
The space and motion of
communicating agents

Robin Milner
December 1, 2008

ii

to my family:
Lucy, Barney, Chlöe,
and in memory of Gabriel

iv

Contents

Prologue vii

Part I : Space 1

1 The idea of bigraphs 3

2 Defining bigraphs 15
2.1 Bigraphs and their assembly . 15
2.2 Mathematical framework . 19
2.3 Bigraphical categories . 24

3 Algebra for bigraphs 27
3.1 Elementary bigraphs and normal forms 27
3.2 Derived operations . 31

4 Relative and minimal bounds 37

5 Bigraphical structure 43
5.1 RPOs for bigraphs . 43
5.2 IPOs in bigraphs . 48
5.3 Abstract bigraphs lack RPOs . 53

6 Sorting 55
6.1 Place sorting and CCS . 55
6.2 Link sorting, arithmetic nets and Petri nets 60
6.3 The impact of sorting . 64

Part II : Motion 66

7 Reactions and transitions 67
7.1 Reactive systems . 68
7.2 Transition systems . 71
7.3 Sub transition systems . 76

v

vi CONTENTS

7.4 Abstract transition systems .77

8 Bigraphical reactive systems 81
8.1 Dynamics for a BRS . 82
8.2 Dynamics for a nice BRS . 87

9 Behaviour in link graphs 93
9.1 Arithmetic nets . 93
9.2 Condition-event nets . 95

10 Behavioural theory for CCS 103
10.1 Syntax and reactions for CCS in bigraphs 103
10.2 Transitions for CCS in bigraphs .107

Part III : Development 113

11 Further topics 115
11.1 Tracking . 115
11.2 Growth . 117
11.3 Binding . 122
11.4 Stochastics . 127

12 Background, development and related work 129

Appendices 135

A Technical detail 137
A.1 Support translation . 137
A.2 Public versus private names . 137
A.3 RPOs for link graphs . 139
A.4 Quotient of a transition system .141
A.5 Unambiguity of labels . 142
A.6 Faithfulness of engaged transitions 142
A.7 Recovering bisimilarity for CCS .148

B Solutions to exercises 151

Bibliography 165

Index 173

Glossary of terms and symbols 181

Prologue

The informatic challenge

Computing is transforming our environment. Indeed, the term ‘computing’ describes
this transformation too narrowly, because traditionally it means little more than ‘cal-
culation’. Nowadays, artifacts that both calculate and communicate pervade our lives.
It is better to describe this combination as ‘informatics’,connoting not only the pas-
sive stuff (numbers, documents, . . .) with which we compute,but also the activity of
informing, or interacting, or communicating.

The stored-program computer, which sowed the seeds of this transformation sixty
years ago, is itself a highly organised informatic engine specialised to the task of cal-
culation. Computers work byinternal communication among their parts; no-one ex-
pected that, within half a century, most of their work—not counting highly specialised
applications—would involveexternalcommunication. But within twenty-five years
arose networks of interacting computers; the control of interaction then became a prime
concern. Interacting systems, such as the worldwide web or networks of people with
phones, are now commonplace; software takes part in them, but most prominent is
communication, not calculation.

These artifacts will be everywhere. They will control driverless motorway traffic,
via communication among sensors and effectors at the roadside and in vehicles; they
will monitor and treat our health via communication betweendevices installed in the
human body and software in hospitals. Thus the term ‘ubiquitous computing’ repre-
sents a vision that is being realised.1 In 1994 Mark Weiser, a pioneer of this vision,
wrote2

Populations of computing entities will be a significant partof our environ-
ment, performing tasks that support us, and we shall be largely unaware of
them.

This suggests that informatic behaviour is just one of the kinds of phenomena that im-
pinge upon us. Other kinds are physical, chemical, meteorological, biological, . . . ,
and we have a good understanding of them, thanks to an evolvedculture of scientific

1The terms ‘ubiquitous’ and ‘pervasive’ mean roughly the same when applied to computing. I shall only
use ’ubiquitous’.

2Citations of related work will be found in Chapter 12.

vii

viii PROLOGUE

concepts and engineering principles. But understanding still has to evolve for the be-
haviour of a population of informatic entities; we have not the wisdom to dictate the
appropriate concepts and principles once and for all, however well we understand the
individual artifacts that make up the population.

This understanding is unlikely to evolve in large steps. Thequalities we shall at-
tribute to ubiquitous systems are extraordinarily variousand complex. Such a system,
or its component agents, will beself-aware, possessbeliefsabout their environments,
possessgoals, enternegotiationto achieve goals, and be able toadapt to changing
circumstances without human intervention. Here is an incomplete list (in alphabetical
order) of concepts or qualities, all of which will be used to specify and analyse the
behaviour of ubiquitous systems:

agent, authenticity, belief, connectivity, continuous space, data protection,
delegation, duty, encapsulation, failure management, game theory, history,
knowledge, intelligence, intention, interaction, latency, locality, motion,
negotiation, protocol, provenance, route, security, self-management, spec-
ification, transaction, trust, verification, workflow.

Much has been written about principles and methods of systemdesign that can realise
these qualities, and much experimental work done in that direction. That body of work
is one part of the background for this book, and is discussed in greater detail—with
citations—in Chapter 12.

The design task for ubiquitous systems is all the harder because they will be at
least an order of magnitude larger than present-day software systems, and even these
have often been rendered inscrutable by repeated adhoc adaptation. Yet ubiquitous
systems are expected toadapt themselves without going offline(since we shall depend
upon their continuous operation). It is therefore a compelling scientific challenge to
understand them well enough to gain confidence in their performance. This has been
adopted as one of the Grand Challenges for Computing Research by the UK Computing
Research Committee.

Looking at our list of system qualities in greater detail, wenotice that some are
more sophisticated, or ‘higher-level’, than others. Some,such as trust, are properties
normally attributed to humans, not to artifacts. But when anassertion such as ‘A trusts
B’ is made at a high level of modelling, we expect it to be realised at a lower level by
A’s behaviour; for example, A may grant B’s requests on the basis of evidence of B’s
past behaviour.3 If a stratification of modelling can be achieved by such realisations,
then the task of description and design of ubiquitous systems will become tractable.

To model ubiquitous systems of artifacts will be hard enough. But, as the reader
may already be thinking, such systems will also contain natural organisms. They will
occur at dramatically different levels; we already mentioned people with phones, and
we should also include more elementary biological entities. We should seek to model
not only interactive behaviour among artificial agents, butalso interaction with and
among natural agents. Ultimately our informatic modellingshould merge with, and
enrich, natural science.

3A behaviourist philosopher might insist that this is themeaningof ‘A trusts B’, even for humans.

ix

Space

Where can we start, in building a stratified model of ubiquitous systems? The key term
here is ‘stratified’. The agents of a ubiquitous system standto it in the same relation as
musical instruments stand to an orchestra. Instruments existed long before orchestras;
how to combine them in groups and then into the whole would have puzzled the early
virtuosi of each instrument. It would have gradually emerged how the physical qualities
of each instrument would combine to realise qualities of thegroup; for example, how
the tone-colours of different wind instruments would yieldthe more abstract quality of
tenderness, or of humour, in a wind quartet. Thus gradually emerges the huge spectrum
of qualities of a whole orchestra.

Where this analogy becomes strained is in the brute fact ofsize; a ubiquitous system
will involve millions of agents, whereas an orchestra has a mere hundred instruments.

Let us return to stratification. In a ubiquitous system, a quality attributed to a
larger subsystem must be realised by simpler properties of smaller subsystems or of
individual components. This realisation, in turn, surely depends on how the system and
its subsystems are constructed. So, to realise system qualities, we must first understand
possible structures for ubiquitous systems. We may be grateful for this conclusion;
it poses a challenge more accessible than that of realising human-like qualities in a
machine. Structure is itself difficult, especially for systems that will reorganise their
own structure. But one can at least make proposals about the possible ingredients of
structure, without being bewildered by the immense range ofbehavioural qualities that
it will support.

This book works out such a proposal. It starts from the recognition that a notion of
discrete spaceis shared by existing informatic science on the one hand and imminent
ubiquitous systems on the other. This space involves just three of the concepts listed
above:agent, locality andconnectivity. When we come to reconfiguration of the space
we must consider two more of those concepts:motionandinteraction.

At this point, the reader may object: “How can you be sure thatwe can base our
understanding of system behaviour on these concepts? You aim to explain systems that
have some of the intelligence of humans, and these chosen concepts are at the level
of the basic structure of matter! Your proposal is analogousto claiming that we can
base our understanding of the brain on chemistry.” The simple answer is: I amnotsure
that these concepts are sufficient; but I do claim they are necessary. Brain researchers
are faced with a task harder than ours in many ways; but they are fortunate that much
chemistry was known before brain research began. We, on the other hand, have work
to do to formulate the analogue of chemistry for ubiquitous systems.

Let us now turn to discussing a space of agents, based upon locality and connectiv-
ity. Since these ideas pervade the whole book, we shall denote them by the simpler
words placing and linking. It is instructive to reflect how placing and linking run
through existing informatics. Even before the stored-program computer, calculation
depended on ways to organise space—not the space of Euclidean geometry, but a dis-
crete space involving properties like adjacency and containment. Arabic numerals use
one-dimensional placing to represent the power of digits; this allows two-dimensional
placing to be used to arrange data in the basic numerical algorithms—addition, mul-
tiplication, and so on. Algorithms for solving differential equations with a manual

x PROLOGUE

calculator deployed the use of placing for data and calculation in sophisticated ways.
In stored-program computers the space became more refined. Programs use one

storage register to ‘point at’ another; that is, an integer variable is used to index through
a sequence of elements (where previously a human calculatorwould run his or her fin-
ger through the sequence). Thus linking became distinct from simple properties of
placing, such as adjacency or containment. Placing and linking became independent;
for example, an elementplacedwithin an array can belinked to something else occu-
pying a distant place.

It is striking that wireless networks allow us similarly to think of linking as inde-
pendent of physical placing in ubiquitous systems. We assume this independence when
we describe the internet. Moreover placing and linking can be either physical or virtual;
we even mix the two within a single system, using the relationships of physical entities
as metaphors for relating the virtual ones. These metaphorsabound in our vocabulary
for software: flow chart, location, send and fetch, pointer,nesting, tree, etc. Concurrent
computing expands the vocabulary further: distributed system, remote procedure call,
network, routing, etc.

Motion

Any model of ubiquitous systems based on placing and linking, whether of physical
or virtual entities or both, must accommodate motion and interaction. In fact it is
unsatisfactory to separate these two concepts, so I tend to conflate them. (In moving
into a room, I can be said to interact with the room.) The picture below illustrates a
mixture of the physical with the virtual; it also shows how a system may reconfigure
itself.

A

L
K

R

S
M

A
R

S

M

It represents a change of state in which a messageM moves one step closer to its
destination. The three largest nodes may represent countries, or buildings, or software
agents. In each case the senderS of the message is in one, and the receiverR in another.
The message is en route; the link fromM back toS indicates that the message carries
the sender’s address.M handles a keyK that unlocks a lockL, reaching an agentA that
will forward the message toR. This unlocking can be represented by areaction rule;
such rules define how a part of the system may change both its placing and its linking.
A rule that defines the above reconfiguration is as follows:

xi

A

L
K

A

Here, both key and lock are virtual; but of course physical reconfiguration can happen
in the same system. For example, at any time the (physical) receiverR may move
away from her location. Can the message chaseR and catch her up? Perhaps some
interaction between her and the forwarding agentA makes this possible. Indeed, as
she goes,R may construct an informatic record of her (physical) journey, and send it
back to assist the forwarding agent. So there is no doubt thata model of space and
interaction has to coordinate informatic and physical entities.

I shall show that these diagrams, and their reconfiguration,are a presentation of a
rigorous theory. I aim to develop that theory to the point that it can begin to underlie
experiments with real systems, and so form the basis for theories that deal with the
more subtle notions mentioned above, such as beliefs, self-awareness and adaptability.

The bigraph model

The graphical structures we have just illustrated will be called bigraphs. Like an ordi-
nary graph, a bigraph has nodes and edges, and the edges link the nodes. But unlike an
ordinary graph, the nodes can be nested inside one another. So a bigraph haslink struc-
ture andplacestructure; hence the prefix ‘bi’ in bigraph.4 Bigraphs will be introduced
with more detail in Chapter 1, but a few comments will be helpful here:

• The two structures—placing and linking—will be treated independently in the
basic theory of bigraphs. This accords with our observationthat both pointers
in computer programs and wireless links in the real world canarbitrarily cross
place boundaries. This independence property has another benefit; when first
introduced, it was found to simplify the theory of bigraphs dramatically.

• The reader may ask “What is the space in which bigraphs live and move?” The
answer is that bigraphs themselvesare the space of the model. My proposal is
that this notion of space is enough to represent an enormous range of structures.
Experiment with this simple space will reveal whether and when a more complex
space is required.

• A single bigraph may represent both virtual and physical entities (a country, a
message, . . .). This may seem surprising, but creates no difficulty; indeed, it is
very convenient. To push our example a little further, imagine that the receiver
R is a traveller who carries a laptop in which she makes a schematic map of
the places she visits. This physical laptop is then represented by a node in the

4The term ‘bigraph’, as used here, was introduced in 2001. I recently found that the term was already
used then as a synonym for ‘bipartite graph’, a well-established notion in graph theory. The meanings differ,
but the use of the same term is unlikely to cause confusion.

xii PROLOGUE

bigraph, and the virtual structure (the map) it contains maybe represented by the
contents of that node.

Generality

Let us now discuss the degree of generality achieved by bigraphs. Will they serve as a
platform for building ubiquitous systems? To answer this wemust present the bigraph
model as a design tool, to be used not only for analysis but even as a programming
language; then experiments can be done to reveal its power and generality.

But to establish the model as a candidate for this long-term role, we must first
make sure that it accommodates, or generalises, already existing theories of interactive
agents. This shorter-term challenge is more well-defined. We must encode each previ-
ous model—including its rules of interaction—into bigraphs. Indeed bigraphs should
not only represent the agents and reactions of previous models; they should also pro-
vide theory that applies uniformly to those models. In otherwords, bigraphs should
tend to unify theories of processes.

This book gives priority to the latter challenge: to generalise existing process mod-
els. Therefore in Chapter 12, the final chapter, I explain howbigraphs have drawn ideas
from preceding models, and were developed in order to strengthen and generalise their
theory. The result has been positive. To give perspective, Igive a brief summary here.
(A little familiarity with process models will be helpful inthe next paragraph, but it
can be skipped.)

Each process model (for example Petri nets, CSP, mobile ambients,π-calculus) de-
fines processes syntactically, and then presents its rules of interaction. Thus each model
is represented in bigraphs by two parameters: asorting discipline—which includes a
signature—that make the bigraphs represent the model’s formal entities, and a set of
reaction rulesto represent their behaviour. These two parameters yield abigraphical
reactive system(BRS) that is specific to the model. BRSs for several process models
are presented in the book. Often the agreement with the modelis exact; in other cases
nearly exact. It is worth making specific points:

• For the purpose of both analysis and programming, many existing models have
a convenient algebraic (i.e. modular) representation of processes. In bigraphs
there is a uniform algebraic presentation, and this bears a close relation to that of
existing models. Thus bigraphs contribute uniformity of expression.

• Some calculi, including CCS and theπ-calculus, define what it means for two
processes to behave alike. This is calledbehavioural equivalence. A typical
example is bisimilarity. Such an equivalence is usually a congruence—i.e. it
is preserved by insertion of the processes into any environment. The proof of
congruence has typically been somewhat ad hoc. Bigraphs provide a degree of
uniformity here; in bigraphs not only do we treat bisimilarity uniformly across
process calculi, but we also provide a uniform proof of congruence.

• For most of the book we retain the full independence of placing and linking; this
yields most of the results. However Section 11.3 defines uniformly a way to relax

xiii

this independence; it defines how to localise a link and thereby to represent the
bindingof a name; this has allowed us to to handle (for example) theπ-calculus.

Thus the aim to generalise or subsume existing process calculi serves as a focus for
developing our model. But these very calculi do not only aspire to an engineering role,
as a means to express and analyse the design of complex systems; they also aspire
to advance the fundamental science of informatics. They represent a challenge to the
models of computation that were dominant in the twentieth century. By exposing com-
putation as an especially disciplined form of informatic behaviour, they have opened
the way to a science of such behaviour in which the determinacy and hierarchy found
in traditional computing are the exception, not the rule. They replace calculational
structure with communicational structure.

This book can therefore be seen as advancing the science of communicational struc-
tures. For example, I carry out much of the work of the book at the level ofwide reac-
tive systems, more general than bigraphs. But by working in the explicit space of bi-
graphs I attempt to bridge between the engineering and the science of communication.
Indeed, such a model extends the repertoire of models available to natural scientists.
For example, with the help of a stochastic treatment of interaction we are able to apply
the bigraphical model to the predictive analysis of biological systems. This application
lies beyond the scope of the present book, but is explained a little more in Section 11.4.

Rigour

Working at a broad frontier of informatics, spanning science and engineering, demands
prioritisation; as I have already stated, it lies beyond thescope of a single book both
to explore all possible applications (natural and artificial) and to establish a model in
full detail. I have chosen to do the latter because, as we saw in the preceding section,
there already exist many precise models in the form of process calculi, and they pose
an accessible challenge—to recover them as instances of a more impartial study. This
challenge, to establish commonality among existing formalmodels, must itself be ad-
dressed formally if we are to make it a firm platform on which totackle a still wider
range of applications. But I have interleaved formal development with discussion, and
have not relied on previous knowledge of any particular mathematical theory.

I use the medium of category theory, but the level at which I use it is elementary,
and I define every categorical concept that I use. Large informatic systems are complex,
and any rigorous model must control this complexity by meansof adequate structure.
After many years seeking such models, I am convinced that categories provide this
structure most convincingly. It is true that they can also express deep mathematical
abstractions, many of which at present lie beyond the interest of informatic scientists.
But there is a sharp division of motive between pursuing these abstractions per se and
using categorical primitives as a means to understand informatic structure. The work
in this book is of the latter kind. Readers familiar with categories will follow their
use here without difficulty; others who wish to tame informatic structure may find this
work a pleasant way to learn some mathematics suited to that purpose.

