uniformly from any
given set of reaction rules.

In this dissertation we make several extensions to the theory of bigraphs
and give two substantial applications, demonstrating how two of the main ex-
isting models of mobile computation, the π-calculus and the ambient calculus,
can be accurately represented as particular instances of BRSs.

One of our extensions is place-sorting, a refinement of bigraphs that allows
certain structural constraints to be imposed. As another extension we refine
the existing notion of (strong) bisimilarity into weak bisimilarity, closely follow-
ing the spirit of the similar well-known concept in process calculi; we show
how, for contextual transitions, weak bisimilarity can be based elegantly on a
method for composing reaction rules. Our third main extension to the theory
of bigraphs concerns the adequacy (for proving bisimilarity) of a subclass of
the contextual transitions known as engaged transitions; we extend previous ad-
equacy theorems to cover a wider range of BRSs, in particular including certain
BRSs in which sub-systems can be replicated dynamically.

Our first application of bigraphs demonstrates how (several versions of)
the π-calculus can be modelled in a way that accurately represents both the
structure and the dynamics of processes. We investigate the contextual tran-
sitions (and accompanying bisimilarity) induced on the calculus by the bi-
graph model, and in particular we compare them to the original transition sys-
tems and bisimilarities defined specifically for the calculus, finding substantial
(though not complete) agreement. We repeat the exercise for the ambient cal-
culus (mobile ambients), obtaining similar results.

Preface

The work presented in this dissertation was carried out under the supervi-
sion of Robin Milner. His influences are manifold: He originated bigraphs
and has been central in founding and furthering concurrency and mobility as
research areas. He has guided with invaluable inspiration, significant sugges-
tions, attentive advice, and kind criticism. And when the work dragged out
unbearingly, his patience and perseverance has been beyond any reasonable
expectation.

For all of this, Robin: Thank you.

Declaration

This dissertation is the result of my own work and includes nothing which is
the outcome of work done in collaboration except where specifically indicated
in the text. It is not, as a whole or in any of its parts, substantially the same as
any work that I have submitted for a degree, diploma, or other qualification at
any other university. It does not exceed 60,000 words.

Contents

1 Introduction 1
1.1 Modelling concurrency . 2
1.2 Modelling mobility . 5
1.3 Process structure and dynamics 7
1.4 Bigraphs . 7
1.5 Purpose and outline of dissertation 10
1.6 Related work . 11

Part I Bigraphs and their Behavioural Theory 13

2 Transitions and Bisimilarity 15
2.1 Transition systems and bisimilarity 15
2.2 Relative bisimilarity . 16
2.3 Generalized bisimulation . 17

3 Reactive Systems and Behavioural Congruence 21
3.1 Reaction and transitions . 21
3.2 S-categories . 26
3.3 Relative pushouts . 29
3.4 Reactive systems and contextual transitions 30
3.5 Strong bisimilarity . 31
3.6 Weak bisimilarity . 32

4 Bigraphs: Structure 39
4.1 Introduction . 39
4.2 Place graphs . 43
4.3 Link graphs . 46
4.4 Bigraphs . 48
4.5 Relative pushouts . 50
4.6 Binding bigraphs . 55
4.7 Place-sorted bigraphs . 59
4.8 Abstract bigraphs . 64
4.9 Further structural theory and notation 65

iv Contents

5 Bigraphs: Dynamics 70
5.1 Bigraphical reactive systems . 70
5.2 Bigraphs with activeness . 75
5.3 Transitions for abstract BRSs . 81
5.4 Engaged transitions . 83

Part II Models of Mobile Processes 91

6 The π-Calculus 93
6.1 Syntax . 93
6.2 Structural congruence . 94
6.3 Reaction . 96
6.4 Transitions and bisimilarity . 96
6.5 Subcalculi . 99

7 Modelling the π-Calculus 101
7.1 The core calculus . 101
7.2 Summation . 106
7.3 Replication . 112
7.4 Asynchrony . 117

8 Contextual Transitions for the π-Calculus 122
8.1 Bisimilarity . 123
8.2 Engaged transitions . 124
8.3 Trim transitions . 126
8.4 Comparison with raw bisimilarities 129

9 Mobile Ambients 138
9.1 Syntax and semantics . 139
9.2 The bigraph model . 140
9.3 Contextual transitions and bisimilarity 145

10 Conclusions 149

A Proofs for Section 8.4 151

Chapter 1

Introduction

Information technology pervades our lives. Not only are computers used ex-
tensively for tasks such as calculation and word-processing—because they are
interconnected, they are becoming at least as important for a growing range
of tasks involving communication and information-gathering. On top of that,
computer technology is increasingly embedded into all manner of man-made
systems not usually associated with computers as such: cell-phones, car en-
gines, factory machinery—to mention but a few, diverse examples.

Thus, computers not only compute in the sense of performing calculations;
they also interact. They interact with people whom they serve, with devices
that they monitor and control, and with other computers that they cooper-
ate with. As computer technology proliferates and becomes ubiquitous, the
need for interaction only increases: to exchange information, to spread work-
load, to coordinate the use of resources. Moreover, as wireless devices are car-
ried around, or scripts shipped across the Internet, systems are increasingly
required to be flexible and instantly reconfigurable in response to their ever-
changing environments. Our systems are not only interactive; they are also
mobile.

A single computer, say an office PC, is an enormously complex system. Its
individual components, such as the CPU, the operating system, or an individ-
ual application program, each represent large efforts of hardware or software
engineering. Like all engineering of complex systems, these engineering disci-
plines rely on science and mathematics in order to understand and predict the
behaviour of the systems being developed. Computer science, though hardly
a mature science, copes well with the challenges involved in building and pro-
gramming the individual computer. It focuses largely on computation as a
sequential process, a series of data manipulations leading toward a final re-
sult, and provides theories to reason about the correctness of results and the
efficiency with which they are obtained.

However, as computer systems integrate across networks to form what is
sometimes described as the global computer, and as the technology integrates
with physical devices, becoming the vanishing computer, systems are growing

2 1 Introduction

even more complex, and the focus is shifting from sequential computation to-
wards computation with any number of processes that run concurrently and
engage in complex patterns of interaction and mobility. At present, the the-
oretical tools for describing and reasoning about such systems are much less
well-established than those that apply to sequential computation, and as a re-
sult these systems are often developed and deployed without a thorough un-
derstanding of how they work—and why they fail.

Providing the proper tools—a scientific theory of interactive and mobile
systems—is the broad context in which this dissertation aims to make a contri-
bution. More particularly, we shall study, and extend, a particular formalism
called bigraphs that has been put forward as a basis for such a theory.

In the present chapter, we give some background to theories of interact-
ing and mobile processes (Sections 1.1–1.3), before introducing bigraphs them-
selves in Section 1.4. In Section 1.5 we state the purpose of the dissertation
more specifically and provide an overview of the main chapters. The present
chapter concludes with Section 1.6 that discusses related work.

1.1 Modelling concurrency

Reasoning about the properties of a system, whether it actually exists or is
merely contemplated, requires a model of the system—a representation in a
suitable formalism that allows the application of relevant theories. For exam-
ple, mechanical systems are typically modelled in terms of idealized compo-
nents like springs and rigid bodies, and reasoned about using the theory of
Newtonian mechanics that applies to such components; similarly, electrical cir-
cuits can be modelled in terms of resistors and capacitors, etc., and reasoned
about using the theory of electrodynamics.

Computation is typically modelled as a discrete process—a sequence of
events that represent individual computation steps. Many different formalisms
exist, differing in the features they represent and the theories they accommo-
date. Especially in the area of interactive and mobile systems the range of for-
malisms is wide and the relations between them not always clear. This disser-
tation is concerned with bigraphs, a recently proposed formalism that attempts
to act as a unifying framework in which many existing formalisms can be seen
as special cases.

What makes a good modelling formalism? A model should be—in the
words of Einstein—“as simple as possible, but no simpler.” The “no simpler”
part requires that the formalism can represent all the features that are rele-
vant to the particular properties we want to reason about. The “as simple as
possible” part requires, on the other hand, that other features can be omitted.
Focusing on relevant features requires abstraction and compositionality: when
reasoning about a large system we should be able to “zoom out” from the de-
tails of its components and perform the reasoning in terms of suitably abstract
properties of the components; conversely, we should be able to establish these
component properties by “zooming in” on each individual component and rea-

1.1 Modelling concurrency 3

soning about it as a system of its own. Thus, a good modelling formalism, apart
from being well-chosen for the specific kind of system and properties at hand,
should be general enough to encompass different levels of abstraction, and it
should support compositional reasoning by providing primitives for describ-
ing the system structurally as a combination of components.

One of the earliest formalisms that explicitly models concurrency and inter-
dependence of events is Petri nets [31]. Many variants of this formalism exist,
but basically a Petri net takes the form of a directed hypergraph whose nodes
we call conditions and whose edges we call events. A marking of a net assigns to
each node a natural number, interpreted as a number of tokens residing at that
node. An event can fire if each of its source nodes (its preconditions) holds at
least one token; when the event fires these tokens are removed and a token is
added to each of its target nodes (its post-conditions).

A Petri net can express several degrees of dependency among events. For
example, if two events are in different, unconnected regions of the net, then
any firings of these events are completely independent. Another possibility is
that a post-condition of one event is a pre-condition of another; then there is a
sequential relationship, in that a firing of the first event may trigger the firing
of the second.

Yet another possibility is that two events share a pre-condition, in which
case there may be contention among the two events, which means that either
may fire but the firing of one will preclude the firing of the other. This last situa-
tion signifies non-determinism, as the model does not specify how the choice be-
tween the two events is resolved. Non-determinism is often a highly desirable
feature in a modelling formalism, even when deterministic systems are mod-
elled, because it allows abstraction of the details involved in choice-making.

The dependencies among events in nets can be captured more abstractly
(without explicitly representing conditions) in event structures [29].

Petri nets are a special form of rewrite systems, a model of computation
based on replacing parts of systems according to specified rewrite rules. Each
rule consists of a redex r and a reactum r0; it specifies that r, whenever it oc-
curs as a sub-system, can be replaced by r0 as a single step of computation. In a
Petri net, rewriting is performed on markings. More general forms of rewriting
have been studied in the context of term rewriting [43], graph rewriting [34], and
rewrite logics [19]. Rewriting is also variously referred to as reduction or reaction;
in this dissertation we generally use the latter. We write P �! P0 to denote a
reaction step leading from the configuration P to P0.

Rewriting, or reaction, represents the dynamics of a system—its evolution
over time—and as such forms an operational semantics. Such a semantics is use-
ful for analysing many important properties, such as whether a particular (de-
sirable or undesirable) configuration of a system can be reached. However, it
does not support compositional reasoning, as the reaction behaviour of a whole
system does not typically relate directly to that of its parts. For example, in a
model of communicating entities, it is natural to represent message exchange
as reaction; this means that an originator of a message and a recipient can en-
gage in a reaction (by exchanging the message), although neither can perform

4 1 Introduction

a reaction on its own.

Compositionality is addressed in process calculi, a family of models of con-
current computation originating with Milner’s CCS [22] and Hoare’s CSP [11].
A process calculus is based on a formal language for the expression of pro-
cess structure; the exact primitives vary between specific calculi but inevitably
include some form of parallel composition. Given processes P and Q, their par-
allel composition, usually written P j Q, is a more complex process that can be
thought of as consisting of P and Q “side by side” so that they can interact with
each other and also act independently.

More generally, if a process P occurs as a sub-process of a larger process
S, then we can think of S as consisting of P together with a context C. The
context can be represented as a process expression with a hole, such that the
result of plugging P into the hole, usually denoted by C[P℄, yields the original
process S. The composite process C[P℄ will typically have reactions that arise
from interaction between P and C. Thus, compositional reasoning requires
knowledge of the ways in which P may “contribute” to such interaction. These
contributions are commonly referred to as observable actions, taking the view
that observing the behaviour of a process is the same as interacting with it.

Many process calculi use a form of operational semantics known as labelled

transitions that represents observable actions. A labelled transition P �̀! P0 ex-
presses that P can evolve to P0 by performing an observable action represented
by the label `. The specific structure and interpretation of labels depends on
the calculus in question. The transition relation is normally defined composi-
tionally; that is, the labelled transitions of a process can be inferred from the
labelled transitions of its sub-processes. For example, CCS has (amongst oth-
ers) the inference rule

P
α�! P0 Q

ᾱ�! Q0
P jQ

τ�! P0 jQ0
which says that by performing complementary actions α and ᾱ the two pro-
cesses P and Q can together perform a “complete” reaction step, represented
by a transition with the distinguished label τ that represents a silent (i.e., unob-
servable) action.

Based on the notion of labelled transitions a large number of more abstract
semantics have been proposed to capture the notion of observable behaviour,
amongst others traces, failures [11], testing [6] and bisimilarity [30, 22]. Many
of them take the form of equivalences or preorders over processes, expressing
when the behaviours of two processes should be considered identical, or, in
the case of preorders, when the behaviour of one process should be consid-
ered a refinement of that of the other. The variety among the semantics arises
from differences in the treatment of, among other things, non-determinism and
silent actions.

There is also some variation in how well the various semantics support
compositional reasoning. In the case of equivalences, we ideally want a no-
tion of equivalence that is a congruence with respect to all process constructors

1.2 Modelling mobility 5

P Q

R

x

y �! P Q

R

x

y

Figure 1.1 Example of mobility in the π-calculus

in a particular calculus (or at least important ones like parallel composition).
Congruence is a desirable property because it allows us to “substitute equals
for equals”, that is, to replace any sub-process by a behaviourally equivalent
sub-process without changing the behaviour of the overall system in which
they occur. Achieving compositionality is a major challenge in the area of pro-
cess calculi, as it generally depends on a delicate interplay between, on the one
hand, the particular constructions allowed by the process language, and on the
other, the distinctions made by the semantics.

1.2 Modelling mobility

The first model of computation specifically intended to model mobile compu-
tation is the π-calculus, a process calculus developed by Milner, Parrow and
Walker [27] as, essentially, an extension of CCS. Reaction in the π-calculus rep-
resents binary communication in which the communicated data are themselves
(names of) communication channels. This allows mobility to be represented,
e.g. as illustrated in Figure 1.1.

The diagram on the left in the figure shows a system consisting of three
processes P, Q and R, where P and Q share a communication channel named
x, and P and R share a channel named y; there is no channel shared by Q
and R, so these two processes cannot communicate directly. The diagram on
the right in the figure shows the result of a reaction in which the name y is
communicated (along x) from P to Q. After this reaction all three processes
share the channel y, but supposing P makes no further use of y we can regard
the link between P and R (shown dashed) as being lost. Thus, the reaction has
caused the link with R to move from P to Q.

This seemingly very restricted form of dynamics turns out to be surpris-
ingly powerful, as evidenced by the wide variety of phenomena that have
been modelled naturally in the calculus; examples can be found both within
computer science (e.g. data structures [23] and concurrent objects [32]), and in
other areas (e.g. biochemical systems [33] and business processes [41]).

From the point of view of mobility, too, the dynamics may also seem rather
restricted, as it allows only communication channels to move. However, refer-
ring to the example above, there is no clear distinction between moving y—the
only channel providing access to R—and moving R itself. Indeed, results by

6 1 Introduction

m� � � P � � � n� � � Q � � � �! n

� � � Q � � �
m� � � P � � �

Figure 1.2 Example of mobility in mobile ambients

Sangiorgi [35] indicate that the higher-order π-calculus, a version of the calcu-
lus where the communicated data are processes, can be encoded naturally and
faithfully in the π-calculus itself.

Partly, the lack of a clear distinction between the two notions of mobility
can be explained by the fact that the calculus has no explicit notion of location.
Since movement is change of location, the concept is central in any model of
mobile systems. In the π-calculus a model of a distributed system (i.e. a system
with locations) might represent the locations as special processes (along with
other processes that represent other entities). Several extensions have been
proposed that add explicit locations to the π-calculus, e.g. [10, 5]; they all al-
low some form of process migration between locations and varying degrees of
communication between co-located or remote processes.

A somewhat different location model is offered by the ambient calculus (also
called mobile ambients) [4], where locations, referred to as ambients, are orga-
nized hierarchically, and moreover it is ambients, rather than individual pro-
cesses, that form the units of migration. The hierarchical location structure
mirrors many structures that occur in practice, such as administrative domains
(e.g. on the Internet) or the block-structure of many traditional programming
languages.

The ambient calculus has three forms of reaction: two that allow movement
respectively into and out of an ambient, and one that allows an ambient to dis-
solve, releasing its content into the surrounding ambient; Figure 1.2 illustrates
a reaction in which process P performs the action enter n, causing its own am-
bient (named m) to migrate into the neighbouring ambient n.

There have also been proposals for adding mobility to Petri nets [1, 3]. The
idea is to equip tokens with extra data (names) which control how certain re-
configurations of the net topology are performed when events are fired. Ob-
viously, there is a wide range of choices in exactly which forms of dynamical
reconfigurability to allow, and it is by no means clear, at a first glance, how to
make this choice in such a way that a tractable and suitably expressive notion
of mobility is obtained. Remarkably, however, the cited work obtains an exact
correspondence with the dynamics of the join-calculus [7], a process calculus
that has been developed as, essentially, a restriction of the π-calculus and moti-

1.3 Process structure and dynamics 7

vated by considerations for efficient implementation as a distribution primitive
for programming languages.

1.3 Process structure and dynamics

The π-calculus inherits most of its process combinators from CCS, and like
CCS it has a labelled transition semantics, although its transition rules are con-
siderably more complicated. In other calculi, for example mobile ambients, it
is even less clear how to give a satisfactory and reasonably simple semantics
in this style. For this reason it has become usual to take a reaction semantics as
the primary definition of dynamics and, to some extent, to rely on alternative
means for reasoning compositionally about behaviour. One such alternative is
Milner and Sangiorgi’s notion of barbed congruence [28].

It is common to define the reaction relation not over syntactical process
terms but instead over a quotient obtained by factoring out a congruence usu-
ally referred to as structural congruence. The concept, introduced by Milner [23]
and strongly inspired by the chemical abstract machine [2], can be thought of as a
way to remove certain “accidental” distinctions introduced by the textual syn-
tax; for example, one usually asserts commutativity of parallel composition,
i.e. the equality P jQ � Q j P, as well as equality of alpha-equivalent terms, i.e.
terms that differ only by the choice of bound names. Using structural congru-
ence, the definition of reaction can usually be given as one or a few very simple
rules.

Arguably, the simplification in defining reaction comes about because the
quotiented system represents process structure and leaves the reaction relation
to deal purely with dynamics. With the quotient, one moves from a textual
syntax toward a graphical syntax; indeed a diagram such as that shown in
Figure 1.1 suggests that the processes shown are unordered and thus presup-
poses commutativity of parallel composition. With the increasing emphasis on
topographical aspects demanded by the prospects of tackling global compu-
tation, it is reasonable to expect that graphical intuitions for process structure
will even become increasingly important.

1.4 Bigraphs

Bigraphical reactive systems [25] were proposed by Milner as a unifying frame-
work for a large range of models of mobile computation. It uses a graphical
process structure that treats locality and connectivity as separate, orthogonal
aspects, and it uses a reaction relation, given by a set of reaction rules, to spec-
ify dynamics.

A bigraph combines two graphical structures: a place graph (modelling lo-
cality) and a link graph (modelling connectivity), both defined over a common
set of nodes. A typical bigraph is shown in Figure 1.3; its place graph is repre-
sented by the nesting of nodes (ovals) within each other and thus forms a tree;

8 1 Introduction

M

K

L

K

L

Figure 1.3 Example of a bigraph

its link graph is formed by the arcs between nodes.
Thus, as a formalism, bigraphs are quite general, the only commitment be-

ing the two particular graphical structures. The formalism itself implies no par-
ticular interpretation of the nodes or of the two structures; such interpretations,
along with particular reaction rules, will be given only when the formalism is
applied to model a particular class of systems or phenomenon.

Typically, systems contain different kinds of entities that should be distin-
guishable in the models. Thus, it is often useful to partition the nodes of a
bigraph into separate kinds; we do this by equipping each node in a bigraph
by a label called a control. (In Figure 1.3 the nodes have controls K, L, M). Con-
trols affect the dynamics, as redexes (which themselves are bigraphs) assign
particular controls to their nodes. Moreover, controls govern to some degree
the formation of the graphical structure, as the formalism allows structural con-
straints to be imposed that depend on controls. In each particular application,
the set of available controls, as well as any structural constraints, are specified
by a signature; thus a particular bigraphical reactive system (BRS) is specified
by a signature together with a set of reaction rules.

In order to support compositional reasoning, bigraphs model not only pro-
cesses but also process contexts. Instead of making an explicit distinction be-
tween these two entities—i.e., introducing both “bigraphs” and “bigraphs with
holes”—a more general definition is adopted that equips each bigraph with a
multiplicity (called a width) on both the inside and outside. An ordinary pro-
cess is then represented as a bigraph with inner width 0 and outer width 1, and
a process context by a bigraph with both widths equal to 1. More generally, the
inner width of a bigraph represents its number of holes, and the outer width
represents the number of holes it will fill when plugged into a surrounding
context.

We can think of the inner and outer widths as a notion of interface for bi-
graphs. (In fact, the full notion of interface incorporates additional informa-
tion, but at this point we shall not go into the details.) Thus, we talk of the
inner face and outer face of a bigraph. For bigraphs A and B, if the outer face of
A coincides with the inner face of B, then the two can be composed by plugging

1.4 Bigraphs 9

A into B. This notion of composition gives rise to a category with interfaces as
objects and bigraphs as arrows.

A main challenge in bigraphs is the development of a behavioural theory
that supports compositional reasoning. As mentioned above, the standard ap-
proach in process calculi is to base behavioural theory on labelled transitions;
but transition semantics are traditionally developed in an ad hoc manner for
each particular calculus, and in some cases become quite complicated.

In bigraphs we are not presupposing a specific set of reaction rules, and so
the behavioural theory must be developed uniformly using only the (unspeci-
fied) set of reaction rules as a basis. The central idea for achieving this, which
has been a driving force in Milner’s work on action structures and action cal-
culi leading up to the present notion of bigraph, is to derive labelled transitions
from the reaction relation, taking labels to be small contexts that can “reveal”
an observable action. The idea is based on the informal observation that in a

typical labelled transition semantics a transition a �̀! a0 is evidence that a can
react with the context by “contributing” `; thus, we expect there is some con-
text C that can contribute the complement of ` in order to permit a reaction (or
equivalently, silent transition)

C Æ a �! C0 Æ a0 .

Given only the reaction relation the idea is, essentially, to take this reaction

as defining a transition a
C�! C0 Æ a0. Thus we obtain contextual transitions, i.e.

transitions whose labels are contexts that permit reaction. However, we do not
want to include all such contextual transitions, as there may be a large num-
ber of (arbitrarily large) contexts that reveal “the same” underlying observable
action of a; so we ideally would like only a single, preferably small contextual
label for each distinct observation.

The latter requirement can be formulated using a variant of the category-
theoretic notion of a pushout. The key observation is that the above reaction
step requires some reaction rule (r, r0) and some context D such that C Æ a =
D Æ r and C0 Æ a0 = D Æ r0, or equivalently, such that the diagrams

C D

a r

C0 D

a0 r0
commute. Requiring the square on the left to be pushout amounts to de-
manding that the arrows C and D are the “smallest” that make the square
commute—we can think of it as a least upper bound of the span (a, r). Un-
fortunately, in the category of bigraphs, many spans do not possess pushouts
because, in the terminology of bounds, there is not (even up to isomorphism)
a unique least upper bound, but instead there are several bounds that are all
minimal but mutually incomparable. By a minimal bound we mean one that

10 1 Introduction

cannot be factored by inscribing arrows as shown by dashed arrows in the dia-
gram below unless the mediating (vertical) arrow is an isomorphism. We give
the formal definition of such minimal bounds, called idempushouts or IPOs, in
Chapter 3.

1.5 Purpose and outline of dissertation

In the endeavour to establish bigraphs as a suitable formalism for mobile sys-
tems, or perhaps refine them to become one, many different directions must be
explored, and it is clear that a behavioural theory based on labelled transitions
and behavioural congruence represents just one of those directions. Neverthe-
less, this is an important direction, as it aims to provide a link with process
calculi, the area that arguably has been most successful so far in tackling mo-
bility.

Our purpose in this dissertation, therefore, is to provide accurate bigraph-
ical models of important process calculi for mobility and to study the behav-
ioural congruences induced upon the calculi by the uniform theory of contex-
tual transitions. Our models will represent some of the most substantial ap-
plications of bigraphs thus far, and they will require considerable refinements
and extensions of the existing work on bigraphs and their behavioural theory.
Thus, the work falls in two main parts: one which is involved in developing
the general framework of bigraphs, and one which is involved in applying bi-
graphs to particular models.

Reflecting this division of the work, the dissertation is structured in two
parts. Part I, dealing with the general framework, contains Chapters 2–5. Chap-
ter 2 reviews the fundamental and standard concepts of transition systems and
bisimilarity; a few non-standard refinements that will be useful for this par-
ticular work are also introduced. Chapter 3 reviews the behavioural theory
based on contextual transitions; this is done at the level of reactive systems, a
generalization of bigraphical reactive systems. In addition, we extend the be-
havioural theory to also cover weak bisimilarity. In Chapters 4 and 5 we define
bigraphs and their dynamics, and we review and extend their structural and
behavioural theories. Chapter 4 concentrates on structure, whereas Chapter 5
treats dynamics.

Part II gives two main applications of bigraphs. The first is the modelling
of (a series of variants of) the π-calculus, and the second is the ambient cal-
culus. It is structured as follows: Chapter 6 gives a brief introduction to the
π-calculus itself. In Chapter 7 we give bigraph models for the π-calculus, as a

1.6 Related work 11

series of progressively more complete fragments. Chapter 8 studies the transi-
tion semantics and corresponding bisimilarity that the uniform theory of con-
textual transitions induces in this particular instance, and compares this to the
standard transition semantics for the calculus. As a second application, the
whole exercise is repeated for the ambient calculus; as the approach is similar,
the exposition for this second application is condensed into a single chapter
(Chapter 9). The conclusion of the dissertation is in Chapter 10.

1.6 Related work

As explained in the preceding sections, the bigraph formalism is strongly in-
spired by, on the one hand, graph-theoretic approaches to the representation of
topographical process structure, and on the other hand, the formal-language-
based approach to compositionality via algebraic process structure offered by
process calculi. The relationships might be summarized by saying that, from
the graph-theoretic point of view, bigraphs offer (1) a particular (but still quite
general) structure suited to modelling mobile systems, and (2) a notion of inter-
face and composition that serves as the basis for an algebraic treatment. Sim-
ilarly, from a process calculus point of view, bigraphs offer (1) a graph-based
topographical structure that matches well with structural congruence, and (2) a
uniform treatment of the relationship between reaction semantics and transi-
tion semantics.

As mentioned, the idea of contextual transitions as a basis of behavioural
congruences has existed for some time in the community involved with Mil-
ner’s action structures and action calculi. Sewell [40] uses the idea to derive
labelled transitions for term rewriting systems, and Leifer (in his thesis [16]
and in joint work with Milner [18]) studies the issue in the context of their
reactive systems, a general formalism abstracting away the particular structure
of bigraphs. Sassone and Sobociński [39, 42] reformulate this to a version of
reactive systems based on 2-categories.

The tile model of Montanari and others [8] generalizes rewrite rules as
double-categorical cells (tiles), in which one dimension represents contextual
structure (as described above) and the other represents labelled transitions.
Thus, tiles describe how contexts transform observable actions (and vice versa),
a generalization of Larsen’s notion of action transducer [14, 15]. Like the bi-
graphical framework, tiles allow the representation of many different dynam-
ics, but, unlike the present work, they take labelled transitions as primitive.

The usefulness of an algebraic structure has inspired work in both Petri
nets and graph rewriting. Winskel [44] advocates a compositional approach to
Petri nets based on morphisms between nets, and a similar approach, based
on graph morphisms, is widely advocated in graph rewriting, see e.g. [34].
A superficial similarity between these bodies of work and that on bigraphs,
is that both employ category theory to some extent. However, the category
of bigraphs has interfaces as objects and bigraphs (i.e. structures) as arrows,
whereas the other work has structures (nets or graphs) as objects and mor-

12 1 Introduction

phisms between them as arrows. Though a similar category of “uninterfaced”
bigraphs and morphisms between them can be defined, and the interfaces of
a bigraph can be recovered as certain degenerate morphisms into it, we have
not found such a formulation helpful for the present work on bigraphs. In any
case, the mentioned work does not address the issue of labelled transitions,
which is pivotal for our work.

As mentioned, a main advantage of the contextual transitions for bigraphs
is that the associated bisimilarity is guaranteed to be a congruence. In process
calculi, where labelled transition relations are defined inductively by sets of in-
ference rules, there has been some work directed at finding conditions, or rule
formats, which similarly guarantee the congruence property; see e.g. [9]. Even
though the starting points for the transition relations are quite different in the
two approaches, there is likely some relation, and it might be interesting to ex-
plore the relationship between IPO-based and inductively defined transitions;
we do not, however, pursue this question in the present work.

Part I

Bigraphs
and their Behavioural Theory

14

Chapter 2

Transitions and Bisimilarity

The concept of labelled transition and the associated notion of bisimulation are
fundamental to all the work presented in this dissertation. We start in this short
chapter by defining these concepts in a manner that suits the way we shall use
them in this work. We also review and develop some theory of bisimulation
which is motivated by (but not specific to) the behavioural theory of bigraphs;
this includes relative bisimulation, a notion that arises when working with tran-
sition systems that are sub-systems of one another, and generalized bisimulation,
an adaptation to the present setting of certain proof techniques for bisimilarity.

2.1 Transition systems and bisimilarity

We start by defining transition systems; the definition is a slight generalization
of the one that is standard in the literature.

Definition 2.1 (transition system) A labelled transition system is a quadrupleL = (A, Lab, app, trans)
where

• A is a set of agents;

• Lab is a set of labels;

• app � A� Lab is the applicability relation;

• trans � app� A is the transition relation.

When (a, `) 2 app we say that the label ` applies to the agent a. We call an

element (a, `, a0) of trans a transition, and we usually write it as a �̀! a0. �
The non-standard ingredient in the above definition is the inclusion of the

applicability relation and the requirement for each transition a �̀! a0 that the
label ` applies to the agent a. The usual kind of transition system is one for

16 2 Transitions and Bisimilarity

which app = A� Lab; that is, all its labels apply to all its agents. We shall call
such a transition system total.

The definition of bisimilarity is also essentially the standard one:

Definition 2.2 (bisimilarity) Assume an arbitrary transition system L. A sim-
ulation is a binary relation S over agents such that whenever (a, b) 2 S and

a �̀! a0 and ` applies to b, then b �̀! b0 for some b0 such that (a0, b0) 2 S . A
bisimulation is a relation S such that both S and its inverse S�1 are simulations.
Agents a and b are bisimilar if (a, b) 2 S for some bisimulation S . �
We shall usually denote the bisimilarity relation associated with a transition
system L by �L, dropping the index only when L is understood.

Our definition of (bi)simulation departs from the usual definition only by
the extra condition concerning applicability: for a pair (a, b) in a simulation,
we only require b to match a transition of a if its label applies to b. When the
transition system L is total, the present definition coincides with the familiar
one.

It is easy to show the standard results that bisimilarity � is itself a bisimu-
lation (in fact, the largest one), and that it is an equivalence, i.e. it is reflexive,
symmetric and transitive. The basic technique for proving a particular bisimi-
larity result a � b is indicated directly by the definition: exhibit a relation S that
contains the pair (a, b) and show that S is a bisimulation. This proof technique
is sound, because, by its definition, bisimilarity includes every bisimulation.

2.2 Relative bisimilarity

We shall sometimes find it useful to define a transition system by “thinning
out” a larger transition system, that is, by selecting only a subset of the tran-
sitions, typically by restricting to certain classes of agents or certain classes of
agent/label-pairs. This gives rise to the notion of relative bisimilarity defined
in [25]; for completeness, we repeat the definition and give a brief discussion
here.

Definition 2.3 (relative bisimulation) We say that a transition system M is a
sub-transition system of L, written M 4 L, if M is component-wise contained
in L.

When this holds, a relative simulation (for M on L) is a relation S over the

agents of L such that whenever (a, b) 2 S , then for every transition a �̀! a0
inMwhere ` applies to b, there is a transition b �̀! b0 inL such that (a0, b0) 2 S .S is a relative bisimulation (for M on L) when, in addition, S�1 is a relative
simulation for M on L). Agents a and b are relative bisimilar (for M on L),
written a �ML b, if (a, b) 2 S for some relative bisimulation S (for M on L).

We say that M is adequate (for L) if �ML coincides with �L on the agents
of M. �

2.3 Generalized bisimulation 17

Note that although the definition uses two different transition systems M andL, we still require that both of the agents a and b be drawn from the same
transition system, namely the sub-transition system M. The extra freedom
lies in the matching of transitions: when either agent makes a transition (also
drawn fromM), the other agent is allowed to make use of the larger transition
system L in performing a matching transition.

Relative bisimilarity is a generalization of the usual notion, as the usual (or,
absolute) bisimilarity for a transition system L, i.e. the relation �L, coincides
with relative bisimilarity for L on itself, i.e. the relation �LL. We shall often
drop the qualifier ‘relative’, when it is clear from the context that we are talking
about bisimilarity in the more general sense.

The asymmetry of the matching requirement means that, in general, rela-
tive bisimilarity is not transitive and therefore not an equivalence. Thus, it is
not in itself directly useful in expressing equivalence of behaviours. Instead, it
is useful when M is adequate for L, for then the smaller transition system M
can be used as the basis of an optimized proof technique for �L: In order to
show a �L b it is enough to find matching transitions for the subset of L-
transitions that are in M, but in constructing the matching transition we still
have the freedom of using the larger system L.

Sometimes this freedom is of no use; that is, it may be that every transition
in M can only be matched by another transition in M. A sufficient condition
for this is given by the following definition:

Definition 2.4 (definite sub-transition system) For M 4 L we say that M is
definite for L if M is determined by a subset LabM of the labels LabL in L in

the sense that, for an arbitrary transition a �̀! a0 in L, the transition is in M iff` 2 LabM. �
In this case, we can immediately deduce that the relative bisimilarity �ML is an
absolute bisimilarity:

Proposition 2.5 IfM is definite forL then�M and�ML coincide on the agents
of M. If, in addition, M is adequate for L then �M and �L coincide on the
agents of M. �
2.3 Generalized bisimulation

As observed above, the basic proof technique for bisimilarity is to exhibit a
bisimulation S that contains the pair of agents we want to show bisimilar.
In this section we look at refined proof techniques that aim at reducing the
work involved in proving bisimilarity by relaxing the requirement on the rela-
tion S . A prominent example is Milner’s notion of “bisimulation up to bisimi-
larity” [22]; for that relation, instead of requiring that matching transitions lead
to pairs (a0, b0) 2 S , we only require (a0, b0) 2 S�, where (�)� denotes closure

18 2 Transitions and Bisimilarity

under bisimilarity. This proof technique is sound, because it turns out that even
the weaker matching requirement implies S � �.

We shall develop a small theory of generalized bisimulation, which will en-
compass several such “up-to” proof techniques. This is essentially an adap-
tation to the present setting of work by Sangiorgi [37]; we comment on the
relationship with that work at the end of the section.

For the remainder of the section we assume fixed, but arbitrary transition
systems L and M such that M 4 L.

Definition 2.6 (progression) Let R and S be binary relations over agents inL. We say that R progresses to S (for M on L), written R �ML S , if, for all(a, b) 2 R, whenever a �̀! a0 in M and ` applies to b then b �̀! b0 in L for
some b0 such that (a0, b0) 2 S . �
It is clear that bisimilarity (forM onL), as we defined it in the previous section,
can be characterized as the largest symmetric relation S that progresses to itself
(for M on L).

We note a few immediate properties of the progression relation:

Proposition 2.7

(1) If R � R0 �ML S 0 � S , then R�ML S ;

(2) If Ri �ML S for all i 2 I, where I is a possibly infinite index set, thenS
i2I Ri �ML S . �

The refined proof techniques will each be represented by some operation F
on relations over agents. Examples of such operations include the familiar
reflexive closure (�)R and transitive reflexive closure (�)�. The proof technique
“up to bisimilarity” mentioned above, is based on an instance of the operation(�)� that closes under an arbitrary equivalence �; it is defined as follows:S� def= f(a, b) j a � a0 and b � b0 for some (a0, b0) 2 Sg .

For operations F and G, we define their composition and union as(F Æ G)(S) = F (G(S))(F [G)(S) = F (S) [G(S) .

For operations (�)a and (�)b denoted by superscripts, we write Sa,b as an

abbreviation for (Sa)b.

Definition 2.8 (generalized bisimulation) We say that an operationF is allow-
able (for M on L) if R �ML S implies F (R) �ML F (S). If S �ML F (S) we

call S a simulation up to F (for M on L). If both S and S�1 are simulations up
to F (forM on L), then S is a bisimulation up to F (forM on L). If S is a bisim-
ulation up to some allowable F then we also call S a generalized bisimulation. �

2.3 Generalized bisimulation 19

The following proposition shows that several basic operations on relations are
allowable, and, in the first clause, that they can be combined using composition
and union to yield more complex allowable operations. Many other useful
operations are allowable only for certain (classes of) transition systems; several
such operations will be introduced later, as we define the specific transition
systems to which they apply.

Proposition 2.9

(1) If F and G are allowable for M on L, then so are F Æ G and F [G;

(2) (�)R is allowable for M on L;

Furthermore, if L is total, then

(3) (�)� is allowable for L;

(4) (�)�L is allowable for L.

Proof
(1) Follows easily from Proposition 2.7.
(2) Follows from (1) together with the trivial fact that the constant opera-

tion that yields the identity relation on agents is allowable.
(3) We must show R� �L S� under the assumption R�L S . Let (a, b) 2R�. Then a = c0 R � � � R cn = b for some c0, . . . , cn. Let a = c0 �̀! a0 = c00.

Because we assume that L is total, the label ` applies to each of the ci, and so

by iteration we infer for each i � 1 a transition ci �̀! c0i for some c0i such that(c0i�1c0i) 2 S . In particular b = cn �̀! b0 def= c0n, and we have (a0, b0) 2 S�, as
required.

(4) Similar. �
To prove bisimilarity (forM on L) of two agents a and b the idea is to construct
a suitable allowable operation F and a relation S that contains (a, b), and then
prove S �ML F (S). This suffices due to the following result:

Theorem 2.10 (generalized bisimulation) Let S be a generalized bisimulation
for M on L. Then (a, b) 2 S implies a �ML b.

Proof By the assumption we have S �ML F (S) for some allowable F . Con-
sider the relation Ŝ def= [

n�0

F n(S) ,

where the superscript n denotes repeated application of F . Allowability of F
implies F n(S) �ML F n+1(S), and so by Proposition 2.7 we have Ŝ �ML Ŝ .

Thus S � Ŝ ��ML , and the result follows. �
As stated above, the material in this section closely follows work of San-

giorgi [37], the main difference being our adaptation to relative bisimilarity.