Models are built to aid people’s understanding, and different people seek different
levels of understanding. Engineering scientists seek a rigorous model; software de-

xiv PROLOGUE

signers seek something softer, but with equal intuitions, and this is even more true for
their client companies and for end-users. So we would like toknow that softer mod-
els of communicating agents can arise from our rigorous model. Fortunately, by their
very nature these systems involve a concept of space, which is reflected in the idea of
bigraphs and lends itself to informal understanding based upon diagrams. Through-
out the book I work as much as possible with bigraphical diagrams; they express the
rigorous ideas but do not replace them.

Deployment

It is one thing to develop a rigorous model; quite another thing to bring it into use by
those concerned mainly with applications. But this usage isa primary goal for our
model; moreover, it is only by deploying the model in applications that we can subject
it to stringent testing.

Even protypical applications tend to be complex; one need only think of phenomena
in ubiquitous computing and in biology. It follows that software tools are essential
for exploring the efficacy of the model, both for scientific analysis and for advanced
software engineering. Such tools have several roles: inprogrammingandspecifying
complex systems; insimulating them, with the help of stochastic dynamics; and in
visualisingthem at various levels of abstraction, exploiting the graphical presentation
inherent in the model.

Work in these directions is under way at the IT University (ITU) in Copenhagen,
as outlined in Chapter 12. A strategy exists for modular tooldevelopment, which can
proceed in collaboration among different institutions. I would be glad to hear from
anyone willing to contribute seriously to this development.

Outline of the book

Bigraphs are developing in various ways. All these developments are based uponpure
bigraphs: those in which the independence of placing and linking is strictly maintained.
So most of the book is devoted to pure bigraphs, whose theory is more or less settled.
Part I presents their structure; Part II handles their behaviour; and Part III deals with
their development, past and future.

In Part I, Chapter 1 introduces bigraphs starting from standard notions in graph
theory. The main idea of bigraphs is to treat the placing and the linking of their nodes
as independently as possible. Chapter 2 defines bigraphs formally, together with the
operations that build them; it then introduces various kinds of category that will help
to develop their theory. Chapter 3 develops the algebra of bigraphs, with operations
for both placing and linking; it also derives operations familiar from process calculi.
Chapter 4 defines relative pushouts, a categorical tool for structural analysis. Chapter 5
applies this tool to bigraphs, preparing for the later derivation of transitions. Chapter 6
develops a sorting discipline for bigraphs that is reminiscent of many-sorted algebra.

In Part II, Chapter 7 defines the notion of a wide reactive system (WRS), more
general than bigraphs. For such systems it defines reaction rules and derives (labelled)

xv

3. Algebra for bigraphs 4. Relative pushouts

9. Behaviour in link graphs 10. Behavioural theory for CCS

8. Bigraphical reactive systems

6. Sorting5. Bigraphical structure 7. Reactive systems

2. Categorical framework

11. Further topics 12. Development and related work

1. The idea of bigraphs

Figure 1: Dependency among the chapters

transition systems; it then obtains important results suchas the congruence of bisimi-
larity. WRSs have an abstract notion of space, enough to allow reaction to be confined
to certain places. Chapter 8 specialises this work to bigraphs, yielding the more re-
fined notions of a bigraphical reactive system (BRS) and its transition systems; it also
identifies certain well-behaved kinds of BRS. Chapter 9 useslink graphs, a simplified
version of the theory, to analyse behaviour in arithmetic nets and Petri nets. Chapter 10
applies bigraphs to CCS, and recovers its original theory.

In Part III, Chapter 11 discusses several developments beyond pure bigraphs. First,
it examines how totrack the identity of agents through interaction; this would allow
one to express, and to verify, assertions about a BRS such as “Each agent receives
each message at most once” or “Mary has visited three rooms since she entered the
building”. Second, it proposes a generic way to represent agents with infinite behaviour
using finite bigraphs, with the help of rules for structuralgrowth. Third, it discusses
how to constrain placing and linking so that certain links have scope, or arebound, in
the familiar way that variables in a programming language have scope or are bound as
formal parameters of a procedure. Finally, it summarises recent work on thestochastic
interpretation of bigraphical systems; this is essential for simulating nondeterministic
systems, in particular in biological applications, where the more likely of two possible
reactions is that which is attributed the higher rate in an exponential distribution.

Chapter 12 outlines how bigraphs have developed, and discusses related work with
full citations. These show how much the work of this book owesto my close col-
leagues, as well as to influences from other research initiatives.

xvi PROLOGUE

Using the book

The chapters need not be read in strict sequence. Mostly, later chapters point back to
what they need from earlier ones. Figure 1 gives a guide to thedependency among
chapters. For example if you reach Chapter 8 by going down theleft side, you read
about bigraphs and then get the theory when you need it; if youreach it down the right
side you stay at the general level of reactive systems as longas possible. Leaping ahead
may also be useful; for example, those who know something of process calculi may
leap from Chapter 1 to Chapter 10, to gain motivation for returning to the intervening
chapters.

The book is suitable for teaching yourself; there are many exercises, and solutions
to all of them. The book is suitable for a Masters’ course, where the amount of theory
included can be adapted to the students’ knowledge. Parts ofthe book can be used for
an optional final year Undergraduate course.

The book can also serve as the foundation for a lecture coursethat concentrates
upon the intuition of bigraphs and their experimental use. Ihave designed such a
course; from my website,http://www.cl.cam.ac.uk/ ˜ rm135 , the reader may
download a sequence of seventy or more slides that I have used. Accompanying them
is (or, at the time of writing, will soon be) a slide-by-slidenarrative, linking the slides
together and making copious reference to this book—especially for locating the un-
derlying rigorous development. This combination of slidesand narrative will evolve
in response to my own experience, and to the experience of others who use them. I
shall be delighted to receive comments by email (rm135\@ccam.ac.uk) from any-
one, based on such experience; thus I hope to improve the slides, the narrative and
ultimately the book itself.

Acknowledgements

I owe much to early collaboration on bigraphs with Jamey Leifer and Ole Høgh Jensen.
I am most grateful for their creative insights. I thank Philippa Gardner and Peter Sewell
for important contributions in work that led from action structures (a previous model)
to bigraphs. Several people have generously given time to careful reading, helping
me to express things better: Samson Abramsky, Mikkel Bundgaard, Troels Damgaard,
Marcelo Fiore, Sam Staton and David Tranah.

I also thank warmly all those I have worked with, or learnt from, in this subject
over nearly thirty years, in particular: Martı́n Abadi, Samson Abramsky, Jos Baeten,
Martin Berger, Jan Bergstra, Gérard Berry, Lars Birkedal,Clive Blackwell, Gérard
Boudol, Mikkel Bundgaard, Ilaria Castellani, Luca Cardelli, Adriana Compagnoni,
Troels Damgaard, Vincent Danos, Rocco De Nicola, Hartmut Ehrig, Marcelo Fiore,
Philippa Gardner, Arne Glenstrup, Andy Gordon, Matthew Hennessy, Thomas Hilde-
brandt, Jane Hillston, Yoram Hirshfeld, Tony Hoare, Kohei Honda, Alan Jeffrey, Ole
Høgh Jensen, Jan-Willem Klop, Jean Krivine, Cosimo Laneve,Kim Larsen, Jamey
Leifer, Alex Mifsud, George Milne, Kevin Mitchell, Faron Moller, Ugo Montanari,
Uwe Nestmann, Mogens Nielsen, Catuscia Palamidessi, DavidPark, Joachim Parrow,
Carl-Adam Petri, Benjamin Pierce, Gordon Plotkin, John Power, Sylvain Pradalier,
K.V.S. Prasad, Corrado Priami, Michael Sanderson, Davide Sangiorgi, Vladi Sassone,

xvii

Peter Sewell, Mike Shields, Sam Staton, Bernhard Steffen, Colin Stirling, Chris Tofts,
Angelo Troina, David Turner, Rob Van Glabbeek, Bjorn Victor, David Walker, Glynn
Winskel, Nobuko Yoshida.

I acknowledge the Préfecture of theÎle-de-France Region for the award of a Blaise
Pascal International Research Chair, which enabled me to advance this work during a
recent year in Paris. I warmly thank Jean-Pierre Jouannaud and Catuscia Palamidessi,
who were my welcoming hosts atÉcole Polytechique at Saclay during this period.

Robin Milner
Cambridge, June 2008

PART I : SPACE

Chapter 1

The idea of bigraphs

In this chapter we develop the notion ofbigraphfrom the simple idea that it consists of
two independent structures on the same set of nodes.

To prepare for the formal Definitions 1.1–2.7, we start informally from two well-
known concepts: aforestis a set of rooted trees; and ahypergraphconsists of a set of
nodes, together with a set of edges each linking any number ofnodes.

Idea A bigraph with nodesV and edgesE has a forest whose nodes areV ; it also
has a hypergraph with nodesV and edgesE.

Let us call an entity with this structure abare bigraph. We shall usĕF , Ğ to stand for
bare bigraphs. Here is a bare bigraphĞ having nodesV = {v0, . . . , v5} and edges
E = {e0, e1, e2}, with its forest and hypergraph:

v0

v1
v4

v5

v3

v2

e1

e2

e0

v5

v4v0

v1

v2

v3

v4

v0

v1
e0

hypergraph ofĞ

e2

v5v3

v2
e1

bare bigraphĞ

forest ofĞ

The upper diagram presents both the forest and the hypergraph; it depicts the forest by
nesting. The lower two diagrams represent the two structures separately, in a conven-
tional manner. Thechildren of each node are the nodes immediately below it in the

3

4 CHAPTER 1. THE IDEA OF BIGRAPHS

forest (i.e. immediately within it, in the upper diagram). Thusv1 andv2 are children
of v0, which is theirparent.

An edge is represented by connected thin lines;Ğ has two edges that each connect
three nodes, and one that connects two nodes. The points at which an edge impinges
on its nodes are calledports, shown as black blobs1.

We now add further structure to a bare bigraph. It will allow bigraphs to be com-
posed, and will allow one bigraph to be considered as a component of another. Here
is F̆ , informally a ‘part’ of Ğ, having only some of its nodes and with one hyperlink
broken. Can we call it a component ofĞ ?

v3 v5

v4

v1

bare bigraphF̆

e1

e2

To make it so, we addinterfacesto bare bigraphs, thus extendingF̆ andĞ into bigraphs
F andG. This will allow us to represent the occurrence ofF as a component ofG by
an equationG = H ◦F , whereH is some ‘host’ or contextual bigraph. We do this
extension independently for forests and hypergraphs; a forest with interfaces will be
called aplace graph, and a hypergraph with interfaces will be called alink graph.

Let us illustrate with the bare bigraph̆F . A place graph interface will be a natural
numbern, which we shall treat as a finite ordinal, the setn = {0, 1, . . . , n−1} whose
members are all preceding ordinals. A place graph’souter and inner interfaces—or
facesas we shall call them—index respectively itsroots and itssites. For the forest
of F̆ we choose the outer face3 = {0, 1, 2}, providing distinct roots as parents for
the nodesv1, v3 andv4. For the inner face of̆F we choose0, i.e. it has no sites. This
extends the forest to a place graphFP : 0→ 3, an arrow in a precategory2 whose objects
are natural numbers. It is shown at the left of the diagram below.

0

v1

roots . . .

v3

1 2

v4

v5

place graph

F P : 0→ 3

v5

v4

yxouter names . . .

v3

v1
e1

e2

link graph

F L : ∅→{xy}

The outer and inner faces of a link graph arename-sets: respectively, itsouter and
inner names. For the hypergraph of̆F we choose outer face{xy}, thus naming the
parts of the broken hyperlink, and inner face∅.3 This extends the hypergraph to a

1By making ports explicit we permit distinct roles to be played by the edges impinging on a given node,
just as each argument of a given mathematical function playsa distinct role.

2We shall define precategories in Chapter 2. For now, it is enough to know that a precategory has two
kinds of entity,objectsandarrows; that each arrow goes from a tail to a head, both of which are objects; and
that these entities behave nicely together. Both objects and arrows may have all kinds of structure.

3We use single letters for names, so we shall often write a set{x, y, . . .} of names as{xy · · · }, or even
asxy · · · , when there is no ambiguity.

5

link graphF L : ∅→{xy}, an arrow in a precategory whose objects are finite name-sets.
Names are drawn from a countably infinite vocabularyX .

Finally, abigraph is a pairB = 〈BP, BL〉 of a place graph and a link graph; these
are itsconstituents. Its outer face is a pair〈n, Y 〉, wheren andY are the outer faces
of BP and BL respectively. Similarly for its inner face〈m, X〉. For our example
F = 〈FP, F L〉 these pairs are〈3, {xy}〉 and 〈0, ∅〉 respectively. We call the trivial
interfaceǫ

def
= 〈0, ∅〉 theorigin. ThusF̆ is extended to an arrowF : ǫ→〈3, {xy}〉 in a

precategory whose objects are such paired interfaces.F will be drawn as follows:

x

v1

y

0
v3

1 2

v5

v4

e1
e2

bigraph

F : ǫ→〈3, {xy}〉

The rectangles inF—sometimes calledregions—are just a way of drawing its roots,
seen also inFP. The link graphF L has fourlinks. Two of these are the edgese1 and
e2, also calledclosedlinks; the other two are namedx andy, and are calledopenlinks.

Let us now add interfaces to the bare bigraphĞ, extending it into a bigraphG. It
has no open links, i.e. all its links are edges, so the name-set in its outer face will be
empty. Let us give it two roots; then, ifG is placed in some larger context,v0 andv4

may be in distinct places—i.e. may have distinct parents. The diagram below shows
G and its constituents. Note that there is no significance in where a link ‘crosses’ the
boundary of a node or region in a bigraph; this is because the forest and hypergraph
structures are independent.

v1

v3

e1

v2

v5

v4

10 v0
e0

e2

v3

v4

e1

v1

v2

v0

e0

v5

e2

link graph

GL : ∅→∅

bigraph

G : ǫ→〈2, ∅〉

v0

v1

v2

v3

v4

v5

0 1roots . . .

GP : 0→ 2

place graph

We are now ready to construct a bigraphH such thatG = H ◦F , illustrating com-
position, which will later be defined formally. The inner face ofH must be〈3, {xy}〉,
the outer face ofF ; to achieve this,H must have threesites0, 1 and2, and inner names
x andy. Here areH and its constituents, with sites shown as shaded rectangles:

6 CHAPTER 1. THE IDEA OF BIGRAPHS

x y

e0

v0

v2

v2

10 v0
e0

x

0 1
2

y

v0

v2

0 1

0 1 2

roots . . .

sites . . .

place graph

HP : 3→ 2

bigraph

H : 〈3, {xy}〉→〈2, ∅〉

link graph

HL : {xy}→∅

inner names . . .

In the place graph, each site and node has a parent, a node or root; in the link graph,
each inner name and port belongs to a link, closed or open. Just as it is insignificant
where links ‘cross’ node or root boundaries, so it is insignificant where they ‘cross’ a
site. We draw inner names below the bigraph and outer names above it; this is merely
a convention to indicate their status as inner or outer. A name may be both inner and
outer, whether or not in the same link.

In general, letF : I→ J andH : J→K be two bigraphs with disjoint nodes and
edges, whereI = 〈k, X〉, J = 〈m, Y 〉 andK = 〈n, Z〉. Then the composite bigraph
H ◦F : I→K is just the pair of composites〈HP ◦FP, HL ◦F L〉, whose constituents
are constructed as follows (informally):

• To form the place graphHP ◦FP : k→n, for eachi ∈ m join theith root ofFP

with theith site ofHP;

• To form the link graphHL ◦F L : X→Z, for eachy ∈ Y join the link of F L

having the outer namey with the link ofHL having the inner namey.

ThusH andF are joined at every place or link in their common faceJ , which ceases to
exist. The reader may like to check these constructions forH andF as in our example.

In our formal treatment, operations on bigraphs will be defined in terms of their
constituent place and link graphs. But it is convenient, andeven necessary for practical
purposes, to have diagrams not only for the constituents butfor the bigraphs them-
selves, such as forF , G andH in the example above. Such a diagram must be to some
extent arbitrary, because we are trying to represent placing and linking, which are inde-
pendent, in two dimensions! In particular, note that we havedrawn outer names above
the picture (inF andG for example), and we have drawn inner names below the picture
(in H for example). Other conventions are possible.

It will be helpful to look now at Figure 1.2, at the end of this chapter, showing
the anatomical elements of bigraphs that will later be defined formally. In the present

7

chapter we give only one formal definition, which determineshow to introduce differ-
ent kinds of node for different applications.

Definition 1.1 (basic signature) A basic signaturetakes the form(K, ar). It has a
setK whose elements are kinds of node calledcontrols, and a mapar :K→N assign-
ing anarity, a natural number, to each control. The signature is denotedby K when
the arity is understood. A bigraph overK assigns to each node a control, whose arity
indexes theportsof a node, where links may be connected. �

A signature suitable for our example isK = {K : 2, L : 0, M : 1}. (Thus arities are
made explicit.) Here is our bigraphG : ǫ→〈2, ∅〉, with controls assigned to the nodes:

10

K

M

M

K

K

bigraphG

with controls
L

We have omitted node- and edge-identifiers, as we often shallwhen they are irrelevant.
To end this chapter, let us look at a realistic (but simplified) example, which indicates
that bigraphs can go beyond the usual topics for process calculi.

Example 1.2 (a built environment) The next diagram shows a bare bigraphĔ over
the signatureK = {A : 2, B : 1, C : 2, R : 0}, which classifies nodes as agents, build-
ings, computers and rooms. The node-shapes are not significant, except to indicate the
purpose of each port. The figure represents a state which may change because of the
movement of agents, and perhaps other movements. Think of the five agents as con-
ducting a conference call (the long link). An agent in a room may also be logged in
(the short links) to a computer in the room, and the computersin a building are linked
to form a local area network. �

A
A

A

R
R

C
C

B

RA

B

A

R

C
C

bare bigraphĔ

Bearing in mind our earlier example, the following exercisewill be instructive.

EXERCISE 1.1

8 CHAPTER 1. THE IDEA OF BIGRAPHS

(1) Draw a bare bigraph̆D representing the three agents that are inside rooms. Make
this into a bigraphD by defining its outer face.

(2) Propose an outer face that makesĔ into a bigraphE, allowing the possibility
that the two buildings may be situated in different cities. Draw the bigraphC,
with sites, such thatC ◦D = E. �

Although the detailed study of dynamics is deferred to Part II, let us now illustrate how
bigraphs can reconfigure themselves. We are free to define different reconfigurations
for each application. This is done byreaction ruleseach consisting of aredex(the
pattern to be changed) and areactum(the changed pattern). Part of the idea of bigraphs
is that these changes may involve both placing and linking.

The redex and reactum of a rule are themselves bigraphs, and may match any part of
a larger bigraph. (This remark will be made precise in Part II.) Here are three possible
rules for built environments, such as the systemE:

A

RA R

A

B1

B2

B3
A

A

C

A

C

RuleB1 is the simplest: an agent can leave a conference call. The redex—the left-hand
pattern—can match any agent; the out-pointing links mean that either of her ports may
at first be linked tozero or moreother ports, in the same place or elsewhere. If she is
linked in a conference call to other agents, perhaps in otherbuildings, the reaction by
B1 will unlink her; any link to a computer is retained.

RuleB2 shows a computer connecting to an agent in the same place (presumably a
room). The redex insists that at first the agent is linked to nocomputer and the computer
is linked to no agent. RulesB1 andB2 change only the linking—not the placing—in a
bigraph, though the redex ofB2 does insist on juxtaposition.

RuleB3, by contrast, changes the placing; an agent enters a room. Again, the rule
requires the agent and the room to be in the same place (presumably a building). The
site (shaded) allows the room to contain other occupants, e.g. a computer and other
agents. The matching discipline allows these occupants to be linked anywhere, either
to each other or to nodes lying outside the room.

Another feature ofB3 is that its redex allows the lower port of the agent to be
already linked to a computer somewhere, perhaps in another room. B3 retains any
such link. Equally, there may be no such link—the context in which the rule is applied
may close it off. ThusB3 can be applied to the system represented byĔ, orE, allowing
an agent in the right-hand building to enter a room.

9

Taking this a step further, observe that inE an agent and a computer are linked
only when they occupy the same room. Moreover, starting fromE, our rulesB1–B3
will preserve this property, since onlyB3 creates such links, and only within a room.
We therefore call the property aninvariant for E in the system with this rule-set. We
now briefly discuss invariants.

Given a rule-set, we refer to the configurations that a systemmay adopt asstates.
The rule-set determines a reaction relation⊲ between states. The diagram below
shows the stateE3 adopted byE after three reactions

E ⊲ E1 ⊲ E2 ⊲ E3 ;

in the first,B1 is applied to the third agent from the left; in the second,B3 is applied
to the fourth agent; this enablesB2 to be applied to that agent in the third reaction.

R

B

A

R

C
A

C

A
A

A

R
R

B

C
C

bigraphE3

We say that a property of states is (an)invariant for E (under a given rule-set) if it holds
for all states reachable fromE via reactions permitted by the rule-set, i.e. it holds for all
E′ such thatE ⊲ · · · ⊲ E′. For example, under the rule-setB1–B3, the property
‘there are exactly five agents’ is invariant forE.

Of course, our present rule-set is very limited. The following exercise suggests how
to enrich this rule-set a little, and explores what invariants may then hold.

EXERCISE 1.2

(1) Add a ruleB4 to enable an agent linked with a computer to sever this link, and
another ruleB5 to allow an agent unlinked to a computer to leave a room. Give
a few examples of invariants forE under the rule-setB1–B5.

(2) Instead ofB4 and B5, design a single ruleB6 that allows an agent to leave
a room, simultaneously severing any link with the computer.How does this
change affect your invariants? �

Our behavioural model of the occupants of a building is crude, of course. But reac-
tion rules of this kind, hardly more complex, are beginning to find realistic application
in biological modelling. A crucial refinement is to add stochastic information that de-
termines which reactions are more likely to occur, and therefore to preempt others. In

10 CHAPTER 1. THE IDEA OF BIGRAPHS

the built environment, an interesting refinement is to allowagents to discover who is
where, and record this information via the computers; thesestories are then combined
so that the system becomesreflective, meaning that it can represent (part of) itself, and
answer questions such as “where is agentX?”. 4

In another direction, bigraphs can model process calculi. In this case, the controls
of a bigraph represent the constructors of the calculus. As an example, we take the
calculus of mobile ambients, which partly inspired the bigraph model. In mobile am-
bients the main constructor is ‘amb’ with arity 1, representing anambient—a region
within which activity may occur; its single port allows an ambient to be named. Other
constructors represent commands, or capabilities.

1

0

2amb

amb

in

x y

The above diagram shows two ambients, each with arbitrary content represented by the
sites; one ambient also contains an ‘in’ capability, which refers to the other ambient by
name. Let us use this example to illustrate the algebraic language for bigraphs, which
we shall develop in later chapters. Here is the algebraic term for the above system:

ambx.(iny.d0 | d1) | amby.d2 .

The combinator ‘|’ represents juxtaposition, and is commutative and associative; the
combinator ‘.’ denotes nesting. We shall see in Chapter 3 that both combinators are de-
rived from the categorical operations of composition and tensor product. The metavari-
ablesd0, d1 andd2 stand for parameters, i.e. arbitrary occupants of the sites.

Let us now look at the dynamics of ambients. The above bigraphis, in fact, the
redex of one of the reaction rules for mobile ambients, threeof which are shown in
Figure 1.1. In the first rule, the ‘in’ command causes its parent ambient namedx,
together with all its other contents, to move inside the ambient namedy. The ‘in’
command, having done its job, vanishes; this exposes its contents to reactions with
the ambient’s other occupants. Note that reconfiguration ispermitted within an ‘amb’
node, but not within an ‘in’ node; the occupant of an ‘in’ node has a potential for
interaction, which becomes actual only when the node itselfhas vanished.

In the second rule, conversely, the ‘out’ command causes the exit of its parent
ambient from its own parent. These two rules provide our firstexample of moving
sub-bigraphs from one region to another.

Finally, in the third rule the ‘open’ command causes an ambient node to vanish,
exposing its contents to interactions in a wider region.

4These experimental applications are discussed, with citations, in Chapter 12.

11

EXERCISE 1.3 Modify rule A3 to use a ‘send’ command instead of ‘open’. It should
send its contents into the ambient with which it is linked, and then vanish. Also modify
the rule so that this occurs even when thesend command is not adjacent to the ambient,
but may be anywhere outside it.Hint: Use two regions, as in the bigraphG at the start
of the chapter. To juxtapose two regions but keep them distinct, use ‘‖ ’ instead of ‘| ’.
Use ‘1’ to denote the empty bigraph with one region. �

This concludes our informal introduction to both the structure and the reconfigura-
tion of bigraphs. Our notion of reaction is not complex; nevertheless it can represent
process calculi such as CCS, mobile ambients and Petri nets.The representation of
CCS will be analysed in Chapter 10. Also, with the help of stochastic rates, rules
nearly as simple as ours are proving to be useful in modellingbiological processes.

Our next task is to define bigraphical structure formally, inthe following chapter.
It will make precise the anatomy illustrated in Figure 1.2.

12 CHAPTER 1. THE IDEA OF BIGRAPHS

1

0

2amb

amb amb

amb

0

2
in 1

amb

2
1

0

out

0

openx.d0 | ambx.d1 ⊲ x | d0 | d1

ambx.(iny.d0 | d1) | amby.d2 ⊲ amby.(ambx.(d0 | d1) | d2)

amby.(ambx.(outy.d0 | d1) | d2) ⊲ ambx.(d0 | d1) | amby.d2

1
0

open

amb

2amb

amb

1

0

1

x y x y

x y

x

A1

x

A2

A3

yx

Figure 1.1: Reaction rules for mobile ambients

13

1

1

y1 y2

M

x1

0

v1

x0

y0

SITE

NODE

CONTROL

INNER NAME

OUTER NAME

PORT

EDGE

v0

0

K
K

e0

e1

PLACE = ROOT or NODE or SITE

v2

LINK = EDGE or OUTER NAME

POINT = PORT or INNER NAME

ROOT (REGION)

Figure 1.2: Anatomy of bigraphs

14 CHAPTER 1. THE IDEA OF BIGRAPHS

Chapter 2

Defining bigraphs

In Section 2.1 we define bigraphs formally, together with fundamental ways to build
with them.

In Section 2.2, using some elementary category theory, we introduce a broader
mathematical framework in which bigraphs and their operations can be expressed. The
reader can often ignore this generality, but it will yield results which do not depend on
the specific details of bigraphs.

In Section 2.3 we explain how theconcreteplace graphs, link graphs and bigraphs
over a basic signature each form a category of a certain kind.We then use the tools of
the mathematical framework to introduceabstractbigraphs; they are obtained from the
concrete ones of Section 2.1 by forgetting the identity of nodes and edges.

Throughout this chapter, when dealing with bigraphs we presume an arbitrary basic
signatureK.

2.1 Bigraphs and their assembly

Notation and terminology We frequently treat a natural number as a finite ordinal,
the set of all preceding ordinals:m = {0, 1, . . . , m−1}. We writeS # T to mean that
two setsS andT are disjoint, i.e.S ∩ T = ∅. We writeS ⊎ T for the union of sets
known or assumed to be disjoint. Iff has domainS andS′ ⊆ S, thenf ↾ S′ denotes
the restriction off to S′. For two functionsf andg with disjoint domainsS andT
we write f ⊎ g for the function with domainS ⊎ T such that(f ⊎ g) ↾ S = f and
(f ⊎ g)↾T = g. We writeIdS for the identity function on the setS.

In defining bigraphs we assume that names, node-identifiers and edge-identifiers
are drawn from three infinite sets, respectivelyX , V andE , disjoint from each other.

We denote the interfaces, or faces, of bigraphs byI, J, K. Every bigraph will be a
pair of a place graph and a link graph, which will be called itsconstituents. We denote
bigraphs and their constituents by upper case lettersA, . . . , H. �

We begin by defining place graphs and link graphs independently.

15

16 CHAPTER 2. DEFINING BIGRAPHS

Definition 2.1 (concrete place graph) A concrete place graph

F = (VF , ctrlF , prntF) : m→n

is a triple having an inner facem and an outer facen, both finite ordinals. These index
respectively thesitesandrootsof the place graph.F has a finite setVF ⊂ V of nodes,
a control mapctrlF : VF →K and aparent map

prntF : m ⊎ VF →VF ⊎ n

which is acyclic, i.e. ifprnt i
F (v) = v for somev ∈ VF theni = 0. �

Definition 2.2 (concrete link graph) A concrete link graph

F = (VF , EF , ctrlF , linkF) : X→Y

is a quadruple having an inner faceX and outer faceY , both finite subsets ofX , called
respectively theinner andouter namesof the link graph.1 F has finite setsVF ⊂ V of
nodesandEF ⊂ E of edges, a control mapctrlF : VF →K and alink map

linkF : X ⊎ PF →EF ⊎ Y

wherePF
def
= {(v, i) | i ∈ ar(ctrlF (v))} is the set ofportsof F . Thus(v, i) is theith

port of nodev. We shall callX ⊎ PF thepointsof F , andEF ⊎ Y its links. �

A bigraph is simply the pair of its constituents, a place graph and a link graph:

Definition 2.3 (concrete bigraph) An interfacefor bigraphs is a pairI = 〈m, X〉
of a place graph interface and a link graph interface. We callm the width of I, and
we say thatI is nullary, unaryor multiary according asm is 0, 1 or >1. A concrete
bigraph

F = (VF , EF , ctrlF , prntF , linkF) : 〈k, X〉→〈m, Y 〉

consists of a concrete place graphFP = (VF , ctrlF , prntF) : k→m and a concrete
link graphF L = (VF , EF , ctrlF , linkF) : X→Y . It is writtenF = 〈FP, F L〉. �

We have now defined all the anatomy of bigraphs, as illustrated in Figure 1.2 at the end
of Chapter 1.

We have called our three graphical structuresconcrete; this refers to the fact that
their nodes and edges are identified by members ofV andE . We have already used
these identifiers in defining a bigraph, to ensure that its place graph and link graph
have the same node set and the same control map.

We now define these identifiers to be thesupportof a graphical structure, and we
explain how it can be varied in a disciplined way.

1An alternative would be to define a link graph interface as an ordinal numberk, just like a place graph
interface. Thus, instead of alphabetic names, we would represent each name by an ordinali ∈ k. Our choice
to use a special repertoireX of names is not arbitrary; as explained in Appendix A.2, it yields a distinct
technical advantage.

2.1. BIGRAPHS AND THEIR ASSEMBLY 17

Definition 2.4 (support for bigraphs) To each place graph, link graph or bigraphF
is assigned a finite set|F |, its support. For a place graph we define|F | = VF , and for
a link graph or bigraph we define|F | = VF ⊎ EF .

For two bigraphsF andG in the same homset, a support translationρ : |F |→ |G|
from F to G consists of a pair of bijectionsρV : VF →VG and ρE :EF →EG that
respect structure, in the following sense:

• ρ preserves controls, i.e.ctrlG ◦ρV = ctrlF . It follows thatρ induces a bijection
ρP : PF →PG on ports, defined byρP ((v, i))

def
= (ρV (v), i).

• ρ commutes with the structural maps as follows:

prntG ◦ (Idm ⊎ ρV) = (Idn ⊎ ρV) ◦prntF

linkG ◦ (IdX ⊎ ρP) = (IdY ⊎ ρE) ◦ linkF .

Given F and the bijectionρ, these conditions uniquely determineG. We therefore
denoteG by ρ � F , and call it thesupport translation ofF by ρ. We call F andG
support equivalent, and we writeF ≏ G, if such a support translation exists.

Support translation is defined similarly for place graphs and link graphs. �

The purpose of interfaces is to enable bigraphs to becomposed; for this we require
the outer face of one to equal the inner face of the other. Examples of composition were
shown in Chapter 1; we think of it as placing one bigraph in thecontext represented by
another.

Definition 2.5 (composition and identities) We define composition for place graphs
and link graphs separately, and then combine them for the composition of bigraphs.

• If F : k→m andG : m→n are two place graphs with|F |# |G|, their composite

G ◦F = (V, ctrl , prnt) : k→n

has nodesV = VF ⊎ VG and control mapctrl = ctrlF ⊎ ctrlG. Its parent mapprnt is
defined as follows: Ifw ∈ k ⊎ VF ⊎ VG is a site or node ofG ◦F then

prnt(w)
def
=

prntF (w) if w ∈ k ⊎ VF andprntF (w) ∈ VF

prntG(j) if w ∈ k ⊎ VF andprntF (w) = j ∈ m
prntG(w) if w ∈ VG .

The identity place graph atm is idm
def
= (∅, ∅K, Idm) : m→m.2

• If F : X→Y andG : Y →Z are two link graphs with|F |# |G|, their composite

G ◦F = (V, E, ctrl , link) : X→Z

2In contrast toId, we write id to denote the identity for composition of graphical structures, and more
generally for composition of arrows in any kind of category (see Section 2.2).

18 CHAPTER 2. DEFINING BIGRAPHS

hasV = VF ⊎ VG, E = EF ⊎ EG, ctrl = ctrlF ⊎ ctrlG, and its link maplink is
defined as follows: Ifq ∈ X ⊎ PF ⊎ PG is a point ofG ◦F then

link (q)
def
=

linkF (q) if q ∈ X ⊎ PF andlinkF (q) ∈ EF

linkG(y) if q ∈ X ⊎ PF andlinkF (q) = y ∈ Y
linkG(q) if q ∈ PG .

The identity link graph atX is idX
def
= (∅, ∅, ∅K, IdX) : X→X .

• If F : I→ J andG : J→K are two bigraphs with|F |# |G|, their composite is

G ◦F
def
= 〈GP

◦FP, GL
◦F L〉 : I→K

and the identity bigraph atI = 〈m, X〉 is 〈idm, idX〉. �

EXERCISE 2.1 Prove for bigraphs thatC ◦ (B ◦A) = (C ◦B) ◦A when either side is
defined.Hint: Prove it separately for place graphs and for link graphs, then pair the
results. �

We now turn to the second principal way to make larger bigraphs from smaller
ones. We can think of composition as putting one bigraph on top of another. We can
also put two bigraphs side-by-side. We define this operation, calledjuxtaposition, only
when they are disjoint. To be precise:

Definition 2.6 (disjoint graphical structures) Two place graphsFi (i = 0, 1) are
disjoint if |F0|# |F1|. Two link graphsFi : Xi→Yi aredisjoint if X0 # X1, Y0 # Y1

and|F0|# |F1|. Two bigraphsFi aredisjoint if FP
0 # FP

1 andF L
0 # F L

1 .
In each of the three cases we writeF0 # F1. �

We now define the juxtaposition of disjoint interfaces and disjoint bigraphs. Juxta-
position is monoidal, i.e. it is associative and has a unit.

Definition 2.7 (juxtaposition and units) We define juxtaposition for place graphs
and link graphs separately, and then combine them in order tojuxtapose bigraphs. In
each case we indicate the obvious unit for juxtaposition.

• For place graphs, the juxtaposition of two interfacesmi (i = 0, 1) is m0+m1 and
the unit is0. If Fi = (Vi, ctrl i, prnt i) : mi→ni are disjoint place graphs (i = 0, 1),
their juxtapositionF0 ⊗ F1 : m0+m1→n0+n1 is given by

F0 ⊗ F1
def
= (V0 ⊎ V1, ctrl0 ⊎ ctrl1, prnt0 ⊎ prnt ′1) ,

whereprnt ′1(m0+i) = n0+j wheneverprnt1(i) = j .

• For link graphs, the juxtaposition of two disjoint link graph interfaces isX0 ⊎X1

and the unit is∅. If Fi = (Vi, Ei, ctrl i, prnt i) : Xi→Yi are disjoint link graphs (i =
0, 1), their juxtapositionF0 ⊗ F1 : X0 ⊎X1→Y0 ⊎ Y1 is given by

F0 ⊗ F1
def
= (V0 ⊎ V1, E0 ⊎E1, ctrl0 ⊎ ctrl1, link0 ⊎ link1) .