20 2 Transitions and Bisimilarity

Since relative bisimilarity is not transitive, relation composition does not pre-
serve allowability, unlike the case in Sangiorgi’s setting. (Hence, the two last
clauses of Proposition 2.9, which implicitly involve relation composition, apply
only to absolute bisimilarity, and only to a total transition system.)

Another difference with respect to Sangiorgi’s work is that our notion of
allowable operation is a simplification of his respectful functions: for such a
function F he requires that R � S and R � S implies F (R) � F (S) andF (R)� F (S), where our allowability condition leaves out the inclusions. He
needs the stronger requirement in order to establish the soundness of an oper-
ation that closes a relation under application of certain contexts, an operation
that applies in the common situation where the agents are terms in a process
calculus. In our setting, we shall also be interested in the context closure oper-
ation, but only in connection with our contextual transitions; and here it turns
out that the weaker requirement is sufficient. The essential difference is that in

our transition systems a transition C Æ a �̀! a0 will always imply the existence
of a related transition of a. When this property does not hold, as is typically
the case in process calculi, the inclusion conditions become necessary.

Chapter 3

Reactive Systems
and Behavioural Congruence

This chapter reviews reactive systems, essentially as defined in [13], and the be-
havioural theory based on contextual transitions and strong bisimilarity (also
following [13]). In addition, at the end of the chapter, we extend the behavioural
theory to include also weak bisimilarity.

The chapter is organized as follows: The first section gives a small se-
quence of examples that illustrate our notion of contextual transition and also
points out that considerable care is needed in order to obtain a suitable struc-
ture in which the required IPOs exist. That structure, called s-categories, is
presented in Section 3.2. Then Section 3.3 introduces relative pushouts and
idempushouts, the formal basis of contextual transitions, which we define in
Section 3.4. Sections 3.5 and 3.6 deal with strong and weak bisimilarity, respec-
tively.

3.1 Reaction and transitions

We start by a very simple, non-computational example that illustrates contex-
tual transitions based on IPOs, as described in the introduction. (The formal
definition of IPO is given in Definition 3.9.)

Example Let us model a very small ecosystem consisting of two kinds of ani-
mals: predators, which we shall denote by pred, and prey animals, which we shall
denote by prey. Dynamics in this system consists of the fact that from time to
time a pred may eat a prey. We can model this system as a category with a sin-
gle object and with arrows being multisets of preds and preys; the identity is the
empty multiset, and composition is multiset union. We shall write a multisetfa, b, c, . . .g as a j b j c j � � � because we think of it as the parallel composition of
its elements. A single reaction rule expresses the dynamics:pred j prey �! pred .

22 3 Reactive Systems and Behavioural Congruence

The category in question has all IPOs. (In fact, IPOs here coincide with the
simpler notion of pushout.) They are easy to characterize: the IPO (B0, B1) of a
span (A0, A1) has B0 = A1� A0 and B1 = A0� A1, where minus denotes mul-
tiset difference. Thus, typical transitions based on IPOs in this system includepred prey��! predprey pred��! predpred j prey id��! pred .

The first transition is easy to interpret: it expresses that pred, as an agent, can
perform the action prey (i.e., eat a prey) and go on being a pred. The second
transition expresses that prey can perform pred (i.e., be eaten by a pred). It may
seem odd that also in this case the result of the transition is pred—after all, what
remains of the agent is nothing! However, with our notion of transition the
roles of agent and label are symmetrical, at least in the sense that labels, as well
as agents, may leave residuals. In this case, of course, pred is the residual of the
label. The third transition expresses internal activity: the system that consists of
a pred and a prey can perform a reaction that requires no contribution from the
environment.

Only rather boring bisimilarities can be proved in this very simple system.
For example, we have pred � pred j pred ;

this expresses, intuitively, that to an external observer it makes no difference
how many preds one has; all that can be observed of any pack of preds is that it
eats preys. The proof of the bisimilarity is very simple, as the only transitions
of the two agents are pred prey��! predpred j pred prey��! pred j pred ;

thus, the agents are not only bisimilar, they in fact have isomorphic transition
systems. �

Unfortunately, a simple categorical structure, like the category of multisets
used in the preceding example, is generally not sufficient as a basis of a be-
havioural theory based on IPO transitions. To illustrate the problem, let us
consider a small extension of our example model.

Example Suppose we want to model an additional kind of dynamics in the
system, namely that preds also sometimes eat each other! Then we might add
a reaction rule pred j pred �! pred .

3.1 Reaction and transitions 23

The extended system has additional IPO transitions such aspred pred��! predpred j pred id��! pred .

One would naturally expect the two agents pred j pred and pred j prey to be
equivalent: both can perform an internal action leading to a single pred, and
both can eat either preds or preys both before and after their internal move. But
their IPO transitions do not make them bisimilar. The two agents have only the
following IPO transitions:pred j pred id��! pred pred j prey id��! predpred j pred prey��! pred j pred pred j prey pred��! pred j pred ;

hence, they are not bisimilar. In particular, the transitionspred j pred pred��! pred j pred pred j prey prey��! pred j prey
are not IPO transitions, although, intuitively, they represent perfectly valid in-
teractions between the agents and their contexts. If the two latter transitions
were included, then bisimilarity of the two agents would hold. �

Why are the two latter transitions not included? This would require the
squares predpred j predpred j predpred preypred j preypred j preyprey
to be IPOs, but they are not. As mentioned above, the simple category we are
working with has all IPOs, and in both transitions the agent and the redex coin-
cide and hence have (id, id) as an IPO. Thus, the bounds in the above diagrams
are “too large” to be IPOs, and clearly this will be the case whenever an agent
contains a particular redex. In this situation the agent needs no contribution
from the context to perform a reaction step based on the redex in question, and
therefore it will have no non-identity transition based on that redex.

But that is not how we intend contextual transitions to work. If, for exam-
ple, in the case of the agent pred j prey, the context happens to supply a prey,
then it is perfectly possible for the agent to interact with the context, and tran-
sitions should reflect this. The purpose of the IPO condition is only to enforce
that the label is no larger than necessary for a particular application of a re-
action rule; it is not to prevent a redex from occurring “across” the boundary
between an agent and the context.

24 3 Reactive Systems and Behavioural Congruence

The key concept to understanding the situation is that of occurrence. The
point is that a redex might occur completely within an agent, but it might also
be the case that some of its elements occur in the agent and others occur in
the context. (For that matter, it might even be the case that the redex occurs
completely outside the agent.)

In order to allow all these possibilities, we need somehow to express the
sharing of elements between the agent and the redex, or more generally, be-
tween the arrows in our category. Before we discuss how this can be done
in general, let us consider how the problem may be solved in the particular
system we have been considering.

Example In order to represent occurrences, we need to be able to distinguish
individual animals, even when they are of the same species. Therefore, instead
of representing a collection of animals as a multiset, we shall now represent it
as a set V together with a map

spec : V !fpred, preyg
that assigns a species to each individual v 2 V. This model is closely related to
the multiset model: the latter arises as the quotient under the equivalence that
relates isomorphic systems, i.e. systems whose underlying sets are related by a
bijection that preserves the species maps. In other words, the multiset model is
obtained by “forgetting” the concrete identities of the elements that make up a
system.

In our concrete model the abstract redex pred j prey has many instances; one
of them is

v1 j v2 where spec(v1) = pred and spec(v2) = prey .

Our abstract agent pred j prey might, for example, be instantiated as

v1 j v3 where spec(v1) = pred and spec(v3) = prey .

Now, provided v2 6= v3, this agent-redex pair has the IPO

v2

v1 j v3

v1 j v2

v3 ,

which underlies one of our “missing” transitions from above. (The other tran-
sition is recovered analogously in our revised model.) �

In the example we neglected to make clear in exactly which category we are
taking the IPO, and unfortunately the answer to this question is not as straight-
forward as one might have hoped. The problem is how to define composition.

3.1 Reaction and transitions 25

In the example, an arrow is a set of animals, and we have taken the compo-
sition of two arrows to be the union of their two underlying sets. This makes
sense only when the species maps are compatible; for example, the two arrows� fug , u 7! pred �� fug , u 7! prey �
cannot be sensibly composed, for what should be the species map of the result?

In general, we shall be working with sets enriched with more structure than
just (an equivalent of) the species map, and it turns out generally that compo-
sition only makes sense when the underlying sets are disjoint. Hence, compo-
sition of arrows in our “category” is only a partial operation, and therefore our
system is not a reactive system according to the definition we have so far been
considering, namely, a “proper” category together with a set of reaction rules.

Returning, then, to the general question of how to obtain a satisfactory def-
inition of reactive system, it is clear that our proposed definition, based simply
on a category, is insufficient; it needs some refinement in order to handle oc-
currences properly. There are several ways to address the problem.

One is Leifer’s functorial reactive systems [16]. The idea in this approach is
to set up two categories: one corresponding to the abstract structure (the mul-
tisets in our example); the other is a “super-concrete” category where the in-
terfaces (objects) are equipped with information that allows one to keep track
of the concrete structure in a way that allows composition to be defined in
terms of disjoint union, but still be a total operation. A quotient functor factors
out the concrete structure and allows IPO transitions derived in the concrete
to be transferred to the abstract. This approach has the disadvantage that the
extra information in interfaces makes it awkward to perform some of the ma-
nipulations that are necessary in the concrete category when developing the
behavioural theory based on IPO transitions.

Another approach is Milner’s s-categorical reactive systems [12, 13]. This also
uses disjoint union in the definition of composition for concrete structures, but
without making any changes to the interfaces. Then, as we have seen, compo-
sition is only partial, and hence the resulting structure is not a category. How-
ever, it turns out that the structure (called an s-category) is sufficiently close to
the ordinary notion of category to allow the necessary constructions; in par-
ticular, RPOs and IPOs can be defined and manipulated much as one would
in an ordinary category, and again there is a quotient functor that allows the
transfer of transitions and behavioural theory to the abstract (proper) category.
The main objection to this approach, therefore, is that it uses a slightly non-
standard categorical notion and represents the concrete structure manifestly in
terms of sets, thus mixing a category-theoretical and set-theoretical approach.

An approach that addresses these objections is that of 2-categorical reactive
systems of Sassone and Sobociński [39, 42]. Here, one defines 2-cells (“arrows
between arrows”) on top of the category of abstract bigraphs. The 2-cells are

26 3 Reactive Systems and Behavioural Congruence

isomorphisms that represent how concrete element identities are related be-
tween arrows. Instead of working with RPOs and IPOs which are merely com-
mutative diagrams, one works with similar diagrams that form 2-cells. Thus,
in a manner of speaking, the concrete structure is represented abstractly! Sobo-
ciński’s thesis [42] shows in detail how a precategory can be seen as an instance
of the more general, and purely category-theoretical, notion of 2-category. For
our present purpose, which is to investigate and apply reactive systems whose
arrows are bigraphs, the greater abstraction is not directly helpful, as bigraphs
are indeed based firmly on set-theory, and thus naturally form a precategory
of the required kind. Undoubtedly, however, the 2-categorical approach is
valuable for establishing relationships between the theory of reactive systems
and other approaches to modelling mobile or concurrent computation, such
as rewriting logic by Meseguer [19], the tile logic of Montanari and others (see,
e.g. [8]), and the algebraic approach to graph rewriting by Ehrig and others (see
e.g. [34]).

For the reasons given, we shall use Milner’s definition based on precate-
gories. As mentioned, this involves some non-standard concepts; for complete-
ness, we shall therefore review the full definition, although it requires a certain
amount of detail. We devote the following section to this purpose.

3.2 S-categories

In the following, and throughout the dissertation, we write ~e for a vector, or
sequence, of elements. If~e has length n we shall always use the convention of
naming the elements e0, . . . , en�1. Very often we shall be working with vectors
of length 2 (i.e., ordered pairs); in that case we shall use i to range over the

indices 0 and 1, and we shall take ı̄ to denote the “opposite” of i, that is ı̄
def= i + 1

modulo 2.

Definition 3.1 (precategory) A precategory C consists of a set of objects and for
each pair (a, b) of objects a set denoted C(a, b) whose elements we call arrows.
We call C(a, b) a homset, and we write f : a ! b for an arrow f in C(a, b).
For each object a there is a distinguished arrow ida : a ! a called the identity
at a, and for each triple a, b, c of objects there is a partial map from C(a, b)�
C(b, c) to C(a, c) called composition. For f : a ! b and g : b ! c we write
their composition (if defined) as g Æ f : a ! c. Composition is required to be
associative with the identities as units; that is, for arrows

a
f

b
g

c
h

d

we require that the compositions h Æ (g Æ f) and (h Æ g) Æ f are either both de-
fined and equal, or both undefined; and for

a
f

b

3.2 S-categories 27

we require that the compositions f Æ ida and idb Æ f are both defined and equal
to f . �
Thus, ‘precategory’ is defined just like ‘category’, except that composition is
not required to be a total function. As readers familiar with category theory
will recognise, essentially all concepts that we define for precategories in the
following are straightforward generalizations of categorical concepts.

Equations involving composition of arrows are conventionally represented
by commutative diagrams. For example, the equation h Æ (g Æ f) = (h Æ g) Æ f is
represented by the diagram

b
h Æ g

g

d

a

f

g Æ f
c

h

In a precategory, to say that such a diagram commutes means that along any
path of arrows all compositions are defined, and moreover, for any two objects
(vertices) a and b, and any two paths from a to b, the compositions along the
two paths are equal.

An arrow f : a ! b is an isomorphism (or iso) if there exists an arrow f�1 :
b! a such that f�1 Æ f = ida and f Æ f�1 = idb.

Definition 3.2 (monoidal precategory) A precategory C is (strict, symmetric)
monoidal if it has a partial tensor product
, a unit object ǫ satisfying ǫ
 a =
a = a
 ǫ for all a, and for objects a
 b and b
 a a symmetry isomorphism
γa,b : a
 b ! b
 a, such that the following equations hold when both sides
exist:

(1) f
 (g
 h) = (f
 g)
 h;

(2) (g0 Æ f0)
 (g1 Æ f1) = (g0
 g1) Æ (f0
 f1);
(3) γa,ǫ = ida;

(4) γb,a Æ γa,b = ida
b;

(5) γb0,b1
Æ (f0
 f1) = (f1
 f0) Æ γa1,a0 for ~f :~a!~b;

(6) γa
b,c = (γa,c
 idb) Æ (ida
 γb,c). �
Definition 3.3 (s-category) A supported precategory, or s-category for short, is a
precategory with the following additional structure:

For each arrow f there is a set j f j called its support, such that jidaj = ∅. For
arrows f : a! b and g : b! c the composition g Æ f is defined iff j f j \ jgj = ∅,
and then jg Æ f j = j f j ℄ jgj.

For any arrow f : a! b and any injective map ρ whose domain includes j f j
there is an arrow ρ(f) called a support translation of f such that

28 3 Reactive Systems and Behavioural Congruence

(1) ρ(ida) = ida;

(2) ρ(g Æ f) = ρ(g) Æ ρ(f);
(3) Idj f j(f) = f ;

(4) (ρ1 Æ ρ0)(f) = ρ1(ρ0(f));
(5) ρ(f) = (ρ � j f j)(f);
(6) jρ(f)j = ρ(j f j). �

S-categories are a generalization of categories, for a category can be re-
garded as an s-category in which every arrow has empty support.

Definition 3.4 (support equivalence) Two parallel arrows f , g : a! b in an s-
category C are support equivalent, written f l g, if ρ(f) = g for some support
translation ρ. �
The axioms of an s-category ensure that support equivalence is an equivalence
relation. We often write [f ℄ for the support equivalence class [f ℄l of f .

Definition 3.5 (functor) Given s-categories C and D, a functor F : C!D con-
sists of two maps: the object map assigns to each object a of C an object F (a)
of D; and the arrow map assigns to each arrow f : a ! b of C an arrow F (f) :F (a)!F (b) of D such that

(1) F (ida) = idF (a);
(2) F (g Æ f) = F (g) Æ F (f) if g Æ f defined;

(3) f l g implies F (f) l F (g).F is full if its arrow map is surjective on each homset D(F (a),F (b)); it is faith-
ful if its arrow map is injective on each homset. If F is an inclusion then C is a
sub-s-category of D. �
Definition 3.6 (congruence) Let � be an equivalence defined homset-wise on
an s-category C. Then � is a congruence on C if it is preserved by composition;
that is f � f 0 and g � g0 implies g Æ f � g0 Æ f 0 whenever both compositions
are defined. �
Proposition 3.7 Support equivalence l is a congruence. �

When we do not need to work concretely, but only want to work “up to
support equivalence”, then we may abstract the support set away and move to
the support quotient C/l—an ordinary category:

Definition 3.8 (support quotient category) For any s-precategory C, the sup-
port quotient category C/l is the category whose objects are the objects of C
and whose arrows are support equivalence classes of arrows in C; identity and
composition are given by

ida = [ida℄[g℄ Æ [f ℄ = [g Æ f ℄ . �

3.3 Relative pushouts 29

It is routine to check that C/l indeed forms a category. In particular, composi-
tion of arrows f : a! b and g : b! c is always defined, because we can always
find support instances of f and g with disjoint supports.

As observed above, we may also regard C/l as an s-category; thus, be-
cause of the equations for identity and composition, the support quotient can
be regarded as a functor [�℄ : C! C/l between s-categories.

The above definition also makes sense if support equivalence l is replaced
by an arbitrary congruence � that includes l. Thus, for any such � we can
form a quotient category C/�.

3.3 Relative pushouts

We now define relative pushouts and state some basic properties. We presup-
pose a fixed but arbitrary s-category C.

Definition 3.9 (Relative pushout, idempushout) When the outer square com-

mutes in the diagram on the left below we say that ~g is a bound of ~f . When the

whole diagram commutes we say, moreover, that the triple (~h, h) is a relative

bound of ~f to ~g.

The relative bound (~h, h) is a relative pushout (RPO) of ~f to ~g if for any other

relative bound (~k, k) of ~f to ~g there exists a unique arrow p such that the dia-
gram on the right commutes.

h
g0

h0

g1

h1

f0 f1

k
h

p

g0

h0

k0

g1

h1

k1

f0 f1

A bound ~h of ~f is an idempushout (IPO) of ~f if (~h, id) forms an RPO of ~f to~h. �
Proposition 3.10

(1) If an RPO of ~f to ~g exists, then it is unique up to an isomorphism.

(2) If (~h, h) is an RPO of ~f to ~g, then~h is an IPO of ~f .

(3) If ~h is an IPO of ~f and an RPO exists of ~f to h Æ~h, then (~h, h) is such an
RPO.

(4) Suppose that the diagram below commutes and that there exists an RPO
of (f0, g0) to (h1 Æ h0, f2 Æ g1). Then

(a) if both inner squares are IPOs then so is the outer rectangle;

30 3 Reactive Systems and Behavioural Congruence

(b) if the left square and the rectangle are IPOs then so is the right
square.

h0 h1

f0

g0

f1

g1

f2

(5) (id, f) is an IPO of (f , id). �
Proposition 3.11 Let the square on the left below be an IPO, and suppose f 00 l
f0 and h00 l h0. Then there exist f 01 l f1 and h01 l h1 such that also the square
on the right is IPO.

h0 h1

f0 f1

h00 h01
f 00 f 01 �

3.4 Reactive systems and contextual transitions

Definition 3.12 (reactive system) A reactive system is an s-category C equipped
with a set R of reaction rules, where each reaction rule is a pair (r, r0) of arrows
with shared codomain; in such a rule we call r the redex and r0 the reactum. We
require R to be closed under support translation; that is, whenever (r, r0) 2 R
then also (ρ(r), ρ(r0)) 2 R for any applicable support translation ρ.

We say that a reacts to a0, written a �! a0, whenever a = C Æ r and a0 = C Æ r0
for some arrow C of C and some reaction rule (r, r0) 2 R. �
Definition 3.13 (standard transitions) The standard transition system for a re-
active system (C,R) has the arrows of C as both agents and labels; a label L
applies to an agent a iff the composition L Æ a is defined; and there is a transi-

tion a
L�! a0 iff there is a reaction rule (r, r0) 2 R and an arrow C of C such that

the following diagram commutes and the square forms an IPO:

L

a

r

C

r0a0
We say that the transition is based on the given redex, reaction rule, or IPO; and
also that they underlie the transition. �

3.5 Strong bisimilarity 31

When a particular reactive system is understood we denote by ST its standard
transition system.

The following properties of standard transitions follow immediately from
the definition:

Proposition 3.14

(1) a
id�! a0 iff a �! a0;

(2) standard transitions are determined only up to isomorphism; that is,

whenever a
L�! a0 and ι is an iso composable with L, then also a

ιÆL��!
ι Æ a0. �

3.5 Strong bisimilarity

The standard transition system gives rise to a bisimilarity in the usual way:

Definition 3.15 Strong standard bisimilarity for a reactive system is the bisimi-
larity �ST for its standard transition system. �
We shall often drop the index ST and the qualification ‘standard’ when there
can be no confusion with other transition systems.

We now come to the result—due to Leifer and Milner [18]—that strong stan-
dard bisimilarity is a congruence. We repeat the proof, as the result is funda-
mental and the argument quite short and elegant. In our present setting, the
argument mainly involves proving the allowability of the operationSC def= f(D Æ a, D Æ b) j (a, b) 2 Sg ,

i.e., that exhibiting a bisimulation “up to context” is a sound proof technique.

Lemma 3.16 In a reactive system (C,R) with all RPOs the operation (�)C is
allowable for the standard transition system.

Proof Suppose S � T . We must show SC � T C. Let (a, b) 2 S and C Æ a
L�!

a0 with L Æ C Æ b defined; we seek a transition C Æ b
L�! b0 for some b0 such that(a0, b0) 2 T C. The transition of C Æ a is based on a reaction rule (r, r0) and an

IPO in the form of the outer rectangle on the left below such that a0 = D Æ r0.
L

C
M

C0
a

r

E

D

L

C
M

C0
b

s

F

32 3 Reactive Systems and Behavioural Congruence

By the assumption that C has all RPOs we can fill in the rectangle as shown
with an RPO (M, E, C0) of (a, r) to (L Æ C, D), and by Proposition 3.10 both

small squares are IPOs. The lower square underlies a transition a
M�! a00 def=

E Æ r0. As (a, b) 2 S we then have a transition b
M�! b00 for some b00 such that(a00, b00) 2 T . This transition is based on a reaction rule (s, s0) 2 R and an IPO

in the form of the lower square on the right above such that b00 = F Æ s0. We
compose this with the upper IPO from the left, as shown; by Proposition 3.10
the resulting rectangle is also IPO. AsR is assumed to be closed under support
translation, we can assume without loss of generality that C0 Æ b00 is defined.

The IPO rectangle on the right therefore underlies a transition b
L�! b0 def= C0 Æ b00.

Moreover, observing that a0 = C0 Æ a00, we have (a0, b0) 2 T C as required. �
Now the congruence property follows easily:

Theorem 3.17 (congruence) In a reactive system with all RPOs strong stan-
dard bisimilarity is a congruence; that is, if a � b then C Æ a � C Æ b.

Proof By the definition of bisimilarity we have �� �. Applying the preced-
ing lemma yields (�)C � (�)C; that is, (�)C is a standard bisimulation, and
the result follows. �
3.6 Weak bisimilarity

In applications, strong bisimilarity is often found to be too strong; that is, it dis-
tinguishes between systems that it would be reasonable to consider equivalent.
Consider the following two examples:

Example Recall the system introduced earlier, which had the following two
reaction rules: pred j prey �! predpred j pred �! pred .

For the system consisting of only the first of the two rules we proved that the
agents pred and pred j pred are strongly bisimilar. Is this true also in the system
consisting of both rules?

The agents have the following standard transitions arising from the second
rule: pred pred��! predpred j pred pred��! pred j predpred j pred id��! pred .

3.6 Weak bisimilarity 33

The latter transition cannot be matched by pred, so the two agents are not
strongly bisimilar when we include the second rule. However, it is reason-
able, for many purposes, to regard the two agents as equivalent, because their
externally observable behaviours are still identical: they eat preds and preys.
In other words, they have the same potential for interaction when placed in a
larger system. �
Example For a different example, expressed in the π-calculus, consider the
two processes

P
def= xy and Q

def= νz (zy j z(u).xu) .

The process P sends y directly on x; the other process Q instead sends y on a
private channel z which it shares with a buffer process that forwards any re-
ceived data on x. Thus, to someone who interacts with P and Q, but cannot
observe how they work internally, their behaviour is the same. (This assumes
that the time taken by the buffering in Q is not noticeable, but we are not at-
tempting to address temporal behaviour.) The transitions of P and Q are:

P
xy�! 0 and Q

τ�! xy�! 0 .

Clearly P and Q are not strongly bisimilar: for example, P has no τ-transition,
and so cannot match the τ-transition of Q. �

In process calculi it is common to represent internal activity as transitions
with a distinguished label τ, often referred to as the silent action. Thus, a tran-

sition P
τ�! P0 signifies a move by P in which the environment takes no part. In

our present formulation, such a silent transition corresponds to a reaction step,
or equivalently, a standard transition whose label is the identity context.

Silent transitions are the basis for defining weak bisimilarity, a version of
bisimilarity that abstracts away internal activity. It is based on a derived tran-
sition relation =) defined as follows:

Whenever a
l1�! � � � ln�! a0 then a

ŝ=) a0 ,

where s is the label sequence (l1, . . . , ln), and ŝ denotes the sequence obtained
from s by removing every occurrence of τ. Weak bisimilarity can be defined
simply as the bisimilarity for the transition relation =). The more usual—and
equivalent—definition uses a mixture of both ordinary and derived transitions;

it requires merely that every ordinary transition
l�! can be matched by

l=). In
our present terms the equivalence of the two definitions means that ordinary
transitions are adequate for weak transitions.

We now discuss how weak bisimilarity may be defined for reactive systems
in a way that fits naturally with our adopted premise that labels are contexts.
A central idea connected with our IPO-based transitions is that of an experi-

ment: a transition a
L�! a0 expresses that a, with the contribution of L from the

environment, can perform a reaction step to become a0. It is natural to extend

34 3 Reactive Systems and Behavioural Congruence

this idea to reaction sequences; a derived transition a
L=) a0 then expresses that

a, with the contribution of L from the environment, can perform a sequence of
reaction steps to become a0.

Let us consider a reaction sequence a �!�! a0 of length 2. The definition of
reaction requires for the first reaction step that a = C Æ p for some context C
and redex p; the result of the reaction will be C Æ p0, where p0 is the reactum
for p. The second reaction step requires the result of the first reaction to have
the form D Æ q for some context D and redex q; the result of the reaction will be
a0 = D Æ q0, where q0 is the reactum for q. These equations are represented by
the solid arrows in the following diagram:

E

C

P

D

Q0a

p p0 q

a0
q0

Filling in the middle square with an RPO (P, Q0, E), as indicated by the dashed
arrows, we see that it is possible to view the two-step reaction as a single-step
reaction that arises from applying a derived reaction rule(r, r0) def= (P Æ p, Q0 Æ q0)
in the context E. Clearly, the construction can be repeated to cater for reaction
sequences of arbitrary length.

We can think of the derived rule (r, r0) as a composition of the two actual
rules (p, p0) and (q, q0). Since the construction is based on an IPO of the pair(p0, q), the composition can be formed only if these two arrows are consistent,
but apart from this there is no constraint on the amount of sharing among their
supports. Since, moreover, the IPO arrows P and Q0 are composed with p and
q0, respectively, the composition can be formed only if the supports satisfyjpj \ jPj = jq0j \ jQ0j = ∅ . (�)

By construction we have jp0j \ jPj = jqj \ jQ0j = ∅. Moreover, by support
translation we can choose P and Q0 such that (jPj [jQ0j)� (jp0j [jqj) is disjoint
from jpj [jq0j. (In fact, as we shall see, in bigraphs the former set is always
empty.) Hence (�) will hold if jpj \ jqj � jp0j (1)jp0j \ jq0j � jqj (2)

The following definition introduces a derived reaction relation based on
composition of rules.

3.6 Weak bisimilarity 35

Definition 3.18 (weak reaction) We say that reaction rules (p, p0) and (q, q0)
are compatible if p0 and q are consistent and equations (1) and (2) above hold.

For compatible rules (p, p0) and (q, q0), their composition (p, p0) � (q, q0) is
defined as the rule (P Æ p, Q0 Æ q0), where (P, Q0) is an IPO of (p0, q).

We call a rule of the form (idI , idI) an identity rule.
For R a set of rules we define its weakening, written W(R), as the result

of adding all identity rules and then closing under composition of compati-
ble rules. We extend W to a function that sends a reactive system (C,R) to(C,W(R)).

Define the weak reaction relation =) in C as the reflection of reaction inW(C);
that is, a =) a0 in C iff a �! a0 in W(C). �
With this definition weak reaction indeed corresponds to sequences of ordinary
reaction steps:

Lemma 3.19 In a reactive system with all RPOs it holds that a =) a0 iff a �!� a0.
Proof (sketch) The proof hinges on showing that rule composition is associa-
tive: (p, p0) � �(q, q0) � (r, r0)� = �(p, p0) � (q, q0)� � (r, r0) .

This requires showing that the diagram on the left below, with both inner
squares IPOs, can be transformed to the diagram on the right, also with both
inner squares IPOs.

a

p p0 q q0 r r0a0 a

p p0 q q0 r r0a0
For this, one merely needs to fill in the long rectangle by an RPO; the compo-
sition properties of IPOs (Proposition 3.10) then ensure that the squares on the
right are IPOs. �

We take weak standard transitions a
L=) a0 to be the (ordinary) standard tran-

sitions of the weakened system:

Definition 3.20 (weak transitions) In a reactive system C we define the weak
standard transition system in C as the reflection of the standard transition system

in W(C); that is, a
L=) a0 in C iff a

L�! a0 in W(C). �
When the reactive system concerned is understood we denote its weak stan-
dard transition system by WST, and we shall continue to use the notation

36 3 Reactive Systems and Behavioural Congruence

a
L=) a0 for its transitions. We shall refer to the associated bisimilarity �WST

as weak standard bisimilarity and normally write it as �.
Since the weak standard transitions in C are exactly the standard transi-

tions in W(C), and W is the identity on structure, the congruence property
(Theorem 3.17) for strong standard bisimilarity carries over immediately to
weak bisimilarity:

Corollary 3.21 (congruence) In a reactive system with all RPOs weak standard
bisimilarity is a congruence; that is, if a � b then C Æ a � C Æ b. �

The following lemma records the basic properties of the weak transition
relation.

Lemma 3.22 In a reactive system with all RPOs the following hold:

(1) a
id=) a.

(2) If a
L�! a0 then a

L=) a0;
(3) If a

L1=) � � � Ln=) a0 and L = Ln Æ � � � Æ L1 then a
L=) a0;

(4) If a
L=) a0 then a

L1�! � � � Ln�! a0 for some L1, � � � , Ln such that L =
Ln Æ � � � Æ L1.

Proof (sketch) Each property is an immediate consequence of the construction
of the weakened rule set W(R): (1) holds because W(R) contains all iden-
tity rules; (2) holds because W(R) contains every rule in R; (3) holds becauseW(R) is closed under rule composition; (4) holds because every rule in W(R)
is the composition of a sequence of rules from R. �
The properties established in the lemma can be summarized by saying that
a weak standard transition arises as a (possibly empty) sequence of standard
transitions, and that the labels of these transitions are composed to form the
label of the weak transition. Taking the composition of the labels does the job
of abstracting away silent transitions, because silent transitions have identity
labels. In fact it does more, because labels formed in this way may have more
than one decomposition into non-identity labels; this potentially allows greater
freedom in constructing matching transitions than under the usual definition
in process calculi. As we shall see in Part II, the greater freedom turns out not
to make any difference in the π-calculus. It does in some systems, however;
a simple example is given below.

First, we establish that our notions of weak and strong bisimilarity have the
same relationship as they do in process calculi, namely that strongly bisimilar
agents are also weakly bisimilar, and that standard transitions are adequate
for the weak standard transitions. As mentioned earlier, the latter property
validates the familiar proof technique for weak bisimilarity, where only the
“strong” transitions of an agent are matched (with weak transitions) by the
other agent.

3.6 Weak bisimilarity 37

Theorem 3.23 (weak and strong bisimilarity) In a reactive system that has all
RPOs the following hold:

(1) Strong standard bisimilarity implies weak standard bisimilarity; that is,� � �;

(2) The standard transition system is adequate for weak standard transitions;
that is, �ST = �.

Proof By Lemma 3.22(2) we have ST 4 WST, from which we directly obtain the
following inclusions: � � �ST (�)� � �ST . (��)

Assertion (1) of the theorem will follow from (�) together with assertion (2).
For (2) the inclusion in one direction is given by (��). Thus, it only remains to
show�ST � �. We show that�ST is a weak bisimulation. Suppose a �ST b and

a
L=) a0 with L Æ b defined; we must find a transition b

L=) b0 such that a0 �ST b0.
By Lemma 3.22(4) there is a sequence of standard transitions

a
L1�! � � � Ln�! a0

such that L = Ln Æ � � � Æ L1. Then, appealing repeatedly to the assumption
a �ST b, we obtain

b
L1=) � � � Ln=) b0

for some b0 such that a0 �ST b0. It follows from Lemma 3.22(3) that b
L=) b0. This

completes the proof. �
Example Returning to our system with predators and prey, we can now prove
the weak standard bisimilaritypred � pred j pred .

The only interesting part of the proof concerns the matching of the transitionpred j pred id�! pred .

As observed earlier, the other agent, pred, cannot match this with an ordinary
standard transition, but it has a weak standard transitionpred id=) pred
based on the reaction rule with empty redex and reactum. �

38 3 Reactive Systems and Behavioural Congruence

Example As promised, we also give an example where weak transition match-
ing is not used merely to remove identity labels. Suppose the system is en-
larged to also contain a third species, bigpred, for which we add the reaction
rules bigpred j prey �! bigpredbigpred j prey j prey �! bigpredbigpred j pred �! bigpred ;

thus, a bigpred behaves like a pred, except that it sometimes eats two preys at a
time. We can prove pred � bigpred .

The only transition that cannot be matched directly isbigpred preyjprey�����! bigpred ;

no standard transition of pred matches this transition. Instead we use the weak
standard transition pred preyjprey=====) pred ;

this transition reflects that there is a standard transition sequencepred prey��! prey��! pred
with the same composite label. Formally, the weak transition is based on the
composite reaction rule derived from the following IPO (in fact, pushout):prey idpred j prey pred pred j prey pred

This example exploits the freedom in transition matching that is allowed
by composition of labels. Under the definition that is usual in process cal-
culi we are only allowed to insert extra id-transitions. In this case that is not
enough; the matching transition can only be obtained by combining two non-
id-transitions.

It is worth noting that the weak bisimilarity holds only because a bigpred
can consume, in one step, either one prey or two; if it always consumed twopreys at a time, it could not match the transition pred prey��! pred. �

Chapter 4

Bigraphs: Structure

4.1 Introduction

A bigraph models two different aspects of a system: locality (place structure)
and connectivity (link structure). As an example, the bigraph in Figure 4.1
represents a system in which people are located (physically) in rooms within
buildings and at the same time can connect (virtually) by conducting mobile
phone calls. The nesting of nodes shows that each room is located in a building
and each person is located in a room; the arcs between person nodes represent
phone connections between the respective persons.

An example of dynamics is shown in Figure 4.2, which depicts a reaction
step in which a person moves from one room to another in the same building;
the phone call he is conducting persists.

This example has three kinds of nodes, representing buildings, rooms and
people, respectively. Exactly what kinds of nodes are available, and what kinds
of reactions they engage in, will of course depend on the system being mod-
elled. Thus, each particular bigraphical reactive system (BRS) is determined by,
on the one hand, a signature that determines the node kinds, and on the other,
a set of reaction rules that determine dynamics. We concentrate in this chapter
on the structure of bigraphs and defer the treatment of dynamics to the next
chapter.

In the present example, the signature has three elements: building, room
and person; we refer to these as controls. Each node is assigned a control, and
this assignment influences both dynamics and structure. Thus, the dynamics
allows people to move between rooms, but not, for example, rooms to move
between buildings. As for structure, links can exist between person nodes, but
not, for example, between a building node and a room node.

To elaborate on the latter point, linking takes place not between nodes di-
rectly, but rather between ports, which we can think of as connection points
residing on the boundaries of nodes. Each node has a specific number of ports;
we refer to this number as the arity of the node. The arity of a node is deter-

40 4 Bigraphs: Structure

buildingroompersonperson roomperson

building
roomperson personperson person roomperson

roompersonperson
Figure 4.1 Example of a bigraph

�!
Figure 4.2 A reaction step

4.1 Introduction 41

mined via its control by the signature. Thus, in the present example the linking
constraint is automatically satisfied by declaring that person nodes have arity 1
and that building and room nodes have arity 0.

In our example, controls govern not only linking structure but also place
structure; for example, it would not make sense to have a building node within
a person node. Such constraints on the place structure will be provided for in
place-sorted bigraphs, which we shall define as a refined notion of the simpler
basic bigraphs that we introduce first.

A similar refinement, link-sorted bigraphs, can be defined to capture con-
straints on link structure. An instance is the additional constraint we have
implicitly placed on links in our example, namely that a link always connects
exactly two ports. (In basic bigraphs a link connects an arbitrary number of
ports.) We shall not deal with link-sorting in this dissertation, because none of
the applications in Part II require it; the topic is dealt with by Leifer and Milner
in [17].

Yet another refinement, which along with place-sorting will be needed in
Part II, is binding, which can be seen as a joint constraint on place and link
structure. To introduce it, let us consider a refinement of the model in our
example, in which the connectivity by mobile phones is modelled with a bit
more detail. In reality, when two people are conducting a call, their phones
are not connected directly; instead, each connects to a nearby base station that
handles the onwards connectivity. Let us imagine that a room can be equipped
with a base station and that each person can connect (via their phone) only
to a base station in that particular room. (Admittedly, this assumption is not
entirely realistic for normal mobile telephony, where base stations tend to cover
a larger and less strictly delimited geographical area; it might be quite realistic,
however, in a system that combines telephony with a capability for tracking
people within buildings.)

Our refined model might look as shown in Figure 4.3, where for clarity we
include just one building node. Base stations are represented by nodes with
the new control base of arity 2. Thus, each base node has two separate ports,
one for linking it to other base nodes, and one for linking it to person nodes
in its room. In the figure, the latter port of each base node is indicated by a
small circle, which indicates that these ports are binding, as explained below.
Figure 4.4 shows a reaction step similar to the one shown earlier; the moving
person node is now required to establish a link to a new base node.

Figure 4.3 shows several possibilities for the linking structure: In one room
there is no base station, so people in that room have no connections; another
room has a base station, but a person in the room is nevertheless unconnected
(perhaps his phone is switched off). The main point, however, is that the bi-
graph satisfies the structural constraints that each person is linked to at most
one base node and that each base node is linked only to person nodes within
its surrounding room node. We can capture these constraints by declaring the
person-linking port of a base node to be a binding port that has the surrounding
room node as its scope; then the structural constraints follow from imposing the
natural binding discipline that every ordinary (i.e., non-binding) port is bound

42 4 Bigraphs: Structure

building
room

base
person personperson person room

base
person

roompersonperson
Figure 4.3 A bigraph with binding

�!
Figure 4.4 A reaction step

4.2 Place graphs 43

by at most one binding port and lies within its scope. We shall see in Part II
that the usual notion of name binding in process calculi corresponds exactly to
this form of port binding.