2.2. MATHEMATICAL FRAMEWORK 19

• For bigraphs, the juxtaposition of two disjoint interfacesIi = 〈mi, Xi〉 (i = 0, 1)
is 〈mo + m1, X0 ⊎X1〉 and the unit isǫ = 〈0, ∅〉. If Fi : Ii→ Ji are disjoint bigraphs
(i = 0, 1), their juxtapositionF0 ⊗ F1 : I0 ⊗ I1→ J0 ⊗ J1 is given by

F0 ⊗ F1
def
= 〈FP

0 ⊗ FP
1 , F L

0 ⊗ F L
1 〉 . �

This completes our definition of the graphical structures that concern us, together
with the fundamental operations upon them.

2.2 Mathematical framework

This section introduces certain kinds ofcategory, which serve to classify bigraphs and
to develop some of their theory. We assume no previous knowledge of category theory;
we shall only use its elementary concepts, explaining them as we introduce them.

Any kind of category deals with two main kinds of entity:objectsand arrows.
For example, in the category SET the objects aresetsS1, S2, S3, . . . and the arrows
arefunctionsf, g, . . . between sets. If a functionf takes members of setS1 to mem-
bers of setS2 then one writesf : S1→S2, as in normal mathematical practice. In
categories this practice is generalised; each arrowf—which may be quite different
from a function—has adomainI and acodomainJ , both objects, and again we write
f : I→ J . The main categories deployed in this book have objects thatare interfaces
(of different kinds) and arrows that are graphical structures.

Any kind of category is concerned with thecompositionof two arrowsf : I→ J
andh : J→K to produce a third arrowg = h ◦f : I→K. This equation is drawn as a
diagram:

K

h

g

Jf

I

which is said tocommute, because the two ways of going fromI to K mean the
same. For example, in Chapter 1 we composed two bigraphsF : ǫ→〈3, {xy}〉 and
H : 〈3, {xy}〉→〈2, 0〉 to yieldG = H ◦F : ǫ→〈2, 0〉.

Different kinds of category may have other operations besides composition, and
may have different properties. We shall be concerned with four kinds, which can be
arranged in a hierarchy as follows:

CATEGORY

SPM CATEGORY

PRECATEGORY

S-CATEGORY

20 CHAPTER 2. DEFINING BIGRAPHS

Of these kinds, s-categories are new; the other three are standard. Moving upward to
the left (տ) in the hierarchy gains more operations on arrows; moving upward to the
right (ր) changes composition from a partial to a total operation.

Our work will be mainly with two of these kinds. We shall oftenbe concerned
with concretebigraphs, whose explicit support allows us to determine when one bi-
graph shares nodes and/or edges with another. For this purpose we work mainly in
s-categories. On the other hand, forabstractbigraphs, where support is absent, we
work mainly insymmetric partial monoidal(or spm) categories.

Using the hierarchy, we now introduce the features of both spm categories and s-
categories, one by one. We begin with categories (Definition2.8), which lead to spm
categories (Definition 2.11); then we introduce precategories (Definition 2.12), which
lead to s-categories (Definition 2.13).

Definition 2.8 (category) A categoryC has a set ofobjectsand a set ofarrows. We
shall often denote objects byI, J, K and arrows byf, g, h. Each arrowf has adomain
andcodomain, both objects; if these areI andJ then we writef : I→ J , I = dom(f)
andJ = cod(f). We writeC(I→ J), or just(I→ J), for thehomsetof I andJ , the
set of arrowsf : I→J .

For each objectI there is anidentityarrow idI : I→ I; we write justid whenI is
understood. Thecompositiong ◦f of f andg satisfies the following:

(C1) g ◦f is defined iffcod(f) = dom(g)
(C2) h ◦ (g ◦f) = (h ◦g) ◦f when either is defined
(C3) id ◦f = f andf = f ◦ id . �

Terminology We shall often say thatg is acontext forf , meaning thatg ◦f is defined.

We often need to move from one category to another, preserving some structure. Hence
the following important notion.

Definition 2.9 (functor) A functorF : C→D between two categories is a function
taking objects to objects and arrows to arrows; it takes the arrow f : I→ J in C to the
arrowF(f) :F(I)→F(J) in D.

More generally, letφ be ann-ary partial operation on objects and/or arrows in both
C andD. ThenF preservesφ if F(φ(x1 . . . , xn)) = φ(F(x1), . . . ,F(xn)), meaning
that if the left-hand side is defined then so is the right-handside.

Similarly, if R is a relation on objects and/or arrows inC, and also inD, thenF
preservesR if R(x1 . . . , xn)⇒ R(F(x1), . . . ,F(xn)).

Every functor must preserve both composition and identities. �

The initial requirement simply says thatF preserves the domain and codomain opera-
tions,dom andcod. In the casen = 0 of the second requirement,φ is a single object
or arrow in each category, e.g. an identity.

We now proceed in two steps to anspm category, an enriched kind of category
possessing a form ofproduct. A special case of this product is thejuxtapositionof
bigraphs, as defined in Section 2.1.

2.2. MATHEMATICAL FRAMEWORK 21

Definition 2.10 (partial monoidal category) A category ispartial monoidalwhen it
has a partialtensor product⊗ both on objects and on arrows satisfying the following
conditions.

On objects,I ⊗ J andJ ⊗ I are either both defined or both undefined.3 The same
holds forI ⊗ (J ⊗K) and(I ⊗J)⊗K; moreover, they are equal when defined. There
is aunit objectǫ, often called theorigin, for whichǫ⊗ I = I ⊗ ǫ = I for all I.

On arrows, the tensor product off : I0→ I1 andg :J0→J1 is defined iffI0 ⊗ J0

andI1 ⊗ J1 are both defined. The following must hold when both sides are defined:

(M1) f ⊗ (g ⊗ h) = (f ⊗ g)⊗ h
(M2) idǫ ⊗ f = f ⊗ idǫ = f
(M3) (f1 ⊗ g1) ◦ (f0 ⊗ g0) = (f1 ◦f0)⊗ (g1 ◦g0) .

A functor of partial monoidal categories preserves unit andtensor product. �

In (M1), from the conditions stated, either both sides are defined or both are undefined.
In (M2) both products are defined. Equation (M3) is best explained by a diagram show-
ing composition as vertical connection, and tensor productas horizontal juxtaposition:

(M3)

g0

f1

f0

g1g1f1

f0 g0

=

This says that tensor product commutes with composition.
Henceforth we shall use the term ‘product’ to mean ‘tensor product’ unless oth-

erwise qualified. We now enrich a partial monoidal category by adding arrows called
symmetries, which allow the factors in a product to be re-ordered. They obey four laws,
explaining how they relate to composition, product and the identities.

Definition 2.11 (spm category) A partial monoidal category issymmetric(spm)4 if,
wheneverI ⊗ J is defined, there is an arrowγI,J : I ⊗ J→ J ⊗ I called asymme-
try, satisfying the following equations—illustrated in the diagram below—when the
compositions and products are defined:

(S1) γI,ǫ = idI

(S2) γJ,I ◦γI,J = idI⊗J

(S3) γI1,J1 ◦ (f ⊗ g) = (g ⊗ f) ◦γI0,J0 (for f : I0→ I1, g : J0→ J1)
(S4) γI⊗J,K = (γI,K ⊗ idJ) ◦ (idI ⊗ γJ,K) .

A functor between spm categories preserves unit, product and symmetries. �

3This is a variant of the standard definition, which requires that I ⊗ J is always defined. We relax
this condition because, in bigraphs, we have chosen to represent open links by names drawn from an infi-
nite alphabet, rather than by ordinal numbers, yielding a much smoother representation of process calculi.
Appendix A.2 explains the choice in more detail. We have adopted the strict form of ‘monoidal’, i.e. the
equations are required to hold exactly, not merely up to isomorphism.

4In a previous paper [65] the name ‘ssm’ was used, connoting symmetric and strict. Here we replace an
‘ss’ by ‘sp’, for ‘symmetric partial’, leaving ‘strict’ to be understood.

22 CHAPTER 2. DEFINING BIGRAPHS

(S3)(S2) (S4)

gf

γ

I0 J0

J1 I1

fg

γ

I1J1

J0

=
γ

γ

JI

I J
γ

γ
γ

I

I I

IJ J

I0

K KJ J

= =

K

J

I J

I

K

EXERCISE 2.2 In an spm category an arrow isground, or anagent, if its domain is
the originǫ. Definecontext expressionsC to build one agent from another, as follows:

C ::= [·] | (g ⊗ C) | (C ⊗ g) | (h ◦C)

whereg is ground and the products and compositions are well-formed, i.e. their operands
are in appropriate homsets. This syntax ensures that every context expressionC con-
tains exactly one occurrence of the ‘hole’[·]. Let C[a] denote the ground bigraph built
by C from any grounda: thus [a] = a. The homset ofa must ensure thatC[a] is
well-formed.

A particular form of context expression is justf ◦ [·]. Prove that these particular
context expressions are fully general; that is, for everyC there exists an arrowf such
thatf ◦a = C[a] for all a. Hint: use induction on the structure ofC.

Which laws of an spm category are needed in the proof? �

We now introduce the notions of precategory and s-category.We can adapt most
details from the notions of category and spm category. The main difference is that
composition of two arrowsf : I→ J andg : J→K is not always defined. As we shall
see later, this limitation is a price we pay for dealing with the occurrencesof one
bigraph within another. This handling is smooth; at the level of our work, s-categories
lose little of the character of an spm category, and the s-category of concrete bigraphs
has useful properties not present in the corresponding spm category.

Definition 2.12 (precategory) A precategorỳ C is like a category except that com-
position off andg may be undefined even whencod(f) = dom(g). We use a tag, as
in `C, to distinguish precategories. Composition satisfies the following conditions (the
first being weaker than for a category):

(C1′) if g ◦f is defined thencod(f) = dom(g)
(C2) h ◦ (g ◦f) = (h ◦g) ◦f when either is defined
(C3) id ◦f = f andf = f ◦ id .

We understand C3 to imply that composition of an arrowf with the identities on its
domain and codomain are always defined.

A functor between precategories is exactly as a functor between categories. �

Now, an s-category enriches a precategory by adding a partial tensor product and
symmetries, just as an spm category enriches a category. It also imposes sharper con-
ditions under which composition and tensor product are defined.

2.2. MATHEMATICAL FRAMEWORK 23

For this purpose we introduce the notion of a set ofsupport, generalising the sup-
port of bigraphs introduced in Section 2.1. We presuppose aninfinite vocabularyS
of support elements; then we shall associate a finite set of support elements witheach
arrow. This association will be arbitrary, subject to simple constraints detailed in the
following definition.

Definition 2.13 (s-category) An s-categorỳC is a precategory in which each arrow
f is assigned a finitesupport|f | ⊂ S. Further, `C possesses a partial tensor product,
unit and symmetries, as in an spm category. The identitiesidI and symmetriesγI,J are
assigned empty support. In addition:

• For f : I→ J andg : J ′→K, the compositiong ◦f is defined iffJ = J ′ and
|f |# |g|; then|g ◦f | = |f | ⊎ |g|.

• Forf : I0→ I1 andg :J0→J1, the tensor productf ⊗ g is defined iffIi ⊗ Ji is
defined (i = 0, 1) and|f |# |g|; then|f ⊗ g| = |f | ⊎ |g|.

The equations (M1)–(M3) and (S1)–(S4) from Definitions 2.10and 2.11 are required
to hold when both sides are defined.

Arrowsf andg in the same homset are said to besupport-equivalent, and we write
f ≏ g, if there is a bijectionρ : |f |→ |g|, called asupport translation, that respects the
structure off . A functor between s-categories preserves tensor product,unit, symme-
tries and support equivalence. �

Appendix A.1 shows the ‘structure-respecting’ conditionsthat must be satisfied by any
support translation in an s-category. We shall not refer to these conditions explicitly;
we shall mainly be concerned with them in the specific case of bigraphs, for which the
conditions are stated explicitly in Definition 2.4.

We shall soon see that bigraphs over a given basic signature form an s-category. Of
course, they have detailed structure (nodes etc) not present in an arbitrary s-category,
and this admits new features. But there is one important feature that we can capture at
the general level of s-categories, and that will be useful for understanding the dynamics
of reactive systems in general. It represents one way in which the behaviour of such
systems depends upon its spatial configuration. We express it in terms of NAT, the spm
category whose objects are natural numbers (considered here as finite ordinals) and
whose arrows are functions between them. In NAT we take the tensor product to be
addition, with unit0.

Definition 2.14 (wide s-category) An s-categorỳC is wide if it is equipped with a
functorwidth : `C→NAT. �

Note that this is really a functor between s-categories, because any spm category is
also an s-category with empty supports. The intuition of thewidth functor is that,
for an objectI, the ordinalwidth(I) indexes the ‘regions’ ofI, while for an arrow
f : I→ J the functionwidth(f) tells us the unique region ofJ in which each region
of I lies. The width functor tells us no more about the spatial structure of objects and
arrows; but as we have seen, bigraphs have a detailed spatialstructure defined by their
nodes, and this structure certainly yields a width functor.

24 CHAPTER 2. DEFINING BIGRAPHS

Some of the work of this book is done at the general level of wide s-categories,
and is thus independent of possible variations of the notionof bigraph. In particular
they lead in Chapter 7 to a general theory ofwide reactive systems (WRSs), including a
crucial theorem concerning the congruence of behavioural equivalence. In Section 2.3
we shall see that the width functor for bigraphs allows us to express thelocality of any
potential reaction of a bigraphg, and thereby to determine the contexts in which that
reaction can occur.

Let us now relate s-categories with spm categories. As already mentioned, every
spm category can be seen immediately as an s-category: one whose supports are all
empty. Conversely, from any s-category we obtain an spm category, just by hiding the
support. To be precise:

Definition 2.15 (support quotient) For any s-categorỳC, its support quotient

C def
= `C/≏

is the spm category whose objects are those of`C, and whose arrows[f] : I→ J are
support-equivalence classes of the homset`C(I→ J). The composition of[f] : I→ J

with [g] : J→K is defined as[g] ◦ [f]
def
= [g′ ◦f ′], wheref ′ ∈ [f] andg′ ∈ [g] are

chosen with disjoint supports.
The tensor product is defined analogously. The identities and symmetries ofC are

singleton equivalence classes since they have empty support. �

This definition is unambiguous, since the properties of support translation ensure that
the construction of a composite or product inC does not depend upon the choice of
representative arrows iǹC. We now justify the definition by a theorem.

Theorem 2.16 (support quotient) The support quotientC = `C/≏ is an spm cate-
gory. Its construction defines a functor of s-categories

[·] : `C→C

called thesupport quotientfunctor. If `C is wide, with width functorwidth, thenC can
be enriched to a wide spm category by equipping it with the functor width : C→NAT

defined on objects as iǹC and on arrows bywidth([f])
def
= width(f).

This completes our mathematical framework. We are now readyto assert that con-
crete place graphs, link graphs and bigraphs all form s-categories, the latter being a
wide s-category.

2.3 Bigraphical categories

In this section we cast concrete bigraphs and their constituent place graphs and link
graphs as s-categories. We also cast their corresponding abstract structures as spm
categories.

2.3. BIGRAPHICAL CATEGORIES 25

Definition 2.17 (graphical s-categories)A basic signatureK was defined in Defini-
tion 1.1. Concrete place graphs, link graphs and bigraphs over an arbitrary were defined
in Definitions 2.1, 2.2 and 2.3. We now cast each of these kindsof graph as arrows in
an s-category, denoted respectively by`PG(K), `LG(K) and`BG(K).

The objects in these three s-categories are calledinterfaces, or faces. For place
graphs they are natural numbers, for link graphs they are finite name-sets, and for
bigraphs they are pairs of a natural numberm and finite name-set.

Supportfor the three kinds of graph was defined in Definition 2.4, withsupport
elementsV ⊎ E . Compositionandidentitieswere set out in Definition 2.5, andjuxta-
positionandunits in Definition 2.7, determiningtensor product.

To complete our definition it remains to definesymmetriesγI,J as follows:

in `PG : γm,n
def
= (∅, ∅, prnt), where prnt(i) = n+i (i ∈ m)

and prnt(m+j) = j (j ∈ n)

in `LG : γX,Y
def
= idX⊎Y

in `BG : γ〈m,X〉,〈n,Y 〉
def
= 〈γm,n, γX,Y 〉 . �

Thus, if γ is a symmetry of bigraphs, thenγ ◦G just reorders the regions ofG but
leaves its names unchanged.

It is a routine matter to prove that this data defines three s-categories. Moreover,
the s-category of bigraphs is easily seen to be wide; this is due to the spatial nature of
place graphs, which yields an obvious width functor. We wrapthese important results
together as a theorem:

Theorem 2.18 (graphical s-categories)P̀G(K), `LG(K) and `BG(K), as defined in
Definition 2.17, are all s-categories.

Further, we may equip̀BG(K) with a width functor, as follows. For each interface
I = 〈m, X〉, definewidth(I) = m, and for each bigraphF and any sitei of F , define
width(F)(i) to be the unique root that is an ancestor ofi in F . Then`BG(K), so
equipped, is a wide s-category.

EXERCISE 2.3 What bigraphs exist in a homset of`BG(K) of the form (I→ ǫ) ?
Which of these have empty support? �

Our final task in this chapter is to define the spm category of abstract bigraphs. But
we need first to consider a technical point concerningidle links: those links to which
no points are mapped. Recall that a link is either an outer name or an edge. The reader
may think that idle links are useless, but they arise inevitably in our framework.

To see how an idle (outer)namemay arise, consider the reaction rules illustrated
in Chapter 1. Each reaction rule may be writtenr ⊲ r′, wherer is the redex and
r′ the reactum. We needr andr′ to have the same outer face, because reactions by
this rule take the formC ◦ r ⊲ C ◦ r′, whereC is a context for bothr andr′. But
the points linked to a namex in r may no longer exist inr′, because the reaction
discards the nodes ofr to which they belong. Examples of this are the ruleB1 for built
environments, or the ruleA3 for mobile ambients, both illustrated in Chapter 1. Then
idle edgesalso arise; for in the reactionC ◦ r ⊲ C ◦ r′ the contextC may have an
edgee containing only the pointx; thene will be an idle edge ofC ◦ r′.

26 CHAPTER 2. DEFINING BIGRAPHS

We are now ready to define the wide spm category of abstract bigraphs. In forming
these from the concrete ones`BG(K) we wish to forget support; we also wish to forget
idle edges. So it is not quite enough to quotient the concretebigraphs by support
equivalence. For supposeF and G are identical except thatF has idle edges, but
G has none. Then they are not support-equivalent; the supportquotient[F] still has
idle edges, although they are unidentified, while[G] has none. We therefore need to
quotient by a slightly larger equivalence, as follows:

Definition 2.19 (lean, lean-support quotient) A bigraph is lean if it has no idle
edges. Two bigraphsF andG are lean-support equivalent, written F ≎ G, if they
are support-equivalent ignoring their idle edges. It is easily seen that both composition
and tensor product preserve this equivalence.

For the bigraphical s-category`BG(K), its lean-support quotient

BG(K)
def
= `BG(K)/≎

is the spm category whose objects are those of`BG(K) and whose arrows[[G]] : I→J ,
calledabstract bigraphs, are lean-support equivalence classes of the homset(I→ J) in
`BG(K). Composition, tensor product, identities and symmetriesfor the lean-support
quotient are defined just as for support quotient in Definition 2.15.

The spm categories PG(K) of abstract place graphs and LG(K) of abstract link
graphs are constructed similarly. �

We now justify the definition by a theorem.

Theorem 2.20 (abstract bigraphs)The lean-support quotientBG(K) = `BG(K)/≎

is an spm category. Its construction defines a functor of spm categories

[[·]] : `BG(K)→BG(K)

called thelean-support quotientfunctor. There are similar lean-support quotient func-
tors for place graphs and link graphs, yielding spm categoriesPG(K) andLG(K).

Finally, BG(K) equipped with essentially the same width functor as`BG(K) forms
a wide spm category.

This quotient is essential for our theory. In later chapterswe shall move back and
forth between concrete and abstract bigraphs, according towhether or not we need to
identify support elements. For example, Chapter 3 is concerned with the algebra of
abstract bigraphs, which does not depend upon support; on the other hand Chapter 5
is concerned with a form of least upper bound for a pair of concrete bigraphs, and this
notion is absent for abstract bigraphs because it depends critically upon support.

Chapter 3

Algebra for bigraphs

In this chapter we show how bigraphs can be built from smallerones by composition,
product and identities. In this we follow process algebra, where the idea is first to
determine how distributed systems are assembledstructurally, and then on this basis
to develop theirdynamictheory, deriving the behaviour of an assembly from the be-
haviours of its components.

This contrasts with our definition of a bigraph as the pair of aplace graph and a link
graph. This pairing is important for bigraphical theory, aswe shall see later; but it may
not reflect how a system designer thinks about a system. The algebra of this chapter,
allowing bigraphs to be built from elementarybigraphs, is a basis for the synthetic
approach of the system-builder.

Our algebraic structure pertains naturally to the abstractbigraphs BG(K). Much
of it pertains equally to concrete bigraphs. Properties enjoyed exclusively by concrete
bigraphs are postponed until Chapter 5.

3.1 Elementary bigraphs and normal forms

Notation and convention The placesof G : 〈m, X〉→〈n, Y 〉 are its sitesm, its
nodes and its rootsn. The pointsof G are its ports and inner namesX . The links
of G are its edges and outer namesY ; the edges areclosedlinks, and the outer names
areopenlinks. A point is said to beopenif its link is open, otherwise it isclosed. G is
said to beopenif all its links are open (i.e. it has no edges).

A place with no children, or a link with no points, is calledidle. Two places with
the same parent, or two points with the same link, are calledsiblings.

If an interfaceI = 〈m, X〉 hasX = ∅ we may writeI asm; if m = 0 or m = 1
we may write it asX or as〈X〉 respectively. When there is no ambiguity, especially in
interfaces, we shall often write a name set{x, y, z, . . .} as{xyz · · · }.

The unique bigraph with empty support inǫ→ I is often writtenI.
A bigraphg : ǫ→ I, with domainǫ, is calledground; we use lower case letters for

ground bigraphs, and writeg : I. �

27

28 CHAPTER 3. ALGEBRA FOR BIGRAPHS

We now describe the elementary node-free bigraphs. For eachkind we mention in
parentheses the Greek letter we shall use most often to denote them, e.g.φ for placings.

Definition 3.1 (placing, permutation, merge) A node-free bigraph with no links is
a placing (φ). A placing that is bijective from sites to roots is apermutation(π). A
placing with one root andn sites is denoted bymergen. �

 elementary placings:

0

join : 2→ 1

0 1

1

0

0

1

0

1 : 0→ 1γ1,1 : 2→ 2

All permutations can be built (using composition, product and identities) from the ele-
mentary symmetryγ1,1. All placings can be built fromγ1,1, 1 andjoin . For example,
merge0 = 1 andmergen+1 = join ◦ (id1 ⊗mergen).

Definition 3.2 (linking, substitution, closure) A node-free bigraph with no places
is a linking (λ). Linkings are generated by composition, product and identities from
two basic forms: elementarysubstitutionsy/X, and elementaryclosures/x : x→ ǫ, as
shown in the diagram.

y

/x : x→ ǫy/X : X→ y

elementary linkings:

x1 xn x

A substitution(σ) is a product of elementary substitutions; aclosureis a product of
elementary closures. A bijective substitution is called arenaming(α). We denote the
empty substitution fromǫ to x by x : ǫ→x. �

Note that a closure/x ◦G may create an idle edge, ifx is an idle name ofG. Intuitively
idle edges are ‘invisible’, and indeed we shall see later howto ignore them.

EXERCISE 3.1 Show that every linking can be built from elementary linkings using
identities, composition and product. Is composition necessary for this? �

In any (pre)category anisomorphismor iso is an arrowι : I→J that has an inverse
ι−1 : J→ I; that is, ι−1 ◦ ι = idI and ι ◦ ι−1 = idJ . Isos are an important class of
node-free bigraphs, characterized as follows:

Proposition 3.3 (isomorphism) Place graph and link graph isos are respectively per-
mutationsπ and renamingsα. Bigraph isos are pairs〈π, α〉.

There is only one kind of elementary bigraph that introducesnodes:

3.1. ELEMENTARY BIGRAPHS AND NORMAL FORMS 29

Definition 3.4 (ion) For each controlK :n, the bigraphK~x : 1→〈1, {~x〉} having a
singleK-node with ports are linked bijectively ton distinct names~x is called adiscrete
ion. �

discrete ion:
K

. . .

K~x

x1 . . . xn

Definition 3.5 (atom, molecule) If the site of a discreteK-ion is filled by 1 : 0→ 1
(see Definition 3.1), the result is adiscrete atom, K~x ◦1; if it is filled by a discrete
bigraph (see Definition 3.8 below)G : I→〈1, Y 〉, then it is adiscrete molecule, (K~x ⊗
idY) ◦G. �

A

Apq ◦1

discrete atom:

(Kxyz ⊗ idpq) ◦Lpq

K

x

Ldiscrete molecule:

p q
y p qz

The diagram shows examples. Note howKxyz⊗ idpq exports names from the molecule.
We shall shortly discuss non-discrete constructions, in which points may be linked.

We can express all bigraphs algebraically in terms of elementary placings, linkings
and ions, using composition, product and identities. This applies to both̀ BG(K) and
BG(K), but in `BG(K) we may wish to make support explicit in the algebraic expres-
sion of a bigraph. This is easy, because nodes are created only by ions, and edges only
by closure. So we need only annotate ions and closures with node- and edge-identifiers
respectively, thus:vK~x ande/x.

Given the elements and operations of our algebra, what is itstheory? When do two
expressions denote the same bigraph? This question has beenanswered, at least for
abstract bigraphs. We omit the proof, but it is worth recording the result here:

Theorem 3.6 (axioms for bigraphs) Two bigraphical expressions denote the same
abstract bigraph if and only if they can be proved equal by theequations of an spm
category (Definitions 2.8–2.11), together with the axioms tabulated below.

In other words, the axioms are bothsoundand complete. They say simple things:
The place axioms say thatjoin is commutative, has a unit and is associative; the link
axioms say that the formation of links obeys obvious rules; the node axiom says that
we can name ports arbitrarily. Since the ssm axioms are not atall specific to bigraphs,
this result means that thestructureof bigraphs is straightforward, as it should be; we
should expect the subtlety of a behavioural model to lie in itsdynamics.

30 CHAPTER 3. ALGEBRA FOR BIGRAPHS

Symmetry axiom: γ〈m,X〉,〈n,Y 〉 = γm,n ⊗ idX⊎Y

Place axioms: join ◦γ1,1 = join

join ◦ (1 ⊗ id1) = id1

join ◦ (join ⊗ id1) = join ◦ (id1 ⊗ join)

Link axioms: x/x = idx

/x ◦x = idǫ

/y ◦ y/x = /x
z/(Y ⊎ y) ◦ (idY ⊗ y/X) = z/(Y ⊎ X)

Node axiom: (id1 ⊗ α) ◦K~x = Kα(~x)

Axioms for bigraphical structure

Let us now return to properties of bigraphs that can be expressed algebraically.
We begin with theoccurrenceof one bigraph within another. We adopt the following
definition, which applies to both concrete and abstract bigraphs:

Definition 3.7 (occurrence) A bigraphF occursin a bigraphG if the equationG =
C1 ◦ (F ⊗ idI) ◦C0 holds for some interfaceI and bigraphsC0 andC1. �

The identityidI is important here: it allows nodes ofC1 to have children inC0 as well
as inF , and allowsC1 andC0 to share links that do not involveF . It appears to be the
natural way to define occurrence, as the following exercise suggests.

EXERCISE 3.2 Make sure that the definition implies the right thing, in simple cases:
i.e. thatF occurs inF ◦C, C ◦F , F ⊗C andC⊗F . Less trivially, show that a ground
bigrapha occurs in a ground bigraphg iff g = C ◦a for someC. Also prove that
occurrence is transitive, i.e. ifE occurs inF andF occurs inG thenE occurs inG. �

We now come to two kinds of bigraph,prime anddiscrete, which are important
both for the algebraic structure of bigraphs (Proposition 3.9) and for their dynamics
(Definition 8.5). In both cases we are concerned with breaking down a bigraph into
parts; for example, Proposition 3.9 shows that every bigraph is the composition of a
linking with a discrete bigraph.

Definition 3.8 (prime, discrete) A prime bigraph has no inner names and a unary
outer face; its homset takes the formm→〈X〉.

A link graph or bigraph isdiscreteif it has no closed links, and its link map is
bijective. Thus it is open, no two points are siblings, and noname is idle. �

An important prime ismergen : n→ 1, wheren ≥ 0; see Definition 3.1. It has no
nodes, and mapsn sites to a single root. A bigraphG : m→〈n, X〉 with no inner
names can be merged into a prime(merge ⊗ idX) ◦G. As here, we shall usually omit
the subscriptn from merge.

3.2. DERIVED OPERATIONS 31

Note the absence of inner names in a prime bigraph. This ensures the unique de-
composition of a bigraph into a linking and discrete primes,as follows:

Proposition 3.9 (discrete normal form) Every bigraphG : 〈m, X〉→〈n, Z〉 can be
expressed uniquely, up to a renaming onY , as

G = (idn ⊗ λ) ◦D

whereλ : Y →Z is a linking andD : 〈m, X〉→〈n, Y 〉 is discrete. Further, every dis-
creteD may be factored uniquely, up to permutation of the sites of each factor, as

D = α⊗ ((P0 ⊗ · · · ⊗ Pn−1) ◦π)

with α a renaming, eachPi prime and discrete, andπ a permutation of all the sites.

Note that a renamingα is discrete but not prime, since it has zero width and also has
inner names; this explains why a renaming is needed in the prime factorisation. In the
special case thatD is ground, the result simplifies as follows:

Corollary 3.10 (ground discrete normal form) A ground bigraphg : 〈n, Z〉 can be
expressed uniquely, up to renaming onY , asg = (idn⊗ λ) ◦ (d0 ⊗ · · · ⊗ dn−1), where
λ : Y →Z is a linking and thedi are discrete primes.

This analysis of a bigraph into smaller discrete ones is crucial for the proof that our
algebraic theory is complete (Theorem 3.6). It can be seen asextracting all non-trivial
linking from a bigraphG at the very first step. But it may not be how a designer would
wish to build a bigraph from smaller ones. Instead, she may prefer to push all linking—
both substitutions and closures—inwards as far as possible. We shall shortly see how
to break down a bigraph in this alternative way.

3.2 Derived operations

Notation We often omit ‘. . .⊗ idI ’ in a composition(F ⊗ idI) ◦G when there is no
ambiguity; for example we writemerge ◦G for (merge ⊗ idX) ◦G.

Given a linkingλ : Y →Z, we may wish to apply it to a bigraphG : I→〈m, X〉
with fewer names, i.e.Y = X⊎X ′. Then we may writeλ ◦G for (idm⊗λ) ◦ (G⊗X ′)
whenm andX ′ can be understood from the context. �

If X = {x1, . . . , xn} we shall write/X to mean/x1 ⊗ · · · ⊗ xb.
We now generalise the tensor product. We define an operation that comes closer to

the ‘parallel composition’ of process calculi by allowing names to be shared.

Definition 3.11 (parallel product) Theparallel product‖ is given on interfaces by

〈m, X〉 ‖ 〈n, Y 〉
def
= 〈m + n, X ∪ Y 〉 .

32 CHAPTER 3. ALGEBRA FOR BIGRAPHS

Now letGi : Ii→ Ji (i = 0, 1) be two bigraphs with disjoint supports. Denote the link
map ofGi by link i (i = 0, 1), and assume further thatlink0∪ link1 is a function. Then
the parallel product

G0 ‖G1 : I0 ‖ I1→ J0 ‖ J1

is defined just as tensor product, except that its link map allows name-sharing. �

Let Xi, Yi be the names ofIi, Ji respectively (i = 0, 1). Because the supports of
Gi are disjoint, the condition thatlink0 ∪ link1 is a function amounts to requiring
that, for every inner namex ∈ X0 ∩ X1, there exists an outer namey ∈ Y0 ∩ Y1

such thatlink0(x) = link1(x) = y. Thus tensor product is the special case in which
X0 ∩X1 = Y0 ∩ Y1 = ∅.

Proposition 3.12 (parallel product) The parallel product of bigraphs is associative;
that is,F ‖ (G ‖H) = (F ‖G) ‖H when either side is defined. It also hasidǫ as unit.
Furthermore it satisfies the ‘bifunctorial’ property when both sides are defined:

(F1 ‖G1) ◦ (F0 ‖G0) = (F1 ◦F0) ‖ (G1 ◦G0) .

Proof Straightforward from the definition, noting that the condition on link maps is
satisfied on one side iff it is satisfied on the other side. �

The reader may be concerned thatF ‖G is only defined whenlinkF ∪ linkG is a
function. Indeed, in previous workF ‖G was permitted only when the inner faces ofF
andG are disjoint, ensuringlinkF #linkG and thus implying our constraint. However,
the useful bifunctorial property is then lost.

From another point of view, the present definition is natural; for it can be shown
that the constraint on link maps holds if and only if there arebigraphsF ′ andG′ and
a substitutionσ, with all three inner faces disjoint, such thatF = F ′ ‖ σ, G = σ ‖G′,
andF ‖G = F ′ ‖ σ ‖G′. Thus, given the disjointness of supports,F ‖G is defined iff
the two bigraphs treat their open inner names the same.

Notation Parallel product allows further convenient abbreviations. For example, if
X = {x1, . . . , xn} we definey/X

def
= y/x1 ‖ · · · ‖ y/xn. Also, if G has outer face

〈n, X ⊎ Z〉, we shall writey/X ◦G to mean(y/X ‖ idI) ◦G, whereI = 〈n, Z〉. This
makes sense even ify ∈ X ⊎ Z. �

It is common to nest, inside an ion, a bigraph of width 1 that shares names with the ion.
We therefore define anestingoperation as follows:

Definition 3.13 (nesting) Let F : I→〈m, X〉 andG : m→〈n, Y 〉 be bigraphs. De-
fine thenestingG.F : I→〈n, X ∪ Y 〉 by:

G.F def
= (idX ‖G) ◦F . �

Example 3.14 (nesting) The diagram below uses nesting to describe a non-discrete
version of the discrete molecule shown earlier. It can be written (Kxyz ‖ idyz) ◦Lyz,
using parallel product to create the sharing of names. With the nesting operation we
can also write it asKxyz.Lyz. �

3.2. DERIVED OPERATIONS 33

K

x

L
molecule: (Kxyz ‖ idyz) ◦Lyz = Kxyz.Lyz

zy

Nesting will be found to express the prefixing operation of CCS.

Notation If A is an atomic control then we may abbreviate the atomA.1 to justA;
this is justified because an atomic node can only contain1. �

EXERCISE 3.3 Prove that nesting is associative; that is,H.(G.F) = (H.G).F for
F : I→〈k, X〉, G : k→〈m, Y 〉 andH : m→〈n, Z〉. Hint: Expand the definition of
nesting, then use associativity of parallel product and thebifunctorial property. �

We now derive a form of parallel product that produces bigraphs of unit width:

Definition 3.15 (merge product) The merge product| is defined on interfaces by
〈m, X〉 | 〈n, Y 〉

def
= 〈X ∪ Y 〉. On bigraphs, under the same condition as for parallel

product, it is defined by

G0 |G1
def
= merge ◦ (G0 ‖G1) : I0 ‖ I1→ J0 | J1 . �

Proposition 3.16 (merge product)Merge product is associative, and (on bigraphs of
unit width) it has1 as unit.

By introducing derived products and nesting, we clothe the categorical operations—
composition and tensor product—in a way that yields convenient algebraic expression.
As we shall soon see, this brings us closer to the form of expression found in process
calculi. Thus we have exposed spm categories as a foundationfor these calculi. One ad-
vantage, already mentioned, has been the existence of a normal form (Proposition 3.9)
that enables the proof of algebraic completeness (Theorem 3.6).

However, we can now show that our derived operations—thoughthey may not
support a completeness theorem—allow us to break down a bigraph in the alternative
way we mentioned, pushing linking inwards. It works for arbitrary bigraphs, but here
we shall give it just for ground bigraphs, as another corollary of Proposition 3.9:

Corollary 3.17 (ground connected normal form) If Y = {y1, . . . , yn}, let us write
/Y for /y1⊗ · · ·⊗ /yn. Then a ground bigraphg : 〈n, Z〉 can be expressed uniquely, up
to renaming onY , asg = (id〈n,Z〉 ⊗ /Y) ◦ (p0 ‖ · · · ‖ pn−1), where thepi are prime
and each closed linky ∈ Y has ports in more than onepi.