As was the case for place-sorting, we shall introduce binding as a refine-
ment of a simpler notion of bigraph that we introduce first. We shall refer to
bigraphs without binding as pure bigraphs. Thus, our simplest notion of bigraph
will be basic, pure bigraphs.

We shall return to our example model in the following chapter on bigraph
dynamics. For now, we embark on a more detailed exposition of the struc-
tural aspects of bigraphs. As stated, we shall at first concentrate on basic, pure
bigraphs. We begin by defining the corresponding notion of signature, as fol-
lows:

Definition 4.1 (signature) A (basic, pure) signature Σ consists of a set K, whose
elements we call controls, and a map ar : K!N that assigns to each control K 2K an arity m = ar(K). When the signature is understood we write K : m to
indicate the arity assignment. �

When a signature ascribes an arity (and later, other properties) to a partic-
ular control it is natural to think of this property as being “inherited” by any
bigraph node with that control. Accordingly, we often talk about, for example,
the arity of a node when, to be strictly correct, we should be referring to the
arity of its control.

As previously mentioned, a bigraph arises as a combination of a place graph
and a link graph, so the definition of bigraph is most conveniently given in
terms of these two constituent structures. Thus, in the following two sections
we introduce place graphs and link graphs, respectively; then in Section 4.4
we define (concrete basic pure) bigraphs, and in Section 4.5 we review their
structural theory, mainly as regards relative pushouts. After that, Sections 4.6
and 4.7 introduce the two structural refinements we have mentioned: binding
and place-sorting. Section 4.8 shows how abstract bigraphs are obtained from
the concrete ones, and in the last section of this chapter we introduce some
additional concepts and notation in preparation for the treatment of dynamics,
and for applications.

4.2 Place graphs

In the definition of place graphs (and throughout the dissertation) we treat a
finite ordinal n as the set f0, . . . , n� 1g, and we use ’+’ to denote disjoint union
(coproduct) of sets.

Definition 4.2 (place graph) A (concrete) place graph over Σ takes the form

A = (V, ctrl, prnt) : m! n ,

where

44 4 Bigraphs: Structure

r1 r2

v1 v2

v3

v4

v5 v6

s1 s2 s3

Figure 4.5 Example of a place graph

• m and n are finite ordinals whose elements we call, respectively, the sites
and roots of G;

• V is a set of nodes;

• ctrl : V !K is the control map;

• prnt : m + V ! n + V is the parent map.

We call m +V the places of A. For a place w, if prnt(w) = w0 then we say that w0
is the parent of w, and w a child of w0. Distinct places with the same parent are

called siblings. If w0 = prnt(k)(w) for some k > 0 we say that w0 is an ancestor
of w, and w a descendant of w0, and we write w0 >A w. We require ancestry to

be irreflexive on nodes; that is, prnt(k)(v) 6= v for all k > 0 and v 2 V. We say
that a root or node is barren if it has no descendants. �
The domain and codomain of the parent map, together with irreflexivity, en-
sure that the places of A form a forest, i.e. a set of trees, in which the sites m are
among the leaves and moreover (justifying the terminology) the elements of n
are the roots.

Figure 4.5 shows an example of a place graph. It has roots r1 and r2, sites s1,
s2 and s3, and nodes v1, . . . , v6; the nodes v1 and v5 are barren.

Given two place graphs

A = (VA, ctrlA, prntA) : `!m

B = (VB, ctrlB, prntB) : m! n ,

we can form their composition B Æ A : `! n, provided the node sets VA and VB

are disjoint. The composition is obtained, informally speaking, by “planting”
the roots of A in the sites of B. More precisely, the construction is as follows:
For the node set take the disjoint union VA ℄ VB of the component node sets,
and for the control map take the union map

ctrlA ℄ ctrlB : VA ℄VB !K .

The parent map prnt must be formed as a combination of the component parent
maps prntA and prntB. For a place w that is either a site in ` or a node in VA it
should map w to prntA(w), unless this yields a root r in m, in which case the

4.2 Place graphs 45

result should be prntB(r). For a node v in VB it should map v to prntB(v). Thus,
we obtain prnt as the vertical composition of maps in the diagram

n+(VA℄VB)
VA VA+(n+VB) n+VB

VA

IdVA

VA+(m+VB)g

m+VB

prntB

m+VA (m+VA)+VB VB`+VA

prntA (`+VA)+VB

f

VB

IdVB`+(VA℄VB) ,

where the horizontal arrows are injections into the sums, the anonymous ver-
tical arrows are the evident bijections, and f and g are the unique maps that
make the squares commute. Thus, abusing notation by ignoring the bijections,
we have

prnt = (IdVA
+ prntB) Æ (prntA + IdVB

) .

Composition of place graphs gives rise to an s-category as follows:

Definition 4.3 The s-category ˆPLG(Σ) has finite ordinals as objects and con-
crete place graphs as arrows. The support jAj of a place graph A is its node
set. The identity at m is the empty place graph with identity parent map, and
composition is defined as detailed above. �
It is straightforward to verify that ˆPLG(Σ) as defined does indeed satisfy the
conditions of an s-category; for example, by the constructions above, composi-
tion is indeed defined just when the supports are disjoint.

We now detail another operation on place graphs called tensor product. First,
for any two ordinals m0 and m1 we define the tensor product m0
 m1 as the
(arithmetic) sum m0 + m1. Then, given two place graphs

Ai = (Vi, ctrli, prnti) : mi ! ni (i = 0, 1) ,

the tensor product A0
 A1 : m0
m1 ! n0
 n1 is defined iff V0 \V1 = ∅, and
is then given as follows: Its nodes are V0 ℄V1, and its control map is

ctrl0 ℄ ctrl1 : V0 ℄V1 !K .

For the parent map prnt we also take, essentially, a disjoint union map; here the
sites and roots of A1 must be “shifted” upwards by m0 and n0, respectively;

46 4 Bigraphs: Structure

thus, we take prnt to be the unique arrow that makes

n0+V0 (n0
n1)+(V0℄V1) n1+V1

m0+V0

prnt0 (m0
m1)+(V0℄V1)prnt

m1+V1

prnt1

commute, where the horizontal arrows are the evident injections that map each
s 2 m0 to s 2 m0
m1 and each s 2 m1 to m0 + s 2 m0
m1, and similarly for
the ni.

It is straightforward to verify that ˆPLG(Σ) and tensor product (with unit
0) form a strict monoidal s-category.

4.3 Link graphs

For the definition of link graphs we presuppose an infinite set of names.

Definition 4.4 (link graph) A (concrete) link graph over Σ takes the form

A = (V, E, ctrl, link) : X ! Y ,

where

• X and Y are finite sets of names whose elements we call, respectively, the
inner names and outer names of A;

• V is a set of nodes;

• E is a set of edges;

• ctrl : V !K is the control map;

• link : X + PV ! Y + E is the link map.

Here PV denotes the ports of A, defined as follows: first, for each node v 2 V

the ports of v is the ordinal Pv
def= ar(ctrl(v)); then PV is the sum ∑v2V Pv.

We call X + PV the points of A, and Y +E its links. For a point p, if link(p) = l
then we say that the link l contains p. Distinct points in the same link are called
peers. We call a link idle if it contains no points. A link graph is lean if it has no
idle edges. A link is open if it is a name, and closed if it is an edge. The attributes
‘open’ and ‘closed’ also apply to the points in the links. �

The requirement that the supply of names is infinite is technically impor-
tant; it means that whatever collection of interfaces we are considering for a
particular purpose, it is always possible to choose a fresh name, that is, a name
that does not occur in any of the given interfaces.

Figure 4.6 shows an example of a link graph. It has inner names x1, x2

and x3, nodes v1, . . . , v6, and outer names y1 and y2. There are three closed
links, two of which contain inner names x1 and x3, respectively, and one that
connects v1 and v5. There is one open link, namely the outer name y1; the outer
name y2 is idle.

4.3 Link graphs 47

y1 y2

v1
v2

v3 v4

v5
v6

x1 x2 x3

Figure 4.6 Example of a link graph

We can compose link graphs in a manner completely analogous to that for
place graphs. We detail the construction for completeness. Given two link
graphs

A = (VA, EA, ctrlA, linkA) : X ! Y

B = (VB, EB, ctrlB, linkB) : Y ! Z ,

provided VA \ VB = ∅ and EA \ EB = ∅, we can form the composition B Æ
A : X ! Z as follows: For the node and edge sets we take the disjoint unions
VA ℄VB and EA ℄ EB of the component sets, and for the control map we take

ctrlA ℄ ctrlB : VA ℄VB !K .

The link map link will map a point p that is either an inner name in X or a port
in PVA

to linkA(x), unless this yields a name y in Y, in which case the result will
be prntB(y). For a port p in PVB

it should map p to linkB(p). More precisely, we
obtain link as the vertical composition of maps in the diagram

Z+(EA℄EB)
EA EA+(Z+EB) Z+EB

EA

IdEA

EA+(Y+PVB
)g

Y+PVB

linkB

Y+EA (Y+EA)+PVB
PVB

X+PVA

linkA (X+PVA
)+PVB

f

PVB

IdVB

X+(PVA℄VB
) ;

48 4 Bigraphs: Structure

again, the horizontal arrows are injections, and the anonymous vertical arrows
bijections. In approximate notation,

link = (IdEA
+ linkB) Æ (linkA + IdVB

) .

Definition 4.5 The s-category ˆLIG(Σ) has finite sets of names as objects and
concrete link graphs as arrows. The support jAj of a link graph A is the indexed
sum V + E of its nodes V and its edges E. The identity at X is the empty link
graph with identity link map, and composition is defined as detailed above. �
It is straightforward to check that ˆLIG(Σ) is a well-defined s-category.

For any two name sets X0 and X1 the tensor product X0
 X1 is defined iff
X0 \ X1 = ∅, and is then given as the disjoint union X0 ℄ X1. Given two link
graphs

Ai = (Vi, Ei, ctrli, linki) : Xi ! Yi (i = 0, 1) ,

the tensor product A0
 A1 : X0
 X1 ! Y0
 Y1 is defined iff X0
 X1 and
Y0
 Y1 are defined and V0 \ V1 = E0 \ E1 = ∅; it is then given as follows: Its
nodes are V0 ℄V1; its edges are E0 ℄ E1; its control map is

ctrl0 ℄ ctrl1 : V0 ℄V1 !K ;

and its link map link is the unique arrow that makes

Y0+E0 (Y0
Y1)+(E0℄E1) Y1+V1

X0+PV0

link0 (X0
X1)+PV0℄V1

link

X1+PV1

link1

commute, where the horizontal arrows are the evident injections.
It is straightforward to verify that ˆLIG(Σ) and tensor product (with unit

∅) form a strict monoidal s-category.

4.4 Bigraphs

We are now ready for the main definition:

Definition 4.6 (bigraph) A (concrete, basic, pure) bigraph over Σ takes the form

A = (V, E, ctrl, prnt, link) : I ! J ,

where I = hm, Xi is its inner face and J = hn, Yi its outer face, and where the
substructures

AP def= (V, ctrl, prnt) : m! n

AL def= (V, E, ctrl, link) : X ! Y

form, respectively, a place graph and a link graph over Σ. �

4.4 Bigraphs 49

y1

v1

v2

1 v3

2

v4

v5 v6

3

y2

x1 x2 x3

Figure 4.7 The bigraph formed by combining the place graph in
Figure 4.5 and the link graph in Figure 4.6

Thus, whenever a place graph AP : m ! n and a link graph AL : X ! Y
have identical node sets and control maps, they combine to form a bigraph
A : hm, Xi! hn, Yi; we then refer to A as the combination of AP and AL, and
denote it by hAP, ALi. For example, the place graph in Figure 4.5 and the link
graph in Figure 4.6 combine to form the bigraph shown in Figure 4.7. When re-
lationships and attributes such as ancestry, peerness, openness, leanness, etc.,
hold of (the constituents of) AP or AL, then we also take them to hold of (the
constituents of) A. Thus, we naturally talk of, say, A being lean, a link being
open in A, or a place having a particular ancestor in A.

The fact that a bigraph A consists of an underlying pair hAP, ALi makes
it easy to compose bigraphs: For bigraphs A = hAP, ALi : H ! I and B =hBP, BLi : I ! J the composition B Æ A : H ! J is defined iff both of the com-
positions BP Æ AP and BL Æ AL are defined, and it is then given as their combi-
nation hBP Æ AP, BL Æ ALi.
Definition 4.7 The s-category ˆBIG(Σ) has interfaces as objects and concrete,
basic, pure bigraphs as arrows. The support jAj of a bigraph A is the indexed
sum V +E of its nodes V and its edges E. The identity at X is the empty bigraph
with identity place- and link-map; composition is defined by composition of
the constituent place- and link-graphs, as described above. �
The check that ˆBIG(Σ) is a well-defined s-category is routine.

For bigraphs Ai : Ii ! Ji (i = 0, 1) the tensor product is defined iff both of
the products AP

0
 AP
1 and AL

0
 AL
1 are defined, and it is then given as their

combination hAP
0
 AP

1 , AL
0
 AL

1 i. It is straightforward to verify that ˆBIG(Σ)
and tensor product (with unit ǫ

def= h0, ∅i) form a strict monoidal s-category.
For an interface I = hm, Xi we call m its width, and sometimes denote it by

width(I). For a bigraph A : I! J we call width(I) its inner width and width(J) its
outer width (or sometimes simply its width). We let width(A) denote the function
between ordinals width(I) and width(J) that sends every site s 2 width(I) to the
unique root r 2 width(J) which is an ancestor of s in A. Thus, width constitutes

50 4 Bigraphs: Structure

a functor into the category of ordinals and functions.

4.5 Relative pushouts

In this section we review results showing that the s-category ˆBIG(Σ) of con-
crete, basic, pure bigraphs has all RPOs. This property is crucial when we want
to use ˆBIG(Σ) as the basis for deriving contextual transitions whose bisimilar-
ity is a congruence. To facilitate further study of the transition systems we
obtain, we also give characterizations of the IPOs that may arise from a given
span of bigraphs (an agent and a redex). Just as composition of bigraphs was
defined in terms of composition of the constituent place- and link-graphs, so
RPOs and IPOs of bigraphs are formed by performing the constructions sepa-
rately on the place- and link-graphs. We therefore give a series of propositions
that characterize RPOs and IPOs in each s-category. We shall omit the proofs;
they can all be found in [13] along with illustrative examples.

We first characterize RPOs in ˆPLG(Σ) and ˆLIG(Σ). The characterizations
assume commuting squares as indicated by the solid arrows in the diagrams

below, and show how to construct RPOs (~C, C) as indicated by the dashed
arrows.

n

C

n0

B0

C0 n1

B1

C1

mA0 A1

Y

C

Y0

B0

C0 Y1

B1

C1

XA0 A1

The constructions for the two categories are very similar, but a little involved;
the reader may find the following informal description helpful:

In both cases the idea is to choose ~C to be “as small as possible” for the inner

squares to commute, and to have the parent or link maps of (~C, C) mimic those

of ~B. When we say “as small as possible,” we mean that

• each Ci should have only the necessary nodes (and edges), that is, only
those that occur in Aı̄ but not in Ai;

• each Ci should be as disjoint as possible; that is, it should only make
places siblings, or make points peers, when this is required for commu-
tativity;

• in the case of link graphs, each Ci should be as open as possible; that is,
it should only close a link when this is required for commutativity.

Proposition 4.8 (Place graph RPOs) Every commutative square in ˆPLG(Σ)
has an RPO. For the square indicated by the solid arrows in the diagram above

on the left, its RPO (~C, C) is characterized up to a bijection on m as follows:

4.5 Relative pushouts 51

For i = 0, 1, let Ai have nodes Ui, let Bi have nodes Vi, let Ci have nodes Wi, let
C have nodes W, let

Pi
def= fr 2 ni j Bi(r) /2 U0 [U1g ,

and let � be the least equivalence on P0 + P1 that relates r0 2 P0 with r1 2 P1

whenever A0(w) = r0 and A1(w) = r1 for some w 2 m + (U0 \U1) nU. Then

n �= (P0 + P1)/�
and, writing r̂ for the place in n that corresponds to the �-equivalence class
of r 2 Pi,

Wi = Uı̄ nUi

W = V0 \V1

for r 2 ni : Ci(r) = (
r̂ if r 2 Pi

Bi(r) if r /2 Pi

for v 2 V nVi : Ci(v) = (
r̂ if Aı̄(v) = r 2 nı̄

Bi(v) if Aı̄(v) /2 nı̄

for r̂ 2 n : C(r̂) = Bi(r) where r 2 Pi

for v 2 W nV : C(v) = Bi(v) . �
Proposition 4.9 (Link graph RPOs) Every commutative square in ˆLIG(Σ) has
an RPO. For the square indicated by the solid arrows in the diagram above

on the right, its RPO (~C, C) is characterized up to a bijection on Y as follows:
For i = 0, 1, let Ai have nodes Ui and edges Ei, let Bi have nodes Vi and edges
Fi, let Ci have nodes Wi and Gi, let C have nodes W and edges G, let

Y0
i = fy 2 Yi j Bi(y) /2 Fg ,

and let � be the least equivalence on Y0
0 + Y0

1 that relates y0 2 Y0
0 with y1 2 Y0

1
whenever A0(p) = y0 and A1(p) = y1 for some p 2 X + PU0\U1

. Then

Y �= (Y0
0 + Y0

1)/�
and, writing ŷ for the place in Y that corresponds to the �-equivalence class

52 4 Bigraphs: Structure

of y 2 Y0
i ,

Wi = Uı̄ nUi

W = V0 \V1

Gi = Eı̄ n Ei

G = F0 \ F1

for y 2 Yi : Ci(y) = (
ŷ if y 2 Y0

i

Bi(y) if y /2 Y0
i

for p 2 PVnVi
: Ci(p) = (

ŷ if Aı̄(p) = y 2 Yı̄

Bi(p) if Aı̄(p) /2 Yı̄

for ŷ 2 Y : C(ŷ) = Bi(y) where y 2 Y0
i

for p 2 PWnV : C(p) = Bi(p) . �
We then use the characterizations in ˆPLG(Σ) and ˆLIG(Σ) to characterize

RPOs among bigraphs:

Proposition 4.10 (Bigraph RPOs) Every commutative square in ˆBIG(Σ) has

an RPO. Each RPO arises from RPOs in ˆPLG(Σ) and ˆLIG(Σ); that is, (~C, C) is

an RPO of ~A to ~B in ˆBIG(Σ) iff (~CP, CP) is an RPO of ~AP to ~BP in ˆPLG(Σ) and(~CL, CL) is an RPO of ~AL to ~BL in ˆLIG(Σ). �
We now turn to the characterization of IPOs. The IPOs of a span ~A com-

prise, essentially, the set obtained by taking the RPO of every possible bound~B of ~A. This set will be empty if no bound exists for ~A, so let us first consider

under what conditions a bound exists. We say that the span ~A is consistent if it
has a bound.

Proposition 4.11 A span ~A : m!~n of place graphs is consistent iff it satisfies
the following conditions:

(1) Each shared node v is assigned the same control in both of the Ai;

(2) If Ai(w) is a shared node, then the place w is either a site s 2 m or a
shared node, and in either case Aı̄(w) = Ai(w);

(3) If w is a shared place and Ai(w) is an unshared node, then Aı̄(w) is a
root r 2 nı̄, and if also Aı̄(w0) = Aı̄(w), then the place w0 is shared and
Ai(w0) = Ai(w). �

Proposition 4.12 A span ~A : X ! ~Y of link graphs is consistent iff it satisfies
the following conditions:

(1) Each shared node v is assigned the same control in both of the Ai;

(2) If Ai(p) is a shared edge, then the point p is either an inner name x 2 X
or a shared port, and in either case Aı̄(p) = Ai(p);

4.5 Relative pushouts 53

(3) If p is a shared place and Ai(p) is an unshared edge, then Aı̄(p) is an
outer name y 2 Yı̄, and if also Aı̄(p0) = Aı̄(p), then the point p0 is shared
and Ai(p0) = Ai(p). �

Proposition 4.13 A span ~A : I ! J of bigraphs is consistent iff the spans ~AP

and ~AL of the constituent place- and link-graphs are consistent. �
Now, let us suppose ~A is consistent and ask ourselves what its IPOs look

like. Referring to the diagrams on page 50, the question is how the RPO (~C, C)
varies, as we vary ~B through the range of possible bounds.

It turns out that the only variation arises because barren roots and idle
names in each of the Ai can typically be mapped into Ci in several distinct
ways. For convenience, let us consider the situation in place graphs; it is anal-
ogous for link graphs. The reason barren roots are special is that the way a

barren root r of Ai is mapped to a parent in Ci is not determined by the span ~A
itself; we can get an IPO either by mapping r to a distinct root r̂ that we include

among the roots n of ~C, or by mapping it into an arbitrary node. In the latter
case we say that r is elided (from Ai into Ci). Thus, an IPO is determined by
choosing, for each i = 0, 1, a subset Qi of the barren roots among ni together
with an elision ηi, which is a map from Qi into the nodes of Ci.

Proposition 4.14 (Place graph IPOs) Let ~A : m ! ~n be a span of consistent

place graphs, and for i = 0, 1 let Ai have nodes Ui. The IPOs of ~A are ex-

actly the cospans ~C : ~n ! n that can be constructed as follows: For i = 0, 1,
choose an arbitrary subset Qi of ni such that every r 2 Qi is barren in Ai, and
choose a map ηi : Qi !Uı̄ nUi. Let

Pi = fr 2 ni nQi j 8w 2 m + (U0 \U1) . Ai(w) = r) Aı̄(w) 2 nı̄g ,

and let � be the least equivalence on P0 + P1 that relates r0 2 P0 with r1 2 P1

whenever A0(w) = r0 and A1(w) = r1 for some w 2 m + (U0 \U1). Let

n �= (P0 + P1)/� ;

let each Ci have nodes Wi, where

Wi = Uı̄ nUi ;

and, writing r̂ for the place in n that corresponds to the �-equivalence class
of r 2 Pi, let

for r 2 ni : Ci(r) = 8>><>>:r̂ if r 2 Pi

ηi(r) if r 2 Qi

Aı̄(w) otherwise, where w 2 m + (U0 \U1)
and Ai(w) = r

for v 2 Uı̄ nUi : Ci(v) = (
r̂ if Aı̄(v) = r 2 nı̄

Aı̄(v) if Aı̄(v) /2 nı̄ .
�

54 4 Bigraphs: Structure

The characterization of IPOs for link graphs is analogous:

Proposition 4.15 (Link graph IPOs) Let ~A : X! ~Y be a span of consistent link

graphs, and for i = 0, 1 let Ai have nodes Ui and edges Ei. The IPOs of ~A are

exactly the cospans ~C : ~Y ! Y that can be constructed as follows: For i = 0, 1,
choose an arbitrary subset Qi of Yi such that every y 2 Qi is idle in Ai, and
choose a map ηi : Qi ! Eı̄ n Ei. Let

Y0
i = fy 2 Yi n Qi j 8p 2 X + PU0\U1

. Ai(p) = y) Aı̄(p) 2 Yı̄g ,

and let � be the least equivalence on Y0
0 + Y0

1 that relates y0 2 Y0
0 with y1 2 Y0

1
whenever A0(p) = y0 and A1(p) = y1 for some p 2 X + PU0\U1

. Let

Y �= (Y0
0 + Y0

1)/� ;

let each Ci have nodes Wi and edges Gi, where

Wi = Uı̄ nUi

Gi = Eı̄ n Ei ;

and, writing ŷ for the name in Y that corresponds to the �-equivalence class
of y 2 Y0

i , let

for y 2 Yi : Ci(y) = 8>><>>:ŷ if y 2 Y0
i

ηi(y) if y 2 Qi

Aı̄(p) otherwise, where p 2 Z + PU0\U1
and Ai(p) = y

for p 2 PUı̄nUi
: Ci(p) = (

ŷ if Aı̄(p) = y 2 Yı̄

Aı̄(p) if Aı̄(p) /2 Yı̄ .
�

Again, we take advantage of the characterizations in ˆPLG(Σ) and ˆLIG(Σ)
to obtain a characterization for ˆBIG(Σ):
Proposition 4.16 (Bigraph IPOs) In ˆBIG(Σ) the IPOs are exactly those that

arise from ˆPLG(Σ) and ˆLIG(Σ); that is, ~C is an IPO of ~A in ˆBIG(Σ) iff ~CP

is an IPO of ~AP in ˆPLG(Σ) and ~CL is an IPO of ~AL in ˆLIG(Σ). �
As mentioned above, the only variation among the IPOs of a given span

arises because of elisions. We can therefore state the following.

Proposition 4.17 (Unique IPOs) In ˆPLG(Σ), ˆLIG(Σ) or ˆBIG(Σ), let ~A be a

consistent span. Then ~A has an IPO ~C with no elisions from ~A into ~C, and

moreover ~C is determined uniquely by this property, up to an isomorphism on
its outer face. In particular, if the Ai have no barren roots or idle names, then
they have a unique IPO (up to isomorphism), and hence a pushout. �

We conclude this section with a proposition about IPOs and tensor product:

4.6 Binding bigraphs 55

Proposition 4.18 In ˆPLG(Σ), ˆLIG(Σ) or ˆBIG(Σ), let ~C be an IPO of ~A and ~D
be an IPO of ~B, where the supports of the two IPOs are disjoint. Then, provided
the tensor products exist, (C0
D0, C1
D1) is an IPO of (A0
 B0, A1
 B1). �

A particular form of such a tensorial IPO is the following, assuming a and
b have disjoint support.

I
 J

I

idI
 b

J

a
 idJ

ǫ

a b

4.6 Binding bigraphs

In this section we present the first of the two refinements we want to apply
to our basic, pure notion of bigraph. As already discussed, other refinements
have been, or are likely to be, useful for various applications, and we start this
section with some introductory remarks that apply generally to such refine-
ments.

The kind of refinement we are considering always involves some formation
discipline, i.e. some constraint on how bigraphs may be formed. As a simple
example, one might impose a formation discipline that requires every root and
every node in a bigraph to have an even number of nodes (and any number of
sites) among its children. Under this constraint the identities are well-formed,
and well-formedness is preserved by composition; therefore the well-formed
bigraphs form a sub-s-category. (Moreover, since well-formedness is also pre-
served by tensor product, the sub-s-category is monoidal.) We shall always
insist on using constraints that generate (monoidal) sub-s-categories, as this
is crucial to preserving most of the structural theory of basic, pure bigraphs.
Thus, for example, the constraint that every root and every node has an odd
number of nodes among its children is excluded, as this property is not pre-
served by composition.

Typically a formation discipline involves some form of enrichment of the
signature and of interfaces. An example in which the signature is enriched
(but interfaces are not) is atomicity, one of the ingredients from [13] that we
have left out of our basic definition of bigraph. For this discipline, we enrich
the signature Σ to declare for each of its controls K whether K is atomic or non-
atomic; well-formedness then requires that each atomic node is barren, a condi-
tion which is vacuously satisfied by identities and easily seen to be preserved
by composition and tensor product.

The atomicity discipline is uncomplicated, in the sense that it does not affect
the construction of RPOs. More precisely, as the reader may easily verify, if

56 4 Bigraphs: Structure(~C, C) is an RPO from ~A to ~B, and all of the arrows ~A and ~B respect atomicity,

then so do the arrows ~C and C. This situation is partly due to the fact that the
atomicity discipline leaves interfaces unchanged. As we said, however, many
formation disciplines also enrich interfaces, as this is often necessary in order to
ensure that composition preserves well-formedness. Typically, this does affect
the RPO construction, but only mildly. Indeed, for the refinements we present
here, we find that only little extra effort is required to characterize their RPOs.

Turning more specifically to binding, recall the example given in Section 4.1
where we introduced base nodes. Such a node had a binding port that was
linked to other nodes that resided in the same surrounding node as the base
node itself; thus, the scope of the binding was (the contents of) the surrounding
node. This form of binding we shall call outward binding; it contrasts another
form of binding that we shall find useful, namely inward binding, in which the
scope of a binding port is (the contents of) the node on which the port is located.

(We could, in principle, make do with only outward binding, as it allows in-
ward binding to be encoded, essentially by replacing each inward-binding port
on a node boundary by a node (inside the boundary) with a single outward-
binding port. Place-sorting, as introduced in the following section, can be
used to ensure that exactly one such outward-binding node is introduced per
inward-binding port. For convenience, however, we shall here take both forms
of bindings as primitive, allowing nodes in general to have both inward- and
outward-binding ports.)

We first equip signatures with binding, as follows:

Definition 4.19 (binding signature) A (basic) binding signature is a (basic) pure
signature Σ extended with maps bind, inner : K!N which assign to each con-
trol K : m a binding arity h = bind(K) and an inward binding arity i = inner(K)
such that 0 � i � h � m. We then say that K has free arity k = m � h and
outward binding arity o = h� i, and we write K : (i)! (o)k to indicate this arity
assignment. (If i = 0 we may write simply K : (o)k, and similarly if o = 0 or
k = 0 we may omit (o) or k, respectively.) �

A node v of arity (i)! (o)k has i + o + k ports. The first i of them (i.e. those
with indices 0, . . . , i� 1) we call inward-binding ports; the next o of them (those
with indices i, . . . , i + o� 1) we call outward-binding ports; and the last k (those
with indices i + o, . . . , i + o + k � 1) we call free ports. We also say that all the
ports are located at v.

For a binding signature Σ we denote by Ub(Σ) the underlying pure signature,
i.e. the pure signature obtained by discarding the binding maps.

Definition 4.20 (binding bigraph) A binding interface is an interface I enriched
with a location map

loc : X !m + f?g ,

where X is the name set and m the width of I. If loc(x) = s 2 m we say
that x is located at s, or local (to s); if loc(x) = ? we say that x is global. For a
binding interface I we denote by Ub(I) the underlying pure interface obtained
by discarding the location map.

4.6 Binding bigraphs 57

Given a (basic) binding signature Σ, a (basic) binding bigraph A : I ! J over
Σ consists of a (basic) pure bigraph A : Ub(I)!Ub(J) over Ub(Σ), subject to
the following constraints: Declare the binders of A to be its local names together
with the binding ports of all its nodes. Give each binder a scope as follows: the
scope of a name located at a root r is r; the scope of an inward-binding port
located at a node v is v; and the scope of an outward-binding port located at
a node v is the parent of v (a node or a root). Then require A to satisfy the
following condition, which we call the scope rule: If p is a binder with scope w
(a node or a root) then every peer q of p must be located at a place u (a site or a
node) such that w >A u. �

Note, in particular, that the scope rule ensures that a link can have at most
one binder.

For a binding interface I with location map loc we often abuse notation
slightly and write I(x) for the location loc(x) of a name x in I.

The scope rule is satisfied by the identities and preserved by composition
and tensor product; thus the binding bigraphs over Σ form a monoidal sub-s-
category of ˆBIG(Ub(Σ)); we denote this by ˆBBG(Σ). Thus, the mapping Ub

on interfaces extends to a forgetful functorUb : ˆBBG(Σ)! ˆBIG(Ub(Σ))
that embeds the binding bigraphs among the pure bigraphs. The fact that the
binding discipline consists in enriching interfaces and constraining the allow-
able bigraphs can be clearly expressed in terms of Ub. (Recall that a functor
is faithful if it is injective on each homset, and full if it is surjective on each
homset.)

Proposition 4.21 The forgetful functor Ub is faithful, but not full; on interfaces
it is surjective, but not injective. �
Thus, the binding bigraphs are a subset of the pure bigraphs, in the sense that
the binding bigraphs are those pure bigraphs that satisfy the scope rule (ac-
cording to the particular way their signature and interfaces have been enriched
with binding). However, in another sense the reverse is true, namely that pure
bigraphs are a proper subset of the binding bigraphs; for a pure signature can
be regarded as a special case of a binding signature (in which all binding ari-
ties happen to be 0), and a pure interface as a special case of a binding inter-
face (in which all names happen to be global). From now on, we shall work
in ˆBBG(Σ) for arbitrary Σ, but all results will apply also in the global sub-s-
category of ˆBBG(Σ)—i.e., the homsets whose interfaces are global; hence, by
the preceding remarks, everything applies also to pure bigraphs.

We call a binding bigraph a globalizer if its image under Ub is an identity;
we use γ, δ, ε to range over globalizers. In a globalizer the outer face is at least
as global as the inner face, in the following sense:

Proposition 4.22 In a globalizer γ : I ! J the interfaces I and J have the same
width m and names X, and whenever J(x) = s for x 2 X and s 2 m then
I(x) = s. �

58 4 Bigraphs: Structure

Definition 4.23 (minimally global) Let A be a set of bigraphs with common
outer face J. We say thatA is minimally global if for every globalizer γ such that
every A 2 A can be expressed in the form γ Æ A0 it holds that γ = idJ . We also
say that a bigraph A is minimally global if the singleton set fAg is minimally
global. �
Informally, this definition says that A is minimally global if every global name
in the outer face J is forced to be global by the structure of the bigraphs in A.
The following characterization points out the two ways this forcing may occur.

Proposition 4.24 A is minimally global iff for each global name x in the outer
face J one of the following hold:

(a) A(y) = x for some global inner name y in some A 2 A;

(b) A(p) = B(q) = x for some points p and q in some (not necessarily dis-
tinct) A, B 2 A such that the region of p in A and the region of q in B are
distinct roots of J. �

Using the notion of minimal globality, we now extend the characterization
of RPOs and IPOs to binding bigraphs with the following three propositions.
Again, we omit the proofs, which can be easily adapted from [13], which gives
the same propositions although not formulated explicitly in terms of minimal
globality.

Proposition 4.25 (binding RPO) Let Σ be a binding signature. Then ˆBIG(Σ)
has all RPOs. Moreover, in the diagram below (~C, C) is an RPO of ~A to ~B iffUb(~C, C) is an RPO of Ub(~A) to Ub(~B) and the pair ~C is minimally global.

CB0

C0

B1

C1

A0 A1 �
Proposition 4.26 (consistency) A span ~A in ˆBIG(Σ) is consistent iff its im-

age Ub(~A) is consistent and ~A satisfies the following additional condition:

If a shared point p is bound and closed in Ai but open in Aı̄,
then Aı̄(p) is a local name. �

Proposition 4.27 (binding IPO) Given a span ~A : I !~J in ˆBIG(Σ), a cospan~C : ~J! J is an IPO of ~A iff Ub(~C) is an IPO of Ub(~A) and the pair ~C is minimally
global. �

4.7 Place-sorted bigraphs 59

In Propositions 4.25 and 4.27 the consequent implies that Ub(~C) is an IPO

and ~C is minimally global. When Ub(~C) is an IPO then the characterization of

minimal globality (Proposition 4.24) can be strengthened for ~C to using only
condition (a) of the proposition:

Proposition 4.28 If Ub(~C) is an IPO of some span Ub(~A) and ~C : ~I ! J is min-
imally global, then for each global name x in J there is a global name y in one
of the Ii such that Ci(y) = x. �
4.7 Place-sorted bigraphs

The bigraph example that we discussed in the introduction required a forma-
tion discipline that ruled out non-sensical nesting such as buildings within per-
sons. Like atomicity, which was mentioned in the previous section, this disci-
pline constrains the parent map, and thus is really a formation discipline for
place graphs. In our applications we shall need several similar place graph
disciplines. Typically, unlike e.g. atomicity, they will require an enrichment of
interfaces, as well as an enrichment of the signature. The general concept is
defined as follows:

Definition 4.29 (Place-sorting) Let Σ be a basic signature, and let Θ be a set. A
Θ-place-sorted interface is a basic interface I extended with a map

sort : width(I)!Θ ,

which assigns a sort α 2 Θ to each place. A basic bigraph over Σ is Θ-place-
sorted if its interfaces are Θ-place-sorted.

A place-sorting (discipline) for Σ is a pairS = (Θ, Φ) ,

where Φ is a condition on the place graphs of Θ-place-sorted bigraphs. We
require Φ to be satisfied by the identities and preserved by composition and
tensor product. We say that a Θ-sorted place graph respects S , or is (S-)well-
sorted, if it satisfies Φ.

We call the signature Σ0 obtained by extending Σ with S a place-sorted sig-
nature, and we denote by BBG(Σ0) the s-category of Θ-sorted interfaces andS-well-sorted bigraphs. �

We said above that a typical place-sorting will enrich both the signature and
interfaces, but the definition does not make explicit provision for an enrich-
ment of the signature. However, in many applications such an enrichment will
be inherent in the sorting condition Φ; a typical statement of Φ first declares
certain attributes of the various controls in the signature and then expresses
the constraint itself in terms of these attributes.

60 4 Bigraphs: Structure

For a place-sorted signature Σ with sorting S we denote by US(Σ) the un-
derlying basic signature obtained by discarding S . This readily extends to a for-
getful functor US : ˆBBG(Σ)! ˆBBG(US(Σ)) ,

which we call a sorting functor; it discards the sort maps from interfaces and
acts as an embedding of the well-sorted bigraphs.

Proposition 4.30 A sorting functor is faithful, but not necessarily full; on inter-
faces it is surjective, but not necessarily injective. �

From now on we assume a fixed, but arbitrary, S-sorted signature Σ with
controls K and S = (Θ, Φ).

The definitions above describe how sorting is added to a basic, i.e. unsorted,
signature. Such a signature can be equivalently regarded as a special case of
a sorted signature, namely one subject to the trivial sorting whose sort set is a
singleton and whose sorting condition is true (i.e., satisfied by every bigraph).
In view of this, it is not difficult to see how the definitions could be modified
so as to add a sorting S = (Θ, Φ) to a signature already containing a (pos-
sibly non-trivial) sorting S 0 = (Θ0, Φ0): The resulting sorting, which we call
the combination of S and S 0, has sorts Θ � Θ0, and its sorting condition is the
conjunction Φ ^Φ0. We then have sorting functors

ˆBBG(Σ) US
ˆBBG(US(Σ)) US 0

ˆBBG(US 0(US(Σ))) .

Thus, when we do not state otherwise, we shall allow a sorting S to apply also
to non-basic underlying bigraphs, and we then take US to denote the functor
that discards only S from the combined sorting.

We call an S-well-sorted bigraph a resorting (for S) if its image under US is
an identity; we shall use φ, ψ to range over resortings.

Definition 4.31 (minimally sorted) LetA be a set of well-sorted bigraphs with
common outer face J. We say that A is minimally sorted if for every resorting φ
such that every A 2 A can be expressed in the form φ Æ A0 it holds that φ
is an iso. We also say that a well-sorted bigraph A is minimally sorted if the
singleton set fAg is minimally sorted. �

It turns out that not every sorting Σ provides a suitable basis for the be-
havioural theory that we develop in the next chapter; in particular, ˆBBG(Σ)
may lack RPOs. For this reason, we impose some mild conditions on the sort-
ings we shall consider:

Definition 4.32 A sorting S is safe if it satisfies the following conditions:

(1) For every well-sorted bigraph A there is a minimally sorted A0 and a
resorting φ such that A = φ Æ A0;

(2) Whenever US (A) = P
 Q there are unique B and C such that US (B) =
P, US (C) = Q, and A = B
 C;

4.7 Place-sorted bigraphs 61

(3) Whenever US (A) = Q Æ P there are (not necessarily unique) B and C such
that US(B) = P, US (C) = Q, and A = C Æ B;

(4) Whenever B is minimally sorted and US(A) = Q Æ US (B), where A and
B have the same inner face, then there is a unique C such that US (C) = Q
and A = C Æ B;

(5) Every span of resortings has a pushout whose arrows are also resort-
ings. �

It is straightforward to check the following:

Proposition 4.33 The trivial sorting is safe, and so is the combination of any
two safe sortings. �
Safety is sufficient to ensure that ˆBBG(Σ) has all RPOs:

Theorem 4.34 (well-sorted RPO) Let Σ be safely sorted. Then ˆBBG(Σ) has all

RPOs. Moreover, in the diagram below (~C, C) is an RPO of ~A to ~B iff US(~C, C)
is an RPO of US(~A) to US (~B) and the pair ~C is minimally sorted.

CB0

C0

B1

C1

A0 A1

Proof To show that ˆBBG(Σ) has all RPOs, we consider an arbitrary commuta-

tive square as shown below on the left and construct an RPO (~C, C) of ~A to ~B.

Since ˆBBG(US(Σ)) has all RPOs, there is an RPO (~P, P) of US(~A) to US(~B) in
ˆBBG(US(Σ)), as shown on the right.

B0 B1

A0 A1

PUS(B0)
P0

US (B1)
P1US (A0) US(A1)

62 4 Bigraphs: Structure

We fill in the diagram on the left as

C
D0

ψ0

D1

ψ1

B0

F0 φ0 φ1

B1

F1

A0
E

A1 ,

where the arrows on the inside arise as follows: ~F and E are minimally sorted

pre-images of ~P and ~P Æ US(~A), respectively; ~D are the unique pre-images of
P making the outside triangles commute; ~φ are resortings making the lower

squares and the square consisting of ~φ and ~D commute; ~ψ form a pushout of ~φ,
thus making the small square commute; and C is the unique arrow making the

inside triangles commute. For i = 0, 1, let Ci
def= ψi Æ Fi. Then (~C, C) forms a

relative bound of ~A to ~B.

To show that our relative bound is an RPO, suppose that (~G, G) is also a

relative bound of ~A to ~B. We must show that there is a unique arrow mediating
between the two relative bounds, as indicated in the diagram on the left below.

G
C

H

B0

G0

C0

B1

G1

C1

A0 A1

US(G)P

Q

US(B0)US(G0)
P0

US(B1)US(G1)
P1US (A0) US (A1)

The image of (~G, G) in ˆBBG(US(Σ)) is a relative bound of US (~A) to US (~B),
and so by the RPO property of (~P, P) there is a unique mediating arrow Q

from (~P, P) to US (~G, G), as indicated in the diagram on the right above. Since
Ci = ψi Æ Fi for i = 0, 1 and each Fi is minimally sorted, there are (unique)

arrows ~H such that Hi Æ Fi = Gi; and since E is minimally sorted, the square

4.7 Place-sorted bigraphs 63

formed by ~φ and ~H commutes in

G

HH0

ψ0

H1

ψ1

B0

G0

F0 φ0 φ1

B1

G1

F1

A0
E

A1 .

Since ~ψ is a pushout of ~φ there is a (unique) arrow H, as indicated, mediat-

ing from ~ψ to ~H, and hence also from (~C, C) to (~G, G). It is unique in doing
so, for otherwise, by faithfulness of US , the arrow Q would not be unique in

mediating from (~P, P) to US (~G, G). Hence, (~C, C) is an RPO as claimed.
Each of the Fi is minimally sorted, and by the pushout property the pair~ψ is minimally sorted. It follows that the pair ~C = ~ψ Æ ~F is minimally sorted.

Moreover, by the construction of (~C, C), its image under US is an RPO. Thus,
the RPO we have constructed satisfies the conditions stated in the theorem,
and by the uniqueness of RPOs up to isomorphism, so does every RPO. �

We no longer have a tight characterization of consistency. The following
provides a sufficient, but not necessary, condition.

Proposition 4.35 A span ~A in ˆBIG(Σ) is consistent if its image US(~A) is con-
sistent and each Ai is minimally sorted. �

For a consistent span, we obtain an IPO by taking an IPO in ˆBIG(US (Σ))
and equipping it with a minimal sorting:

Theorem 4.36 (well-sorted IPO) Given a span ~A : I !~J in ˆBIG(Σ), a cospan~C : ~J! J is an IPO of ~A iff US (~C) is an IPO of US (~A) and the pair ~C is minimally
sorted.

Proof By faithfulness of US , the square formed by ~A and ~C commutes iff its

image under US does. By definition, ~C is an IPO of ~A iff (~C, id) is an RPO of~A to ~C, and by Theorem 4.34 this holds iff US (~C) is an IPO of US(~A) and the

pair ~C is minimally sorted. �
From now on we shall assume a fixed signature Σ that is safely sorted, but

otherwise arbitrary. In particular this includes the possibility that it is trivially
sorted, and therefore all results apply also to basic bigraphs.

64 4 Bigraphs: Structure

4.8 Abstract bigraphs

In applications of bigraphs, we shall usually be interested only in the structure
(placement and linking) of bigraphs; then we want to abstract away concrete
node and edge identities and work “up to support equivalence”. For this pur-
pose we define in this section the category of abstract bigraphs by quotienting
ˆBBG(Σ) by support equivalence l, using Definition 3.8.

The reason we have taken great care to first set up the concrete s-category
ˆBBG(Σ) is not only that it is the basis for defining the abstract structure, but
also that the abstract structure is inadequate for some purposes. As argued
in the previous chapter, the derivation of contextual transitions is one such
purpose.

In defining our notion of abstract bigraph we shall, in fact, abstract away
not only node and edge identities but also idle edges, because we have no use
for them. We therefore use the following equivalence:

Definition 4.37 (Lean support equivalence) Two parallel concrete bigraphs
A, B : I ! J are lean support equivalent, written A m B, iff A0 l B0, where A0 and
B0 are the bigraphs obtained from A and B by discarding all idle edges. �
Clearly, lean support equivalence m is a congruence, and thus allows the fol-
lowing definition:

Definition 4.38 The category BBG(Σ) of abstract bigraphs has interfaces as ob-
jects andm-equivalence classes of bigraphs as arrows. The lean support quotient
functor [[�℄℄ : ˆBBG(Σ)! BBG(Σ)
is the identity on objects and sends each concrete bigraph A to its lean support
equivalence class [[A℄℄ = [A℄m. �

Why did we not save the trouble of factoring out idle edges by simply disal-
lowing them already in the definition of concrete bigraphs? The reason is that
idle edges sometimes arise from composition. (An idle edge arises in B Æ A
if B has an edge that contains only inner names and all these names are idle
in A.) Allowing idle edges therefore smooths the structural theory of concrete
bigraphs—in particular RPO and IPO constructions.

This leads naturally to another question: When we factor out idle edges,
why do we keep idle names? The reason for this is that in applications names
are sometimes made idle by reaction. (Our models of the π-calculus and the
ambient calculus in later chapters are examples of this.) Our definition of re-
action requires outer faces to be invariant under reaction, and therefore names
that become idle as a result of reaction cannot simply be dropped.

Support equivalence l on concrete bigraphs is really a notion of isomor-
phism. (This should not be confused with isos in ˆBBG(Σ); an iso in ˆBBG(Σ) is
an empty bigraph whose place and link maps are bijections.) Though we shall
not do so, it is possible to represent isomorphism between bigraphs in categor-
ical terms; for this one needs to work in the category with bigraphs as objects

4.9 Further structural theory and notation 65

and suitable morphisms of bigraphs as arrows. Indeed, this category holds
interest, too; it corresponds closely to the categories of graphs and graph mor-
phisms that are employed in the field of graph rewriting [34]. Sobociński [42]
has investigated the representation of bigraphs and transitions based on IPOs
in this setting.

4.9 Further structural theory and notation

In this section, which concludes the chapter on bigraph structure, we introduce
some additional notation, terminology and basic results which will be useful
in the following chapter on dynamics and in the applications we give in Part II.
The material presented here is largely based on [13], although some definitions
differ slightly to suit the present material; the proofs of all propositions are
easily adapted from [13].

Open bigraphs

We say that a bigraph A is open if every free link, i.e. every link without a
binding port, is open in A. The following properties of open bigraphs are easily
proved:

Proposition 4.39

(1) B Æ A is open iff A and B are open;

(2) A
 B is open iff A and B are open;

(3) Every open bigraph is lean;

(4) In an IPO ~C of ~A, if Ai is open then so is Cı̄; �
It follows from clauses (1) and 2, together with the observation that identi-
ties are open, that the open bigraphs form sub(-s)-categories of BBG(Σ) and
ˆBBG(Σ); we denote these by BBGo(Σ) and ˆBBGo(Σ). By clause (4), ˆBBGo(Σ)
has all RPOs.

Interfaces and ground bigraphs

Recall that (in the presence of both binding and place-sorting) an interface has
the form hm, X, loc, sorti, where loc : X ! m + f?g and sort : m ! Θ are the
location and sorting maps, respectively. It is often inconvenient to work with
the maps explicitly; to avoid it, we shall often write the above interface ashα0(X0), . . . , αm�1(Xm � 1), Yi ,

where for each i 2 m it holds that αi = sort(i) and Xi = fx 2 X j loc(x) = ig,
and Y = fx 2 X j loc(x) = ?g. When the sorting is trivial we drop the αi, writ-
ing just h(X0), . . . , (Xm � 1), Yi, but if one or more consecutive Xi are empty

66 4 Bigraphs: Structure

y z

K

L

x

A :(x)! (yz)
(a)

u

u v w

ω = u/uv j /w :
uvw! u

(b)

y z u

K

L

x u v w

A / ω :(xuvw)! (yzu)
(c)

Figure 4.8 Examples of a prime, a wiring, and an insertion.

we usually replace the remaining components by their multiplicity, writing e.g.h(X0), 2, (X3), Yi for h(X0), (∅), (∅), (X3), Yi. If all Xi are empty, i.e. all names
are global, then we say that the interface itself is global; conversely, if all names
are local (i.e. Y = ∅) we call the interface local. In the latter case, we write the
interface as hα0(X0), . . . , αm�1(Xm � 1)i, dropping the global name component
from the notation.

According to these conventions, the empty interface ǫ can be variously writ-
ten as e.g. 0 or ∅. We say that a bigraph is ground if its inner face is ǫ. We
shall use lower-case letters to range over ground bigraphs, and for a ground
bigraph a we shall write a : I as an abbreviation of a : ǫ ! I. Moreover, as
a slight abuse of notation, we shall often take I to denote the (unique) empty
ground bigraph with outer face I.

Primes

An interface is prime if it has width 1. Thus, in the notation just introduced, it
has the form hα(X), Yi. For a local prime interface we usually drop the angle
brackets, writing it in the form α(X) (or (X), or 1, as appropriate). For a global
prime interface, however, we retain the brackets to avoid ambiguity; thus, hYi
denotes a global prime, whereas Y denotes an interface of width 0.

We say that a bigraph is prime if its outer face is prime and its inner face is
local. Figure 4.8(a) shows an example of a prime bigraph A : (x)! (yz).
Wirings

A bigraph of width 0 is a wiring. Having no roots, a wiring can have no nodes
and no sites, and its interfaces consist only of sets of global names. We use
ω, ζ to range over wirings. Every function σ : X ! Y represents a wiring; such
wirings, which we call substitutions, are open. We write the empty substitution
from ǫ to X as X : ǫ! X; and given vectors ~x and ~y of equal length and with

4.9 Further structural theory and notation 67

the xi distinct, we write ~y/~x for the surjective substitution xi 7! yi. In addition
to substitutions, we have for each name x the closure /x : x ! ǫ. For X =fx1, . . . xngwe write /X for the multiple closure /x1
 � � �
 /xn : X! ǫ. Given

two wirings ~ω : ~X ! ~Y with X0 and X1 disjoint, we write ω0 j ω1 : X0
 X1 !
Y0 [Y1 for the wiring obtained as the union of their link maps. Figure 4.8(b)
shows an example of a wiring.

Given a wiring ω : X ! Y and a local prime A : α(Z)! β(W) the insertion
of ω into A is defined iff X and Z are disjoint. The result, written A / ω :
α(XZ)! β(Y [W), has the nodes and parent map of A and its link map is
the union of those of A and ω. Figure 4.8(c) shows an example of a bigraph
obtained by such an insertion. We abbreviate idα / ω as (ω).
Discrete bigraphs

A bigraph is discrete if every free link is open and has exactly one point. Hence,
a discrete bigraph is open and lean, and the link map on its free points forms a
bijection with its global names.

A bigraph A : I ! J is robustly discrete if for any globalizer γ : J ! J 0 the
composition γ A is discrete. Hence, a robustly discrete bigraph is discrete and
moreover its open bound points are in bijection with its local names.

Discrete bigraphs and wirings complement each other as follows:

Proposition 4.40 Every bigraph A can be expressed uniquely (up to an isomor-
phism on the inner face of ω) in the form (idI
ω) Æ D, where ω is a wiring, D
is discrete, and I is local. �
We call this unique decomposition of A its discrete normal form.

Proposition 4.41

(1) If ~C is an IPO of ~A and Ai is discrete, then so is Cı̄.

(2) If D Æ A = (ω
 idI) Æ E with D and E discrete, then (D, ω
 idI) is an
IPO of (A, E). �

Proposition 4.42 Let d : I be ground and discrete with width m. Then d has a
unique factorization

d = d0
 � � �
 dm�1 ,

where each di is discrete and prime. �
Products

We define two notions of product of bigraphs that refine tensor product. The
first, called parallel product, differs from tensor product only in allowing its ar-
guments to share global outer names; the effect of the product is to coalesce
identically named links. The second, called prime product, additionally coa-
lesces all regions of the result into a single region, thus yielding a prime.

68 4 Bigraphs: Structure

y1

K

x1 x2

Figure 4.9 An ion Kx1x2(y1) for the control K : 2! 1

Definition 4.43 (parallel and prime products) Let Ai : Ii ! Ji
 X (i = 0, 1) be

abstract bigraphs with ~J local. The parallel product A0 k A1 is defined iff I0
 I1

and J0
 J1 are defined; it is given by

A0 k A1
def= (σ�1

0 j σ�1
1)(σ0A0
 σ1A1) : I0
 I1 ! J0
 J1
 (X0 [X1) ,

where~σ : X ! ~Y are any isos such that Y0 \Y1 = ∅.

Suppose moreover that all places in ~J have the same sort α, and let Z be
the (necessarily disjoint) union of their local name sets. Then the prime product
A0 j A1 is defined iff the unique empty bigraph C : J0
 J1 ! α(Z) that acts as
the identity on names is well-sorted; it is then given by

A0 j A1
def= (C
 (X0 [X1)) Æ (A0 k A1) : I0
 I1 ! α(Z) . �

We earlier used the symbol ‘j’ to denote an operation that combines wirings;
in overloading the symbol to denote also prime product, we adopt the conven-
tion that the latter operation is indicated iff at least one of the two operands
has width larger than zero.

Proposition 4.44 Substitutions commute with parallel and prime product; that
is,

σ (A k B) = σ A k ω B

σ (A j B) = σ A jω B . �
Ions and molecules

We shall sometimes wish to distinguish the class of nodes that have no
outward-binding ports; we call such nodes ionic. Thus, according to the nota-
tion introduced earlier for arities, ionic nodes have arity h! k for some h, k � 0.

Given a control K : h ! k and name vectors ~x and ~y of length h and k,
respectively, we can form the ion K~y(~x) : (~x)! (~y), which we define as the
abstract bigraph consisting of a single K-node that is the parent of the single
site and with bijective linking that connects the h inner-binding ports to the

4.9 Further structural theory and notation 69

inner names ~x, and the k non-binding ports to the outer names ~y. Figure 4.9
shows an example.

Given, moreover, a prime P : I ! (Z~x), the composite (K~y(~x) / idZ) Æ P is
a molecule. The insertion of idZ handles the “extra” names Z of P. Note that
while the sets ~x and Z are assumed to be disjoint, names may be shared among~y and Z; the links represented by such shared names are coalesced in the result.
For notational convenience we shall usually abbreviate the above molecule as
K~y(~x) P. We use µ to range over molecules.

Place-sorting conditions may exclude certain ions and molecules. In partic-
ular, an atomic control K : k has no ion, and the molecule K~y P is well-sorted

only when P is an empty prime (Z); a molecule of this form we call an atom.

Chapter 5

Bigraphs: Dynamics

Having dealt with the structure of bigraphs in the preceding chapter, we now
turn to their dynamics. In the first section of this chapter we introduce the
notion of a (parametric) bigraphical reactive system; in the next section we add
activeness, to account for the distinction between contexts that preserve reaction
and contexts that do not. The two first sections deal with concrete bigraphs; in
the third section we show how transitions can be transferred from a concrete
BRS to an abstract one. Finally, the fourth section deals with an important
technique, which we shall employ in the applications in Part II, for reducing
substantially the number of transitions that must be considered in bisimulation
proofs.

5.1 Bigraphical reactive systems

In the preceding chapter we have defined the s-category ˆBBG(Σ) of concrete
bigraphs, and we have argued that it is suitable as the basis of deriving con-
textual transitions; in particular, we have established that it possesses RPOs,
provided Σ is safely sorted. (Throughout this chapter, we shall continue to
assume a fixed signature Σ which is safely sorted but otherwise arbitrary.)

From the s-category ˆBBG(Σ) we obtain a BRS by equipping it with a set
of reaction rules, i.e. any set consisting of pairs of bigraphs with shared outer
face in ˆBBG(Σ). Figures 5.1–5.3 show examples of reaction rules for the sys-
tems discussed in the introduction of the previous chapter; they all model the
movement of a person from one room to another, with a few differences that
we discuss below.

First, we note that all of the rules are parametric, as the redexes and reac-
tums have sites, shown as numbered boxes; this indicates that, in addition to
the nodes shown explicitly, the room nodes can contain arbitrary constellations
of further person nodes. Thus, the rules are actually rule schemata and repre-
sent infinite families of actual rules (called ground rules), each of which arises
from composing both redex and reactum with a parameter (in these cases of

5.1 Bigraphical reactive systems 71

x

roomperson
0 room1

�! x

room0 roomperson
1

Figure 5.1 Reaction rule for person movement

x

room
baseperson

0
y room

base
1

z

�!
x

room
base

0
y room

baseperson
1

z

Figure 5.2 Reaction rule for person movement (with base stations)

x

roomperson
0 room1

�! x

room0 roomperson
1

Figure 5.3 Reaction rule for “wide” person movement

72 5 Bigraphs: Dynamics

width 2).
In the first two rules the redexes and reactums have (outer) width 1 and

thus (necessarily) place the two room nodes in the same region. This ensures
that any context in which the rules can be applied must place the two rooms
within the same building node, and so the rules give rise only to reactions in
which a person moves between rooms in the same building. (Reactions of this
kind were shown in figures 4.2 and 4.4, and indeed those two reactions can be
generated by the rules in figures 5.1 and 5.2, respectively.)

In contrast, the rule in Figure 5.3 allows also movement between rooms
in separate buildings. It differs from the rule in Figure 5.1 only by having
width 2 and placing the two room nodes in separate regions, thus removing
the requirement that a context places the two rooms in the same building node
(though it may still do so). A similar change to the rule in Figure 5.2 would
allow inter-building movement in the system with base stations.

As for linking, we may note that the three rules each contains an open link
in the form of the outer name x; this allows the context in which a rule is ap-
plied to add further connections (ports) to the links in question. In contrast,
the bound links that appear within the room nodes in Figure 5.2 are closed and
therefore not accessible to the context; they are, however, linked to the sites
via the inner names y and z, respectively, and therefore accessible for further
connectivity within the parameter.

In general, we denote by ˆBBG(Σ,R) the reactive system with ˆBBG(Σ) as
its s-category and R as its set of reaction rules. We shall write ST(Σ,R) and
WST(Σ,R) to denote, respectively, the standard transition system and the weak
standard transition system in ˆBBG(Σ,R).

Because ˆBBG(Σ) has all RPOs, we can apply the congruence theorems 3.17
and 3.21 directly:

Corollary 5.1 (congruence) Strong and weak standard bisimilarity are congru-
ences in ˆBBG(Σ,R). �

As mentioned above, we expect for many purposes to be interested mainly
in abstract bigraphs and to use concrete bigraphs only as a tool in obtain-
ing a satisfactory transition semantics. For example, in modelling a particu-
lar system—such as the process calculi we model in later chapters—one will
typically build the model in BBG(Σ) (for some suitable choice of signature Σ)
and also express the reaction rules R in BBG(Σ), thus forming a reactive sys-
tem BBG(Σ,R). One will then want to derive standard and weak standard
transition systems in ˆBBG(Σ, ˆR), for a suitable preimage ˆR ofR, and to map
these transition systems back into BBG(Σ,R) using the lean support quotient
functor [[�℄℄. Figure 5.4 depicts these steps. It shows also, as may be recalled
from Section 3.6, that the weak standard transition system WST arises as the
reflection of the (ordinary) standard transition system ST of the derived systemW(ˆBBG(Σ), ˆR).

However, the figure leaves out a few further aspects that we must also ad-
dress. First, as we have pointed out earlier, the set R of reaction rules will

5.1 Bigraphical reactive systems 73

BBG(Σ,R)
ST

WST

ˆBBG(Σ, ˆR)
?[[�℄℄ ST

WST

���*WˆBBG(Σ,W(ˆR))
ST�h1 Generate concrete

preimages of R
1 � h2 Generate strong and weak

standard transitions� h3 Map transitions

to abstract BRS

abstract

concrete

Figure 5.4 Derivation of transition systems for BBG(Σ,R)
typically have a certain amount of structure that arises from the rules being
parametric; we shall want to reflect this parametricity when we transfer the
rules to ˆBBG(Σ), as this is necessary for the theory of engaged transitions that
we develop in Section 5.4. Secondly, we have so far made no account of ac-
tiveness, i.e. the distinction between contexts that preserve reaction and con-
texts that do not; we shall do this by creating suitable variants of the standard
transitions systems, called active transition systems. The active transitions for
ˆBBG(Σ) will themselves arise as the standard transitions of a derived sys-
tem ˆBBG(Σact) with a functor Uact into ˆBBG(Σ). Thus, to represent the typical
situation, we refine the picture as shown in Figure 5.5.

We treat parametricity first, and deal with activeness in the next section.
When a parametric reaction rule with redex R and reactum R0 is applied to
yield a reaction step, each site in R0 must be filled with a region of the param-
eter. To handle this we shall use a map from the inner width of R0 to the inner
width of R. We call this map an instantiation; it will specify, for each site in R0,
the site in R from which the parameter region will be obtained. The map is not
required to be surjective; this allows for discard of parameter regions. Neither
is it required to be injective; this allows for replication.

We say that a BRS is linear if the instantiations of all its rules are bijections,
and we say that it is affine if the instantiations are all injective. Thus an affine
system has no replication, and a linear system has neither replication nor dis-
card.

Definition 5.2 (instantiation) Let I = I0
 � � �
 Im�1 and J = J0
 � � �
 Jn�1

be local interfaces with each Ii and Jj prime. An instantiation η :: I ! J consists
of a function η̄ : n!m and for each j 2 n an iso ηj : Iη̄(j)! Jj. For any X this
determines a map

η : Gr(I
 X)!Gr(J
 X)
in ˆBBG(Σ) as follows: For a : I
X express it in prime discrete normal form as

74 5 Bigraphs: Dynamics

BBG(Σ,P)
AT

WAT

ˆBBG(Σ, ˆP)?[[�℄℄����ˆBBG(Σ, ˆR)
AT

WAT

ˆBBG(Σact, ˆR>)
ST

WST���� Uact

���*WˆBBG(Σact,W(ˆR>))
ST

�h1 Generate concrete

preimages ˆP of

parametric rules P
1h2 Generate

ground rules ˆR
from ˆP :h3 Generate active

ground rules

1 � h4 Generate strong

and weak stan-

dard transitions�h5 Map to active

transitions� h6 Map transitions

to abstract BRS

abstract

concrete

Figure 5.5 Refined derivation of transition systems for BBG(Σ,P)
a = (idI
 ω) Æ (d0
 � � �
 dm�1); then take η(a) : J
 X to be lean and satisfy[[η(a)℄℄ = [[ω℄℄ ([[η0 Æ dη̄(0)℄℄ k � � � k [[ηn�1 Æ dη̄(n�1)℄℄) . �
We go to BBG(Σ) to form the parallel product for η(a), because parallel prod-
uct in ˆBBG(Σ) requires disjoint support, and thus the right-hand side in the
above equation would not be well-defined for non-injective η̄ if expressed in
ˆBBG(Σ). The effect of taking the product in BBG(Σ) and transporting the re-
sult to ˆBBG(Σ) is to force separate support instances to be chosen when mul-
tiple copies of a prime di occur in η(a).

Note that the instance η(a) is defined by manipulating only the discrete part
of a. This avoids an ambiguity; for if we allowed replication of a prime with
closed links, then it would not be clear if the link should be shared between
the replica, or if each should have its own copy of the link. With the definition
we made, any closed link will be in ω, not in the discrete primes di, and such
a link will always be shared between replica. If the effect we want is to create
a private link for each replica, then we must use links that are bound rather
than closed. The modelling of replicated input in the π-calculus (Section 7.3)
provides an example of this.

A few fundamental properties about instantiation will be useful later on.
(Recall for Proposition 5.4 that (�)R denotes reflexive closure, (�)� denotes
reflexive transitive closure, and (�)C denotes closure under arbitrary context.)

Proposition 5.3 Wiring commutes with instantiation; that is, ω η(a) = η(ω a).�
Proposition 5.4 Let C be a context with prime inner face and outer width m, let
a and b be primes such that C Æ a and C Æ b are defined, and let η :: m! n be an

5.2 Bigraphs with activeness 75

instantiation. Suppose (a, b) 2 S , where S is a relation closed under support
translation.

(1) If a and b are open then (η(C Æ a), η(C Æ b)) 2 SC,�;

(2) If η is injective then (η(C Æ a), η(C Æ b)) 2 SC,R. �
The first clause requires a and b to be open; the property would fail if they were
allowed to have closed links, precisely because instantiation does not replicate
closed links. In the second clause a and b are unconstrained, because the con-
dition on η prevents replication.

We are now ready for the definition of parametric reaction rule.

Definition 5.5 (parametric reaction) A parametric reaction rule is a triple(R, R0, η)
where R : I ! J is the (parametric) redex; R0 : I0! J the (parametric) reactum; and
η :: I ! I0 an instantiation. The interfaces I and I0 are required to be local.

The parametric reaction rule generates a set of ground reaction rules con-
sisting of the minimally global pairs (r, r0) such that

γ Æ r = (R
 idX) Æ d

γ Æ r0 = (R0
 idX) Æ η(d)
for some discrete d : I
 X and globalizer γ.

The bigraphical reactive system is parametric if its reaction rules R are ex-
actly the ground rules generated from some set P of parametric reaction rules.�

A parametric reaction rule specifies the exact width of the parameter, be-
cause it uses the place structure to express discard and replication. It does not
similarly demand a particular set of names, apart from those needed to form
links between the parameter and the parametric redex itself. By adjoining the
identity idX for an arbitrary set X of names, we allow unconstrained linking
between the parameter and the context, and indeed, via shared links in the
context, between points within (possibly different regions in) the parameter. It
is therefore no limitation on the achievable ground reaction rules that the pa-
rameter is required to be discrete; this requirement, however, helps to simplify
some of the behavioural theory we shall develop.

The role of the globalizer γ is to allow ground rules where the parameter
can link to the context via local links; this provides the greatest possible gener-
ality, because the context can always make local links global, but not the other
way around.

5.2 Bigraphs with activeness

In applications it is often not the case that all contexts preserve reaction. In the
π-calculus, for example, the semantics does not permit reaction underneath an

76 5 Bigraphs: Dynamics

input or output prefix. To capture such situations, previous work on bigraphs,
e.g. [13], uses the notion of activeness in the definitions of reactive system and
BRS. In particular, it is part of the usual definition of a signature that it declares
each control either active or passive; this distinction is extended to contexts,
by declaring a context active only if no site has a passive control among its
ancestors. The definition of the reaction relation, then, allows a reaction C Æ
r �! C Æ r0 only for C active.

Here, we have so far worked with a simpler (more “economical”) version
of BRS that omits activeness as a primitive notion. As a result, our contexts al-
ways preserve reaction, and this means our systems are less expressive. In this
section we shall show how to recover the missing expressiveness by means of
a simple place-sorting discipline. The idea is to equip each BRS with a com-
panion BRS, which is like the original except its formation rules allow only
contexts that satisfy certain activeness conditions. We retain the original BRS
for the general structure but obtain its dynamics from the refined BRS, which,
itself, is just an instance of our “economical” (but place-sorted) kind of BRS.

As before, we presuppose a fixed, safely sorted, but otherwise arbitrary
signature Σ with controls K. Together with Σ we assume a map

act : K! fat, pasg
that declares each control to be either active or passive. We extend Σ with
activeness-sorting as follows:

Definition 5.6 (activeness-sorting) The activeness-sorting discipline Sact has sort
set

Θact = fat, pasg ;

thus, in an activeness-sorted interface each place is declared either active or
passive. The sorting condition Φact states:

every ancestor (node or root) of an active site must itself be active . �
We denote by Σact the signature obtained by extending Σ with Sact. Recall

from Section 4.7 that this means the resulting sorting is obtained by combiningSact with any sorting already present in Σ. There is a sorting functorUact : ˆBBG(Σact)! ˆBBG(Σ) ,

which discards the activeness assignment from interfaces and acts as an em-
bedding on bigraphs. In this section, when we talk of bigraphs and interfaces
with activeness we mean those in ˆBBG(Σact); similarly, we refer to those in
ˆBBG(Σ) as being without activeness.

Let I be an interface without activeness and of width m. An activeness
assignment for I can be represented as a set λ � m containing exactly the active
places. We use the notation Iλ for the resulting activeness-sorted interface. We
say that the interface Iλ is active if λ = m, and passive if λ = ∅.

5.2 Bigraphs with activeness 77

Proposition 5.7 Let A : Iλ ! Jµ be a bigraph with activeness. Then its width
function satisfies width(A)(λ) � µ. If moreover A is minimally sorted (w.r.t. ac-
tiveness) then width(A)(λ) = µ. For a resorting φ : Iλ ! Iµ it holds that
λ � µ. �

From every bigraph A : I ! J without activeness we can construct a bi-
graph Aµ : I∅ ! Jµ with activeness for an arbitrary µ � n where n = width(J).
It respects activeness vacuously, because the inner face is passive. For An,
whose outer face is active, we shall also use the notation A>.

Every ground bigraph a with activeness can be written in the form φ Æ a0
∅

where φ is an activeness-resorting and a0 = Uact(a).
The characterization of RPOs in a sorted BRS (Theorem 4.34) specializes to

activeness as follows:

Theorem 5.8 (RPOs and activeness) Activeness is a safe sorting. Hence, pro-
vided Σ is safely sorted

(1) The category ˆBBG(Σact) of bigraphs with activeness has all RPOs;

(2) (~C, C) is an RPO of ~A to ~B iff Uact(~C, C) is an RPO of Uact(~A) to Uact(~B) and

every root in the outer face of ~C has an active site among its descendants
in one of the Ci.

(3) (~C) is an IPO of ~A iff Uact(~C) is an IPO of Uact(~A) and every root in the

outer face of ~C has an active site among its descendants in one of the Ci. �
As a corollary of this result, strong and weak standard bisimilarity are con-

gruences in any reactive system over ˆBBG(Σact). Our main interest, however,
is not in the dynamics of ˆBBG(Σact) itself, but rather in using it to define a no-
tion of activeness-respecting behaviour in ˆBBG(Σ). The following definition,
which applies to bigraphs in ˆBBG(Σ), will be central:

Definition 5.9 (active bigraph) Let A be a bigraph without activeness. We say
that A is active (relative to act) if every node in A that has a site among its
descendants is active, i.e. if its control K satisfies act(K) = at. �
Proposition 5.10 A bigraph A : I ! J in ˆBBG(Σ) is active iff for every subset
λ � width(I) of its sites there exists a subset µ � width(J) of its roots and a
bigraph A0 : Iλ ! Jµ in ˆBBG(Σact) such that Uact(A0) = A. �

From ˆBBG(Σ,R) we want to generate an activeness-sorted BRS in such a
way that redexes are always required to occur in an active context. We do this
by equipping every redex with an active outer face; thus, we shall use the rule
set R> def= f(r>, (r0)>) j (r, r0) 2 Rg .

Thus, starting from ˆBBG(Σ,R) and act, we generate ˆBBG(Σact,R>) and map
the dynamics of this derived system back into ˆBBG(Σ,R). For reaction, the
definition is as follows:

78 5 Bigraphs: Dynamics

Definition 5.11 (active reaction) The active reaction relation for ˆBBG(Σ,R), de-
noted by �!act, is the image under Uact of reaction in ˆBBG(Σact,R>); that is,
it is the smallest relation such that whenever a �! a0 in ˆBBG(Σact,R>) thenUact(a) �!act Uact(a0).

Similarly, the weak active reaction relation for ˆBBG(Σ,R), denoted by =)act,
is the image under Uact of reaction in ˆBBG(Σact,W(R>)) �
Active reaction can be straightforwardly characterized in terms of ˆBBG(Σ,R)
itself, as follows, where we write Wact(R) as an abbreviation of Uact(W(R>)).
Proposition 5.12 a �!act a0 (resp. a =)act a0) iff there is a rule (r, r0) 2 R (resp.Wact(R)) and an active context C such that a = C Æ r and a0 = C Æ r0. �

We also want to transfer transitions from ˆBBG(Σact,R>) to ˆBBG(Σ,R).
For this we define the following class of transition systems:

Definition 5.13 (active transition) An active transition system for ˆBBG(Σ) is a
transition system whose agents are drawn from the ground arrows of ˆBBG(Σ)
and whose labels are drawn from the arrows of ˆBBG(Σact). �
We are mainly interested in the particular active transition systems whose tran-
sitions are the images of standard and weak standard transitions in ˆBBG(Σact).
In fact, we take the images of only those transitions whose labels have passive
inner face. (It turns out that the resulting bisimilarities are unaffected by this
restriction.)

Definition 5.14 (standard active transitions) The standard active transition sys-
tem for ˆBBG(Σ,R), denoted by AT(Σ,R), has all ground arrows of ˆBBG(Σ)
as agents, and its transition relation is the least such that Uact(a) L�! Uact(a0) in

AT(Σ,R) whenever a
L�! a0 in ST(Σact,R>) and L has passive inner face. We

refer to its associated bisimilarity as strong active bisimilarity.
Similarly, the weak standard active transition system for ˆBBG(Σ,R), denoted

by WAT(Σ,R), has all ground arrows of ˆBBG(Σ) as agents, and its transition

relation is the least such that Uact(a) L=) Uact(a0) in WAT(Σ,R) whenever a
L=)

a0 in WST(Σact,R>) and L has passive inner face. We refer to its associated
bisimilarity as weak active bisimilarity. �

Henceforth, the active bisimilarities�AT and�WAT will often be abbreviated
as � and �, respectively.

As the label L of a transition a
L�! a0 in AT(Σ,R) is a context of ˆBBG(Σact),

the transition is not contextual in the sense of the discussion in Section 1.4. But
it is “almost contextual” in the sense that the only extra information carried by
L, compared to its image Uact(L) is the activeness assignment on its outer face.

A transition in AT(Σ,R) can be written in the form a
Lλ�! a0, where L is

now taken to be a context of ˆBBG(Σ). If we view a transition in this form as a
quadruple (a, L, λ, a0), then we recover exactly the notion of standard transition

5.2 Bigraphs with activeness 79

employed in [13], where the notation a
L�!λ a0 is used. This claim is substan-

tiated by the following theorem in which clause (3) corresponds closely to the
definition of standard transitions in [13]. The theorem also relates standard
active transitions to certain IPOs in ˆBBG(Σact).
Theorem 5.15 The following three statements are equivalent:

(1) a
Lλ�! a0 is in AT(Σ,R) (resp. WAT(Σ,R));

(2) There is a ground reaction rule (r, r0) 2 R (resp. Wact(R)) and a com-
muting diagram in ˆBBG(Σact) as shown below on the left such that the
square is an IPO and a0 = Uact(a00);

(3) There is a ground reaction rule (r, r0) 2 R (resp. Wact(R)) and a com-
muting diagram in ˆBBG(Σ) as shown below on the right such that the
square is an IPO and λ = width(C)(m) where m is the inner width of C.

Lλ

a∅

r> (r0)>a00 L

a

r

C

r0a0
Proof The equivalence of clause (1) and (2) follows immediately from the def-
inition of standard active transitions. For the equivalence of (2) and (3) we
use the fact that an IPO of (a∅, r>) in ˆBBG(Σact) is related to an IPO of (a, r)
in ˆBBG(Σ) as detailed in Theorem 4.34. In particular, since the outer face
of r> is active, C must be active in order to respect activeness. Moreover,
since the outer face of a∅ is passive, a root s must be active in L (i.e. s 2 λ)
just if s has a site as a descendant in C; the latter requirement is equivalent to
λ = width(C)(m). �
Let us discuss briefly the role of the activeness assignment λ in an active tran-
sition. Recall first that (ordinary) standard transitions are always preserved by

context; that is, if a
L�! a0 is a standard transition, and if C is a context consis-

tent with L and such that C Æ a is defined, then we can infer another standard

transition C Æ a
M�! C0 Æ a0, where (M, C0) is an IPO of (C, L). Standard active

transitions, on the other hand, are not always preserved by context, because a
context C may block an underlying redex. The activeness assignment λ in a
standard active transition can be thought of as a specification of the condition
under which a context C preserves the transition, namely that every site s 2 λ
is given active ancestors in C.

Representing the activeness condition as part of the transition is what en-
sures congruence of the active bisimilarities. In [13] the congruence proof is
given for the strong case, making direct use of the activeness condition. Here,
having established the relationship between transitions in AT(Σ,R) and IPOs
in ˆBBG(Σact), we can prove the result without explicit analysis of activeness.

80 5 Bigraphs: Dynamics

Lemma 5.16 (�)C is allowable for AT(Σ,R) and WAT(Σ,R).
Proof An easy adaptation of the proof of Lemma 3.16, using Theorem 5.15(2)
to link transitions in AT(Σ,R) and WAT(Σ,R) with IPOs in ˆBBG(Σact). �
Theorem 5.17 (congruence) Strong and weak active bisimilarity are congru-
ences in ˆBBG(Σ,R).
Proof By the definition of bisimulation we have �AT �AT �AT. Applying
Lemma 5.16 yields (�AT)C �AT (�AT)C; that is, (�AT)C is an active bisimula-
tion, and the result for �AT follows. The argument for �act is analogous. �
We also obtain the equivalent of Theorem 3.23 for the active bisimilarities:

Theorem 5.18

(1) Strong active bisimilarity implies weak active bisimilarity; that is,� � �;

(2) The standard active transition system is adequate for weak standard ac-
tive transitions; that is, �AT = �.