This form of factorisation—sharing names as deeply as possible—can be continued
into the primespi by means of merge product and nesting. Here is an example, fora
ground bigraph used in Chapter 1; we assume thatK is atomic.

34 CHAPTER 3. ALGEBRA FOR BIGRAPHS

g = /yz ◦ (p0 ‖ p1)

10

K

M

M

K

L

K

p0 K

y z

K

yz

p1

M

K

M

L

You may check thatp0 = My.(/x ◦ (Kyx.1 |L.(Kxz.1))) andp1 = Kzy.(Mz.1).1

Example 3.18 (CCS redexes)We shall use the process calculus CCS as a running
example throughout this work. We begin with the redex of the usual CCS reaction
rule, which we shall study in detail in Chapter 8, as a good example of an algebraic
expression. In the notation of CCS, the reaction rule takes the form

(x.P + A) | (x.Q + B) ⊲ P |Q

whereP, Q, A, B areparameters, i.e. arbitrary CCS expressions. This parametricity
will be represented as four sites in a non-ground bigraphR; see the diagram below.
The meaning of the rule is that an interaction betweenx andx can occur, and if so then
the alternativesA andB will be discarded.

x

alt
R

alt

0

1

2

3

getsend

alt. (sendx | id1) | alt. (getx | id1)

Note that ‘send’ (sending) and ‘get’ (receiving) are controls of arity1, and ‘alt’ repre-
senting summation has arity0. The algebraic expression ofR, as shown, makes good
use of the nesting operation. Note that the redexR is prime. It may be surprising that
merge product not only represents what is called ‘parallel composition’ in CCS, but
also (together withalt) represents summation. In Chapter 10 we shall see how this
works; essentially, the reaction rule provides the difference in meaning between these
two operations.

The parametric rule generates an infinite family ofground redexes, once the pa-
rameters are supplied as ground bigraphs. It turns out that it is enough to assume these

1These expressions contain ‘.1’ many times. This is necessary when an empty node has non-atomic
control, such asK or M here.

3.2. DERIVED OPERATIONS 35

parameters to be discrete; so, since the inner width (i.e. width of inner face) ofR is 4,
these parameters form a single parameterd : 〈4, Y 〉 = d0⊗d1⊗d2⊗d3, with di : 〈Yi〉,
whereY =

⊎
i Yi. Thus each ground redex can be expressed as

R.d = alt.(sendx.d0 | d1) | alt.(getx.d2 | d3) . �

To end this chapter, let us use the CCS redexR = alt.(sendx | id) | alt.(getx | id) to
illustrate another phenomenon. We shall meet it in Definition 8.6 and Proposition 8.14
to characterize certain well-behaved transition systems,including the one we derive for
CCS. The reader may safely ignore it until then, but we analyse it here because it is a
structural property with some intrinsic interest.

We shall need to deal with cases in which a bigraphR—especially a redex—occurs
in the compositionG = B ◦A of two bigraphs, but not in eitherA or B alone. In-
deed, this is exactly what gives rise to communication in CCS; for if p and q are
(bigraphs representing) CCS processes, thenp may containalt.(sendx | id) while q
containsalt.(getx | id). In this case we haveG = p | q, A = p andB = id1 | q, so the
interface betweenA andB is unary.

But there are other ways to decompose the CCS redexR. For example, we have
R = Q ◦P whereP = sendx ‖ getx andQ = alt | alt | idx, so the interface betweenP
andQ may be multiary. In this case, it turns out that ifR occurs inG = B ◦A, where
A has a unary outer face, then this occurrence cannot arise from an occurrence ofP in
A andQ in B.

This phenomenon will affect how we derive transition systems, e.g. for CCS, so we
need to treat it more formally.

Definition 3.19 (split, tight) A split for F is a pairA, B such thatF occurs inB ◦A
and both|A| ∩ |F | and|B| ∩ |F | are non-empty. The split ism-ary if A has anm-ary
outer face. The split istight if some port in|A| ∩ |F | is linked to a port in|B| ∩ |F |.

Finally, F is tight if every unary split forF is tight. �

The notion of a split helps to address the question: if a bigraphF can be split into two
parts across the boundary of a composition, then how are the two parts ofF related?
It depends upon the interface of the composition. Our definition of tightness is a little
arbitrary, but will help to measure how closely linked are the redexes in bigraphical
reactive systems.

For example, consider any splitA, B for R, the CCS redex. In general there need
be no link between the two parts; we may haveR = B ◦A whereA = sendx ‖ getx
andB = alt | alt | idx, and no port ofA is linked to a port ofB (indeedB has no ports).
But note that the interface of the split is not unary. If we consider only unary splits, we
find that there is always a linked pair of ports ofR in opposite parts of the composition.
SoR is tight.

EXERCISE 3.4 Prove that the CCS redex is tight.
RulesA1–A3 for mobile ambients andB1–B3 for the built environment are given

in Chapter 1; which of their redexes are tight? �

36 CHAPTER 3. ALGEBRA FOR BIGRAPHS

Chapter 4

Relative and minimal bounds

This chapter introduces an important structural notion at the general1 level of a precat-
egory. We begin with some motivation from bigraphs.

Structural analysis for bigraphs is more challenging than it is for algebraic terms.
Terms are tree-like, and trees enjoy the property that, for two subtrees of a larger tree,
either they are disjoint or one is contained in the other. This is not the case with bi-
graphs. For example, consider the built environment of Example 1.2; one may consider
one subsystem consisting of the agents and the computers, and another consisting of
the rooms and the agents. They have a non-trivial intersection: the agents.

This situation can be represented generally in a category orprecategory, but let us
restrict attention to bigraphs. A bigraph, even a ground bigraph, can often be decom-
posed in two ways; for exampleg = C0 ◦f0 = C1 ◦f1. We say thatf0 andf1 both
occur in g. Do theseoccurrencesoverlap? What, if any, is the smallest parth of g that
contains them both, i.e.g = D ◦h, with h = Di ◦fi andCi = D ◦Di (i = 0, 1)?

f1f0

C0 C1

D1D0

D

In abstract graphs this question has no definite answer. But in the dynamic theory of
bigraphs we shall need answers to such questions. They arisein two distinct ways.
First, two reconfigurations—orreactionsas we shall call them—of a bigraphg may
be possible; this means that two differentredexes—the parts to be reconfigured—may
occur ing. If they overlap, then one reaction may preclude the other, forming what is
known as a critical pair; we have to analyse such possibleconflicts. Second, a system

1The words ‘abstract’ and ‘general’ can be confused. They areoften used as synonyms, but in this work
‘abstract/concrete’ distinguishes only between graphs inwhich the nodes and edges are unidentified and
those in which they are identified. On the other hand ‘general/specific’ represents a spectrum from lesser to
greater definition; for example, it proceeds from ‘precategory’ through ‘s-category’, then through the class
of all bigraphical s-categories, then to any specific bigraphical s-category such as BGccs or `BGccs.

37

38 CHAPTER 4. RELATIVE AND MINIMAL BOUNDS

may be able to contribute to a reaction—it may contain part ofa redex—and we wish
to know whether the environment contains the missing part, so that they can jointly
react; we have to analyse suchpotentialreactions. We would like to know, for a given
potential reaction, what is the minimal environment that permits it to occur.

This motivates the notion ofrelative pushout(RPO), which we develop here in the
general framework of an arbitrary precategory.

Notation While we are working at this general level, we revert to usinglower case
letters for arrows in this chapter. We shall frequently use~f to denote a pairf0, f1 of
arrows. If their domains coincide the pair is aspan, if their codomains coincide it is a
cospan. If the shared domain of a span~f is H and the codomains areI0 andI1, then
we may write~f : H→ ~I, with a dual notation for cospans. We shall also use~f ◦g to
mean the spanf0 ◦g, f1 ◦g, with a dual notation for cospans. �

Definition 4.1 (bound, consistent) If ~f is a span and~g a cospan such thatg0 ◦f0 =
g1 ◦f1, then we call~g a boundfor ~f . If ~f has a bound it is said to beconsistent. �

Before defining relative pushouts, we recall the standard notion of pushout:

Definition 4.2 (pushout) A pushoutfor a span~f is a bound~h for ~f such that, for any
bound~g, there is a unique arrowh such thath ◦~h = ~g. �

We are now ready for the main definition of this chapter:

Definition 4.3 (relative pushout) Let ~g be a bound for~f . A bound for~f relative to
~g is a triple(~h, h) of arrows such that~h is a bound for~f andh ◦~h = ~g. We may call
the triple arelative boundwhen~g is understood.

A relative pushout(RPO) for ~f relative to~g is a relative bound(~h, h) such that for
any relative bound(~k, k) there is a unique arrowj for which j ◦~h = ~k andk ◦ j = h.
(See the right-hand diagram.)

We say that a precategoryhas RPOsif, whenever a span has a bound, it also has an
RPO relative to that bound. �

f0 f1 f0 f1

h0 h1

k0
k1

g0 g1h

j

k
h

g1g0

h0 h1I0 I0 I1
I1

K

H

H

We shall often omit the word ‘relative’; for example we may call (~h, h) a bound (or
RPO) for ~f to~g.

The more familiar notion, a pushout, is a bound~h for ~f such thatfor any bound
~g there exists anh which makes the left-hand diagram commute. Thus a pushout isa
leastbound, while an RPO provides aminimalbound relative to a given bound~g.

39

Suppose that we can construct an RPO(~h, h) for ~f to ~g; what happens if we try to
iterate the construction? More precisely, is there an RPO for ~f to ~h? The answer lies
in the following important concept:

Definition 4.4 (idem pushout) If ~f : H→ ~I is a span, then a cospan~g : ~I→ J is an
idem pushout(IPO) for ~f if (~g, idJ) is an RPO for~f to ~g. �

The attempt to iterate the RPO construction will yield thesamebound (up to isomor-
phism); the minimal bound for~f to any bound~g is reached in just one step. This
is assured by the first two parts of the following proposition, which summarises the
essential properties of RPOs and IPOs on which our work relies.

Proposition 4.5 (properties of RPOs)In any precategorỳC:

(1) If an RPO for~f to~g exists, then it is unique up to isomorphism.

(2) If (~h, h) is an RPO for~f to~g, then~h is an IPO for ~f .

(3) If ~h is an IPO for ~f , and an RPO exists for~f to h ◦~h, then the triple(~h, h) is
such an RPO.

(4) Suppose that the diagram below commutes, and thatf0, g0 has an RPO to the
pair h1 ◦h0, f2 ◦g1. Then

• if the two squares are IPOs, so is the rectangle;

• if the rectangle and left square are IPOs, so is the
right square.

f0 f1

g0 g1

h0 h1

f2

(5) If `C is an s-category, then any support translation of an RPO is anRPO.

(6) Every pushout is an IPO.

Proof (partial) We prove (1) here. We pose (2) and (3) as Exercises 4.1 and 4.2.
For (1), assume that(~h, h) is an RPO for~f to~g, with mediating objectH . We must

show that(~k, k), with mediating objectK, is also an RPO iff there is an isoι : H→K

such thatk ◦ ι = h and~k = ι ◦~h.

(⇒) Assume that(~k, k) is also an RPO. Each of the two RPOs is a relative bound; by
comparing each with the other, or with itself, we first deducethree properties:

there exists uniquex : H→K such that~k = x ◦~h andk ◦x = h ; (a)

there exists uniquey : K→H such that~h = y ◦~k andh ◦y = k ; (b)

there exists uniquez : H→H such that~h = z ◦~h andh ◦z = h . (c)

It then follows thaty ◦x = id, since both satisfy the equations of (c). Similarly we find
x ◦y = id. Hencex is an iso, readily seen to have the required property.

40 CHAPTER 4. RELATIVE AND MINIMAL BOUNDS

(⇐) Assume an isoι : H→K with inverseι′, such thatι ◦~h = ~k andk ◦ ι = h.
Let (~ℓ, ℓ) be any relative bound. Then, since(~h, h) is an RPO, there exists unique
z : H→L such thatz ◦~h = ~ℓ andℓ ◦ z = h .

To prove(~k, k) an RPO we require a uniquew : K→L satisfying the equations~ℓ =

w ◦~k andl ◦w = k. Now ~ℓ = (z ◦ ι′) ◦~k andℓ ◦ (z ◦ ι′) = k; thusw = z ◦ ι′ satisfies
the equations. Moreover, for anyw′ satisfying the equations we find~ℓ = (w′ ◦ ι) ◦~h
andℓ ◦ (w′ ◦ ι) = h, hence by the unicity ofz we have(w′ ◦ ι) = z. Thereforew = w′,
ensuring unicity ofw. �

EXERCISE 4.1 Prove (2) in Proposition 4.5. That is, assume that(~h, h) is an RPO
for ~f relative to~g, and prove that~h is an IPO for~f . �

EXERCISE 4.2 Prove (3) in Proposition 4.5. That is, assume that~h is an IPO for~f ,
and that an RPO exists for~f relative toh ◦h0, h ◦h1; then prove that(~h, h) is such an
RPO. �

These properties are powerful; for example, they will enable us to define behavioural
equivalences which arecongruences, i.e. they are preserved by composition and ten-
sor product, and hence by all derived operations such as parallel and merge products,
nesting, substitution and merging. Thus, if a subsystem is replaced by a congruent sub-
system, then the behaviour of the whole system is unchanged.This will be illustrated
for both Petri nets in Chapter 9 and CCS in Chapter 10, thus confirming existing theory
for these process models.

These benefits only fully accrue in a precategory thathas RPOs, i.e. it has an RPO
for every bounded span. In Chapter 5 we shall show that the s-category of concrete
bigraphs over any basic signature has RPOs.

However, we need more than this. In Chapter 6 we shall define s-categories of
bigraphs that obey a wide range of so-calledsorting disciplines; these often impose
structural constraints, which may preclude the existence of (some or all) RPOs. Such
a disciplinèA typically consists of an s-category of bigraphs whose places—or whose
points and links—have been assigned certain sorts, and the only bigraphs permitted are
those that satisfy a structural constraint expressed in terms of the sorts. A simple exam-
ple is when each place is assigned one of the sorts ‘red’ or ‘ blue’, and the admissible
bigraphs are those in which the parent of each nodev has a different colour fromv,
while the parent of each sites has the same colour ass.

As we shall see in Chapter 6, every sorted bigraphical s-category À is built on a
basic signatureK, and has a functor

`U : À→ `BG(K)

called aforgetful functor, because it forgets the sorts ofÀ.2 We want À to be well-
behaved; in particular, to have RPOs. A sufficient conditionfor this is that the functor
`U is safe, according to the following general definition:

2A similar functorU : A → BG(K) of spm categories exists for abstract bigraphs, whereA is the lean-
support quotient of̀A.

41

Definition 4.6 (safe functors and sorting) A functorF : À→ `B of s-categories is
safe if it creates RPOs and isomorphisms, and also reflects identities, products and
pushouts. These properties are defined as follows, where we write F(~f) to mean
F(f0),F(f1):

• F creates RPOsif, given a span~f bounded by~h in À, any RPO iǹ B for F(~f)

relative toF(~h) has anF -preimage that is an RPO for~f relative to~h.3

• F creates isomorphismsif, for any objectI0 in Àand isomorphismκ :F(I0)→K1

in `B, there is a unique objectI1 and isomorphismι : I0→ I1 in À such that
F(ι, I1) = (κ, K1).

• F reflects identitiesif, wheneverf is an arrow iǹA such that such thatF(f) is
an identity, thenf is itself an identity.

• F reflects productsif, wheneverF(g) = F(f0)⊗F(f1), then alsog = f0⊗ f1.

• F reflects pushoutsif, for ~f bounded by~g in À, wheneverF(~g) is a pushout for
F(~f) then~g is a pushout for~f .

A sorting discipline issafeif its forgetful functor is safe. �

These conditions are not necessarily independent. They arechosen with a view to
deriving transition systems. At least one of the conditionsis implies by one or more of
the others; the reader may enjoy the puzzle of verifying this.

The following is important for deriving transition systemsfor sorted bigraphs:

Proposition 4.7 (transferring RPOs) LetF : À→ `B create RPOs, and assume that
`B has RPOs. Then

(1) À has RPOs.

(2) F preservesRPOs; that is, if(~g, g) is an RPO in À for ~f relative to~h, then
F(~g, g) is an RPO iǹ B for F(~f) relative toF(~h).

Proof (outline) The first part is immediate from the definition. Forthe second part,
first construct an RPO(~k′, k′) in `B for F(~f) relative toF(~h). ThenF creates from
this an RPO(~k, k) in À for ~f relative to~h. By Proposition 4.5(1), this RPO coincides
with the given RPO(~g, g) up to an isomorphism between their mediating interfaces.
Hence, since functors preserve isomorphism,(~k′, k′) coincides similarly withF(~g, g),
and the latter is therefore itself an RPO in`B. �

The last four conditions for safety, when satisfied by a sorting discipline (Chapter 6)
will allow us to make its derived transition system more tractable. It will turn out
that a quite wide class of sorting disciplines satisfy the five conditions, including our
formulation of both Petri nets and CCS in bigraphs.

Here is another property that will be useful later:

3This RPO-preimage may not be unique; it may vary by an iso at the mediating object.

42 CHAPTER 4. RELATIVE AND MINIMAL BOUNDS

Proposition 4.8 (creating IPOs) If a functorF is safe then it creates IPOs; that is, if
~g bounds~f , andF(~g) is an IPO forF(~f), then~g is an IPO for ~f .

Proof We have that(F(~g), id) is an RPO forF(~f) toF(~g). SinceF creates RPOs,
there is an RPO (~h, h) for ~f to ~g, and this RPO is a preimage of the RPO(F(~g), id).

ButF reflects identities, andF(h) = id, soh is an identity. It follows that~h = ~g,
and hence~g is an IPO as required. �

It will be useful to have a sufficient condition for a functor to reflect pushouts. For
this we need a standard categorical notion:

Definition 4.9 (op-cartesian)

LetF : À→ `B be a functor. An arrowf : I→ J in À is
said to beop-cartesian forF if, for all h : I→K andg′

such thatF(h) = g′ ◦F(f), there exists uniqueg such
thatF(g) = g′ andh = g ◦f .