Proof The proof proceeds analogously to that of Theorem 3.23. The crux is

to show, under the assumption a �AT b, that every transition a
Lλ=) a0 in

WAT(Σ,R) has a matching transition b
Lλ=) b0 also in WAT(Σ,R) such that

a0 �AT b0. The transition of a arises from a sequence of transitions

a∅ = a0
L1�! a1 � � � Ln�! an = (a0)λ in ST(Σact,R>)

such that Lλ = Ln Æ � � � Æ L1. Since (for i > 1) the labels Li do not necessarily
have passive inner faces, we cannot relate these transitions directly to ones in
AT(Σ,R) in order to apply the assumption a �AT b. Instead, we construct a
sequence

b∅ = b0
L1�! b1 � � � Ln�! bn in WST(Σact,R>) = ST(Σact,Wact(R))

such that Uact(ai) �AT Uact(bi) for i = 1, . . . , n; this will suffice by taking b0 def=Uact(bn).
We construct the sequence for b inductively. Consider the transition ai�1

Li�!
ai. By the induction hypothesis we have Uact(ai�1) �AT Uact(bi�1). More-
over, there is a resorting φi�1 such that ai�1 = φi�1 Æ (Uact(ai�1))∅ and bi�1 =
φi�1 Æ (Uact(bi�1))∅. Hence, the IPO underlying the transition of ai�1 has the
form of the outer rectangle on the left below, where (r, r0) is the underlying

5.3 Transitions for abstract BRSs 81

reaction rule and ai = Ci Æ r0.
Li

φi�1
Mi

φi(Uact(ai�1))∅

r

E

C

Li

φi�1
Mi

φi(Uact(bi�1))∅

s

F

We fill in the rectangle with an RPO as shown. Since the upper square thus
created is IPO, φi is a resorting, and so Uact(ai) = Uact(E Æ r0). Hence, by

Theorem 5.15 there is a transition Uact(ai�1) Mi�! Uact(ai) in AT(Σ,R). Then,

using Uact(ai�1) �AT Uact(bi�1), we infer Uact(bi�1) Mi=) Uact(bi) in WAT(Σ,R)
for some bi such that Uact(ai) �AT Uact(bi). By Theorem 5.15 there is a reac-
tion rule (s, s0) in Wact(R) and an IPO in the form of the lower square on the
right above such that Uact(bi) = Uact(F Æ s0). We compose this IPO with the up-
per IPO from the left, as shown. From the resulting IPO we infer the required

transition bi�1
Li=) bi in WST(Σact,R>). �

5.3 Transitions for abstract BRSs

We have now established all the connections required for the concrete part of
Figure 5.5, and we are ready to deal with the first and last step shown in the
figure, i.e. the steps that form the connections between the abstract BRS and
the concrete ones.

For the first step we need to generate a suitable concrete preimage of the
parametric reaction rules P in BBG(Σ,P). We do this by simply including
every lean, concrete instance of the abstract rules:

ˆP def= f(R, R0, η) j ([[R℄℄, [[R0℄℄, η) 2 P and R, R0 leang ;

The following definition then gives the last step:

Definition 5.19 The standard active transition system in BBG(Σ,P), denoted by
AT(Σ,P), is the image under [[�℄℄ of the standard active transition system in

ˆBBG(Σ, ˆP); that is, it is the least such that [[a℄℄ [[L℄℄λ��! [[a0℄℄ in AT(Σ,P) whenever

a
Lλ�! a0 in AT(Σ, ˆP).
The weak standard active transition system in BBG(Σ,P), which we denote by

WAT(Σ,P), is similarly defined as the image under [[�℄℄ of the weak standard
active transition system in ˆBBG(Σ, ˆP). �

82 5 Bigraphs: Dynamics

We now come to the main congruence result for BRSs, namely that the
(strong and weak) active bisimilarities are congruences in the abstract sys-
tem BBG(Σ,P). This result will, of course, be based on the congruence result
for the active bisimilarities in ˆBBG(Σ, ˆP). We first prove that the bisimilar-
ities for AT(Σ,P) and WAT(Σ,P) coincide with the images of AT(Σ, ˆP) and
WAT(Σ, ˆP), respectively:

Lemma 5.20 In ˆBBG(Σ,P) suppose P is closed in the sense that whenever(R, R0, η) 2 P and S m R then (S, S0, η) 2 P for some S0 m R0. Then

(1) a � b in ˆBBG(Σ,P) iff [[a℄℄ � [[b℄℄ in BBG(Σ, [[P ℄℄);
(2) a � b in ˆBBG(Σ,P) iff [[a℄℄ � [[b℄℄ in BBG(Σ, [[P ℄℄).

Proof
(1) For ()) we show that the relationS = f([[a℄℄, [[b℄℄) j a � b in ˆBBG(Σ,P)g

is an active bisimulation in BBG(K, [[P ℄℄). Let a � b, and let [[a℄℄ Lλ�! p0 in

AT(Σ, [[P ℄℄). The transition has a preimage a
Mλ��! a0 in AT(Σ,P) with [[M℄℄ =

L and [[a0℄℄ = p0. By assumption there is then also a transition b
Mλ��! b0

in AT(Σ,P) for some b0 such that a0 � b0. The image of this transition in

AT(Σ, [[P ℄℄) is [[b℄℄ Lλ�! q0 def= [[b0℄℄, and we have (p0, q0) 2 S .
For (() we show that the relationS = f(a, b) j [[a℄℄ � [[b℄℄ in BBG(Σ, [[P ℄℄)g

is an active bisimulation in ˆBBG(Σ,P). Let [[a℄℄ � [[b℄℄ and a
Lλ�! a0 in AT(Σ,P).

The image in AT(Σ, [[P ℄℄) of the transition is [[a℄℄ [[L℄℄λ��! p0 def= [[a0℄℄. By assumption

there is then also a transition [[b℄℄ [[L℄℄λ��! q0 in AT(Σ, [[P ℄℄) for some q0 such that

p0 � q0. This transition has a preimage b1
L1

λ��! b01 in AT(Σ,P) with b1 m b,
L1 m L and [[b01℄℄ = q0. Let (r1, r01) be the ground reaction rule underlying the
transition of b1; then its underlying diagram has the form shown on the left:

L1

b1

r1

C1

r01b01 L

b

r

C

r0b0
By Proposition 3.11 we can find r m r1 and C m C1 such that the square in
the diagram on the right is also an IPO, and by the closedness assumption we

can find r0 m r01 such that (r, r0) is a ground rule. Then taking b0 def= C Æ r0, as

indicated, we have b
Lλ�! b0 in AT(Σ,P) and [[b0℄℄ = [[b01℄℄ = q0. Recalling that[[a0℄℄ = p0 and p0 � q0, we also have (a0, b0) 2 S , and we are done.

5.4 Engaged transitions 83

(2) Using Proposition 3.11 it is straightforward to prove that the closedness
property of P carries over toW(P). Then the proof proceeds exactly as for (1),
except that one appeals to reaction rules and diagrams in W(ˆBBG(Σ,P)),
rather than in ˆBBG(Σ,P). �
Theorem 5.21 (congruence) Strong and weak active bisimilarity are congru-
ences in BBG(Σ,P).
Proof Let p � q in BBG(Σ,P); we must show C Æ p � C Æ q for an arbitrary
context C. By its construction, ˆP is closed in the sense of the preceding lemma,
so by the lemma there exist bisimilar a and b in ˆBBG(Σ, ˆP) such that [[a℄℄ = p
and [[b℄℄ = q. By surjectivity of [[�℄℄ there exists D composable with a and b
such that [[D℄℄ = C. But bisimilarity is a congruence in ˆBBG(Σ, ˆP), so we
have D Æ a � D Æ b. Using Lemma 5.20 again, we then obtain C Æ p � C Æ q, as
required. �
5.4 Engaged transitions

Even though the standard active transition systems are minimal in the sense of
being based on IPOs they nevertheless contain transitions which do not pro-
vide useful information about their agents and could therefore be removed
without affecting the associated bisimilarities. For example, suppose an agent a
and a ground redex r have no shared nodes; then the pair (a, r) have a tensorial

IPO (r
 id, id
 a), and hence there is a transition a
r
id��! a
 r0, where r0 is the

reactum for r. Such tensorial transitions are clearly superfluous, as a matching
transition can be constructed for any agent. Intuitively, a transition is interest-
ing only if the agent contributes to the underlying reaction. In a parametric BRS
we would therefore like to limit attention to those transitions where the agent
and the underlying parametric redex share at least one node. We shall call such
transitions engaged; and indeed we are able show, under certain assumptions
on the BRS in question, that engaged transitions are adequate.

The first assumption we shall impose is shallowness:

Definition 5.22 (shallow) A bigraph A is shallow if E Æ A = B Æ F with E and F
empty implies B = E Æ A Æ F0 for some F0 such that F0 Æ F = id. �
Lemma 5.23 The following conditions, taken in conjunction, are sufficient for
A to be shallow:

(a) No two sites are siblings and no two inner names are peers;

(b) Every node has a site among its children and every edge contains an inner
name;

(c) Every site has a node as its parent and every inner name is closed;

84 5 Bigraphs: Dynamics

(d) Every local inner name is bound;

(e) φ Æ A = B Æ ψ for resortings φ and ψ implies that ψ is an isomorphism.

Conditions (a) and (b) are necessary for shallowness in basic bigraphical reac-
tive systems, but not in all systems with sorting; the remaining conditions are
necessary in all systems. �

We need to impose several conditions in addition to shallowness. The class
of BRS for which we shall prove adequacy of engaged transitions are the simple
BRSs, defined as follows:

Definition 5.24 (simple BRS) A bigraph A is simple if it is prime, open and
shallow and has no barren roots or idle names. A BRS is simple if it is parametric
with all parametric redexes simple. �

Among the simplicity conditions only that of primeness is really severe.
None of the others restrict the “essence” of a redex, namely the prescription
of a constellation of nodes, either in terms of place or link structure; instead
they restrict only the ways in which interfaces of such constellations may be
expressed. Primeness, on the other hand, excludes the possibility of redexes
that arise purely from the link structure, something we would certainly wish
to allow. The applications that appear in Part II of this dissertation, however,
do fall naturally within our class of simple BRS. Moreover, the techniques we
use to obtain the results in the present section rely heavily on primeness, and
it remains an open (and apparently quite difficult) problem to obtain similar
results for the non-prime case.

One striking property of ground primes is that they do not need global
names; that is, as long as the internal structure of a ground prime obeys the
scope rule, then so does the bigraph as a whole, even if every outer name is
local. We can express the property as follows:

Proposition 5.25 A prime ground bigraph is minimally global iff it is local,
i.e. has no global names. �
This property is special to ground primes: in a non-ground bigraph a name x
may be linked with a global inner name, and in a non-prime bigraph a name x
may be linked to several ports belonging to different regions; in either case the
scope rule is violated if x is local.

The definition of parametric BRS requires that every ground rule be mini-
mally global. In a simple BRS all ground rules are prime, so for this class the
requirement simply means they must be local:

Proposition 5.26 In a simple BRS every ground rule is local. �
For simple BRSs we now establish a bisimulation proof technique we shall

call “up to globalization.” It is based on the following operation on relations
over ground bigraphs:SG def= f(a, b) j (γ Æ a, γ Æ b) 2 S for some globalizer γg .

5.4 Engaged transitions 85

Lemma 5.27 In a simple BRS the operation (�)G is allowable for active transi-
tions.

Proof We must show RG � SG under the assumption R� S . Let (γ Æ a, γ Æ
b) 2 R and a

Lλ�! a0 with L Æ b defined; we seek a transition b
Lλ�! b0 for some b0

such that (a0, b0) 2 SG. Let (r, r0) be the ground reaction rule underlying the
transition of a; then the underlying IPO has the form of the lower square on the
left in the following diagram, and a0 = C Æ r0.

N

γ

L
γ0

a

r

C

N

γ

M
δ

b

s

D

E

The upper square is formed by taking an IPO (N, γ0) of (γ, L). Since both the
lower square and the outer square form IPOs, it follows from Proposition 4.25
L and N differ only in the locality assignments of their interfaces; moreover,
since r is local, it also follows that in both L and N a name is global only if
it is linked to a global inner name. The outer square underlies a transition

γ Æ a
Nλ��! a01 def= γ0 Æ a0. As (γ Æ a, γ Æ b) 2 R we then also have γ Æ b

Nλ��! b01 for
some b01 such that (a01, b01) 2 S . Let (s, s0) be the ground rule underlying this
transition; then the underlying IPO has the form of the outer square on the right
above, and b01 = E Æ s0. We take an RPO (M, D, δ) of (b, s) to (N Æ γ, E). Since
the lower inner square thus formed is an IPO it follows from Theorem 4.25 that
M and N differ only in the locality assignments of their interfaces, and in M a
name is global only if it is linked to a global inner name. Hence, M = L and

δ = γ0, and so the lower square underlies a transition b
Lλ�! b0 def= D Æ s0, and

we calculate

b01 = E Æ s0= γ0 Æ D Æ s0= γ0 Æ b0 ;

it follows that (a0, b0) 2 SG as required. �
We now define engaged transitions formally. The definition is straight-

forward in concrete bigraphs where the property of shared nodes can be ex-
pressed directly. We also want to apply the notion in abstract bigraphs, and to
do this we simply transfer engaged transitions using the lean support quotient
functor linking the two categories.

86 5 Bigraphs: Dynamics

Definition 5.28 (engaged transition) In a concrete parametric BRS a transition

a
Lλ�! a0 is engaged if it can be based on a parametric redex that shares at least

one node with the agent a.

In the abstract parametric BRS BBG(Σ,P) a transition a
Lλ�! a0 is engaged if

it is the image under the lean support quotient functor of an engaged transition
in ˆBBG(Σ, ˆP).

In either BRS we denote by PE the transition system of prime agents and
engaged transitions, and by POE the sub-transition system of PE whose agents
are open. �

For a transition a
Lλ�! a0 in PE or POE the agents a and a0 are both prime,

and hence both interfaces of the label L are prime. It follows that λ, being a
non-empty subset of the roots of L, is the singleton 1. We shall therefore omit

λ and simply write such a transition in the form a
L�! a0.

To show the adequacy of engaged transitions we must show �PE = �
on ground primes (and �POE = � on open ground primes). The crux of the

proof is to show that a non-engaged transition a
Lλ�! a0 can be matched by

any agent b, irrespective of any relationship between a and b. To facilitate this,
we establish in the following lemma that non-engaged transitions fall into two
classes: either their underlying IPO is tensorial, or the IPO satisfies a more in-
volved condition that implies, roughly, that the agent is completely included
within the parameter of the redex.

Lemma 5.29 Let R : I ! J be a simple parametric redex, and let r be a ground
redex generated from it; that is, γ Æ r = (R
 idX) Æ d for some globalizer γ and
discrete parameter d : I
 X. Let a be prime and suppose it shares no nodes
with R. Then any IPO (L, C) of (a, r) satisfies one of the following (up to an iso
on the outer face of L and C):

(a) L = r
 id and C = id
 a; or

(b) there is a commutative cube of the form

δ

L0

L

R
 idX0
C

γ

idJ
ω

a

r

d

idI
 ω

R
 idX

Proof Let (L, C) be an IPO of (a, r). We establish either (a) or (b), according to
whether a has any nodes not shared with d.

5.4 Engaged transitions 87

Case jaj * jdj: In this case we claim that jaj \ jrj = ∅. For the sake of
contradiction, suppose there are nodes u and v in a of which only u is in r. Since
a does not share with R, the node u must be in d, and v in C. By shallowness of
R there is a node w in R which is an ancestor of u in C Æ r, but not of v. But u and
v are both in the single region of a, so in L Æ a the node w, which is in L, must
be an ancestor either of both of u and v or of neither. This is a contradiction, as
C Æ r = L Æ a.

Since a shares no nodes with r, the pair (a, r) has a tensorial IPO. We argue
that this is unique (up to isomorphism) by showing there can be no elisions:

The assumptions on R and d ensure that r is outer-surjective; this ensures
there can be no elisions from r into C. Since a is non-empty, its root cannot
be elided into L; the scope rule then prevents elisions of local names into L.
Finally, since r is open, then so is L; hence there can be no elisions of global
names into L.

We conclude that (L, C) is a tensorial IPO of (a, r), from which (a) follows.
Case jaj � jdj: Let (δ, D) be an IPO of (C, γ); this is unique up to iso-

morphism since there are no elisions either from or into globalizers. Now let(E, F, G) be an RPO of (a, d) to (δ Æ L, D Æ (R
 idX)); this yields a diagram of
the form shown on the left below with all squares on the four vertical faces
IPOs.

δ

E

L

G

C

γ

D

a

r

d

F

R
 idX

δ

E

L

S
 idX0
C

γ

D0
ω

a

r

d

F0
 ω

R
 idX

The inclusion jaj � jdj ensures that F and D are empty. Consider the “di-
agonal” D Æ (R
 idX) = G Æ F of the right-hand face. Its inner names are
the global names X together with the names of the inner face I of R, all lo-
cal. The latter must all be bound in R, because R is shallow; hence they are
bound in the diagonal. The names X, on the other hand, are global, and there-
fore must be free in the diagonal. Hence, no name x 2 X can have a sibling
among the names of I. From this it follows that F has the form F0
 ω for
some wiring ω : X ! X0. Then the pair (F, R
 idX) has an IPO of the form(S
 idX0 , D0
 ω), where (S, D0) is an IPO of (F0, R). Moreover, there can be
no elisions from ω into S (since R is open, and hence S is open); no elisions
from F0 into idX0 ; and no elisions from R
 idX (since it is outer-surjective). It
follows that every IPO of (F, R
 idX) has the form stated, and so we can refine
the right-hand face of the cube to yield the diagram shown on the right above.

Since D0 Æ R = S Æ F0 the shallowness assumption on R stipulates that S =
D0 Æ R Æ F00 for some F00 such that F00 Æ F0 = id. The IPO property of the square

88 5 Bigraphs: Dynamics

on the right implies that (up to an isomorphism) D0 = idJ . Taking L0 = (F00

idX0) Æ E we have

L0 Æ a = (F00
 idX0) Æ E Æ a= (F00
 idX0) Æ F Æ d= (F00
 idX0) Æ (F0
ω) Æ d= ω d .

Thus, we have constructed the cube postulated in (b). �
We are now ready to prove the adequacy theorem itself. If falls in three

parts: Clause (1) states the adequacy result for open primes; this result requires
only the simplicity condition. Clause (2) states the result for all primes; this re-
sult needs a further condition, namely that the BRS be affine. We comment on
the reason for the additional condition after the proof. Finally, clause (3) gives
the analogous result to clause (2) for weak bisimilarity. There is no straight-
forward extension of clause (1) to the weak case. Again, we comment on the
reason after the proof.

Theorem 5.30 (adequacy)

(1) In a simple BRS the engaged transitions over open primes are adequate
for standard active transitions; that is, �POE coincides with � on open
primes.

(2) In an affine simple BRS the engaged transitions over primes are adequate
for standard active transitions; that is, �PE coincides with � on primes.

(3) In an affine simple BRS the engaged transitions over primes are adequate
for weak standard active transitions; that is, �PE coincides with � on
primes.

Proof The inclusion � � �POE on open primes, and the inclusions � � �PE

and � � �PE on all primes, are immediate.
For the reverse inclusion in clause (1) we show that �POE is a generalized

active bisimulation. Suppose a �POE b and a
L�! a0 such that L Æ b is defined.

We seek a transition b
L�! b0 for some b0 such that (a0, b0) 2 F (�POE) for some

allowable F . If the transition of a is engaged, then the required transition of
b follows readily from the assumption a �POE b. If the transition of a is not
engaged then one of the two clauses of Lemma 5.29 applies.

If clause (a) holds, we have L = r
 id and a0 = r0
 a, where (r, r0) is
the ground redex underlying the transition. We then form a tensorial IPO(r
 id, id
 b) of (b, r); this underlies a transition b

L�! b0 def= r0
 b, and we
have (a0, b0) 2 (�POE)C.

If instead clause (b) of Lemma 5.29 holds, then the parametric and ground
rules (R, R0, η) and (r, r0) underlying the transition are related as shown by the
cube given in the lemma, together with the equation

γ Æ r0 = (R0
 idX) Æ η(d) .

5.4 Engaged transitions 89

Moreover, we have a0 = C Æ r0. From this we calculate

δ Æ a0 = δ Æ C Æ r0= (idJ
ω) Æ γ Æ r0= (idJ
ω) Æ (R0
 idX) Æ η(d)= (R0
 idX0) Æ (idI
ω) Æ η(d)= (idX0
 R0) Æ η(ω d)= (idX0
 R0) Æ η(L0 Æ a) .

For the matching transition of b we shall construct the following diagram in
several stages.

H0 δ

L0

L

R
 idX0
H

D

ε

idJ
 ζ

b

s

e

idI
 ζ

R
 idY

First, let ζ e be the discrete normal form of L0 Æ b; this provides the square on the
front face, which is IPO by Proposition 4.41(2). The square on the right-hand
face is a tensorial IPO. Hence, the “diagonal square” composed of the two IPOs
is itself an IPO. The top square is copied from the cube for a. The remaining
arrows s, ε and D are determined by choosing their common interface H. We
take this to be a copy of the outer face J
 Y of R
 idY, except we equip it
with a different location map. As H is prime, the location map must merely
designate each name either local or global. We do this as follows: Let a name x
be local if either (1) it is local in J
Y or (2) the name (idJ
 ζ)(x) is local in the
inner face H0 of δ; if neither of these conditions hold, let x be global. The scope
rule is obeyed by ε because of the first condition, by D because of the second
condition, and by s because it is ground and prime.

We now argue that the square forming the left-hand face of the cube is IPO.
Since the diagonal square is IPO, it is enough, by Theorem 4.25, to show that
each name global in H0 is linked to a global inner name in either of L and D.
Suppose that x0 is global in H0, and therefore also in the outer face J
 X0 of δ.
If x0 is not linked to a global inner name in L, then for the diagonal square to be
IPO it must be linked to a global inner name x in idJ
 ζ. Then x is also global
in H and linked to x0 in D. Thus, the square on the left is indeed IPO.

Now pick s0 such that s0 = (idY
 R0) Æ η(e); then (s, s0) forms a ground
reaction rule, and together with the IPO just established it underlies a transition

b
L�! b0 def= D Æ s0. By a similar calculation to that for δ Æ a0 one finds

δ Æ b0 = (idX0
 R0) Æ η(L0 Æ b) .

90 5 Bigraphs: Dynamics

The agents a and b are open, and so by Proposition 5.4(1) we have(η(L0 Æ a), η(L0 Æ b)) 2 (�POE)C,� ,

and hence (a0, b0) 2 (�POE)C,G,� .

This completes the proof that �POE is a generalized active bisimulation, and
hence the proof of clause (1) in the theorem.

The proof of the inclusion �PE � � for clause (2) proceeds analogously.
The only difference is that in the last step we apply clause (2) of Proposition 5.4
and get a0 (�PE)C,G,R b0.

For the inclusion �PE � � in clause (3) it suffices by Theorem 5.18(2) to
show that�PE is a bisimulation for standard active transitions relative to weak
standard active transitions. Again, the proof proceeds analogously, and as in
the previous case we use the allowable operation (�)C,G,R. �

As can be seen from the proof, it would be straightforward to extend the
second clause of the theorem to cover the non-affine case if Proposition 5.4(1)
applied also to non-open primes, but unfortunately it does not. Indeed, an
example is given in [26] of a non-affine simple BRS in which PE is not adequate.

We also lack a result extending clause (1) to the weak case. In the presence
of replication it seems unavoidable to do the bisimulation proof “up to tran-
sitive closure.” This operation is not allowable for relative bisimilarities, and
therefore the present proof does net extend smoothly. Attempting to establish
directly that �PE is an (absolute) weak active bisimulation does not succeed,
essentially because the agent may be replicated in each of the (unboundedly
many) transitions underlying a weak transition. We conjecture that clause (1)
does not extend to the weak case without further conditions, but we leave the
question open.

Part II

Models of Mobile Processes

92

Chapter 6

The π-Calculus

In this chapter we give an overview of the syntax and semantics of the π-
calculus[27]. The purpose is two-fold: first, to introduce the calculus to readers
who are not familiar with it, and secondly, to clarify exactly which versions of
the calculus we shall consider. As part of the latter, we point out a few details
in which our versions differ from the most standard ones. For more thorough
treatments of the π-calculus see for example the books by Milner [24] and San-
giorgi and Walker [38].

6.1 Syntax

The π-calculus has terms generated from the following abstract syntax:

P, Q ::= M
�� P jQ

�� νz P
�� !x(z).P (processes)

M, N ::= xy.P
�� x(z).P �� M + N

�� 0 (sums) ,

where x, y, z are names, drawn from an infinite set. The prefixes xy and x(z)
denote capabilities for output (of datum y on channel x) and input (on channel x),
respectively. We shall use π to range over xy and x(z). A sum containing sev-
eral prefixed processes denotes a choice between the capabilities involved; the
empty sum ‘0’ denotes no choices, i.e. inaction. We often drop 0 from a prefix,
writing just π for the process π.0. The operator ‘j’ denotes parallel composition,
and ‘ν’ denotes restriction; the latter makes z private to P in νz P.

Replication ‘!’ allows infinite behaviour. Usually it is present in a general
form in which !P denotes an unbounded number of copies of P in parallel.
Here we limit replication to apply to input-prefixed processes. This retains
sufficient expressive power for most practical applications of the calculus, and
at the same time it allows replication to be treated dynamically rather than
structurally, as we shall detail below. The theory of BRSs developed in the
preceding chapters turns out to be sufficient for modelling the dynamic version

94 6 The π-Calculus

of replication; modelling the structural version is harder, and we leave that
problem for future work.

In each of x(z).P, !x(z).P and νz P the displayed occurrence of the name z
is binding with scope P. We often refer to a binding occurrence as a binder, for
short. An occurrence of a name is bound if it lies within the scope of a binder; it
is free if it is neither bound nor binding. We write names(P) for the set of names
that occur in P, and fn(P) for the set of names that have a free occurrence.

If two processes differ only in the choice of bound names, then we say
they are alpha-equivalent; either can then be obtained from the other by alpha-
conversion.

We write fx/ygP for the result of replacing the free occurrences of y by x in
P in a way that avoids capture of x; more precisely, the result is obtained by
first alpha-converting P to some P0 with no binding occurrence of x, and then
replacing each free occurrence of y by x in P0.

A process context is a process term in which one process subterm has been
left out. We use the notation [�℄ to represent the “hole” left by the missing sub-
term. For a context C we write C[P℄ for the process resulting from “plugging”
the process P into the hole of C. Note that we are requiring the hole to occur in
a position such that C[P℄ is well-formed for an arbitrary process term P; thus,
x(z).[�℄ and P j [�℄ j Q are examples of process contexts, but x(z).P + [�℄ is not, as
its hole can only be filled by a sum.

An equivalence relation R over processes is a process congruence if it is pre-
served by all process contexts; that is, if (P, Q) 2 R implies (C[P℄, C[Q℄) 2 R.

6.2 Structural congruence

Structural congruence � is the smallest process congruence that includes alpha-
equivalence and satisfies the following axioms:(L + M) + N � L + (M + N)

M + N � N + M

M + 0 � M(P jQ) j R � P j (Q j R)
P jQ � Q j P

P j 0 � P (�0)

νx νy P � νy νx P

νz (P j Q) � P j νz Q if z /2 fn(P)
νz (M + π.P) � M + π.νz P if z /2 fn(M)[names(π) (ν-π)

νz 0 � 0 . (�ν)

6.2 Structural congruence 95

Usually, there is one or more axioms for handling replication; we have no such
axioms, since—as mentioned above—we shall instead treat replication dynam-
ically.

Structural congruence can be viewed as removing “accidental” distinctions
that are introduced merely by the need to express process structure in textual
syntax. The technical purpose of this is to allow a simpler definition of pro-
cess behaviour than is possible on the raw syntax. Neither of the three axioms
marked with tags in the right margin is needed for this purpose, as will be
made clear below. In fact, of the three, only (�0) and (�ν) are normally in-
cluded; they allow expressions to be simplified by removing superfluous oc-
currences of 0 and ν. In particular, the natural property

νz P � P if z /2 fn(P)
requires both axioms. The axiom (ν-π) allows the scope of a restriction to vary,
provided no free names are captured, or bound names freed; it naturally com-
plements the similar axiom for parallel composition.

We shall use several variants of structural congruence that arise from dif-
ferent choices of which of the three axioms to include; we shall write them as
follows, where for each one we list the axioms included:

Relation Axioms�0,ν (�0) (�ν) (ν-π)�ν (�ν) (ν-π)� none

Structural congruence induces a notion of normal form. We define process
normal form (PNF), open process normal form (OPNF), and sum normal form (SNF),
by mutual recursion as expressions of the following forms:

PNF: νZ P P an OPNF, Z � fn(P)
OPNF:

M1 j � � � j Mm j
!x1(z1).P1 j � � � j !xn(zn).Pn

m > 0, each Mi a SNF,
n � 0, each P1 a PNF

SNF: π1.P1 + � � �+ πp.Pp p � 0, each Pi a PNF .

For Z = z1, . . . , zk we take νZ P to be an abbreviation of νz1 � � � νzk P; if Z is
empty there is no restriction. The empty SNF (p = 0) is 0. For �ν we drop the
requirement Z � fn(P) for a PNF, but add the requirement that each Pi in an
OPNF is an OPNF, not merely a PNF. For �0,ν we do the same, plus we allow
empty OPNFs (m = 0) but require unary sums (p = 1). The following then
applies to each variant of structural congruence.

Proposition 6.1 For every process there is a structurally congruent PNF. For
every open process there is a structurally congruent OPNF. For every sum there
is a structurally congruent SNF. All these normal forms are unique up to a
reordering of terms in parallel compositions and sums. �

96 6 The π-Calculus

6.3 Reaction

The behaviour of processes is expressed using two different styles of opera-
tional semantics. The simplest is in terms of reactions (or reductions) of the form
P �! P0. The other style is labelled transitions; we return to that below.

The reaction semantics for our variant of π-calculus is based on two funda-
mental kinds of reaction, expressed by two reaction rules:(xy.P + M) j (x(z).Q + N) �! P j fy/zgQ (communication)(xy.P + M) j !x(z).Q �! P j fy/zgQ j !x(z).Q (replicating com.) .

The first rule expresses the passage of a datum y along the channel x from a pro-
cess with the output capability xy to another process with the input capability
x(z). In the result on the right-hand side, the two (now exhausted) capabilities
have been removed together with the (now preempted) alternatives M and N,
and the datum y has replaced the place-holder z in the body Q of the recipient.
The second rule represents our dynamic handling of replication; it is similar
to the communication rule, except for two things: first, the replicated recipient
has no alternative capabilities; second, and more importantly, because the re-
cipient is replicated it is not exhausted, and therefore it is still present after the
reaction, along with a substitution-instance of its body Q.

The reaction relation�! is the least relation over processes which (1) admits
the two reaction rules; (2) is preserved by parallel composition and restriction;
and (3) is closed under structural congruence. The two latter requirements
mean that, whenever P �! P0, then also P j Q �! P0 j Q and νz P �! νz P0, and
if in addition P � Q and P0 � Q0, then also Q �! Q0.

Reaction can be characterized as follows in terms of process normal forms.
The statement applies equally for each of our variants of structural congruence
and its corresponding variant of normal form.

Proposition 6.2 P �! P0 iff P and P0 have PNFs of the forms

P � νZ ((xy.Q + M) j (x(z).R + N) j S)
P0 � νZ (Q j fy/zgR j S)

or of the forms

P � νZ ((xy.Q + M) j (!x(z).R) j S)
P0 � νZ (Q j fy/zgR j !x(z).R j S) . �

6.4 Transitions and bisimilarity

Reaction expresses the behaviour of complete systems, but not the interaction
among parts of a system. For the latter task, it is common to use one of several

6.4 Transitions and bisimilarity 97

transition systems defined over processes. We define here the early transition
system, given by the inference rules below. Its labels are of the forms xy (free
output), xy (free input), and x(z) (bound output); for the purpose of the side condi-
tions of the rules, we declare the names x and y to be free in xy and xy, whereas
in x(z) the name x is free and z bound.

xy.P
xy�! P x(z).P xy�! fy/zgP !x(z).P xy�! fy/zgP j !x(z).P

M �̀! P0
M + N �̀! P0

P �̀! P0
P j Q �̀! P0 jQ

bn(`)\ fn(Q) = ∅
P �̀! P0

νz P �̀! νz P0 z /2 names(`)
P

xy�! P0 Q
xy�! Q0

P jQ
τ�! P0 jQ0

P
xz�! P0

νz P
x(z)��! P0 z 6= x

P
x(z)��! P0 Q

xz�! Q0
P jQ

τ�! νz (P0 jQ0) z /2 fn(Q)
All rules involving summation and parallel composition also have symmetric
versions with the roles of P and Q swapped.

The labels of transitions express actions. The rules in the top row translate
prefixed capabilities directly into actions; the rule for summation in the second
row expresses discard of preempted alternatives; the rules in the third row ex-
press that transitions, like reaction, are preserved by parallel composition and
restriction; the rule in the fourth row expresses how an output action and an
input action communicate to form a silent action, marked by the distinguished
label τ. The two remaining rules, called the ‘open’ and ‘close’ rule, respec-
tively, handle scope extrusion—the situation when a private name is sent out of
its present scope: in the ‘open’ rule, the restriction is lifted and a bound output
is inferred; in the ‘close’ rule, a bound output communicates with an input, and
the restriction is reinstated, now with a scope that includes the recipient.

The bisimilarity associated with the early transition system is called (strong)

early bisimilarity; we shall denote it by
e�. It is not a process congruence, as it

is not always preserved by input prefix. (It is preserved by all other process
constructions.) The reason it may fail to be preserved by an input prefix is that
an input can lead to non-injective substitutions of names, and such substitu-
tions can destroy bisimilarity. For example, it is easy to prove the bisimilarity

P
e� Q, where

P = x j y

Q = x.y + y.x .

98 6 The π-Calculus

(We are omitting the data from the inputs and outputs; they can be taken to be

arbitrary fresh names.) But fx/ygP
e� fx/ygQ, as only fx/ygP has a τ-transition.

It follows, for example, that u(x).P e� u(x).Q.

From
e� we obtain (strong) early congruence, written �, by letting P � Q iff

σP
e� σQ for every name substitution σ; it is the largest process congruence

included in
e�.

A variant of the early transition system is the late transition system, in which
the rules for input, replicated input, and communication, are replaced by

x(z).P x(z)��! P !x(z).P x(z)��! P j !x(z).P
P

xy�! P0 Q
x(z)��! Q0

P jQ
τ�! P0 j fy/zgQ0

The form of input x(z) employed here is called bound input, as opposed to the
free input xy employed in the early system. The bound input transition does not
substitute the received name for its place-holder, as is done in the free input;
instead, the late system performs the substitution when the input communi-
cates with an output to form a silent transition. The bisimilarity associated
with the late transition system is called (strong) ground bisimilarity;1 we denote

it by
g�. This relation strictly includes

e�. Unlike
e�, it is preserved by input

contexts, because bound inputs do not involve substitutions. It is far from
being a congruence, however; in particular it is not preserved by parallel com-
position. (For example, for the processes P and Q considered above we have

u(x).P g� u(x).Q, but uy j u(x).P g� uy j u(x).Q.) For this reason, ground bisim-
ilarity is considered to be of little practical value, at least in the full calculus.
It does have theoretical interest, however; in particular we shall make use of
the property that it “captures” strong early congruence in the same sense that
e� does, namely that strong early congruence is the largest process congruence

included within it.
While several other bisimilarities and behavioural congruences exist for the

π-calculus, early congruence gains prominence by the fact that it coincides
with barbed congruence[28]. This congruence, whose formal definition we omit,
expresses in a fairly canonical manner the distinguishing power of an observer
expressed in the calculus itself.

The reaction semantics and the two transition semantics all agree, in the
following sense:

Proposition 6.3

(1) Structural congruence � is included in early bisimilarity
e�, and hence

also in ground bisimilarity
g�;

1Strong late bisimilarity, a relation very close to strong early bisimilarity, does not arise directly

from the late transition system; in matching an input P
x(y)��! P0 with another input Q

x(y)��! Q0 it
requires not only P0 and Q0 to be related, but also σP0 and σQ0 for every name substitution σ.

6.5 Subcalculi 99

(2) P �! P0 iff P
τ�!� P0 in either transition system;

These properties hold regardless of which axioms, among the three discussed
above, are included in defining structural congruence. �
6.5 Subcalculi

In the following chapters we shall model the π-calculus in bigraphs. We build
up the model in three stages, starting with a core calculus without summation
and replication, then adding summation, and last adding replication. To be
precise, the subcalculi we shall consider are the following:

• Finite π-calculus, or fπ for short, is obtained by omitting the replicated
input construct !x(y) from the syntax;

• Strict, finite π-calculus, or sfπ for short, is obtained by omitting both repli-
cated input and the summation construct M + N; in the absence of ‘+’ the
two-sorted syntax collapses to a single-sorted syntax:

P, Q ::= xy.P
�� x(z).P �� P jQ

�� νz P
�� 0 .

The small succession of calculi—from sfπ through fπ to full π—serves rather
well to demonstrate progressively more advanced features of bigraphical reac-
tive systems.

We shall also model the asynchronous π-calculus, which we shall call aπ for
short. This arises from a different syntactical restriction, namely that only 0 can
be prefixed by output and that outputs cannot occur in sums. To be precise, the
syntax is

P, Q ::= M
�� xy

�� P jQ
�� νz P

�� !x(z).P (processes)

M, N ::= x(z).P �� M + N
�� 0 (sums) .

In this calculus, outputs can only be combined with other processes by parallel
composition; therefore a process cannot “feel” when its outputs are received,
neither by the release of a prefixed subprocess nor by the preemption of alter-
natives in a sum. This is the sense in which the calculus is asynchronous.

Remarkably, all the usual variants of strong bisimilarity (including early
and ground) coincide on aπ and form a process congruence. However, the pic-
ture is complicated in this calculus by the existence of asynchronous bisimilar-

ity
a�; it is defined like early bisimilarity, except in an asynchronous bisimulationS the matching condition for input transitions of a pair (P, Q) 2 S is weakened

as follows:

P
x(z)��! P0 implies

either Q
x(z)��! Q0 for some Q0 such that (P0, Q0) 2 S

or Q
τ�! Q0 for some Q0 such that (P0, Q0 j xz) 2 S .

100 6 The π-Calculus

Thus, compared to the usual definition, there is an additional way of matching
an input transition; it applies when the input reinstates the consumed output
particle immediately, and in that case allows the input to be matched by a silent
transition. The motivation is that an asynchronous observer, unable to observe
the input directly, cannot tell the difference between the two behaviours. Here
are some examples of processes that are asynchronous bisimilar, but not early
bisimilar:

x(z).xz + τ
a� τ

!x(z).xz j !τ
a� !τ ,

where τ denotes any process that performs a single τ-transition, e.g. νw (w jw).
Asynchronous bisimilarity is also a congruence in aπ, and it enjoys the

same status that early congruence does in the other calculi, namely that it co-
incides with the “native” barbed congruence (i.e. the one based on contexts
expressible in the calculus itself).

Chapter 7

Modelling the π-Calculus

We are now ready to show how the π-calculus can be represented as a bigraph-
ical reactive system. In the first three sections of this chapter, we build the
model of the full calculus in stages, tackling first the subcalculi sfπ and fπ; this
allows a gradual introduction of the features needed to handle summation and
replication. Finally, in the last section we model the asynchronous calculus, aπ.

7.1 The core calculus

We start by modelling the strict, finite π-calculus, sfπ. We can view this as a
core π-calculus, consisting only of the two “dynamic ingredients” (input and
output) and the two “structural ingredients” (parallel composition and restric-
tion). Structure is orthogonal to dynamics, in the sense that reaction preserves,
and is preserved by, parallel composition and restriction. Thus, we can view
the structural ingredients as providing the medium in which the dynamic in-
gredients perform.

As might be expected from these observations, we shall introduce controls
to represent input and output, and we shall use place and link structure to rep-
resent parallel composition and restriction. The calculus employs binding (in
the input prefix), so we shall use binding bigraphs. (Restriction is also a binder
in the calculus, but—for now—we shall model restriction without using bind-
ing.) The calculus also has activeness, because reaction is allowed only at “top-
level”, not underneath prefixes. Accordingly, we shall work in bigraphs with
activeness, and declare the controls for both input and output to be passive.

Formally, we define our bigraphical reactive system as

BBGsfπ = BBG(Σsfπ,Rsfπ) ,

where the signature Σsfπ is given by the following definition. (We give the
reaction rule set Rsfπ later.)

102 7 Modelling the π-Calculus

z y x usendP

sendQ getsendR

sendS getT

getU

xy.P j xz.Q j νw (x(v).(uv.R j wv.S) j u(v).T j w(v).U)
Figure 7.1 Example of a bigraph for a π-calculus process

Definition 7.1 The signature Σsfπ is binding, trivially sorted, and has active-
ness; its controls are send : 0! 2 (passive)get : 1! 1 (passive) �

Figure 7.1 shows an example of how we shall model a process in sfπ. The
meta-parameters P, Q, . . . represent sub-bigraphs for the identically named
sub-process terms. Thus, prefixing is modelled by nesting, that is, by place
structure. The connectivity that the calculus expresses with names is handled
in the bigraph by links; open names in the process correspond to open links (=
outer names) in the bigraph, and the restricted name w is represented by the
closed link connecting the send-node containing S with the get-node containing
U. Note also that each of the two kinds of node we employ has two ports; we
refer to one as the channel port and the other as the datum port. In a send-node
both ports are non-binding; we shall use the convention of drawing the channel
port on the curved side of a send-node, and the datum port on the flat side.
In a get-node the channel port is non-binding, and the datum port binding.
We draw both on the flat side of the node; they can be distinguished by the
small circle that indicates a binding port—hence, in this case, the datum port.
The scope rule dictates that the link of the datum port may not cross the node
boundary; in other words, all its remaining points must lie inside the node.

In the process expression in Figure 7.1, the exact placement of the restric-
tion νw is somewhat arbitrary: assuming that w has no other occurrences in
the expression than those displayed, we could have moved the sub-process
term u(v).T outside the scope of the restriction, or xy.P and xz.Q inside, with-
out changing the expression up to structural congruence. Similar considera-
tions apply to the order of parallel components. The bigraph does not have
this ambiguity; the representation of a process does not depend on the kind of
syntactical detail that structural congruence factors out. We make this claim

7.1 The core calculus 103

y x

sendsendxy : 1! (xy)
x

getzgetx(z) : (z)! (x)
Figure 7.2 Ions in BBGsfπ

precise in the structural correspondence theorem below, where we show that
the bigraph model recovers (a particular version of) structural congruence.

In modelling processes we shall use bigraphs which—like the one in the
example above—are prime and local. In other words, we shall use the homsets
of the form (ǫ, (X)) in BBG(Σsfπ). We shall refer to bigraphs in these homsets
as process bigraphs, and we shall use p, q, r, s, t to range over them.

Figure 7.2 shows ions built from the two controls of Σsfπ. As shown, the
ion sendxy has the channel port linked to x and the datum port to y, and the iongetx(z) has the datum port linked to the inner name z.

In the following lemma, recall from Section 4.9 that (/Z) p denotes closure
of the local names Z in p.

Lemma 7.2 In BBG(Σsfπ) every bigraph with outer face (X) belonging to one
of the following classes can be expressed in the forms given:

Process bigraphs: (/Z) p p : (XZ) open

Open process bigraphs: µ1 j � � � j µn n � 0, each µi : (X) open

Open molecules:

� sendxy p p : (X) opengetx(z) p p : (Xz) open .

Moreover, these forms are unique up to the choice of fresh names Z, z and the
ordering of the µi.

Proof For a process bigraph q, we form Z and p such that q = (/Z) p as fol-
lows: choose Z consisting of fresh names in bijection with the edges of q and
form p from q by adding Z to the local names of its outer face, mapping each
point in each edge e instead to the corresponding name in Z, and removing all
free edges. It is routine to verify that (/Z) p = (/Z) p0 implies p = p0, from
which the uniqueness property follows.

For an open process bigraph p : (X), the molecules µ1, . . . , µn such that
p = µ1 j � � � j µn can be formed as follows: decompose the place graph of p
uniquely into factors each consisting of a child node of the root together with
all its descendants; then equip each factor with names (X) and a link map that
maps each port exactly as in p.

The forms of an open molecule are immediate, as Σsfπ allows only send- andget-nodes. �

104 7 Modelling the π-Calculus

We are now ready to give the translation of processes into bigraphs:

Definition 7.3 The translation S(X)[[�℄℄ maps every process P of sfπ such that

fn(P) � X into the homset (ǫ, (X)) of BBG(Σsfπ) as follows:S(X)[[xy.P℄℄ = sendxy S(X)[[P℄℄S(X)[[x(z).P℄℄ = getx(w) S(Xw)[[fw/zgP℄℄S(X)[[P jQ℄℄ = S(X)[[P℄℄ j S(X)[[Q℄℄S(X)[[νz P℄℄ = (/w) S(Xw)[[fw/zgP℄℄S(X)[[0℄℄ = (X) . �
As anticipated, output and input are modelled directly with the two controls.
Parallel composition ‘j’ is modelled as prime product ‘j’ (which justifies over-
loading the symbol), and restriction is modelled as name closure. The nil pro-
cess is modelled by (X); recall from Section 4.9 that this denotes the empty
ground prime with names X that are all local. In the translation of binders we
alpha-convert to a fresh name w in order to ensure that the resulting bigraph
has the required names.

We now prove that our model uses all bigraphs in the homsets (ǫ, (X)),
and that it recovers �0,ν, i.e. the version of structural congruence that allows
restrictions to be pushed past prefixes.

Theorem 7.4 (structural correspondence)

(1) The map S(X)[[�℄℄ is surjective onto the homset (ǫ, (X)) of BBG(Σsfπ);
(2) P �0,ν Q iff S(X)[[P℄℄ = S(X)[[Q℄℄.

Proof We start by considering the implication ()) of (2). Since S(X)[[�℄℄ is com-
positional it suffices to prove each axiom of structural congruence separately.
They are all straightforward; for example, the axiom P j Q � Q j P follows by
showing p j q = q j p, which is immediate, since the prime product ‘j’ merges
regions and is defined in terms of union on nodes, edges, and names.

To prove (1) and (2)(() we define a reverse translation from process bi-
graphs into sfπ. More precisely, we use the unique forms of Lemma 7.2 and

define translations bS[[�℄℄, bS1[[�℄℄ and bS2[[�℄℄ by mutual recursion from process
bigraphs, open process bigraphs, and open molecules, respectively, as follows:bS[[(/Z) p℄℄ = νZ bS1[[p℄℄ (p open)bS1[[µ1 j � � � j µn℄℄ = bS2[[µ1℄℄ j � � � j bS2[[µ1℄℄bS2[[sendxy p℄℄ = xy.bS1[[p℄℄bS2[[getx(z) p℄℄ = x(z).bS1[[p℄℄ .

It is routine to verify thatS(X)[[bS[[p℄℄℄℄ = p and bS[[S(X)[[P℄℄℄℄ �0,ν P

7.1 The core calculus 105

y x

send0 get1
z

R = sendxy j getx(z) �! y x

0

1
z

R0 = (id1 j id1 / y/z) / x

Figure 7.3 The communication rule for strict, finite π-calculus

for all process bigraphs p and processes P. Clause (1) of the theorem follows
from the first identity, and (2)(() follows from the other identity together with
(2)()). �

Having established structural correspondence we now turn to the dynam-
ics of our model. We shall represent the dynamics using a single parametric
reaction rule, cf. Definition 5.5. Recall from page 67 that /, as used below, de-
notes insertion of a wiring.

Definition 7.5 The rule set Rsfπ consists of the single parametric reaction rule(R, R0, η), where the instantiation η is the identity, and

R = sendxy j getx(z)
R0 = (id1 j id1 / y/z) / x ,

both with inner face h1, (z)i and outer face (xy). �
The rule is illustrated in Figure 7.3.

To establish dynamic correspondence, we start by characterizing reaction in
BBGsfπ. This is made easy by the fact that there are no active controls, and thus
reaction is preserved only by contexts that retain the redex at the outermost
level.

Lemma 7.6 p �! p0 in BBGsfπ iff p and p0 are of the forms

p = (/Z) (sendxy q j getx(z) s j t)
p0 = (/Z) (q j (y/yz) s j t) . �

Using this, it is straightforward to establish that the model recovers reaction
exactly:

Theorem 7.7 (dynamic correspondence) P �! P0 iff S(X)[[P℄℄ �! S(X)[[P0℄℄.
Proof As we saw in Section 6 we have P �! P0 iff P and P0 have �0,ν-normal
forms as follows, where by alpha-conversion we can assume (Z ℄ fzg) \ X =

106 7 Modelling the π-Calculus

∅:

P �0,ν νZ (xy.Q j x(z).S j T)
P0 �0,ν νZ (Q j fy/zgS j T) .

By Theorem 7.4 this is equivalent toS(X)[[P℄℄ = (/Z) (sendxy S(XZ)[[Q℄℄ j getx(z) S(XZz)[[S℄℄ j S(XZ)[[T℄℄S(X)[[P0℄℄ = (/Z) (S(XZ)[[Q℄℄ j S(XZ)[[fy/zgS℄℄ j S(XZ)[[T℄℄)= (/Z) (S(XZ)[[Q℄℄ j (y/yz) S(XZz)[[S℄℄ j S(XZ)[[T℄℄) .

By the preceding lemma these equations hold iff S(X)[[P℄℄ �! S(X)[[P0℄℄. �
This correspondence result, together with the structural correspondence

theorem (Theorem 7.4), shows that BBGsfπ provides an accurate model of the
strict, finite π-calculus viewed as a reactive system.

7.2 Summation

The reaction relation we defined for BBGsfπ is linear, because reaction in the
core calculus neither discards nor replicates subterms. In fπ reaction is not
linear; its reaction rule(xy.P + M) j (x(z).Q + N) �! P j fy/zgQ

discards the (arbitrarily large) subterms M and N. To model this behaviour in
a bigraphical reactive system we need a reaction rule that discards some parts
of its parameter, and we need a way to identify exactly which parts to discard.

In the calculus this is of course what sums do; they are, essentially, collec-
tions of prefixed processes, and when an input-prefixed process and an output-
prefixed process perform a reaction step it is exactly all the other summands in
their respective sums that are discarded. In the bigraph model each summand
will be a send- or a get-node (together with its descendants), so to be able to
discard the right parts of the parameter in a reaction step we need to group the
nodes that belong to the same sum. An obvious (and, as we shall see, perfectly
satisfactory) way of doing this is to enclose them in a node. We therefore intro-
duce a new control, called alt, for this purpose. An alt-node should act simply
as a container for the summands and therefore needs no linking; accordingly,
we shall give alt the arity 0. Figure 7.4 shows an example of how we shall
model a process with summation using alt-nodes.

Having introduced alt-nodes to represent sums we can model the commu-
nication rule as shown in Figure 7.5. Note how in each sum the arbitrarily
many summands being discarded are represented neatly as a single region of
the parameter.

However, alt-nodes allow us to combine nodes in ways that are undesir-
able, either because they do not correspond to processes, or because they create
ambiguities. Figure 7.6 gives an example, where two things are wrong:

7.2 Summation 107

x y z

altsendP

alt
sendQ

getR

sendS altgetT

getU

νw (yx.P j (zy.Q + x(v).R + wy.S) j (z(v).T + w(v).U))
Figure 7.4 Example of a bigraph for a process with summation

y x

altsend0

1 altget
2

z

3

�!
y x

0

2
z

Figure 7.5 The communication rule for π-calculus with summa-
tion

108 7 Modelling the π-Calculus

send
altsend altalt

get
altget

Figure 7.6 Example of an ill-formed bigraph with summation

• It has two alt-nodes directly inside another alt-node. This is not mean-
ingful, since sums in the calculus are flat—a sum cannot itself act as a
summand.

• It has a send-node and an alt-node at the same level. This might be mean-
ingful if the send-node is interpreted as a unary sum, but in that case it
is ambiguous whether to represent a unary sum like this or with an en-
closing alt-node. The reaction rule, as shown in Figure 7.5, assumes the
latter; it does not allow an alt-less send-node to react.

The solution is place-sorting. It allows us to dictate that the place-hierarchy
should alternate strictly between levels with only alt-nodes and levels with
only send- and get-nodes. Such a formation discipline avoids the kind of prob-
lems pointed out in the example, and it corresponds exactly to the two sorts
(processes and sums) in the syntax of the calculus.

Thus, we shall use a sorted bigraphical reactive system

BBGfπ = BBG(Σfπ,Rfπ) .

Its structure is determined by the signature Σfπ :

Definition 7.8 The signature Σfπ is binding and has activeness; its controls aresend : 0! 2 (passive)get : 1! 1 (passive)alt : 0! 0 (passive) .

It has sorts pr and sum. The sorting condition stipulates the following:

• A pr-root or a send- or get-node may only have pr-sites and alt-nodes
among its children; it may not be barren.

• A sum-root or an alt-node may only have sum-sites and send- and get-
nodes among its children. �

7.2 Summation 109

y x

sendsendxy : pr! sum(xy)
x

getzgetx(z) : pr(z)! sum(x) altalt : sum! pr
Figure 7.7 Ions in BBGfπ

Figure 7.7 shows ions for the controls of Σfπ. The two first are just as
for Σsfπ, except their interfaces are now equipped with sorts. The new one,alt, contains a sum-site and has a pr-region. Sorts are not explicitly indicated in
the pictures, but they are suggested by slight differences in the shapes used for
regions and sites.

In BBG(Σfπ) we shall reserve the term process bigraph for bigraphs in the
homset (ǫ, pr(X)); the bigraphs in (ǫ, sum(X)) we shall call sum bigraphs. We
separate the molecules into process molecules and sum molecules, according to
sort.

Lemma 7.9 In BBG(Σfπ) every bigraph with names (X) belonging to one of
the following classes can be expressed in the forms given:

Process bigraphs: (/Z) p p : pr(XZ) open

Open process bigraphs: µ1 j � � � j µn n > 0, each µi : pr(X) open

Open sum bigraphs: µ1 j � � � j µn n � 0, each µi : sum(X) open

Open process molecules: altm m : sum(X) open

Open sum molecules:

� sendxy p p : pr(X) opengetx(z) p p : pr(Xz) open .

Moreover, these forms are unique up to the choice of fresh names Z, z and the
ordering of the µi.

Proof A straightforward adaptation of the proof of Lemma 7.2 �
Definition 7.10 The translations Fpr(X)[[P℄℄ and Fsum(X)[[M℄℄ into the homsets

110 7 Modelling the π-Calculus(ǫ, pr(X)) and (ǫ, sum(X)) of BBG(Σfπ) are defined by mutual recursion:Fpr(X)[[M℄℄ = alt Fsum(X)[[M℄℄Fpr(X)[[P j Q℄℄ = Fpr(X)[[P℄℄ j Fpr(X)[[Q℄℄Fpr(X)[[νz P℄℄ = (/w) Fpr(Xw)[[fw/zgP℄℄Fsum(X)[[xy.P℄℄ = sendxy Fpr(X)[[P℄℄Fsum(X)[[x(z).P℄℄ = getx(w) Fpr(Xw)[[fw/zgP℄℄Fsum(X)[[M + N℄℄ = Fsum(X)[[M℄℄ j Fsum(X)[[N℄℄Fsum(X)[[0℄℄ = sum(X) . �
Note that we model the empty sum 0 as an empty bigraph of sort sum, while 0
as a process is modelled as a bigraph with a single, barren alt-node. We discuss
these choices below.

We now prove the structural correspondence theorem. It is similar to that
for sfπ and tells us that (1) the sorting discipline ensures that our process trans-
lation is still surjective, i.e. that there are no ground, prime, local bigraphs that
do not make sense as a process; and (2) our model validates �ν, but not �0,ν,
since it fails the structural congruence axiom (�0) that allows 0 to be removed
from a parallel composition. The reason for the latter is that the process 0 is
now modelled with a non-empty bigraph.

Theorem 7.11 (structural correspondence)

(1) The map Fpr(X)[[�℄℄ is surjective onto the homset (ǫ, pr(X)) of BBG(Σfπ),
and the map Fsum(X)[[�℄℄ is surjective onto (ǫ, sum(X));

(2) P �ν Q iff Fpr(X)[[P℄℄ = Fpr(X)[[Q℄℄.
Proof The proof proceeds as for Theorem 7.4, except the reverse translation
now is bF[[(/Z) p℄℄ = νZ bF1[[p℄℄ (p open)bF1[[µ1 j � � � j µn℄℄ = bF3[[µ1℄℄ j � � � j bF3[[µn℄℄bF2[[µ1 j � � � j µn℄℄ = bF3[[µ1℄℄ + � � �+ bF3[[µn℄℄bF3[[altm℄℄ = bF2[[m℄℄bF3[[sendxy p℄℄ = xy.bF1[[p℄℄bF3[[getx(z) p℄℄ = x(z).bF1[[p℄℄ .

Again the result follows by verifying that the two translations are mutually
inverse: Fpr(X)[[bF[[p℄℄℄℄ = p and bF[[Fpr(X)[[P℄℄℄℄ �ν P . �

7.3 Replication 111

It is tempting to change the process translation to make Fpr(X)[[0℄℄ the empty
bigraph in order to recover the axiom (�0). To avoid ambiguity we would then
have to disallow barren sum-roots and barren alt-nodes, and we would thus be
prevented from modelling empty sums. Such a change would, in fact, cor-
respond exactly to changing the syntax of the calculus in such a way that 0
occurred at the level of processes rather than the level of sums. The result-
ing syntax would be perfectly acceptable from the point of view that it would
generate the same terms, up to structural congruence. We avoid this solution,
however, because empty sums are often convenient. Most notably, without
empty sums the reaction rule of the calculus, in the form that we have stated
it, would not permit a unary sum to react, as this would require either of the
sums M and N in the rule to be instantiated to 0. It would seem necessary,
then, to add reaction rules with one or both of these sums absent, both in the
calculus and the model. Such a duplication of rules would be a nuisance and
complicate analysis considerably.

We now give the formal definition ofRfπ that consists of the single reaction
rule already presented in Figure 7.5.

Definition 7.12 The rule set Rfπ consists of the single parametric reaction rule(R, R0, η), where

R = alt (sendxy j idhsumi) j alt (getx(z) j idhsumi) : hpr, sum, pr(z), sumi! pr(xy)
R0 = (idhpri j idhpri / y/z) / x : hpr, pr(z)i! pr(xy)

and the instantiation η is given by

j η̄(j) ηj

0 0 idpr
1 2 idpr(z) �

Note how non-linearity of the reaction rule is represented as non-surjectivity
of the instantiation. The instantiation is still injective, and hence reaction in
BBGfπ is affine.

The characterization of reaction and the dynamic correspondence theorem
are straightforward extensions of the corresponding results from the previous
section.

Lemma 7.13 p �! p0 in BBGfπ iff p and p0 are of the forms

p = (/Z) (alt (sendxy q jm) j alt (getx(z) s j n) j g)
p0 = (/Z) (q j (y/yz) s j g) . �

Theorem 7.14 (dynamic correspondence) P �! P0 iff Fpr(X)[[P℄℄ �! Fpr(X)[[P0℄℄.�

112 7 Modelling the π-Calculus

y x

altsend0

1

!get2
z �!

y x

0

2
w

!get2
z

Figure 7.8 The replicating communication rule for π-calculus

7.3 Replication

We now complete the model of the π-calculus with synchronous communica-
tion by adding replicated input to the structure and the replicating communi-
cation rule to the dynamics. Essentially, we need a new control, which we shall
call !get, and a new reaction rule of the form shown in Figure 7.8. It is different
from the non-replicating rule in Figure 7.5 in two ways:

• First, the input itself is not consumed in the reaction step; instead an
extra copy of all its children is created. This difference in dynamics is, of
course, the whole point of the extension from fπ to full π.

• The second difference is structural: the syntax of our calculus does not al-
low replicated inputs to occur as summands, and therefore the !get-node
occurs in a pr-position, unlike the get-node that occurs in sum-position.

Thus, the required extension to the model seems quite straightforward. In
a replicating bigraphical reactive system, however, we must be careful with
closed links. Figure 7.9 illustrates the problem. The nodes inside the !get-node
share a closed link, and the question is what should happen when they are
copied: Do we want the link to be shared between the copies, as in the upper
reaction, or do we want each copy to have its own private link, as in the lower
reaction? This question is equivalent to asking which of the following two
processes should be represented by the bigraph on the left in the figure:

P = xy.R j νz !x(u).(zu.S j z(v).T)
Q = xy.R j !x(u).νz (zu.S j z(v).T) ;

the distinction is important, as P and Q indeed have different reactions in the
π-calculus:

P �! P0 = R j νz
�
zy.S j z(v).T j !x(u).(zu.S j z(v).T)�

Q �! Q0 = R j νw (wy.S j w(v).T) j νz
�
!x(u).(zu.S j z(v).T)� .

7.3 Replication 113

y x

alt

send

R

!get

send

S

get

T

y x

R

!get

send

S

get

T

send

S

get

T

y x

R

!get

send

S

get

T

send

S

get

T

?

Figure 7.9 The ambiguity of replicating closed links

y x

alt

send

R

res

!get

send

S

get

T

y x

res

!get

send

S

get

T

send

S

get

T

R

y x

alt

send

R

!get

send

S

get

T

res

y x

!get

send

S

get

T

res

send

S

get

T

res

R

Figure 7.10 Resolving the ambiguity with restriction-nodes

114 7 Modelling the π-Calculus

The results P0 and Q0 correspond to the two bigraphs on the right in the figure.
Of course, our definition of parameterized reaction (Definition 5.5) resolves

the apparent ambiguity, because it requires parameters to be discrete and thus,
in particular, disallows name closures in the parameter. Name closures are
therefore never copied, and as a result the bigraph in the figure will, in fact,
behave as P, not as Q; so in the figure it is the upper reaction that will be
chosen. One way to interpret this is to think of a name closure as an entity that
has no definite position in a bigraph but rather “floats” to the outermost level.

Nevertheless, the problem remains that our model must allow us to rep-
resent also processes like Q, and we therefore need to refine the modelling of
restriction. The solution we shall adopt is to model restriction with a node in-
stead of name closure. This has the desired effect of “fixing” each restriction in
a definite position relative to other nodes.

Figure 7.10 shows how P and Q are now modelled as distinct bigraphs; P
corresponds to the upper bigraph on the left, and Q corresponds to the lower
bigraph on the left. The single port of the res-node is outward-binding; this en-
sures that the scope of the restriction does not extend outside the surrounding
node—the !get-node in the case of Q. The purpose of a res-node is simply to
provide the binding port; it should never be the parent of other nodes, so we
declare it to be atomic. Furthermore, we now have no use for name closure, so
in order to avoid ambiguity we specify the open subcategory for our model:

BBGπ = BBGo(Σπ,Rπ) .

Definition 7.15 The signature Σπ is binding and has activeness and atomicity;
its controls are send : 0! 2 (passive)get : 1! 1 (passive)alt : 0! 0 (passive)

!get : 1! 1 (passive)res : (1) (atomic) .

It has sorts pr and sum. The sorting condition stipulates the following:

• A pr-root or a send-, get- or !get-node may only have pr-sites and alt-, !get-
and res-nodes among its children; it may not be barren.

• A sum-root or an alt-node may only have sum-sites and send- and get-
nodes among its children. �

Figure 7.11 shows on the left an ion for the control !get. The other new
control, res, is not ionic, as it has outward binding; thus, the bigraph res(z) on
the right is not an ion. However, in analogy with our notational convention for
ions, we shall write res(z) p as an abbreviation of (res(z) / idZ) Æ p. Moreover, for
Z = fz1, . . . , zng we shall use res(Z) as an abbreviation of res(z1) � � � res(zn); this
is unambiguous, since the restriction nodes are unordered.

In BBGo(Σπ) we again take the process bigraphs and sum bigraphs to be
the local primes with sorts pr and sum, respectively. We shall call a bigraph

7.3 Replication 115

x

!getz

!getx(z) : pr(z)! sum(x)
res

zres(z) : pr(z)! pr
Figure 7.11 Additional elementary bigraphs in BBGπ

unrestricted if it has no restriction nodes at the outer level, that is, occurring as
a child of the root.

Lemma 7.16 In BBGo(Σπ) every bigraph with names (X) belonging to one of
the following classes can be expressed in the forms given:

Process bigraphs: res(Z) p p : pr(XZ) unrestricted

Unrestricted process bigraphs: µ1 j � � � j µn n > 0, each µi : pr(X)
Sum bigraphs: µ1 j � � � j µn n � 0, each µi : sum(X)
Process molecules:

�altm m : sum(X)
!getx(z) p p : pr(Xz)

Sum molecules:

� sendxy p p : pr(X) unrestrictedgetx(z) p p : pr(Xz) unrestricted .

Moreover, these forms are unique up to the choice of fresh names Z, z and the
ordering of the µi.

Proof A straightforward adaptation of the proof of Lemma 7.2 �
Definition 7.17 The translation Ppr(X)[[P℄℄ into the homset (ǫ, pr(X)) of

BBGo(Σπ) and the translation Psum(X)[[M℄℄ into the homset (ǫ, sum(X)) are de-
fined by mutual recursion:Ppr(X)[[M℄℄ = alt Psum(X)[[M℄℄Ppr(X)[[P jQ℄℄ = Ppr(X)[[P℄℄ j Ppr(X)[[Q℄℄Ppr(X)[[νz P℄℄ = res(w) Ppr(Xw)[[fw/zgP℄℄Ppr(X)[[!x(z).P℄℄ = !getx(w) Ppr(Xw)[[fw/zgP℄℄Psum(X)[[xy.P℄℄ = sendxy Ppr(X)[[P℄℄Psum(X)[[x(z).P℄℄ = getx(w) Ppr(Xw)[[fw/zgP℄℄Psum(X)[[M + N℄℄ = Psum(X)[[M℄℄ j Psum(X)[[N℄℄Psum(X)[[0℄℄ = sum(X) . �

116 7 Modelling the π-Calculus

Two points are worth noting in the structural correspondence theorem be-
low. First, because we are now using the open subcategory we still have surjec-
tivity. Second, the “non-floating” representation of restriction has a side-effect:
It means that the structural congruence axiom (ν-π) is no longer validated; this
is not surprising as this axiom exactly allows a restriction to float past prefixes.
We also lose the axiom (�ν) that allows the removal of a restriction with empty
scope; such a restriction will now be represented as an isolated res-node.

Theorem 7.18 (structural correspondence)

(1) The map Ppr(X)[[�℄℄ is surjective onto the homset (ǫ, pr(X)) of BBGo(Σπ),
and the map Psum(X)[[�℄℄ is surjective onto (ǫ, sum(X));

(2) P � Q iff Ppr(X)[[P℄℄ = Ppr(X)[[Q℄℄.
Proof The proof proceeds as for Theorem 7.4, using the following reverse trans-
lation: bP[[res(Z) p℄℄ = νZ bP1[[p℄℄ (p unrestricted)bP1[[µ1 j � � � j µn℄℄ = bP3[[µ1℄℄ j � � � j bP3[[µn℄℄bP2[[µ1 j � � � j µn℄℄ = bP3[[µ1℄℄ + � � �+ bP3[[µn℄℄bP3[[altm℄℄ = bP2[[m℄℄bP3[[!getx(z) p℄℄ = !x(z).bP[[p℄℄bP3[[sendxy p℄℄ = xy.bP[[p℄℄bP3[[getx(z) p℄℄ = x(z).bP[[p℄℄ .

Again the result follows by verifying that the two translations are mutually
inverse: Ppr(X)[[bP[[p℄℄℄℄ = p and bP[[Ppr(X)[[P℄℄℄℄ � P . �

We have already discussed the additional reaction rule: the formal defini-
tion is as follows:

Definition 7.19 The rule set Rπ consists of the single rule in Rfπ and the ad-
ditional parametric reaction rule (R, R0, η), where

R = alt (sendxy j idhsumi) j !getx(z) : hpr, sum, pr(z)i! hpr(xy)i
R0 = idhpri j idhpri / y/w j !getx(z) : hpr, pr(w), pr(z)i! hpr(xy)i

and the instantiation η is given by

j η̄(j) ηj

0 0 idhpri
1 2 idhpri / w/z

2 2 idhpr(z)i �

7.4 Asynchrony 117

Note how the non-affinity of the new reaction rule is represented as a non-
injective instantiation.

Lemma 7.20 p �! p0 in BBGπ iff p and p0 are of the forms

p = res(Z) (alt (sendxy q jm) j alt (getx(z) s j n) j g)
p0 = res(Z) (q j (y/yz) s j g)

or of the forms

p = res(Z) (alt (sendxy q jm) j !getx(z) s j g)
p0 = res(Z) (q j (y/yz) s j !getx(z) s j g) . �

Dynamic correspondence is proved along the same lines as the preceding
dynamic correspondence theorems.

Theorem 7.21 (dynamic correspondence) P �! P0 iff Ppr(X)[[P℄℄ �! Ppr(X)[[P0℄℄.�
7.4 Asynchrony

The last version of π-calculus we shall model is aπ, in which communication
is made asynchronous by restricting outputs to the form xy.0 (abbreviated xy)
and by disallowing outputs to appear in sums. The first restriction is straight-
forwardly represented in the BRS model by declaring the send-control atomic.
The second restriction requires an obvious change to the sorting condition. The
reaction rules, depicted in Figure 7.12, reflect these restrictions, but are other-
wise as before.

The definitions and correspondence results are similar to those in the pre-
ceding section. For the model of aπ we define

BBGaπ = BBGo(Σaπ,Raπ) .

Definition 7.22 The signature Σaπ is binding and has activeness and atomicity;
its controls are send : 0! 2 (atomic)get : 1! 1 (passive)alt : 0! 0 (passive)

!get : 1! 1 (passive)res : (1) (atomic) .

It has sorts pr and sum. The sorting condition stipulates the following:

• A pr-root or a get- or !get-node may only have pr-sites and alt-, send-, !get-
and res-nodes as children; it may not be barren.

• A sum-root or an alt-node may only have sum-sites and get-nodes as chil-
dren. �

118 7 Modelling the π-Calculus

y xsend
altget
0

z

1

�!
y x

0
z

y xsend
!get0

z
�! y x

0
w

!get0
z

Figure 7.12 Reaction rules for asynchronous π-calculus

y xsendsendxy : ǫ! (xy)
Figure 7.13 The atom for the control send

7.4 Asynchrony 119

Figure 7.13 shows the atom that arises from the atomic control send. (There
is no longer an ion for this control.)

In BBGo(Σaπ) we again take the process bigraphs and sum bigraphs to be
the local primes with sorts pr and sum, respectively.

Lemma 7.23 In BBGo(Σaπ) every bigraph with outer face (X) belonging to one
of the following classes can be expressed in the forms given:

Process bigraphs: res(Z) p p : pr(XZ) unrestricted

Unrestricted process bigraphs: µ1 j � � � j µn n > 0, each µi : pr(X)
Sum bigraphs: µ1 j � � � j µn n � 0, each µi : sum(X)
Process molecules:

8<:altm m : sum(X)sendxy

!getx(z) p p : pr(Xz)
Sum molecules: getx(z) p p : pr(Xz) unrestricted .

Moreover, these forms are unique up to the choice of fresh names Z, z and the
ordering of the µi.

Proof A straightforward adaptation of the proof of Lemma 7.2 �
Definition 7.24 The translation Apr(X)[[P℄℄ into the homset (ǫ, pr(X)) of

BBGo(Σaπ) and the translation Asum(X)[[M℄℄ into the homset (ǫ, sum(X)) are
defined by mutual recursion:Apr(X)[[M℄℄ = alt Asum(X)[[M℄℄Apr(X)[[P jQ℄℄ = Apr(X)[[P℄℄ j Apr(X)[[Q℄℄Apr(X)[[νz P℄℄ = res(w) Apr(Xw)[[fw/zgP℄℄Apr(X)[[xy℄℄ = sendxyApr(X)[[!x(z).P℄℄ = !getx(w) Apr(Xw)[[fw/zgP℄℄Asum(X)[[x(z).P℄℄ = getx(w) Apr(Xw)[[fw/zgP℄℄Asum(X)[[M + N℄℄ = Asum(X)[[M℄℄ j Asum(X)[[N℄℄Asum(X)[[0℄℄ = sum(X) . �
Theorem 7.25 (structural correspondence)

(1) The map Apr(X)[[�℄℄ is surjective onto the homset (ǫ, pr(X)) of BBGo(Σaπ),
and the map Asum(X)[[�℄℄ is surjective onto (ǫ, sum(X));

(2) P � Q iff Apr(X)[[P℄℄ = Apr(X)[[Q℄℄.

120 7 Modelling the π-Calculus

Proof The proof proceeds as for Theorem 7.4, using the following reverse trans-
lation: bA[[res(Z) p℄℄ = νZ bA1[[p℄℄ (p unrestricted)bA1[[µ1 j � � � j µn℄℄ = bA3[[µ1℄℄ j � � � j bA3[[µn℄℄bA2[[µ1 j � � � j µn℄℄ = bA3[[µ1℄℄ + � � �+ bA3[[µn℄℄bA3[[altm℄℄ = bA2[[m℄℄bA3[[sendxy℄℄ = xybA3[[!getx(z) p℄℄ = !x(z).bA[[p℄℄bA3[[getx(z) p℄℄ = x(z).bA[[p℄℄ .

Again the result follows by verifying that the two translations are mutually
inverse: Apr(X)[[bA[[p℄℄℄℄ = p and bA[[Apr(X)[[P℄℄℄℄ � P . �
Definition 7.26 The rule set Raπ consists of the two rules (R1, R0

1, η1) and(R2, R0
2, η2), where

R1 = sendxy j alt (getx(z) j idhsumi) : hpr(z), sumi! hpr(xy)i
R0

1 = (idhpri / y/z) / x : hpr(z)i! hpr(xy)i
R2 = sendxy j !getx(z) : hpr(z)i! hpr(xy)i
R0

2 = idhpri / y/w j !getx(z) : hpr(w), pr(z)i! hpr(xy)i
and the instantiations η1 and η2 are given by

j η̄1(j) (η1)j

0 0 idhpr(z)i j η̄2(j) (η2)j

0 0 idhpri / w/z

1 0 idhpr(z)i �
Lemma 7.27 p �! p0 in BBGaπ iff p and p0 are of the forms

p = res(Z) (sendxy j alt (getx(z) s j n) j g)
p0 = res(Z) ((y/yz) s j g)

or of the forms

p = res(Z) (sendxy j !getx(z) s j g)
p0 = res(Z) ((y/yz) s j !getx(z) s j g) . �

7.4 Asynchrony 121

Theorem 7.28 (dynamic correspondence) P �! P0 iff Apr(X)[[P℄℄ �! Apr(X)[[P0℄℄.�
We have now completed the models of the full π-calculus both with syn-

chronous and asynchronous communication, and we have obtained satisfac-
tory structural and dynamic correspondence results. In the next chapter we
study the behavioural theory induced on the π-calculus by our model as an
instance of the theory developed in preceding chapters at the general level of
bigraphs. In particular we shall compare this induced theory to the existing,
well-developed behavioural theory of the π-calculus.

Chapter 8

Contextual Transitions
for the π-Calculus

In this chapter we study the contextual transition systems (and the associated
bisimilarities) that our bigraphical model induces on the π-calculus.

A typical use that we envisage for the behavioural theory of bigraphs is to
provide transition systems and behavioural congruences to systems that lack
such behavioural theory and whose behaviour is expressed purely by means of
a reaction relation. That, of course, is not the situation for the π-calculus. Here,
the behavioural theory induced by the bigraphical model will complement an
already existing, very well-developed behavioural theory that has been care-
fully tailored to the specific features of the calculus. We can hardly expect
the general bigraphical theory, when instantiated to the π-calculus, to provide
improvements on the existing theory. Rather, we can see the existing theory
as a standard by which the bigraphical theory can be measured. If we are
to have confidence in the bigraphical theory when applying it to other, less
well-explored systems, then we should hope at least to find it not substantially
inferior when we apply it here in familiar territory.

For notational convenience, we shall in this chapter often use π-calculus
syntax to denote process bigraphs. Thus, for example,

xy.p j νw !x(z).q abbreviates alt sendxy p j res(u) !getx(z) q

p j q j 0 abbreviates p j q j alt hsumi
m + n + 0 abbreviates alt (m j n) .

Note that an expression like the last one, which according to the π-calculus
syntax could be read as either a process or a sum, will always be taken to de-
note a process bigraph; hence the alt-node in the defining expression.

Note also that a single expression may denote different bigraphs in the
BRSs for different sub-calculi. For example, νw p denotes res(w) p in BBGπ

and BBGaπ, while in BBGsfπ and BBGfπ it denotes (/w) p.

8.1 Bisimilarity 123

8.1 Bisimilarity

We have modelled the π-calculus and its subcalculi in abstract BRSs with ac-
tiveness assignments, and therefore the behavioural equivalences of interest
will be the (strong and weak) active bisimilarities� and�. These are the bisim-
ilarities for the standard active transition systems AT and WAT (Definition 5.19),
defined by taking the lean support quotients of the standard active transition
systems in the corresponding s-category of concrete bigraphs.

We start by ascertaining that no ambiguity is created by the fact that we
translate each process into many homsets.

Proposition 8.1 Let X, Y � fn(P, Q). ThenPpr(X)[[P℄℄ � Ppr(X)[[Q℄℄ iff Ppr(Y)[[P℄℄ � Ppr(Y)[[Q℄℄ .

The analogous result holds also for �, and both results also hold for the sub-
calculi.

Proof Let W = fn(P, Q) and Z = X � W. Then Ppr(X)[[P℄℄ has the formPpr(W)[[P℄℄ /Z. Thus, the result will follow from proving the more general prop-
erty that p � q iff p / z � q / z for an arbitrary fresh z. This property is easily
established by providing suitable bisimulations (in one direction, bisimulation
up to bisimilarity), and using the IPO characterization of Section 4.5. �
It is then easy to establish that the two bisimilarities, being congruences for
BBGπ, are also process congruences:

Theorem 8.2 (process congruence) Strong and weak active bisimilarity � and� are process congruences; that is, for any process context C in π and any name
set Y � fn(C[P℄, C[Q℄),

if Ppr(X)[[P℄℄ � Ppr(X)[[Q℄℄ then Ppr(Y)[[C[P℄℄℄ � Ppr(Y)[[C[Q℄℄℄ ,

and similarly for � and for the subcalculi.