�

g′
h

f

F(h)g

F(f)

Proposition 4.10 (reflecting pushouts)If every arrow in the domain of a functorF
is op-cartesian thenF reflects pushouts.

EXERCISE 4.3 Prove Proposition 4.10.Hint: You need to use the op-cartesian prop-
erty more than once. �

We are now ready to apply these general notions, first to unsorted bigraphs in Chap-
ter 5 and then to sorted bigraphs in Chapter 6.

Chapter 5

Bigraphical structure

This chapter refines the structural analysis of concrete bigraphs. In Section 5.1 we
establish some properties for concrete bigraphs, including RPOs. In Section 5.2 we
enumerate all IPOs for a given span. Finally, in Section 5.3 we show that RPOs do not
exist in general for abstract bigraphs.

5.1 RPOs for bigraphs

We begin with a characterisation of epimorphisms (epis) andmonomorphisms (monos)
in bigraphs. These notions are defined in a precategory just as in a category, as follows:

Definition 5.1 (epi, mono) An arrowf in a precategory isepi if g ◦f = h ◦f implies
g = h. It is monoif f ◦g = f ◦h impliesg = h. �

Proposition 5.2 (epis and monos in concrete bigraphs)A concrete place graph is
epi iff no root is idle; it is mono iff no two sites are siblings. A concrete link graph
is epi iff no outer name is idle; it is mono iff no two inner names are siblings.

A concrete bigraphG is an epi (resp. mono) iff its place graphGP and its link
graphGL are so.

EXERCISE 5.1 Prove the above proposition, at least for the case of epi linkgraphs.
Hint: Make the following intuition precise: ifG andH differ then, when composed
with F , the difference can be hidden if and only ifF has an idle name. �

The proposition fails forabstractbigraphs, suggesting that concrete bigraphs have
more tractable structure. We shall now provide further evidence for this by constructing
RPOs for them.

The construction of RPOs iǹBG is made easier by the fact that we can construct
them separately for̀PG and`LG and then pair them. Moreover the constructions for
place graphs and link graphs have much in common. We shall first discuss informally,
with examples, how it works for link graphs. Then we shall present the formal con-
struction for both link graphs and place graphs without further discussion. We prove
the validity of the link graph construction; the proof for place graphs is similar.

43

44 CHAPTER 5. BIGRAPHICAL STRUCTURE

Pushouts were defined in Definition 4.2. Our construction of RPOs in bigraphs
adapts the standard construction of pushouts in the category of sets and functions,
which we now recall.

Example 5.3 (pushouts for functions)Let ~f : R→ ~S be a span of functions between
sets. What cospan~g : ~S→T is a pushout? (For simplicity, assumeS0 # S1.) To
ensureg0 ◦f0 = g1 ◦f1 we must equateg0(y0) andg1(y1) whenever, for somex ∈ R,
f0(x) = y0 andf1(x) = y1. To ensure a pushout, we must equate no more than these.

To make this precise, define the least equivalence relation≡ on S0 ⊎ S1 such that
y0 ≡ y1 whenever, for somex, we havefi(x) = yi (i = 0, 1). Then for eachy ∈ S0

defineg0(y)
def
= [y]≡, the equivalence class ofy; similarly for g1(y) wheny ∈ S1. This

completes the pushout construction. �

A similar equivalence relation arises in the more complex setting of RPOs for concrete
bigraphs, which is the main topic of this chapter. We therefore switch back to our con-
vention of using upper case letters, usuallyA–H , for bigraphs and their constituents.

Example 5.4 (RPOs for link graphs) We shall now illustrate the RPO construction
for link graphs with the example in Figure 5.1, showing a span~A bounded by a cospan
~D : ~X→Z. We assume the interfacesX0 = {x0, y0, z0} andX1 = {x1, y1, z1, w1}
to be disjoint as in the previous example, to ease the discussion. We wish to form an
RPO(~B, B), where~B : ~X→ X̂ andB : X̂→Z.

nodes and edges: We assign toB0 andB1 as few nodes and edges as possible to
achieve a bound. Assign toB0 all those inA1 but not inA0, and similarly for
B1. B gets all those in~D but not in ~A. ThusB0 getsv4, B1 getsv3 ande0,
andB getsv5 ande1. The shapes of nodes reflect this assignment; for example
round nodes are shared byA0 andA1.

interface: We have to decide, fori ∈ {0, 1}, which members ofXi will be linked in
Bi to an outer name in̂X. We cannot exportz1, w1 ∈ X1 in this way, since their
links each contain a port that is closed inA0, so we would lose the commutation
B0 ◦A0 = B1 ◦A1. But {x0, y0, z0, x1, y1} can all be exported tôX.

We then have to decide which of these five should share links inX̂ . In the jargon
of Example 5.3, we look for the smallest equivalence that equates any pair of
these names sharing a point in~A; commutation requires us to give such a pair
the same link inX̂. The reader may check that{x0, y0, x1, y1}must share a link,
but z0 should have a separate link. We choosex, z as names for these links.

links: It remains only to assign links to the ports in~B and all the points inB. This
assignment is dictated uniquely by the commutation equations.

The completed RPO is shown in Figure 5.2. �

EXERCISE 5.2 Suppose that, in Figure 5.1, the link fromv2 to y0 is replaced by a
link from v2 to some new outer namey, and that we declarelinkD0(y) = x. From the
informal construction in Example 5.4, determine how the RPO(~B, B) should change,
if at all. �

5.1. RPOS FOR BIGRAPHS 45

D0 D1

v4

x0 y0 z0 x1 y1 z1 w1

v5

v5

v3

A0 A1

v0 v1 v2

v3 v0 v1 v2

v4

x x

e0

e1

e0

e1

Figure 5.1: A bounded span~D for ~A

B0

v4

x0 y0 z0 x1 y1 z1 w1

v3

A0 A1

v0 v1 v2

v3 v0 v1 v2

v4

zx x z

B1

zx

B

x

e0

e0

e1

v5

Figure 5.2: An RPO(~B, B) for ~A to ~D

46 CHAPTER 5. BIGRAPHICAL STRUCTURE

Notation When considering a span~A : W → ~X of link graphs we shall adopt a nam-
ing convention for nodes, ports and edges. We denote the nodeset ofAi (i = 0, 1) by
Vi, and denoteV0 ∩ V1 by V2. We shall usevi, v

′
i, . . . to range overVi (i = 0, 1, 2).

Similarly we usepi ∈ Pi andei ∈ Ei for ports and edges (i = 0, 1, 2). We useqi

for points, i.e.qi ∈ W ⊎ Pi. When there is no ambiguity we writeA(q) instead of
linkA(q). We useı to mean1− i for i ∈ {0, 1}.

We defineX0 + X1
def
= {(i, x) | x ∈ Xi, i ∈ {0, 1}}, the disjoint sum of two sets.

This differs fromX0⊎X1, which asserts thatX0 andX1 are already disjoint. ByX \Y
we denote the elements ofX not inY . �

Before giving the formal RPO construction, let us summarisethe intuition gained
from Example 5.4. To construct an RPO(~B, B) for ~A relative to a bound~D, we
first truncate~D by removing its outer names, and all nodes and edges not present in
~A. (Support is essential for this purpose, in order to identify nodes and edges.) Then
for the outer names of~B, we create a name for each link severed by the truncation,
equating these new names only when required to ensure thatB0 ◦A0 = B1 ◦A1.

Construction 5.5 (RPOs in link graphs) Let the span~A : W → ~X be bounded by
~D : ~X→Z. We construct an RPO(~B : ~X→ X̂, B : X̂→Z) for ~A relative to ~D in
three stages, using the notational conventions introducedabove.

nodes and edges: If Vi are the nodes ofAi (i = 0, 1) then the nodes ofDi are
(Vı \V2)⊎ V3 for uniqueV3. Define the nodes ofBi andB to beVı \V2 (i = 0, 1) and
V3 respectively. Edges are treated exactly analogously, and ports inherit the analogous
treatment from nodes.

interface: Construct the outer nameŝX of ~B as follows. First, define the names in
eachXi that must be mapped intôX:

X ′
i

def
= {x ∈ Xi | Di(x) ∈ E3 ⊎ Z} .

Next, on the disjoint sumX ′
0 + X ′

1, define∼= to be the smallest equivalence for which
(0, x0) ∼= (1, x1) wheneverA0(q) = x0 andA1(q) = x1 for some pointq ∈ W ⊎ P2.
Then defineX̂ up to isomorphism as follows:

X̂
def
= (X ′

0 + X ′
1)/
∼= .

For eachx ∈ X ′
i we denote bŷi, x the name inX̂ corresponding to the∼=-equivalence

class of(i, x).

links: DefineB0 to simulateD0 as far as possible (B1 is similar):

Forx ∈ X0 : B0(x)
def
=

{
0̂, x if x ∈ X ′

0

D0(x) if x /∈ X ′
0

Forp ∈ P1 \ P2 : B0(p)
def
=

{
1̂, x if A1(p) = x ∈ X1

D0(p) if A1(p) /∈ X1 .

Finally defineB, to simulate the common part ofD0 andD1:

For x̂ ∈ X̂ : B(x̂)
def
= Di(x) wherex ∈ Xi andî, x = x̂

Forp ∈ P3 : B(p)
def
= Di(p) . �

5.1. RPOS FOR BIGRAPHS 47

To prove this definition sound we have to show that the right-hand sides in the clauses
defining link mapsBi andB are well-defined links inBi andB respectively:

Lemma 5.6 The definition in Construction 5.5 is sound.

Proof The second clause definingB0(x) is sound, since ifx 6∈ X ′
0 then by definition

D0(x) ∈ E1 \ E2, which is indeed the port set ofB0. Similar reasoning applies to the
second clause definingB0(p).

The first clause definingB0(p) is sound, since ifA1(p) = x with p ∈ P1 \ P2

then we havex ∈ X ′
1; for if not, thenD1(x) ∈ E0 \ E2, which is impossible since

D1 ◦A1 = D0 ◦A0.
Finally, the clauses definingB are sound because the right-hand sides are indepen-

dent of the choice ofi and ofx; this is seen by appeal to the definition of∼= and the
equationD1 ◦A1 = D0 ◦A0. �

The full justification of our construction lies in the following lemma and theorem, both
of which are proved in Appendix A.3:

Lemma 5.7 As defined in Construction 5.5,(~B, B) is a bound for~A relative to ~D.

Theorem 5.8 (RPOs in link graphs) L̀G(K) has RPOs; that is, whenever a span~A
of link graphs has a bound~D, there exists an RPO for~A to ~D. Moreover Construc-
tion 5.5 yields such an RPO.

We now proceed to the analogous construction of an RPO for a span ~A : h→ ~m of
place graphs. It closely resembles the one for link graphs, though is a little simpler, so
we present it without introductory discussion.

Notation We name nodes just as we did for link graphs. We useri, r
′
i to range over

the rootsmi of Ai (i = 0, 1). We shall also usew, w′, . . . to range overh ⊎ V2, where
h is the domain of eachAi, because shared sites behave just like shared nodes. When
there is no ambiguity we writeA(w) instead ofprntA(w). �

Construction 5.9 (RPOs in place graphs) An RPO(~B : ~m→ m̂, B : m̂→ p), for a
span~A : h→ ~m in `PG relative to a bound~D : ~m→ p, will be built in three stages.

nodes: If Vi are the nodes ofAi (i = 0, 1) then the nodes ofDi areVı \ V2 ⊎ V3 for
uniqueV3. Define the nodes ofBi andB to beVı \ V2 (i = 0, 1) andV3 respectively.

interface: Construct the shared codomainm̂ of ~B as follows. First, define the roots in
eachmi that must be mapped intôm:

m′
i

def
= {r ∈ mi | Di(r) ∈ V3 ⊎ p} .

Now on the disjoint summ′
0 + m′

1, define∼= as the smallest equivalence for which
(0, r0) ∼= (1, r1) wheneverA0(w) = r0 and A1(w) = r1 for some shared place

48 CHAPTER 5. BIGRAPHICAL STRUCTURE

w ∈ h ⊎ V2. Then definem̂ up to isomorphism bŷm
def
= (m′

0 + m′
1)/
∼= . For each

r ∈ m′
i we denote the∼=-equivalence class of(i, r) by î, r.

parents: DefineB0 to simulateD0 as far as possible (B1 is similar):

Forr ∈ m0 : B0(r)
def
=

{
0̂, r if r ∈ m′

0

D0(r) if r /∈ m′
0

Forv ∈ V1 \ V2 : B0(v)
def
=

{
1̂, r if A1(v) = r ∈ m1

D0(v) if A1(v) /∈ m1 .

Finally defineB, to simulate the common part ofD0 andD1:

For r̂ ∈ m̂ : B(r̂)
def
= Di(r) whereî, r = r̂

Forv ∈ V3 : B(v)
def
= Di(v) . �

Much as for link graphs, one must check that this definition issound, i.e. that the right-
hand sides in the clauses defining the parent mapsB0 andB are well-defined places in
B0 andB respectively. The following is proved just like Theorem 5.8:

Theorem 5.10 (RPOs in place graphs) P̀G(K) has RPOs; that is, whenever a span
~A of place graphs has a bound~D, there exists an RPO(~B, B) for ~A to ~D. Moreover
Construction 5.9 yields such an RPO.

Finally, we combine our two constructions by pairing:

Corollary 5.11 (RPOs in bigraphs) B̀G(K) has RPOs. In fact, if a span~A of bi-
graphs has a bound~D, then the following is an RPO for~A to ~D:

(~B, B)
def
= (〈BP

0 , BL
0〉, 〈B

P
1 , BL

1〉, 〈B
P, BL〉)

where(~BP, BP) is an RPO for ~AP to ~DP and(~BL, BL) is an RPO for~AL to ~DL.

Proof It is only necessary to manipulate pairings of place graphs and link graphs. It
is crucial that the node sets in the components of(~BP, BP) are identical with those in

(~BL, BL), and hence the pairing of RPOs is defined. �

5.2 IPOs in bigraphs

To prepare for the derivation of labelled transition systems, we have to characterize all
the IPOs for a given span~A of bigraphs.

Although IPOs are defined as a special case of RPOs, their construction is more
complex than that for RPOs. For RPOs, we had only to constructa single RPO for
~A relative to a given bound~D; in contrast, for IPOs we want to enumerate afamily,
consisting of the lower squares of all the RPOs for~A as its bound~D varies.

The reader may safely omit this section at first reading. Whenwe need specific
IPOs later we shall present them explicitly. Readers may then check that they are

5.2. IPOS IN BIGRAPHS 49

instances of the present general construction. We shall only give the construction for
link graphs; it can be easily adapted to place graphs.

How does a link graph RPO(~B, B) vary, for a fixed span~A relative to a varying
bound~D? It turns out that there are conditions under which~B remains fixed and only
B varies, so that in this case~B is a pushout.1 Since our applications in later chapters
will satisfy these conditions, we shall be content here to derive a single distinguished
IPO for a given span; but we shall indicate when others exist,and how to construct
them from the distinguished one.

The first step is to establish when a span is consistent, i.e. has any bound at all.

Definition 5.12 (consistency conditions)We define threeconsistencyconditions on
a span~A : W → ~X . We useq to range over arbitrary points andq2 to range overW⊎P2,
the shared points.

CL0 If v ∈ V2 thenctrl0(v) = ctrl1(v) .
CL1 If Ai(q) ∈ E2 thenq ∈W ⊎ P2 andAı(q) = Ai(q) .
CL2 If Ai(q2) ∈ Ei \ E2 thenAı(q2) ∈ Xı, and if alsoAı(q) = Aı(q2)

thenq ∈W ⊎ P2 andAi(q) = Ai(q2) . �

Let us expressCL1 andCL2 in words. Ifi = 0, CL1 says that if the link of any pointq
in A0 is closed and shared withA1, thenq is also shared and has the same link inA1.
CL2 says, on the other hand, that if the link of a shared pointq2 in A0 is closed and
unshared, then its link inA1 must be open, and further that any peer ofq2 in A1 must
also be its peer inA0.

We shall find that the consistency conditions are necessary and sufficient for at least
one IPO to exist. Necessity is straightforward:

Proposition 5.13 (consistency in link graphs)If the span~A has a bound, then the
consistency conditions hold.

Before going further, it will be helpful to look at simple examples.

Example 5.14 (consistent link graphs)Figure 5.1 shows a span~A bounded by a
cospan~D. Nodesv0, v1 andv2 are shared.

Another example is the span~A : ∅→ ~X with bound ~B as shown in Figure 5.3,
whereX0 = {x0, y0, z0} andX1 = {x1, y1}. Nodes and edges with subscript 2 are
shared; round nodes are unshared.

Controls are not shown in either example. �

EXERCISE 5.3 Prove Proposition 5.13, and check the consistency conditions for ~A
in Figure 5.3. �

We shall now construct a distinguished IPO for any span~A satisfying the consistency
conditions of Definition 5.12.

1It is not true in every precategory, or even every category, that a unique IPO is a pushout. But the
implication does hold in link graphs, and indeed in bigraphs.

50 CHAPTER 5. BIGRAPHICAL STRUCTURE

A0 A1

ww

= B1 ◦A1B0 ◦A0

y0x0 z0 x1 y1

B0 B1
v0v′1v1

v′2

v′1
v1

v′′2

v2 v′′2

v′′2

v1

v2 v′2v2 v′2

v′1

v0

v0

w

e1e2

e0

e2

e2e0 e1

e0

e1

Figure 5.3: A consistent span~A of link graphs, with bound~B

5.2. IPOS IN BIGRAPHS 51

Construction 5.15 (an IPO in link graphs) Assume the consistency conditions for
the span~A : W→ ~X . We define an IPO~C : ~X→Y for ~A as follows.

nodes and edges:Take the nodes and edges ofCi to beVı \ V2 andEı \ E2.

interface: For i = 0, 1, defineX ′
i ⊆ Xi, the names to be mapped to the codomainY ,

by

X ′
i

def
= {xi ∈ Xi | ∀q ∈W ⊎ P2. Ai(q) = xi ⇒ Aı(q) ∈ Xı} .