Proof From compositionality of the map Ppr(X)[[�℄℄ (Definition 7.17) it follows
that Ppr(Y)[[C[P℄℄℄ = D Æ Ppr(YZ)[[P℄℄Ppr(Y)[[C[Q℄℄℄ = D Æ Ppr(YZ)[[Q℄℄
for some context D and name set Z. By the preceding proposition Ppr(YZ)[[P℄℄ �Ppr(YZ)[[Q℄℄ iff Ppr(X)[[P℄℄ � Ppr(X)[[Q℄℄. The result then follows directly from
the general congruence result for active bisimilarity (Theorem 5.21). The same
argument applies to � and for the subcalculi. �

124 8 Contextual Transitions for the π-Calculus

8.2 Engaged transitions

For further study of the contextual bisimilarities we want to apply the theory of
engaged transitions developed in Section 5.4; this will help us obtain manage-
able transition systems. Let us first define the appropriate notion of engaged
transition:

Definition 8.3 In each of BBGsfπ, BBGfπ, BBGπ and BBGπ let EP denote the
transition system that consists of engaged transitions over process bigraphs. �
Lemma 8.4 The engaged transitions p

L�! p0 in BBGsfπ, BBGfπ, BBGπ and
BBGaπ are exactly those of the forms given by the cases in Table 8.1, up to a
bijection on the outer names of L and p0.
Proof The engaged transitions for BBGsfπ fall in three groups, according to
how the send- and get-node of the parametric redex are distributed between
the agent and the label. The case in which the agent has the send-node leads
to case (a1) of the table, and the case in which the agent has the get-node leads
to case (a2). When the agent has both nodes, there are two cases, according
to whether the nodes are linked within the agent or not, leading to cases (a3)
and (a4) respectively. In the latter, the label contains a non-injective substitu-
tion that provides the linking.

Cases (b1–b4) arise similarly for BBGfπ. The full calculus BBGπ has two
redexes (with and without replication), and thus, in addition to cases (b1–b4),
gives rise to four further cases, (b5–b8). The asynchronous calculus BBGaπ also
has two redexes; it gives rise to the analogous cases (c1–c8). �
Adequacy and definiteness of EP are immediate:

Lemma 8.5 In each of BBGsfπ, BBGfπ, BBGπ and BBGaπ

(1) EP is adequate; that is, �EP = � on process bigraphs;

(2) EP is definite; hence, �EP = � on process bigraphs.

Proof
(1) Each of the four BRSs is easily verified to be simple. The result is there-

fore obtained directly from Theorem 5.30, using clause (1) of the theorem for
BBGπ and BBGaπ, and using clause (2) for BBGsfπ and BBGfπ.

(2) In each BRS, every parametric redex has exactly two nodes at top-level,
i.e. as the children of the root. From this observation, it is easy to verify that
a transition is engaged iff its label L has exactly one node at top-level. Thus,
the engagedness of a transition depends only on its label, so the sub-transition
system of engaged transitions is definite. �
Thus, in order to prove that process bigraphs p and q are active bisimilar it
suffices to establish an engaged bisimulation (i.e. bisimulations for engaged
transitions).

8.2 Engaged transitions 125

Case p L p′

(a1) νZ (xy.q | g) (x(z).s ⊳ id) ⊳ idx νZ (q | (y/z) s | g)

(a2) νZ (x(z).s | g) (xy.q ⊳ id) ⊳ idx νZ (q | (y/z) s | g)

(a3) νZ (xy.q | x(z).s | g) id νZ (q | (y/yz) s | g)

(a4) νZ (xy.q | u(z).s | g) id ⊳ x/xu (x/xu) νZ (q | (y/yz) s | g)

(b1) νZ ((xy.q + m) | g) ((x(z).s + n) ⊳ id) ⊳ idx νZ (q | (y/z) s | g)

(b2) νZ ((x(z).s + n) | g) ((xy.q + m) ⊳ id) ⊳ idx νZ (q | (y/z) s | g)

(b3) νZ ((xy.q + m) | x(z).s + n) | g) id νZ (q | (y/yz) s | g)

(b4) νZ ((xy.q + m) | (u(z).s + n) | g) id ⊳ x/xu (x/xu) νZ (q | (y/yz) s | g)

(b5) νZ ((xy.q + m) | g) (!x(z).s ⊳ id) ⊳ idx νZ (q | (y/z) s | !x(z).s | g)

(b6) νZ (!x(z).s | g) ((xy.q + m) ⊳ id) ⊳ idx νZ (q | (y/z) s | !x(z).s | g)

(b7) νZ ((xy.q + m) | !x(z).s | g) id νZ (q | (y/yz) s | !x(z).s | g)

(b8) νZ ((xy.q + m) | !u(z).s | g) id ⊳ x/xu (x/xu) νZ (q | (y/yz) s | !x(z).s | g)

(c1) νZ (xy | g) ((x(z).s + n) ⊳ id) ⊳ idx νZ ((y/z) s | g)

(c2) νZ ((x(z).s + n) | g) (xy ⊳ id) ⊳ idx νZ ((y/z) s | g)

(c3) νZ (xy | (x(z).s + n) | g) id νZ ((y/yz) s | g)

(c4) νZ (xy | (u(z).s + n) | g) id ⊳ x/xu (x/xu) νZ ((y/yz) s | g)

(c5) νZ (xy | g) (!x(z).s ⊳ id) ⊳ idx νZ ((y/z) s | !x(z).s | g)

(c6) νZ (!x(z).s | g) (xy ⊳ id) ⊳ idx νZ ((y/z) s | !x(z).s | g)

(c7) νZ (xy | !x(z).s | g) id νZ ((y/yz) s | !x(z).s | g)

(c8) νZ (xy | !u(z).s | g) id ⊳ x/xu (x/xu) νZ ((y/yz) s | !x(z).s | g)

Table 8.1 Forms of an engaged transition p
L�! p0.

Cases (a1–4) apply to BBGsfπ; cases (b1–4) apply to BBGfπ; cases
(b1–8) apply to BBGπ; cases (c1–8) apply to BBGaπ. In all cases the
label L = L0 / σ must have L0 robustly discrete with names not
among Z.

126 8 Contextual Transitions for the π-Calculus

For BBGsfπ and BBGfπ, which are affine, we can apply Theorem 5.30(3) to
extend the above results to weak bisimilarity, but we lack results to extend
the results for the full calculus to weak bisimilarity. For the remainder of the
chapter we shall therefore concentrate only on strong bisimilarity, although
all results have straightforward extensions to weak bisimilarity in the cases of
BBGsfπ and BBGfπ.

8.3 Trim transitions

Even though limiting the transition system to engaged transitions provides a
substantial reduction in both the number of transitions and size of the labels,
an examination of Table 8.1 reveals that there is still some redundancy. To
remove at least some of the redundancy we shall define an optimized version
of the engaged transition system. We begin with an informal discussion of the
problem.

The most obvious redundancy concerns the sum n in the label of cases (b1)
and (c1) and the sum m in cases (b2) and (c2): they are discarded and there-
fore have no effect on the result of the transition. One might therefore just as
well always choose them to be the empty sum bigraph 0 (or indeed any other
constant sum bigraph).

Another redundancy can be found in cases (a2), (b2) and (b6) when we
consider the role of q, which occurs underneath the output prefix in the la-
bel. Though q is not discarded, it can nevertheless be shown to be redundant,
essentially because it plays no important role in the result p0 of the transi-
tion. The reasoning is this: Since q is part of the label it is assumed not to
have names among Z. This allows us, say in case (b2), to write p0 in the form
q j νZ ((y/z) s j g). Let p00 = 0 j νZ ((y/z) s j g); this is the value that p0 takes in
case q = 0. Then the general expression for p0 can be rewritten as (q j id) Æ p00
(up to an extra occurrence of 0). Thus, the effect of choosing an arbitrary value
for q, compared with choosing q = 0, is essentially to add “extra context” in
p0. Active bisimilarity is a congruence, and therefore the freedom of including
extra context does not contribute to the distinguishing power. Hence, we are
justified in always choosing q = 0.

One might be tempted to try to argue analogously that s is redundant in
cases (a1), (b1) and (b5), but there is an important difference: If we choose s to
always be 0 then the datum y sent by p would never occur in p0 or L, and then
the transition system could not distinguish, say, the processes p = xv and p =
xw; these are clearly not bisimilar, unless v = w. It is possible, of course, that
s can be limited to some small set of choices (some of which would necessarily
have z occurring free), but such a result has proved difficult to obtain, and we
shall not pursue it here.

Yet another source of redundancy concerns replicated input. Comparing
the result p0 in the cases (b1) and (b5) we find, by a similar argument to that
above, that case (b5) is redundant because !x(z).s can be pulled out of the re-
striction and thus represents “extra context” compared with case (b1). A simi-

8.3 Trim transitions 127

lar observation applies to cases (c1) and (c5). Thus, it is not necessary to have
any labels with replicated input at top-level.

Finally, Table 8.1 characterizes L and p0 only up to a bijection on their outer
names. Thus, each of the forms given in the table can be varied by composing
both L and p0 by an arbitrary bijective substitution, which gives rise to unintu-
itive “renaming” transitions like

xy j xv
(x(z)/u/x)/idu��������! uv .

Again, such substitutions represent “extra context” compared with the name-
preserving forms actually stated in the table, and are therefore redundant.

The following definition removes the redundancies we have discussed.

Definition 8.6 (trim transition) In each of BBGsfπ, BBGfπ, BBGπ and BBGaπ

we say that a transition p
L�! p0 is trim if it is in EP and its label L has one of the

following forms: (x(z).s / id) / idx(xy / id) / idx

id

id / x/xu .

We denote by TP the transition system consisting of the trim transitions over
process bigraphs. �
From this definition together with Lemma 8.4 the characterization of TP is im-
mediate:

Lemma 8.7 The trim transitions p
L�! p0 in BBGsfπ, BBGfπ, BBGπ and BBGaπ

are exactly those of the forms given by the cases in Table 8.2. �
The following lemma establishes the soundness of working with trim tran-

sitions.

Lemma 8.8 In each of BBGsfπ, BBGfπ, BBGπ and BBGaπ

(1) TP is adequate; that is, �TP = � on process bigraphs;

(2) TP is definite; hence, �TP = � on process bigraphs.

Proof
(1) The inclusion � � �TP on process bigraphs is immediate, since the

trim transitions are a subset of the standard active transitions. For the reverse
inclusion we prove that �TP

EP is an EP-bisimulation up to context and active
bisimilarity; this will suffice because of Lemma 8.5(2). Suppose p �TP

EP q and

let p
L�! p0 in EP; we must find a transition q

L�! q0 for some q0 such that
p0 (�TP

EP)C,� q0. If the transition of p is trim, then the matching transition of q
follows immediately. Suppose instead the transition of p is not trim. Then one

128 8 Contextual Transitions for the π-Calculus

Case p L p′

(a1) νZ (xy.q | t) (x(z).s ⊳ id) ⊳ idx νZ (q | (y/z) s | t)

(a2) νZ (x(z).s | t) (xy ⊳ id) ⊳ idx νZ ((y/z) s | t)

(a3) νZ (xy.q | x(z).s | t) id νZ (q | (y/yz) s | t)

(a4) νZ (xy.q | u(z).s | t) id ⊳ x/xu (x/xu) νZ (q | (y/yz) s | t)

(b1) νZ ((xy.q + m) | g) (x(z).s ⊳ id) ⊳ idx νZ (q | (y/z) s | g)

(b2) νZ ((x(z).s + n) | g) (xy ⊳ id) ⊳ idx νZ (0 | (y/z) s | g)

(b3) νZ ((xy.q + m) | (x(z).s + n) | g) id νZ (q | (y/yz) s | g)

(b4) νZ ((xy.q + m) | (u(z).s + n) | g) id ⊳ x/xu (x/xu) νZ (q | (y/yz) s | g)

(b5) νZ (!x(z).s | g) (xy ⊳ id) ⊳ idx νZ (0 | (y/z) s | !x(z).s | g)

(b6) νZ ((xy.q + m) | !x(z).s | g) id νZ (q | (y/z) s | !x(z).s | g)

(b7) νZ ((xy.q + m) | !u(z).s | g) id ⊳ x/xu (x/xu) νZ (q | (y/yz) s | !x(z).s | g)

(c1) νZ (xy | g) (x(z).s ⊳ id) ⊳ idx νZ ((y/z) s | g)

(c2) νZ ((x(z).s + n) | g) (xy ⊳ id) ⊳ idx νZ ((y/z) s | g)

(c3) νZ (xy | x(z).s + n) | g) id νZ ((y/yz) s | g)

(c4) νZ (xy | (u(z).s + n) | g) id ⊳ x/xu (x/xu) νZ ((y/yz) s | g)

(c5) νZ (!x(z).s | g) (xy ⊳ id) ⊳ idx νZ ((y/z) s | !x(z).s | g)

(c6) νZ (xy | !x(z).s | g) id νZ ((y/z) s | !x(z).s | g)

(c7) νZ (xy | !u(z).s | g) id ⊳ x/xu (x/xu) νZ ((y/yz) s | !x(z).s | g)

Table 8.2 Forms of a trim transition p
L�! p0.

Cases (a1–4) apply to BBGsfπ; cases (b1–4) apply to BBGfπ; cases
(b1–7) apply to BBGπ. cases (c1–7) apply to BBGaπ. In all cases
the label L = L0 / σ must have L0 robustly discrete with names not
among Z.

8.4 Comparison with raw bisimilarities 129

of the cases (b1–8) of Table 8.1 applies. The proof is similar for all cases; we
treat just case (b2), where we have

p = νZ ((x(z).p0 + l) j g)
L = ((xy.s + m) / id) / idx

p0 = νZ (s j (y/z) p0 j g) ,

such that L has no names among Z. Then we can infer another transition p
M�!

p00 in EP, where M
def= (xy / id) / idx and p00 def= νZ (0 j y/z p0 j g). This transition

is trim, so by the assumption that p �TP
EP q there is also a transition q

M�! q00
in EP for some q00 such that p00 �TP

EP q00. Using Table 8.1 again, we find that q
has the form νW ((x(z).q0 + n) j h) with W disjoint from the names of L, and

q00 = νW (0 j y/z q0 j h). Then we can infer another EP-transition q
L�! q0 def=

νW (s j (y/z) q0 j h). Note that p0 j 0 = p00 j s and q0 j 0 = q00 j s, since s is part of
L and therefore has no names among Z or W; hence p0 � p00 j s and q0 � q00 j s,

and it follows that p0 (�TP
EP)C,� q0, as required.

(2) Immediate from definiteness of EP and the definition of TP. �
Thus, we have further optimized the proof technique for bisimilarity in our

BRSs for π-calculus: A trim bisimulation is sufficient to show bisimilarity.

8.4 Comparison with raw bisimilarities

For the comparison of bisimilarities we shall map early and ground bisimilarity
from the π-calculus into the BRSs and do the comparison there. An alternative
to this approach would be to reflect the bigraphical bisimilarity back into the
calculus; but this is technically less convenient, because the translation of pro-
cess bigraphs back into the π-calculus loses information about idle names, and
hence about the exact contents of interfaces, which makes it awkward to rep-
resent the bigraphical transitions. The following definition therefore sets up
the raw transition systems on process bigraphs that arise as the images of early
and late transitions in the π-calculus.

Definition 8.9 In each of BBGsfπ, BBGfπ, BBGπ and BBGaπ the early transition
system has process bigraphs as agents, and its transition relation is the least

such that Ppr(X)[[P℄℄ �̀! Ppr(X)[[P0℄℄ for every early transition P �̀! P0 and every

X � fn(P, Q) (and similarly for the subcalculi). The late transition system is sim-
ilarly defined as the image of the late transition relation in the calculus. We de-

note by
e�π and

g�π the bisimilarities for early and late transitions, respectively;

by �π the relation such that p �π q iff (σ) p
e� (σ) q for every substitution

σ; and by
a�π the asynchronous bisimilarity on late transitions, where ‘asyn-

chronous’ refers to the weakened input matching described in Section 6.5. �

130 8 Contextual Transitions for the π-Calculus

We call the early and late transitions, collectively, raw transitions, and we shall
also use ‘raw’ as a collective qualification for the equivalences defined in terms
of raw transitions. In contrast, we shall use the term ‘contextual’ to refer to trim
transitions and their associated bisimilarity, which, as we have seen, coincides
with active bisimilarity on process bigraphs.

Note that we defined the raw equivalences by co-induction in the BRSs,
not as images of the corresponding equivalences in the π-calculus; but using
Proposition 6.3 it is easy to demonstrate that the raw equivalences do indeed
coincide with these images:

Proposition 8.10 P
e� Q iff Ppr(X)[[P℄℄ e�π Ppr(X)[[Q℄℄, and similarly for the sub-

calculi. The analogous statement is true also of
g�, � and

a�. �
The comparison of equivalences will rely on the following lemma, which

characterizes raw transitions in bigraphs.

Lemma 8.11 The raw transitions p �̀! p0 in BBGsfπ, BBGfπ, BBGπ and BBGaπ

are exactly those of the forms given by the cases in Table 8.3.

Proof Via the bijection between processes (up to structural congruence) and
process bigraphs, the present characterization is equivalent to a standard char-
acterization of transitions in the π-calculus. The latter is proved, in one di-
rection, by exhibiting transition inferences for each form of transition stated,
and in the other direction, by showing inductively on the depth of transition
inference that each transition has one of the forms stated. �

Comparing the characterizations of trim transitions (Table 8.2) and raw
transitions (Table 8.3) we find that, apart from the somewhat laborious nota-
tion employed for the contextual labels of the former, they agree to a large
extent but also show important differences. In preparation for the comparison
of the associated equivalences, we discuss the relationship between trim and
raw transitions informally.

On silent transitions (cases (a3, b3, b6, c3, c6) in Table 8.2 and cases (a5, b5,
b8, c3–4) in Table 8.3) the two systems agree completely; thus, as expected, the
raw label τ corresponds to the identity contextual label.

The contextual input transitions (cases (a2, b2, b5, c2, c5) in Table 8.2) essen-
tially agree with raw bound input transitions (cases (a4, b4, b7) in Table 8.3),
the only difference being the (insignificant) extra occurrence of 0 in cases (b2,
b5) of Table 8.2. The apparent difference that the contextual transitions result
in a substitution y/z in p0, where bound inputs do not, is only superficial, as y
is forced to be chosen fresh; the substitution is therefore injective, and it can
be mimicked by an alpha-conversion in the agents of a raw transition. On
the other hand, the substitution y/yz that arises in a raw free input transition
(cases (a3, b3, b6) in Table 8.3) is not in general injective; free input transitions
therefore provide greater observational power than the contextual input tran-
sitions.

8.4 Comparison with raw bisimilarities 131

Case p ℓ p′ Conditions

(a1) νZ (xy.q | g) xy νZ (q | g) x, y /∈ Z

(a2) νZz (xz.q | g) x(z) νZ (q | g) x /∈ Zz

(a3) νZ (x(z).s | g) xy νZ ((y/yz) s | g) x, y /∈ Z

(a4) νZ (x(z).s | g) x(z) νZ (s | g) x, z /∈ Z

(a5) νZ (xy.q | x(z).s | g) τ νZ (q | (y/yz) s | g)

(b1) νZ ((xy.q + m) | g) xy νZ (q | g) x, y /∈ Z

(b2) νZz ((xz.q + m) | g) x(z) νZ (q | g) x /∈ Zz

(b3) νZ ((x(z).s + n) | g) xy νZ ((y/yz) s | g) x, y /∈ Z

(b4) νZ ((x(z).s + n) | g) x(z) νZ (s | g) x, z /∈ Z

(b5) νZ ((xy.q + m) | (x(z).s + n) | g) τ νZ (q | (y/yz) s | g)

(b6) νZ (!x(z).s | g) xy νZ ((y/yz) s | !x(z).s | g) x, y /∈ Z

(b7) νZ (!x(z).s | g) x(z) νZ (s | !x(z).s | g) x, z /∈ Z

(b8) νZ ((xy.q + m) | !x(z).s | g) τ νZ (q | (y/yz) s | !x(z).s | g)

(c1) xy | g xy 0 | g

(c2) νz (xz | g) x(z) 0 | g x 6= z

(c3) νZ (xy | (x(z).s + n) | g) τ νZ ((y/yz) s | g)

(c4) νZ (xy | !x(z).s | g) τ νZ ((y/yz) s | !x(z).s | g)

Table 8.3 Forms of a raw transition p �̀! p0.
Cases (a1–5) apply to BBGsfπ; cases (b1–5) apply to BBGfπ; cases
(b1–8) apply to BBGπ ; cases (b3–4, b6–7, c1–4) apply to BBGaπ.

132 8 Contextual Transitions for the π-Calculus

Output transitions have only one basic form in the contextual transition sys-
tem (cases (a1, b1, c1) in Table 8.2); this does the job of both free and bound
output transitions in the raw system (cases (a1–2, b1–2, c1–2) in Table 8.3). (Re-
call that, unlike free and bound input, both forms of output are used in both
the early and late transition systems.) The contextual label for output contains
an arbitrary process bigraph s that also appears in the result p0 of the transition;
this is an undesirable feature, since it makes bisimulation proofs more difficult.
Having two forms of output in the raw system can be seen as the price of avoid-
ing such an arbitrary process parameter in the label. The contextual transition
can represent either free or bound output, depending on whether the datum y
is among the restricted names Z. Where a bound output transition (cases (a2,
b2, c2) in Table 8.3) removes the restriction on z in p0, the contextual transi-
tion retains the restriction but inserts in its scope the arbitrary parameter s. We
might say that “extrusion of names” is replaced by “intrusion of agents”.

The substitution transitions in the contextual transition system (cases (a4, b4,
b7, c4, c7) in Table 8.2) have no counterpart in the raw system. Such a transition
arises when the only contribution of the context is a substitution that connects
the channels of the output and input prefixes. We can see these transitions
as recovering the observational power “lost” in contextual input transitions
relative to free input. Apart from this, it is clear that in the absence of this class
of transitions, contextual bisimilarity would not be closed under substitution
of names, and hence not a congruence with respect to all bigraphical contexts.

From these observations it seems one could reasonably hope for contextual
bisimilarity to recover early congruence (or some other existing behavioural
congruence on the π-calculus). As we shall see, however, it is stronger than
existing congruences in the synchronous calculi—the substitution transitions
provide stronger observational power than that afforded by any conventional
approaches.

In the synchronous calculi it is of some interest, therefore, to study also
the version of contextual bisimilarity that arises from simply discarding the
substitution transitions. Apart from its independent interest, it will also serve
as a useful step in the analysis of full contextual bisimilarity itself. We call
the transition system without substitutions mono, because its labels, unlike the
substitutions, are monos in the underlying category.

Definition 8.12 (mono transitions) In each BRS, let the mono transition system,
denoted

.
TP consist of all trim transitions except those labelled with a substi-

tution. We write .� for the associated bisimilarity called (strong) mono bisimilar-
ity. �
Lemma 8.13 In either of BBGsfπ, BBGfπ and BBGπ, let p, q : (X), and suppose
νw (uw j p) .� νw (uw j q) for some u and w with u /2 X. Then p .� q.

Proof See Appendix A. �
The property in the lemma is not true of full contextual bisimilarity, be-

cause substitution transitions cannot be mimicked “through” the restriction in

8.4 Comparison with raw bisimilarities 133

the same way that we do for mono transitions in the proof. For example, the
processes

p = x j y

q = x.y + y.x ,

which we have used in examples before, are bisimilar under .�, but not under�, because only p has a substitution transition; but, as the reader may easily
verify, it holds that

νy (uy j p) � νy (uy j q) .

The lemma does not hold in BBGaπ. The reason for this is directly related
to the preceding discussion, for as we shall see later, mono bisimilarity does
coincide with contextual bisimilarity in BBGaπ.

Using the lemma we now establish the main result about mono bisimilarity:

Theorem 8.14 (mono bisimilarity) In BBGsfπ, BBGfπ and BBGπ mono bisimi-
larity lies between early and ground bisimilarity:

e�π � .� � g�π .

Moreover, in BBGfπ and BBGπ both inclusions are strict.

Proof See Appendix A. �
We have not settled the question whether .� coincides with either of

e�π and
g�π in BBGsfπ; indeed, it appears to be an open question whether even

e� and
g� differ in sfπ.1

It is clear from the examples that
.�, like

g�π, is not always preserved by
parallel composition. For this reason it is of little interest from a practical point
of view. However, using the result that it is included in ground bisimilarity, it
is now an easy step to show that our main equivalence, contextual bisimilarity,
is included in early congruence:

Theorem 8.15 (contextual bisimilarity) In BBGsfπ, BBGfπ and BBGπ contex-
tual bisimilarity implies early congruence:� � �π .

Moreover, in BBGfπ and BBGπ the inclusion is strict.

Proof Since
.
TP 4 TP we have � � .�, and hence by the preceding theorem

also � � g�π. But � is a process congruence (Theorem 8.2), and �π is the

largest process congruence included in
g�π; hence � � �π .

1The question is stated in [38] to be open; to the author’s knowledge it has not been settled since
the publication of that book.

134 8 Contextual Transitions for the π-Calculus

For strictness, consider the following processes

p = νz ((x + z) j (y + z))
q = νz ((x.y + y.x + z) j z) .

It is easy to verify that p
e�π q, and also that (x/xy) p

e�π (x/xy) q; hence p �π q.
But only p has a substitution transition, so p � q. �
The example used for strictness is due to Milner, who uses it in [26] to show
the similar result for CCS. Again, the example uses ‘+’, and so does not apply
to BBGsfπ, where we leave the strictness question open.

The strongest congruence that is conventionally applied in the π-calculus is
Sangiorgi’s open bisimilarity [36, 38]. Its main motivation is very similar to that
of our contextual notion of bisimilarity, namely to provide a co-inductively
defined process congruence. It does not use substitution transitions; instead it
employs substitution in the transition matching requirement as follows:

σP �̀! P0 implies σQ �̀! Q0 ;

the effect is that an open bisimulation is forced to be substitution-closed. The
substitution σ is not arbitrary, as provision is made for not coalescing names
that have earlier appeared in bound outputs; the full definition is therefore
somewhat involved, and we omit the details. It is clear, however, that even
open bisimilarity does not distinguish the processes p and q that we used in
the above proof. Thus, in BBGfπ and BBGπ contextual bisimilarity differs also
from open bisimilarity. (We conjecture that it is included in open bisimilarity,
but do not pursue the issue.)

Thus, we cannot claim that the equivalence recovered by contextual bisimi-
larity in BBGsfπ, BBGfπ and BBGπ is a well-known equivalence already proven
to be useful for a particular purpose. From the examples we have given of the
extra distinctions it makes, it is not clear that the difference is more than patho-
logical; it might well be insignificant for many applications. A more detailed
study, involving practical applications of the π-calculus, seems to be required
to settle the question.

It still remains to make the comparison between contextual bisimilarity
and existing equivalences in the asynchronous calculus. Here, as may be re-
called from Section 6.5, the situation is simplified by the fact that early and
ground bisimilarity coincide and form a congruence, which we shall denote
here by �π. On the other hand, it is complicated by the existence of asyn-

chronous bisimilarity
a�π, a strictly weaker congruence.

Let us investigate how contextual bisimilarity compares with �π and
a�π

on a few examples. Recall that for

p = x(z).xz + τ

q = τ .

8.4 Comparison with raw bisimilarities 135

we have p
a�π q but p �π q. Clearly, we also have p � q, as there is a contextual

transition

p
xv/idx���! xv ,

whereas q has no non-identity transitions. Thus, contextual bisimilarity does
not, in general, admit the weakened form of input-matching employed in asyn-
chronous bisimilarity. But now consider the processes

p1
def= νx (ux j p)

q1
def= νx (ux j q) .

By congruence, p1
a�π q1; but p1 �π q1, as the raw transition sequence

p1
u(x)��! p

x(z)��!
cannot be matched by q1. As we noted above, contextual transitions employ
“agent intrusion” rather than “name extrusion”; this is witnessed by the tran-
sitions

p1
u(x).s/idu�����! νx (s j p)

q1
u(x).s/idu�����! νx (s j q) .

Is there a choice of s that will distinguish between the two processes? If there
were, it would necessarily involve an interaction with p that could not be mim-
icked by q; thus s would have to be of the form xv j s0 (or of a similar form with
v restricted, in which case the argument is similar). The interaction between s
and p is represented by the transition

νx (s j p) id�! νx (s0 j xv) ;

but this transition can be matched by νx (s j q), because internal action in q
leads to the transition

νx (s j q) id�! νx (s j 0) = νx (s0 j xv j 0) .

Thus, apart from the insignificant extra occurrence of 0, the process q1 does
succeed in matching the transitions of p1, and it does so exactly because the
“intruder” s has no more distinguishing power than that afforded by asyn-
chronous bisimilarity. Thus, even though contextual bisimilarity does not ad-
mit the weakened form of input matching in general, it seems to do so when
the channel of the input is a private channel that the agent has previously made
available to the environment. From these observations, it looks as if contex-
tual bisimilarity falls strictly between �π and

a�π . To show that this is indeed
the case, we shall characterize contextual bisimilarity in terms of the follow-
ing raw equivalences (defined here in BBGaπ, but the definition can be made
analogously in aπ itself.)

136 8 Contextual Transitions for the π-Calculus

Definition 8.16 (restriction-asynchronous bisimilarity) A (strong) restriction-
asynchronous simulation is a family S = fSZg of relations indexed by name
sets Z, where each SZ is defined over the homsets (ǫ, hpr(X)iwith X \ Z = ∅;

whenever (p, q) 2 SZ and p �̀! p0 we require

(1) if ` is a free output xy or the silent action τ, then q �̀! q0 for some q0 such
that (p0, q0) 2 SZ;

(2) if ` is an input x(z) then either

(a) q
x(z)��! q0 for some q0 such that (p0, q0) 2 SZ; or

(b) x 2 Z and q
τ�! q0 for some q0 such that (p0, q0 j xz) 2 SZ;

(3) if ` is a bound output x(z) then q
x(z)��! q0 for some q0 such that (p0, q0) 2SZ[fzg.S is a (strong) restriction-asynchronous bisimulation if also its inverse, the family

consisting of all (SZ)�1, is a strong restriction-asynchronous simulation. We

write
ra�π= f ra�

Z
πg for the largest strong restriction-asynchronous bisimulation.

Strong restriction-asynchronous bisimilarity is the relation
ra�
∅

π, which by a slight

abuse of notation we also denote by
ra�π. �

In this definition we use the set Z to remember which private names have been
output from the agents (clause (3)) and we allow the additional input matching
only when the input channel x lies in Z (clause (2b)). Thus, the requirement is
stronger than in asynchronous bisimilarity, but weaker than in ordinary bisim-
ilarity. We therefore have inclusions as stated in the following proposition, and
the inclusions are easily seen to be strict by considering the examples discussed
above.

Proposition 8.17 The following inclusions hold in BBGaπ and are strict:�π � ra�π � a�π . �
Theorem 8.18 In BBGaπ contextual bisimilarity and restriction-asynchronous
bisimilarity coincide: � = ra�π .

Proof See Appendix A. �
In conclusion, the situation for aπ is similar to that for the full π-calculus,

namely that contextual bisimilarity recovers a congruence that is close to pre-
existing equivalences but does not coincide with any of them. Our overall
purpose with this study—to determine whether the general behavioural the-
ory of bigraphs, when instantiated to the π-calculus, yields satisfactory results

8.4 Comparison with raw bisimilarities 137

compared to the existing behavioural theory for π-calculus—is therefore only
partially achieved: We can conclude that considerable agreement exists among
the two theories, but also that there are small differences whose importance can
only be judged from a certain amount of practical experience with the theories.

Chapter 9

Mobile Ambients

In this chapter we repeat the exercise of the previous chapters and model an-
other calculus of mobile processes, namely the calculus of mobile ambients of
Cardelli and Gordon [4]. This calculus represents a different view of mobility
from that embodied by the π-calculus. In the π-calculus mobility is repre-
sented by movement of communication channels, and we naturally modelled
that as movement of links in the bigraph model. In mobile ambients, on the
other hand, an ambient acts both as an entity that can be moved and as a loca-
tion that may contain sub-ambients; thus, the operational semantics of the cal-
culus deals with movement of (sub-)terms, unlike that of the π-calculus which
deals only with movement of names.

One purpose of making this second application of bigraphs is to help il-
lustrate the range of applicability of the framework, and to provide evidence
that bigraphs and their behavioural theory are not overly influenced by the
specifics of the π-calculus. Moreover, this application takes us into territory
where a reaction semantics forms the primary (and indeed original) definition
of dynamics; it is fair to say that no widely accepted notion of labelled tran-
sitions exists a priori for mobile ambients, although the question has been the
subject of some relatively recent work [20, 21]; we comment in some detail on
the relationship with that work at the end of the chapter.

In comparison with the material on the π-calculus model, our account in
this chapter of the mobile ambients model is much shorter. Partly, this is be-
cause detailed explanation of similar concepts and results is not repeated, and
because we omit proofs, which are all straightforwardly adapted from the pre-
vious ones. We also put less emphasis on completeness, modelling just the
fragment of the calculus concerned with mobility, and leaving out communi-
cation primitives and replication. Thus, we concentrate on the features that
are substantially new compared with the π-calculus, and although we shall
not attempt to justify the conjecture, we suggest that a model of the full ambi-
ent calculus could be obtained essentially as a combination of the two models
without major difficulty.

We start by giving in the first section a brief review of mobile ambients. In

9.1 Syntax and semantics 139

Section 9.2 we build the bigraph model and establish structural and dynamic
correspondence. Section 9.3 studies the behavioural theory induced on mobile
ambients by the model and compares it with other work on transition seman-
tics for the calculus.

9.1 Syntax and semantics

The processes of (our fragment of) mobile ambients are given by the following
abstract syntax:

P, Q ::= n[P℄ �� P j Q
�� νn P

�� 0
�� in n.P

�� out n.P
�� open n.P ,

where n denotes a name, drawn from an infinite set and ranged over in this
chapter by l, m, n. The expression n[P℄ denotes an ambient named n and con-
taining the process P; parallel composition ‘j’, restriction ‘ν ’, and inaction ‘0’,
are as in the π-calculus. In the last three process expressions the prefixes denote
capabilities:

• in n is the capability to enter into ambient n;

• out n is the capability to exit out of ambient n;

• open n is the capability to open ambient n.

We use π to range over prefixes.
Bound and free names, alpha-conversion, and substitution of free names,

are as in the π-calculus, except that in mobile ambients the only binding con-
struct is restriction.

In applications it is usual to model entities by processes in which every
prefix occurs inside an ambient. We shall refer to such processes as systems.
Systems are easily seen to be generated by the abstract syntax

M, N ::= n[P℄ �� M j N
�� νn M

�� 0

Structural congruence � is the smallest congruence over process terms that
includes alpha-equivalence and satisfies the following axioms:(P jQ) j R � P j (Q j R)

P jQ � Q j P

P j 0 � P

νm νn P � νn νm P

νm n[P℄ � n[νm P℄ if m 6= n

νm (P jQ) �P j νm Q if m /2 fn(P)
νm π.P � π.νm P if m /2 names(π)

νm 0 � 0 .

Note that the property of being a system is invariant under structural congru-
ence.

140 9 Mobile Ambients

The penultimate axiom that allows permutation of restriction and prefix
is not normally included. The situation is similar to that in the π-calculus:
Including the axiom makes for a natural graphical model of structural congru-
ence, and at the same time does not affect the dynamics.

The behaviour of processes is given as a reaction relation in the same style
as in the π-calculus. There are three reaction rules:

n[inm.P jQ℄ jm[R℄ �! m[n[P jQ℄ j R℄ (enter)

m[n[outm.P jQ℄ j R℄ �! n[P jQ℄ jm[R℄ (exit)open n.P j n[Q℄ �! P jQ (open) .

The ‘enter’ rule expresses the movement of ambient n into another ambient m;
the ‘exit’ rule expresses the movement of ambient n out of the immediately
surrounding ambient m; and the ‘open’ rule expresses the opening (or lifting)
of the ambient n.

The reaction relation �! is the least relation over processes which admits
the three reaction rules, is preserved by all non-prefix contexts, and is closed
under structural congruence. (By a non-prefix context we mean one in which the
hole is not underneath any prefix.)

9.2 The bigraph model

We model mobile ambients using the BRS

BBGma = BBG(Σma,Rma) ,

where the signature Σma is given by the following definition. (We give the
reaction rules Rma later.)

Definition 9.1 The signature Σma is binding and has activeness; its controls arein, out, open : 0! 1 (passive)amb : 0! 1 (active) .

It has sorts pr and sys. The sorting condition stipulates: A sys-root may only
have amb-nodes and sys-sites among its children. �

Figure 9.1 shows a typical process of mobile ambients modelled as a bi-
graph. The ambient construction is modelled using amb-nodes. The signature
declares amb-nodes active to model the fact that ambients preserve reaction.
Thus, the only function of an amb-node is to group the collection of nodes it
contains, and to provide a name for this group using linking. The prefix con-
structions in, out and open are modelled by passive nodes in a similar manner
to the prefixes in the π-calculus.

Figure 9.2 shows an ion for each of the controls of Σma. The sorting condi-
tion allows several variants of these ions: all could equally be given sort sys at

9.2 The bigraph model 141

l m

ambinP

ambopenQ ambR

l[inm.P℄ j νn m[open n.Q j n[R℄℄
Figure 9.1 Example of a bigraph for an ambient process

n

ambambn : pr! sys(n)
n

ininn : pr! pr(n)
n

outoutn : pr! pr(n)
n

openopennpr! pr(n)
Figure 9.2 Ions in BBGma

142 9 Mobile Ambients

the inner face, and the amb-ion could be given sort pr at the outer face. The ions
shown are canonical in the sense that the others can be obtained from them by
pre- or post-composing suitable resortings, and in the following, whenever we
write an ion expression we shall always take it to denote the sorting instance
shown here. The only variant we shall make use of is the ionpr/sys ambn : pr! pr(n)
obtained by resorting ambn at its outer face.

The ground local primes of BBGma fall in two classes, depending on the sort
at their outer face; those with sort pr we call process bigraphs, and those with sortsys we call system bigraphs. We let p, q, . . . range over process bigraphs, and a,
b, . . . over system bigraphs. In the case of molecules, we shall similarly talk of
process molecules and system molecules, depending on their outer sort.

Lemma 9.2 In BBG(Σma) every bigraph with names (X) belonging to one of
the following classes can be expressed in the forms given:

System bigraphs: (/Z) a a : sys(XZ) open

Open system bigraphs: µ1 j � � � j µn n � 0, each µi : sys(X) open

Open system molecules: ambn p p : pr(X) open
Process bigraphs: (/Z) p p : pr(XZ) open

Open process bigraphs: µ1 j � � � j µn n � 0, each µi : pr(X) open

Open process molecules:

8>><>>: pr/sys ambn pinn poutn popenn p

p : pr(X) open .

Moreover, these forms are unique up to the choice of fresh names Z and the
ordering of the µi. �

We translate ambient calculus processes into bigraphs as follows:

Definition 9.3 The translation Mpr(X)[[�℄℄ maps every process P such that

fn(P) � X into the homset (ǫ, pr(X)) of BBG(Σma) as follows:Mpr(X)[[n[P℄℄℄ = pr/sys (ambn Mpr(X)[[P℄℄)Mpr(X)[[P jQ℄℄ = Mpr(X)[[P℄℄ jMpr(X)[[Q℄℄Mpr(X)[[νn P℄℄ = (/m)Mpr(Xm)[[fm/ngP℄℄Mpr(X)[[0℄℄ = pr(X)Mpr(X)[[in n.P℄℄ = inn Mpr(X)[[P℄℄Mpr(X)[[out n.P℄℄ = outn Mpr(X)[[P℄℄Mpr(X)[[open n.P℄℄ = openn Mpr(X)[[P℄℄ .

9.2 The bigraph model 143

The translation Msys(X)[[�℄℄ maps every system M with fn(M) � X into the

homset (ǫ, sys(X)) of BBG(Σma) as follows:Msys(X)[[n[P℄℄℄ = ambn Mpr(X)[[P℄℄Msys(X)[[M j N℄℄ = Msys(X)[[M℄℄ jMsys(X)[[N℄℄Msys(X)[[νn M℄℄ = (/m)Msys(Xm)[[fm/ngM℄℄Msys(X)[[0℄℄ = sys(X) . �
As in the π-calculus we model parallel composition by prime product. We
model restriction by name closure; this is sufficient in the absence of replica-
tion.

The following theorem states the correctness of our model with respect to
structure, namely that every process bigraph represents a process of mobile
ambients, and that the model recovers structural congruence.

Theorem 9.4 (structural correspondence)

(1) The maps Mpr(X)[[�℄℄ and Msys(X)[[�℄℄ are surjective onto the homsets(ǫ, pr(X)) and (ǫ, sys(X)), respectively, of BBG(Σma);
(2) P � Q iff Mpr(X)[[P℄℄ = Mpr(X)[[Q℄℄. �

We now turn to the dynamics of our model:

Definition 9.5 The rule set Rma consists of three linear reaction rules(Renter, R0
enter, Id) (Rexit, R0

exit, Id) (Ropen, R0
open, Id) ,

where

Renter = ambn (inm j id1) j ambm : hpr, pr, pri! sys(mn)
R0

enter = ambm (ambn.(id1 j id1) j id1) : hpr, pr, pri! sys(mn)
Rexit = ambm (ambn.(outm j id1) j id1) : hpr, pr, pri! sys(mn)
R0

exit = ambn (id1 j id1) j ambm : hpr, pr, pri! sys(mn)
Ropen = openn j ambn : hpr, pri! pr(n)
R0

open = id1 j id1 : hpr, pri! pr(n) . �
The reaction rules are illustrated in Figure 9.3.

The following lemma characterizes the active bigraphs in BBGma. (Recall
that a bigraph is active if no site is a descendant of a passive node.) The main
observation is that in BBGma only the amb-control is active, and so a site can be
nested only inside amb-nodes.

Lemma 9.6 A bigraph S : pr(XZ)! pr(X) is active iff it can be expressed in
the form

S = (/Z) ((A1 Æ � � � Æ Ak) j p)
for some k � 0, where each Ai is of the form

Ai = ambn (idpr(XZ) j p) . �

144 9 Mobile Ambients

m n

amb2 in1 amb3
Renter = ambn (inm j id1) j ambm

�!
m n

ambamb12

3

R0
enter = ambm (ambn (id1 j id1) j id1)

m n

ambambout1
2

3

Rexit = ambm (ambn (outm j id1) j id1)
�!

m n

amb1
2 amb3

R0
exit = ambn (id1 j id1) j ambm

nopen1 amb2

Ropen = openn j ambn

�! n

1

2

R0
open = id1 j id1

Figure 9.3 The reaction rules in Rma

9.3 Contextual transitions and bisimilarity 145

Henceforth, we let S range over such bigraphs. They correspond exactly to the
non-prefix contexts of the calculus, i.e. those that preserve reaction:

Lemma 9.7 For every non-prefix context C of mobile ambients and any names
X � fn(C) there exists an active S : pr(XZ)! pr(X) such that for any P with
fn(P) � XZ we have Mpr(X)[[C[P℄℄℄ = S ÆMpr(XZ)[[P℄℄ . �
Using this, it is straightforward to establish that the model recovers reaction
exactly:

Theorem 9.8 (dynamic correspondence) P �! P0 iff Mpr(X)[[P℄℄ �! Mpr(X)[[P0℄℄.�
9.3 Contextual transitions and bisimilarity

The abstract BRS BBGma is equipped with the standard active transition system
and the associated strong and weak active bisimilarities � and �, as given by
Definition 5.19. The following property states that bisimilarity is the same in
all homsets into which a pair of processes are mapped.

Proposition 9.9 Let X, Y � fn(P, Q). ThenMpr(X)[[P℄℄ � Mpr(X)[[Q℄℄ iff Mpr(Y)[[P℄℄ � Mpr(Y)[[Q℄℄ .

The analogous result holds also for �. �
The congruence result for active bisimilarity (Theorem 5.21) ensures imme-

diately that bisimilarity is also a congruence for mobile ambients:

Theorem 9.10 (process congruence) Strong and weak active bisimilarity �
and � are process congruences; that is, for any context C of mobile ambients
and any name set Y � fn(C[P℄, C[Q℄),

if Mpr(X)[[P℄℄ � Mpr(X)[[Q℄℄ then Mpr(Y)[[C[P℄℄℄ � Mpr(Y)[[C[Q℄℄℄ ,

and similarly for �. �
We wish to obtain a transition system for system bigraphs, and in order to

reduce the size of the transition system we shall apply the theory of engaged
transitions. Thus, we shall be interested in the following transition system:

Definition 9.11 In BBGma let ES denote the transition system that consists of
the engaged transitions over system bigraphs. �

Engaged transitions over system bigraphs are characterized by the follow-
ing lemma. (In Table 9.1 and henceforth we use ambient calculus notation for
system bigraphs.)

146 9 Mobile Ambients

Case a L a′

(a1) νZ (m[in n.p | q] | b) (n[s] | id) ⊳ idn νZ (n[m[p | q] | s] | b)

(a2) νZ (n[s] | b) (m[in n.p | q] | id) ⊳ idn νZ (n[m[p | q] | s] | b)

(a3) S[m[in n.p | q] | n[s]] id S[n[m[p | q] | s]]

(a4) S[m[in n.p | q] | l[s]] id ⊳ n/nl (n/nl) S[n[m[p | q] | s]]

(b1) νZ (m[out n.p | q] | b) n[s | id] ⊳ idn νZ (m[p | q] | n[s | b])

(b2) S[n[m[out n.p | q] | s]] id S[m[p | q] | n[s]]

(b3) S[l[m[out n.p | q] | s]] id ⊳ n/nl (n/nl) S[m[p | q] | n[s]]

(c1) νZ (n[s] | b) m[open n.p | q | id] ⊳ idn νZ m[p | q | s | b]

(c2) S[m[open n.p | q | n[s]]] id S[m[p | q | s]]

(c3) S[m[open n.p | q | l[s]]] id ⊳ n/nl (n/nl) S[m[p | q | s]]

Table 9.1 Forms of an engaged transition a
L�! a0.

In all cases the label L = L0 / σ must have L0 robustly discrete with
names not among Z.

Lemma 9.12 The engaged transitions a
L�! a0 in BBGma are exactly those of the

forms given by the cases in Table 9.1, up to a bijection on the outer names of L
and p0. �

The redexes of BBGma are all simple, and the following adequacy and def-
initeness properties follow easily. (We use �ES to denote the bisimilarity in
which every L-transition in ES is matched by a sequence of ES-transitions with
composite label L.)

Lemma 9.13

(1) ES is adequate for strong and weak active bisimilarity; that is �ES = �
and �ES = � on system bigraphs;

(2) ES is definite; hence, �ES = � and �ES = � on system bigraphs. �
Merro and Nardelli [21] give a transition system for mobile ambients which

provides a co-inductive characterization of barbed congruence. This is a raw
transition system, in the sense we have been using the term earlier: it is tai-
lored to represent, as succinctly as possible, the potential of agents for interac-
tion with the environment. The transition system is defined via a somewhat
complicated set of inference rules involving several auxiliary transition rela-
tions; we do not repeat the rules here, but give an overview of the resulting
transitions in Table 9.2.

9.3 Contextual transitions and bisimilarity 147

Case a ℓ a′ Conditions

(a1) νZ (m[in n.p | q] | b) m enter n νZ (n[m[p | q] | o] | b) m, n /∈ Z

(a1∗) νZm (m[in n.p | q] | b) ∗ enter n νZm (n[m[p | q] | o] | b) n /∈ Zm

(a2) νZ (n[s] | b) n enter m νZ (n[m[o] | s] | b) m, n /∈ Z

(a3) S[m[in n.p | q] | n[s]] τ S[n[m[p | q] | s]]

(b1) νZ (m[out n.p | q] | b) m exit n νZ (m[p | q] | n[o | b]) m, n /∈ Z

(b1∗) νZm (m[out n.p | q] | b) ∗ exit n νZm (m[p | q] | n[o | b]) n /∈ Zm

(b2) S[n[m[out n.p | q] | s]] τ S[m[p | q] | n[s]]

(c1) νZ (n[s] | b) m open n νZ m[o | s | b] m, n /∈ Z

(c2) S[m[open n.p | q | n[s]]] τ S[m[p | q | s]]

Table 9.2 Forms of a raw transition a �̀! a0.
As can be seen from the table, four different labels (apart from τ) are em-

ployed; they have the following intuitive meanings:

m enter n: m enters n;

n enter m: n is entered by m;

m exit n: m exits n;

m open n: n is opened by m.

In the first and third case there are also special forms with m replaced by �,
which indicates that the name m of the ambient performing the action is re-
stricted.

The simplicity of the raw labels is helped by the use of a special convention:
in each case the result a0 of a raw transition contains the special process o that
plays the role of place-holder for an arbitrary process. The place-holder is used
in the definition of bisimulation, which states that, for related a and b, every

transition a �̀! a0 must be matched by a transition b �̀! b0 such that fp/oga0
and fp/ogb0 are related for every process p. Thus, arbitrary parameters (as they
appear in our contextual labels) are avoided in the raw labels, but only at the
cost of introducing them in the definition of bisimilarity.

With the special meaning of o in mind, we find a close correspondence
between the contextual and raw transition systems by comparing Tables 9.1
and 9.2:

• enter-transitions in cases (a1) and (a1�) of Table 9.2: these correspond to
the contextual transition in case (a1) of Table 9.1;

148 9 Mobile Ambients

• enter-transitions in case (a2) of Table 9.2: these correspond to the contex-
tual transition in case (a2) of Table 9.1;

• exit-transitions in cases (b1) and (b1�) of Table 9.2: these correspond to
the contextual transition in case (b1) of Table 9.1;

• open-transitions in case (c1) of Table 9.2: these correspond to the contex-
tual transition in case (c1) of Table 9.1;

• τ-transitions in case (a3, b2, c2) of Table 9.2: these correspond to the
identity-transitions (cases (a3, b2, c2) of Table 9.1);

• The contextual substitution transitions in cases (a4, b3, c3) of Table 9.1
have no corresponding raw transitions.

Thus, if we disregard substitution transitions (as we considered also for the
π-calculus in the previous chapter) we arrive at a transition system essentially
identical to that of Merro and Nardelli. However, the bisimilarity for this tran-
sition system is strictly stronger than the bisimilarity that Merro and Nardelli
define, and hence also stronger than barbed congruence. The reason for the
discrepancy is that transitions with the special �-forms of enter- and exit-labels
provide “too much” observational power; that is, unless they are treated spe-
cially, the resulting bisimilarity is strictly stronger than barbed congruence. The
situation is similar to that for the asynchronous π-calculus, where (as previ-
ously discussed) a weakened form of input matching is employed in order to
recover barbed congruence. Merro and Nardelli, consequently, use a similarly
weakened form of matching for their �-labels. Without this, their bisimilarity
would not, for example, validate the equivalence

νn n[p℄ � 0 (n /2 fn(p))
known as the “perfect firewall” equation. Indeed, our contextual bisimilarity
does not validate this equation, as the left-hand side generally has non-identity
contextual transitions; for example, if p is of the form inm then there is a tran-
sition of the form in case (a1) of Table 9.1.

Thus, as was the case for our model of the π-calculus, the bisimilarity
induced by the bigraph model is strictly stronger than barbed congruence.
Again, it is unclear without substantial studies of applications of the calculus
to what extent the induced notion of bisimilarity might be useful in practice. In
any case it is encouraging—from a bigraph perspective—that the labelled tran-
sition system derived from the bigraph model so closely resembles the system
arrived at independently by other researchers.

Chapter 10

Conclusions

In this short closing chapter we summarize the results and conclusions given
in the main chapters of the dissertation, and we discuss some directions for
future work.

The material in Part I of the dissertation is partly a review of the existing
theory of reactive systems and of pure and binding bigraphs, and partly three
main developments of these theories: First, a theory of weak bisimilarity for
reactive systems, based on composition of reaction rules. Secondly, a notion of
place-sorting for bigraphs, for which we obtain results that parallel the main
results for unsorted bigraphs, namely (1) the existence of IPOs and the conse-
quent congruence of bisimilarity, and (2) the adequacy of engaged transitions.
Thirdly, an adequacy theorem for engaged transitions in simple BRSs, allow-
ing, in particular, for BRSs with replication.

Thus, we have succeeded in extending the applicability of reactive systems
and bigraphs. The extensions are necessary for the applications we have given
in Part II, but at the same time they are general enough that we can expect
them to be useful also in future applications. A side-effect of achieving the ex-
tensions is to further provide confidence in the theory that existed previously:
if natural extensions had turned out to be problematic, one would reasonably
suspect that the existing theory had built-in inadequacies.

Part II provides a challenge to the theory from Part I, namely to test that it
can handle the substantial applications provided by existing calculi for mobile
processes. It passes the test, at least in the sense that the structure (structural
congruence) and behaviour (reaction) can be represented faithfully and natu-
rally in bigraphs. As for the transition systems and behavioural equivalences
that the encodings induce, the picture is less clear: We find a substantial, but
not complete, agreement between engaged transitions and the “raw” transition
systems for the calculi. In all cases, the small discrepancies in the transition
systems lead to behavioural equivalences that differ slightly from any of the
established equivalences in the calculi. As we have argued, it is not clear that
the differences are important for applications of the calculi; to settle this ques-
tion would require detailed study of a range of such applications, something

150 10 Conclusions

that represents one line of future work.
As explained in the introduction, the work in this dissertation has concen-

trated on establishing ties with process calculus, and in particular via the no-
tions of labelled transitions and bisimilarity. Clearly, this is just one area of
many that must be addressed before bigraphs can be convincingly proposed as
a suitable framework for modelling mobile computation. Several natural ex-
tensions to the framework should be explored, such as features for modelling
continuous phenomena (e.g. time) or for specifying probabilistic behaviour.
Moreover, semantic notions other than bisimilarity should be developed, in-
cluding other transition-based equivalences and preorders, logics, and notions
based on reaction, such as reachability or confluence.

For bigraphs to be accepted as a practical tool, perhaps the most important
future work is simply to extend the range of applications substantially, and
to refine the framework according to the feedback this will provide. It is not
realistic, however, to expect a large number of substantial applications with-
out some form of practical support in the form of programming languages and
development tools. Fortunately, work is underway on a bigraphical program-
ming language at Copenhagen’s IT University.

Whether or not bigraphs will, in the longer run, turn out to be among the
best tools for constructing and understanding mobile systems remains to be
seen. In any case, such tools are increasingly necessary, and the struggle to
provide them must continue. One can at least say that bigraphs have been
established as a strong candidate in this endeavour; it is to be hoped, therefore,
that they will attract much further research, both at a theoretical and a practical
level.

Appendix A

Proofs for Section 8.4

Lemma 8.13 In either of BBGsfπ, BBGfπ and BBGπ, let p, q : (X), and suppose
νw (uw j p) .� νw (uw j q) for some u and w with u /2 X. Then p .� q.

Proof Let S consist of all pairs (p, q : (X)) satisfying the condition. We show

that S is a mono bisimulation up to
.�. Suppose (p, q) 2 S and p

L�! p0.
We must consider all possible forms of the transition according to Table 8.2
cases (a1–b7). The argument is analogous in each case; we give it just for
case (b1). In this case we have the forms

p = νZ ((xy.p0 + m) j g)
L = (x(z).s / id) / idx

p0 = νZ (p0 j (y/z) s j g) .

The non-trivial case is when x = w. Let M = (u(x).x(z).(vx j s) / id) / idu. Then

νw (uw j p) M�! νw (0 j w(z).(vw j s) j p)
id�! νw (0 j vw j p0)
.� νw (vw j p0) .

By the assumption (p, q) 2 S there is also a transition sequence

νw (uw j q) M�! id�! q01
for some q01 such that νw (vw j p0) .� q01. Because of the form of M, this requires

q
L�! q0 for some q0 such that q01 = νw (0 j vw j q0) .� νw (vw j q0). Then, using

the easily verified property that t j 0 .� t, we have (p0, q0) 2 S .�, and we are
done. �
Theorem 8.14 (mono bisimilarity) In BBGsfπ, BBGfπ and BBGπ mono bisimi-
larity lies between early and ground bisimilarity:

e�π � .� � g�π .

152 A Proofs for Section 8.4

Moreover, in BBGfπ and BBGπ both inclusions are strict.

Proof For the first inclusion we show that
e�π is a mono bisimulation. Suppose

p
e�π q, and let p

L�! p0 be a mono transition; we must find a transition q
L�! q0

such that p0 e�π q0. Table 8.2 cases (a1–3, b1–3, b5–6) list the possible forms for
the transition of p. Let us consider case (b1), where we have the forms

p = νZ ((xy.p0 + m) j g)
L = (x(z).s / id) / idx

p0 = νZ (p0 j (y/z) s j g) .

There are two subcases, according to whether y is among Z or not. We assume
y 2 Z; the proof in the other subcase is similar. For p in the form stated we
infer from Table 8.3 an early transition

p
x(y)��! p00 def= νZ0 (p0 j g) ,

where Z0 = Z n fyg. Then, since p
e�π q, there is an early transition q

x(y)��! q00
for some q00 such that p00 g�π q00. Using Table 8.3 again, we find that q is of
the form νWy (xy.q0 j h), where we can assume the names W to be fresh, and
q00 = νW (q0 j h). From Table 8.2 we then infer a mono transition

q
L�! q0 def= νWy (q0 j (y/z) s j h) .

Since s is part of L and therefore has no names among Z0 or W, we can write p0
and q0 in the forms

p0 = νy ((y/z) s j p00)
q0 = νy ((y/z) s j q00) .

Hence, using the fact that
e�π is a non-input congruence, we obtain p0 e�π q0

as required. (It may be noted that this last step would not go through if one

attempted a similar proof with
g�π in place of

e�π.)
The arguments for all other applicable cases are similar.
For the second inclusion we show that .� is a ground bisimulation. Suppose

p .� q and let p �̀! p0 be a late transition; we must find a late transition q �̀!
q0 such that p0 .� q0. Table 8.3 cases (a1–b8) minus cases (a1, b3, b6) list the
possible forms for the transition of p. Let us consider first case (b2) (bound
output). In this case the label ` is x(z), and p and p0 have the forms

p = νZz ((xz.p0 + m) j g)
p0 = νZ (p0 j g) .

We define two contextual labels:

L1 = (x(z).zv.uz / id) / idx

L2 = (x(z).uz / id) / idx ,

153

where u and v are fresh. Using Table 8.2 we infer two trim transitions

p
L1�! p01 def= νZz (p0 j zv.uz j g)

p
L2�! p02 def= νZz (p0 j uz j g) .

Then, since p .� q, there must be trim transitions q
L1�! q01 and q

L2�! q02 for some
q01 and q02 such that p01 .� q01 and p02 .� q02. Using Table 8.2 again, we find that
q, q01 and q02 have the forms

q = νW ((xy.q0 + n) j h)
q01 = νW (q0 j zv.uz j h)
q02 = νW (q0 j uz j h) ,

where we can assume the names W to be fresh. We claim that z 2 W; for

otherwise q01 Lz�! Lu�!, where Lz = (z(w) / id) / idz and Lu = (u(z) / id) / idu, and
p01 cannot match this transition sequence, a contradiction with p01 .� q01. From
Table 8.3 we then infer a late transition

q
x(z)��! q0 def= νW 0(q0 j h) ,

where W 0 = W n fzg. We can write p02 and q02 in the forms

p02 = νz (uz j p0)
q02 = νz (uz j q0) .

As p02 .� q02, the required relationship p0 .� q0 follows from Lemma 8.13.

For case (b1)—a free output transition p
xy�! p0—the argument is similar.

We use L1 again, this time to establish that y is open in q; the main argument
then goes through using the simpler L3 = (x(z) / id) / idx in place of L2, and
using only t j 0 .� t in place of Lemma 8.13.

Case (b4)—a bound input transition p
x(z)��! p0—is simpler, corresponding

essentially to a contextual transition with label (xz / id) / idx; again we need

only to use t j 0 .� t. Case (b5)—a silent transition p
τ�! p0—is simpler still, as

τ- and id-transitions coincide exactly.
Cases (b6–7), which apply only in BBGπ, are analogous to cases (b4–5).

Cases (a1–2, a4–5), which apply only in BBGsfπ, are analogous to cases (b1–
2, b4–5), but simplified by the fact that the equality t j 0 = t holds in BBGsfπ.
This completes the proof of the second inclusion.

For strictness of the inclusions, consider the process bigraphs

p = x(y).(x j y)
q = x(y).(x.y + y.x).

154 A Proofs for Section 8.4

For these we claim

p
e�π
.� q ux j p

.�
g�π

ux j q .

It is easy to verify that p .� q; the crux is that the label L of a transition of p
or q will have the form (xv / id) / idx with v fresh, and hence the resulting

substitution cannot coalesce x and y. But p
e�π q, because there are free input

transitions which do coalesce x and y. The addition of the parallel component

ux makes no difference for
g�π, as the only new late transitions (labelled ux)

lead to p and q. But taking L = (u(z).zz / id) / idu we have

p
L�! xx j p

id�! x j x

q
L�! xx j q

id�! x.x + x.x ,

whence p .� q. �
Theorem 8.18 (asynchronous contextual bisimilarity) In BBGaπ contextual
bisimilarity and restriction-asynchronous bisimilarity coincide:� = ra�π .

Proof For each pair of disjoint finite name sets X and Z, we fix a family fuzgz2Z

of names disjoint from X and Z, and we define the process

extX,Z
def= ∏

z2Z

uzz .

For the inclusion � � ra�π we show that fSZg is a restriction-asynchronous

bisimulation, whereSZ
def= f(p, q : (X)) j νZ (extX,Z j p) � νZ (extX,Z j q)g .

Suppose (p, q) 2 SZ, and let p �̀! p0; we must find a matching transition q �̀! q0
according to Definition 8.16. Table 8.3 cases (b4, b7, c1–4) list the possible forms
for the transition of p. We treat cases (b4) and (c2); the others are easier.

Case (b4) (input). The label ` is x(z), and p and p0 have the forms

p = νW ((x(z).p0 + p1) j g)
p0 = νW (p0 j g) .

There are two subcases according to whether x is among Z or not. We treat the
case x 2 Z; the other is straightforward.

Define a contextual label

L = ((ux(x).(uxx j xz)) / id) / idu ;

155

then by Table 8.2 we infer trim transitions

νZ (extX,Z j p) L�! p01 def= νZ (extX,Z j xz j p)
id�! p02 def= νZ (extX,Z j p0) .

Then, since νZ (extX,Z j p) � νZ (extX,Z j q), there must be trim transitions

νZ (extX,Z j q) L�! q01 id�! q02 such that p01 � q01 and p02 � q02. Using Table 8.2
again, we find from the first transition that q01 has the form νZ (extX,Z j xz j q);
from the second transition we find that one of the following is the case:

(i) q and q02 have the forms

q = νV ((x(z).q0 + q1) j h)
q02 = νZ (extX,Z j q0) ,

where q0 = νV (q0 j h).
(ii) q

id�! q0 for some q0 such that q02 = νZ (extX,Z j xz j q0).
In case (i) we find by Table 8.3 a raw transition q

x(z)��! q0, and from the bisimi-
larity p02 � q02 it follows that (p0, q0) 2 SZ; thus we have a matching transition
according to case (2a) of Definition 8.16.

In case (ii) we infer readily a raw transition q
τ�! q0, and from the forms of

p02 and q02 it follows that (p01 , xv j q0) 2 SZ; thus we have a matching transition
according to case (2b) of Definition 8.16. This concludes the proof for case (b4).

Case (c2) (bound output). The label ` is x(z), and p and p0 have the forms

p = νz (xz j g)
p0 = 0 j g .

Again there are two subcases according to whether x is among Z or not, and
we treat only the most interesting case, namely x 2 Z.

Define a contextual label

L = ((ux(x).x(z).(uxx j uzz)) / id) / idu ;

then by Table 8.2 we infer trim transitions

νZ (extX,Z j p) L�! p01 def= νZ (extX,Znfxg j x(z).(uxx j uzz) j p)
id�! p02 def= νZz (extX,Zz j p0) .

Then, since νZ (extX,Z j p) � νZ (extX,Z j q), there must be trim transitions

νZ (extX,Z j q) L�! q01 id�! q02 such that p01 � q01 and p02 � q02. Using Table 8.2
again, we find from the first transition that q01 has the form

q01 = νZ (extX,Znfxg j x(z).(uxx j uzz) j q) ,

156 A Proofs for Section 8.4

and from the second transition that q and q02 have the forms

q = νz (xz j h)
q02 = νZz (extX,Zz j q0) ,

where q0 = 0 j h. From these forms we inter by Table 8.3 a raw transition

q
x(z)��! q0, and from the bisimilarity p02 � q02 it follows that (p0, q0) 2 SZz;

thus we have a matching transition according to case (3) of Definition 8.16.
This concludes the proof of case (c2), and we have established the inclusion� � ra�π.

For the opposite inclusion we show thatS def= f(νZ (p j g) , νZ (q j g)) j p
ra�
Z

π qg .

is a trim bisimulation up to context. Suppose p
ra�
Z

π q and let νZ (p j g) L�! p0
be a trim transition; we must find a trim transition νZ (q j g) L�! q0 for some q0
such that (p0, q0) 2 SC. Table 8.2 lists the possible forms for the transition of
νZ (p j g). The proof proceeds by a large number of cases, each arising from a
particular case from the table combined with a particular distribution among p
and g of the subterms that are part of the redex of the transition. All cases are
similar; we treat just two among the most interesting.

Case p, g, L and p0 have the forms

p = νy (xy j p0)
g = νW (x(z).g0 j g1)
L = id

p0 = νZy (p0 j νW ((y/yz) g0 j g1)) .

In this case we infer from Table 8.3 a raw transition p
x(y)��! p0. Then, since

p
ra�
Z

π q, there must be a transition q
x(y)��! q0 for some q0 such that p0

ra�
Zy

π q0

(case (3) of Definition 8.16). Using Table 8.3 again we find that q must have the
form νy (xy j q0). Then, using Table 8.2, we infer a trim transition

νZ (q j g) id�! q0 def= νZy (q0 j νW ((y/yz) g0 j g1)) .

From the forms of p0 and q0 and the bisimilarity p0
ra�
Zy

π q0 it follows that(p0, q0) 2 S .
Case p, g, L and p0 have the forms

p = νW (x(z).p0 j p1)
g = νy (xy j g0)
L = id

p0 = νZy (νW ((y/yz) p0 j p1) j g0) .

157

In this case we infer from Table 8.3 a raw transition

p
x(z)��! p00 def= νW (p0 j p1) .

Then, since p
ra�
Z

π q, one of the following must hold:

(i) q
x(z)��! q00 for some q00 such that p00 ra�

Z
π q00 (case (2a) of Definition 8.16);

(ii) q
τ�! q00 for some q00 such that p00 ra�

Z
π xz j q00 (case (2b) of Definition 8.16).

In case (i) we find from Table 8.3 that q and q00 must have the forms

q = νV (x(z).q0 j q1)
q00 = νV (q0 j q1) ,

and using Table 8.2 we then infer a trim transition

νZ (q j g) id�! q0 def= νZy (νV ((y/yz) q0 j q1) j g0) .

Without loss of generality we can assume the names z, W and Z to be all chosen
fresh, and therefore p0 and q0 can be written in the forms

p0 = νy (y/yz) νZ (p00 j g0)
q0 = νy (y/yz) νZ (q00 j g0) ,

and it follows from the bisimilarity p00 ra�
Z

π q00 that (p0, q0) 2 SC.

In case (ii) we readily infer a trim transition

νZ (q j g) id�! q0 def= νZ (q00 j g)= νy νZ (q00 j xy j g0)= νy (y/yz) νZ (q00 j xz j g0) ,

and it follows from the bisimilarity p00 ra�
Z

π xz j q00 that (p0, q0) 2 SC.

This concludes the proof of the theorem. �

Bibliography

[1] Andrea Asperti and Nadia Busi. Mobile Petri nets. Technical Report
UBLCS-96-10, University of Bologna, 1996.

[2] Gérard Berry and Gérard Boudol. The chemical abstract machine. Theo-
retical Computer Science, 98:217–248, 1992.

[3] Maria Buscemi and Vladimiro Sassone. High-level Petri nets as type the-
ories in the join calculus. In Proceedings of FoSSaCS 2001. Springer LNCS
2030, 2001.

[4] Luca Cardelli and Andrew D. Gordon. Mobile ambients. In Proceedings of
FoSSaCS 1998, pages 140–155. Springer LNCS 1378, 1998.

[5] Rocco de Nicola, Gian Luigi Ferrari, and Rosario Pugliese. KLAIM: a
kernel language for agents interaction and mobility. IEEE Transactions on
Software Engineering, 24(5), 1998.

[6] Rocco de Nicola and Matthew Hennessy. Testing equivalences for pro-
cesses. Theoretical Computer Science, 34:83–134, 1984.

[7] Cédric Fournet and Georges Gonthier. The reflexive CHAM and the join-
calculus. In Proceedings of POPL 1996, pages 372–385. ACM Press, 1996.

[8] Fabio Gadducci and Ugo Montanari. The tile model. In Gordon Plotkin,
Colin Stirling, and Mads Tofte, editors, Proof, Language and Interaction: Es-
says in Honour of Robin Milner. MIT Press, 1998.

[9] Jan Friso Groote and Frits Vaandrager. Structured operational seman-
tics and bisimulation as a congruence. Information and Computation,
100(2):202–260, 1992.

[10] Matthew Hennessy and James Riely. Resource access control in systems
of mobile agents. In High-Level Concurrent Languages, volume 16, pages
3–17. Elsevier Science Publishers, 1998.

[11] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[12] Ole Høgh Jensen and Robin Milner. Bigraphs and transitions. In Proceed-
ings of POPL 2003, pages 38–49. ACM Press, 2003.

Bibliography 159

[13] Ole Høgh Jensen and Robin Milner. Bigraphs and mobile processes. Tech-
nical Report UCAM-CL-TR-580, Cambridge University Computer Lab,
2004.

[14] Kim G. Larsen. Context Dependent Bisimulation between Processes. PhD the-
sis, University of Edinburgh, 1986.

[15] Kim G. Larsen and Liu Xinxin. Compositionality through an operational
semantics of contexts. Journal of Logic and Computation, 1(6):761–795, 1991.

[16] James Leifer. Operational Congruences for Reactive Systems. PhD thesis,
University of Cambridge, 2001.

[17] James Leifer and Robin Milner. Transition systems, link graphs and Petri
nets. Technical Report UCAM-CL-TR-598, Cambridge University Com-
puter Lab, 2004.

[18] James J. Leifer and Robin Milner. Deriving bisimulation congruences for
reactive systems. In Proceedings of CONCUR 2000, pages 243–258. Springer
LNCS 1877, 2000.

[19] Narciso Martí-Oliet and José Meseguer. Rewriting logic: Roadmap and
bibliography. Theoretical Computer Science, 2001.

[20] Massimo Merro and Matthew Hennessy. Bisimulation congruences in safe
ambients. In Proceedings of POPL 2002, pages 71–80. ACM Press, 2002.

[21] Massimo Merro and Francesco Zappa Nardelli. Bisimulation proof meth-
ods for mobile ambients. In Proceedings of ICALP 2003. Springer LNCS
2719, 2003.

[22] Robin Milner. Communication and Concurrency. Prentice Hall, 1989.

[23] Robin Milner. The polyadic π-calculus: a tutorial. In F. L. Bauer, W. Brauer,
and H. Schwichtenberg, editors, Logic and Algebra of Specification. Springer-
Verlag, 1993.

[24] Robin Milner. Communicating and Mobile Systems: The π-Calculus. Cam-
bridge University Press, 1999.

[25] Robin Milner. Bigraphical reactive systems. In Proceedings of CONCUR
2001, pages 16–35. Springer LNCS 2154, 2001.

[26] Robin Milner. Pure bigraphs: Structure and dynamics. Information and
Computation, 204(1):60–122, 2006.

[27] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile
processes, parts I and II. Information and Computation, 100:1–77, 1992.

[28] Robin Milner and Davide Sangiorgi. Barbed bisimulation. In Proceedings
of ICALP 1992. Springer LNCS 623, 1992.

160 Bibliography

[29] Mogens Nielsen, Gordon D. Plotkin, and Glynn Winskel. Petri nets, event
structures and domains, part i. Theoretical Computer Science, 13(1):85–108,
1981.

[30] David Park. Concurrency and automata on infinite sequences. In Theoret-
ical Computer Science. Springer LNCS 104, 1981.

[31] Carl Adam Petri. Kommunikation mit Automaten. PhD thesis, University of
Bonn, 1962.

[32] Benjamin C. Pierce and David N. Turner. Concurrent objects in a process
calculus. In Proceedings of Theory and Practice of Parallel Programming 1995,
pages 187–215. Springer LNCS 907, 1995.

[33] Aviv Regev, William Silverman, and Ehud Shapiro. Representation and
simulation of biochemical processes using the π-calculus process algebra.
In Proceedings of Pacific Symposium on Biocomputing 2001, pages 459–470.
World Scientific Press, 2001.

[34] Grzegorz Rozenberg, editor. Handbook of Graph Grammars and Computing
by Graph Transformations. World Scientific, 1997.

[35] Davide Sangiorgi. Expressing Mobility in Process Algebras: First-Order and
Higher Order Paradigms. PhD thesis, University of Edinburgh, 1992.

[36] Davide Sangiorgi. A theory of bisimulation for the π-calculus. Acta Infor-
matica, 33:69–97, 1996.

[37] Davide Sangiorgi. On the bisimulation proof method. Mathematical Struc-
tures in Computer Science, 6(5):447–479, 1998.

[38] Davide Sangiorgi and David Walker. The π-Calculus—A Theory of Mobile
Processes. Cambridge University Press, 2001.

[39] Vladimiro Sassone and Pawel Soboćinski. Deriving bisimulation congru-
ences: 2-categories vs. precategories. In Proceedings of FoSSaCS 2003, pages
409–424. Springer LNCS 2003, 2003.

[40] Peter Sewell. From rewrite rules to bisimulation congruences. Theoretical
Computer Science, 274(1–2):183–230, 2002.

[41] Howard Smith and Peter Fingar. Business Process Mangament—the third
wave. Meghan-Kiffer Press, 2003.

[42] Pawel Sobociński. Deriving Process Congruences from Reaction Rules. PhD
thesis, University of Aarhus, 2004.

[43] Terese. Term rewriting systems, volume 55 of Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 2003.

[44] Glynn Winskel. Petri nets, algebras, morphisms, and compositionality.
Information and Computation, 72(3):197–238, 1987.

Index

absolute bisimilarity, 17, 20
active transition, 73, 78–81
adequacy (of transition system), 16–17
agent (in transition system), 15
allowable operation, 18–20
ambient calculus, see mobile ambients
applicability (of label), 15–16, 19

bigraph
dynamics, 7, 9
structure, 7–9

bigraphical reactive system, see BRS
bisimilarity, 16

absolute, 17, 20
relative, 16–17, 19

bisimulation, 16
generalized, 18–19
relative, 16
up to an operation, 18
up to bisimilarity, 17, 18

BRS, 7–10

CCS, 4, 5, 7, 134
composition

of bigraphs, 9
of operations, 18
parallel, see parallel composition

congruence, 4
context, 4, 8

as label, 9, 21–23
closure under, 20

contextual transition, 9, 20–23, 30, 33,
130–132, 147–148

control, 8
CSP, 4

definite sub-transition system, 17

engaged transition, 73, 85–90, 124–126,
145–146

generalized bisimulation, 18–19
graph rewriting, 3, 11, 26, 65

Hoare, Tony, 4

idempushout, see IPO
inner face, 8
insertion (of wiring), see wiring, inser-

tion
interface, 8
IPO

as basis of transitions, 9–10, 21–
26, 33

label
as context, 9, 21–23
in transition system, 4, 15

labelled transition, see transition
labelled transition system, see transi-

tion system
Larsen, Kim, 11
Leifer, Jamey, 11, 31, 41
link graph, 7

Milner, Robin, ii, 4, 5, 7, 9, 11, 17, 25,
26, 31, 41, 93, 134

mobile ambients, 6, 7, 138–140
mono bisimilarity, 132
mono transition, 132
Montanari, Ugo, 11

outer face, 8

parallel composition, 21

162 Index

in π-calculus, 93, 95–99, 101, 104,
110, 133

in bigraphs, see parallel product
in mobile ambients, 139, 143
in process calculus, 4, 5, 7

parallel product, 67
Parrow, Joachim, 5
Petri net, 3, 6, 11
π-calculus, 5–7, 93–100
place graph, 7
process calculus, 4–7
progression, 18
pushout, 9, 22

idem-, see IPO
relative, see RPO

raw transition, 130–132, 146–148
reaction, 3–4, 7

in π-calculus, 5, 96
in bigraphs, 7–10, 39, 41, 64, 70–72
in mobile ambients, 6, 140
in process calculi, 4
in reactive systems, 30
weak (in reactive systems), 35

reaction rule, 7–10
reactive system, 11, 25–26, 30–31

bigraphical, see BRS
reactum, 3, 30, 70–72, 75
redex, 3, 30, 70–72, 75
relative bisimilarity, 16–17, 19
relative pushout, see RPO
rewrite logic, 3, 26
rewrite system, 3

Sangiorgi, Davide, 6, 7, 18, 19
Sassone, Vladimiro, 11
Sewell, Peter, 11
signature, 8
silent transition, 33
simulation, 16
Sobociński, Pawel, 11
standard transition, 30–31, 72–73
structural congruence, 7
sub-transition system, 16–17

total transition system, 16, 19–20

transition
contextual, 20
in π-calculus, 7, 96–99
in bigraphs, 9, 72–73, 78–83, 85–

90
in mobile ambients, 146–147
in process calculi, 4, 33
in reactive system, 9, 21–23, 30–

32, 35–38
in transition system, 15

transition system, 15
trim transition, 126–130

union of operations, 18

Walker, David, 5
weak reaction (in reactive systems), 35
weak transition, 35–38, 72, 81, 90
width, 8
Winskel, Glynn, 11
wiring

insertion, 67, 69, 105