Now on the disjoint sumX ′
0 + X ′

1, define≃ as the smallest equivalence such that
(0, x0) ≃ (1, x1) wheneverA0(q) = x0 andA1(q) = x1 for someq ∈ W ⊎ P2. Then
defineY up to isomorphism byY

def
= (X ′

0 + X ′
1)/≃. For eachx ∈ X ′

i we denote the
≃-equivalence class of(i, x) by î, x.

links: Define the link mapsC0 : X0→Y as follows (C1 is similar):

Forx ∈ X0 :

C0(x)
def
=

{
0̂, x if x ∈ X ′

0

A1(q) if x ∈ X0 \X ′
0, for q ∈ W ⊎ P2 with A0(q) = x

Forp ∈ P1 \ P2 :

C0(p)
def
=

{
1̂, x if A1(p) = x ∈ X1

A1(p) if A1(p) /∈ X1 .
�

This is a distinguished IPO, but in general there are others for a given span. We shall
not need them, but it is interesting (and not obvious!) that they can all be obtained
from the distinguished one, as follows. Suppose~C is constructed as above for the span
~A, and supposeA0 has an idle namex. You can easily check thatx is open inC0,
i.e. C0(x) = y ∈ Y . Suppose also thatC0 has an edgee. Then if instead we set
C0(x) = e, and removey from Y , it can be shown that we still have an IPO. This
variation is called theelisionof x into C0. Elision can be performed independently for
each idle namex in A0, choosing an arbitrary edge inC0; similarly in A1 andC1. This
can yield a lot of IPOs! But the number is finite, and usually very small.

Indeed, there are two cases when the span~A has a unique IPO. The first is when
both members are epi (no idle names). The second is when one member—sayA0—is
both epi and open. For then, as in the first case, there can be novariation for a name
of A0. Also, sinceA0 is open it follows thatC1 is also open (see below), so it has no
edges to permit elision of any idle name ofA1.

EXERCISE 5.4 If ~C is an IPO for~A andA0 is open, then prove thatC1 is also open.
Hint: consider how any edgee in C1 arises from the IPO construction. �

After this brief tour of undistinguished IPOs, let us prove that our construction of
the distinguished one is valid.

Theorem 5.16 (characterising IPOs for link graphs) Assume that~A obeys the con-
sistency conditions. Then Construction 5.15 is sound and yields an IPO for~A.

52 CHAPTER 5. BIGRAPHICAL STRUCTURE

Proof (outline) For soundness, in the second clause forC0(x) we must ensure that
q ∈ W ⊎ P2 exists such thatA0(q) = x, and that each suchq yields the same value
A1(q) in P1 \ P2; also in the first clause forC0(q) we must ensure thatx ∈ X ′

1. The
consistency conditions do ensure this, and also thatC0 ◦A0 = C1 ◦A1.

Now recall that a bound~B for ~A is an IPO iff it forms the legs of an RPO relative
to some bound~D. Since~C is such a bound, take~D = ~C and apply Construction 5.5,
to construct the RPO(~B, B) relative to ~C. To complete the proof, show that~B = ~C
up to isomorphism. �

The reader may like to check the IPO construction by confirming that the bound illus-
trated in Figure 5.3 is in fact an IPO.

Corollary 5.17 (consistency)The consistency conditions are necessary and sufficient
for consistency.

Proof Proposition 5.13 already ensured necessity; sufficiency follows from the theo-
rem, since an IPO is a bound. �

We shall not give details of IPOs for place graphs. The construction of distin-
guished IPOs is entirely analogous. Also, elisions are analogous; just as in link graphs
we get other IPOs by eliding idle names into edges, so in placegraphs we get other
IPOs by eliding idle roots into nodes.

We can now assert the result for bigraphs that we would expect:

Proposition 5.18 (IPOs for bigraphs) A bound~C for a span~A is an IPO in`BG(K)
if and only if ~CP is an IPO for ~AP in `PG(K) and ~CL is an IPO for ~AL in `LG(K).

We end this section with five important properties of IPOs that we shall need later.
The first is that several qualities of a span are inherited by acospan which is an IPO.
We omit the proof, which is by routine inspection of the IPO constructions. We sayA
is ‘place-epi’ if its place graph is epi, etc.

Proposition 5.19 (IPOs inherit qualities) Let ~A have an IPO~B. If A0 is node-free,
or place-epi, or link-epi, or discrete, or open, thenB1 has the same quality.

The second property is that tensor product preserves IPOs.

Proposition 5.20 (tensor IPO) In `BG(K), let ~C be an IPO for~A and ~D be an IPO
for ~B, with ~A# ~B. Then, provided the products exist, the cospan(C0⊗D0, C1⊗D1)
is an IPO for the span(A0 ⊗B0, A1 ⊗A1).

An important corollary is:

Corollary 5.21 (tensor IPOs with identities) Let A : I ′→ I and B :J ′→ J , where
A#B and also{I, I ′}#{J, J ′}. Then the cospan(idI ⊗B, A⊗ idJ) is an IPO for the
span(A⊗ idJ′ , idI′ ⊗B). See diagram(1).

5.3. ABSTRACT BIGRAPHS LACK RPOS 53

a⊗ id

id⊗B(1)

A⊗ id

id⊗B

A⊗ id

I ′
⊗J

I⊗JI⊗J ′

I ′
⊗J ′

(2)

J
b

a

id⊗ b
I

ǫ

I⊗J

In particular if I ′ = J ′ = ǫ thenA = a andB = b are ground, and the IPO is as in
diagram (2).

Our third property is that support equivalence preserves IPOs. The proof is straight-
forward, capturing the idea that the definition of IPO exploits no property of supports
except their disjointness.

Proposition 5.22 (support translation of IPOs) Let ~A and ~B be a span and cospan
whose support is in the domain of a support translationρ. Thenρ� ~B is an IPO forρ� ~A
iff ~B is an IPO for ~A.

The fourth property is:

Proposition 5.23 (unique IPOs are pushouts)In any bigraphical s-category, if a span
~A has exactly one IPO up to isomorphism, then this IPO is a pushout.

One might expect this property to hold in any precategory, but in fact it does not. The
interested reader may enjoy trying to find a counter-example. This is not so easy, and
fortunately we do not need that negative result.

EXERCISE 5.5 Show that(A, A) has an unique IPO up to isomorphism, and that it
takes the form(id, id) if and only if A is epi. �

For our fifth property, first recall from Definition 2.19 the notion of leanness, and
the lean-support quotient functor[[·]] established in Theorem 2.20. To prepare for trans-
ferring transitions from concrete to abstract bigraphs viathis functor we assert a simple
relation between IPOs and leanness. Let us writeAE for the result of adding a setE
of fresh idle edges to a bigraphA. Then

Proposition 5.24 (IPOs, idle edges and leanness)For any span~A and cospan~B of
concrete bigraphs:

(1) If ~B is an IPO for ~A, andA1 is lean, thenB0 is lean.

(2) For any fresh setE of edges,~B is an IPO for ~A iff (B0, B
E
1) is an IPO for

(AE
0 , A1).

5.3 Abstract bigraphs lack RPOs

We end this chapter by showing that we cannot rely on the existence of RPOs in abstract
bigraphs, where support is forgotten. We give here a counter-example for abstract link
graphs; it easily extends to bigraphs.

54 CHAPTER 5. BIGRAPHICAL STRUCTURE

C GG

a a

C1C0 Ĉ

?

D1
(= id)

D0
(= id)

D
(= G)

D̂

B0 B1

zy

z

y

y

z

K

x x

K

L L

K

x

LL LL

K

x

K

K

x

x

Figure 5.4: A bounded span of abstract link graphs with no RPO

Example 5.25 (abstract link graphs lack RPOs)Figure 5.4 shows a span(a, a) of
ground link graphs, bounded by a cospan(G, G). Note thatG ◦a consists of twoL-
nodes each joined by a closed link to aK node. The diagram also shows two relative
bounds for the span relative to the cospan; these are(~C, C) and(~D, D).

Ignoring the dashed arrows, the diagram is easily seen to commute. It shows the
legs ~B of an assumed RPO(~B, B) for the span relative to the cospan (B is not shown).
For this RPO to exist there must be mediating arrowsĈ and D̂ to the two relative
bounds. But these cannot both exist. For ifD̂ ◦ ~B = ~D then theBi contain no nodes,
and in that case no value of̂C can achievêC ◦ ~B = ~C, since theK-nodes in theCi

have different names. �

Thus, by taking~A = (a, a) and ~G = (G, G) as in the example, we have proved:

Proposition 5.26 (abstract link graphs lack RPOs)In `LG(K) there exists a span~A
of abstract link graphs, and a bound~G for it, such that no RPO exists from~A to ~G.

EXERCISE 5.6 (1) Amplify the final sentence in the Example 5.25: why can no value
of Ĉ achieve the equationŝC ◦ ~B = ~C?

(2) What goes wrong if we try to use this counter-example to refute the existence
of RPOs inconcretelink graphs? �

Chapter 6

Sorting

Just as in universal algebra, different signatures will be used for different applications
of bigraphs. So far our signatures are basic; they assign only an arity to each control.
By analogy with the constructors ofmany-sortedalgebra, we can also classify our
controls by means ofsorts. But the analogy is not exact, because bigraphs have two
degrees of freedom: we can classify places or we can classifylinks.

6.1 Place sorting and CCS

Let us begin with the classification of places.

Definition 6.1 (place sorting) A place sorting

Σ = (Θ,K, Φ)

has a non-empty setΘ of sorts, and a signatureK place-sortedoverΘ, i.e. assigning a
sort to each control. An interface isΣ-sortedif each of its places is assigned a sort in
Θ.

UsingK, a bigraph overΣ may be augmented by sorts assigned to its nodes. The
third componentΦ of Σ, a formation rule, is a property of such augmented bigraphs
that is satisfied by the identities and symmetries and preserved by composition and
product. The augmented bigraphs satisfyingΦ are calledΣ-sorted; they constitute the
s-categorỳBG(Σ) and the spm category BG(Σ) of, respectively, concrete and abstract
Σ-sorted bigraphs. �

We write aΣ-sorted interface of widthn as〈~θ, X〉, where~θ = θ0 · · · θn−1 lists the
sortsθi assigned to eachi ∈ n. WhenΣ is understood, theΣ-sorted bigraphs are often
calledplace-sorted. Note that the caseΘ = {θ}, a singleton, withΦ vacuous, exactly
represents the unsorted bigraphical s-category overK.

Let us now look at functors that relate sorted to unsorted bigraphs, and concrete to
abstract bigraphs. These remarks apply equally to link sorting, which is the subject of

55

56 CHAPTER 6. SORTING

Section 6.2. LetK be the basic signature underlying a place sortingΣ. There is clearly
a forgetful functor

`U : `BG(Σ)→ `BG(K)

which deletes place sorts from the places in both interfacesand bigraphs. In this book
we are only concerned with the case in which`BG(Σ) has RPOs. This will be ensured
by Proposition 4.7, provided that we can prove thatΣ is safe (Definition 4.6).

Now recall from Definition 2.19 and Theorem 2.20 the lean-support quotient func-
tor

[[·]] : `BG(Σ)→BG(Σ)

that forgets the identity of nodes and discards idle edges inunsorted bigraphs. There
is clearly a similar quotient functor for sorted ones. Thereis also an obvious functor
U : BG(Σ)→BG(K) that forgets sorting for abstract bigraphs. Indeed, with the help
of Definition 2.4 it can be shown that the following diagram offunctors commutes:

`BG(K)

BG(K)

`BG(Σ)

BG(Σ)

[[·]]

U

`U

[[·]]

Returning now to place sorting, there is a wide range of possibilities for the forma-
tion ruleΦ. There are non-trivial sortings even whenΘ is a singleton (i.e. places are
effectively unsorted), becauseΦ may restrict bigraphs to an arbitrary sub-(s-)category.
For this chapter we shall be concerned with abstract bigraphs, except when we discuss
the safety of sortings.

There is one useful constraint thatΦ can impose, even whenΘ is a singleton:

Definition 6.2 (hardness) A sort θ in a sortingΣ is hard if Σ requires that no root
with sortθ is idle. An agenta : I is hard if all sorts inI are hard—and hencea has no
idle roots. �

Hardness makes transition systems simpler, as we shall see later. It has been useful for
the modelling of process calculi in bigraphs.

The translation of CCS into bigraphs provides a non-trivialexample of place sort-
ing. Let us first recall CCS processes:

Definition 6.3 (syntax for finite CCS) We shall letP, Q range overprocessesand
A, B overalternations(sums); eachalternate(or summand) of an alternation is a pro-
cess guarded by an actionµ of the formx or x, wherex names a channel. The syntax
is:

P ::= A
∣∣ νxP

∣∣ P |P
A ::= 0

∣∣ µ.P
∣∣ A+A

µ ::= x
∣∣ x .

The restriction νxP definesP as the scope of the namex; a name-occurrence in a
process isfree iff it is not scoped byν. We sayP andQ arealpha-equivalent, written
P ≡α Q, if they differ only in a change of their restricted names. �

6.1. PLACE SORTING AND CCS 57

Our treatment of CCS here will be confined to finite processes.Infinite processes are
typically introduced by a set{Di

def
= Pi | i ∈ I} of process definitions, where the

process identifiersDi may appear in any of the defining expressionsPi. There is more
than one way to handle these in bigraphs; one proposal is described in Section 11.2.

As usual, we define a structural congruence over CCS terms:

Definition 6.4 (structural congruence) Structural congruenceover CCS terms is
the smallest equivalence≡ preserved by all term constructions, and such that

(1) P ≡α Q impliesP ≡ Q, and A ≡α B impliesA ≡ B;
(2) ‘ | ’ and ‘+’ are associative and commutative under≡, andA + 0 ≡ A;
(3) νxνyP ≡ νyνxP ;
(4) νxP ≡ P and νx (P |Q) ≡ P | νxQ for anyx not free inP ;
(5) νx (A+µ.P) ≡ A + µ.νxP for anyx not free inA or µ. �

This is standard, except for two things. First, we do not haveP |0 ≡ P ; but we shall
find that these two terms translate into bisimilar bigraphs.Second, equation (5) is not
standard for CCS structural congruence; but the processes have identical transitions,
and indeed we shall translate them into the same bigraph.

To prepare for translating CCS into bigraphs, we first define aclass of place sortings
suggested by the two-sorted syntax of CCS itself.

Definition 6.5 (stratified place sorting) A place sortingΣ = (Θ,K, Φ) is a strati-
fied if, for some functionφ : Θ→Θ, the formation ruleΦ requires that

all children of a rootr : θ have sortθ ;
all children of a nodev : θ have sortφ(θ) .

The CCS stratified sortingΣccs hasΘ = {p, a} (for processes and alternations), with
φ(p) = a andφ(a) = p; it is also hard for sortp. �

EXERCISE 6.1 Check that the formation rule for stratified sorting is preserved by
composition and tensor product, and satisfied by identities. �

We are now ready for the translation of CCS into the two-sorted category
BG(Σccs). The idle prime1 : a has a special role; it will represent the empty alter-
nation. Then the atomnil

def
= alt.1 will represent the null process. We shall map CCS

processes and alternations respectively into ground homsetsǫ→〈p, X〉 andǫ→〈a, X〉.
For this purpose we define two families of translation mapsPX [·] andAX [·], each
indexed by finite name-setsX . These maps are defined for all arguments whose free
names are inX , so each process or alternation has an image in many unary ground
homsets.

Definition 6.6 (translation of finite CCS) The translationsPX [·] for processes and
AX [·] for alternations are defined by mutual recursion:

AX [0] = X | 1
PX [A] = alt.AX [A] AX [x.P] = sendx.PX [P] (x ∈ X)

PX [νxP] = /y ◦Py⊎X [{y/x}P] AX [x.P] = getx.PX [P] (x ∈ X)
PX [P |Q] = PX [P] | PX [Q] AX [A+B] = AX [A] | AX [B] . �

58 CHAPTER 6. SORTING

In translating the prefix forms for input and output we have used the nesting operator
K~x.G introduced in Chapter 3, permitting names to be shared between an ion and its
contents. The termνxP is first varied by alpha-equivalence, replacingx by some
y 6∈ X . A substitution{y/x} on CCS terms is metasyntactic, and not to be confused
with thebigraphy/x.

Note that restriction and parallel composition are modelled directly by closure and
merge product, and need no extra controls. It is perhaps surprising that summation ‘+’
of CCS is also expressed as merge product. But merge product is a purely structural
or static operation, with no commitment to any dynamic interpretation; the distinction
between parallel composition and summation in our bigraphical encoding of CCS is
achieved by its reaction rule, as we shall see in a Chapter 10.

Our translation maps are surjective on unary ground homsets; that is, our place
sorting excludes from BG(Σccs) every bigraph that is not in the image of a translation
map. They are not injective; instead, they induce upon CCS anequivalence≡ that
corresponds exactly to our structural congruence, justifying the latter. We now express
these results precisely; the proofs are the subject of Exercise 10.1.

Theorem 6.7 (bijective translation)

(1) The translationsPX [·] andAX [·] are surjective on unary ground homsets.

(2) P ≡ Q iff PX [P] = PX [Q], and A ≡ B iff AX [A] = AX [B].

We shall take up the dynamics of CCS when we have introduced bigraphical reac-
tive systems (BRSs) in general. For now, we wish to confirm that our sorting will
be amenable to that general theory, so we shall prove our sorting to be safe. Let
U : `BG(Σccs)→ `BG(Kccs) be its forgetful functor. Recall from Definition 4.6 that
a sorting is safe if its forgetful functorU is safe, i.e. in particular it creates RPOs and
reflects pushouts. Also recall from Proposition 4.10 thatU reflects pushouts if every
arrow in its domain is op-cartesian. So we first prove:

Lemma 6.8 If Σ is a stratified sorting with forgetful functorU , then every bigraph in
`BG(Σ) is op-cartesian forU .

Proof Let F : I→ J andH : I→K be Σ-sorted, withU-imagesF ′ : I ′→ J ′ and
H ′ : I ′→K ′ such thatH ′ = G′ ◦F ′ for someG′ : J ′→K ′. (Refer to the diagram
of Definition 4.9.) There can exist only one sortedG : J→K such thatH ◦G = F ,
since its interfaces are already sorted and the sorts of its nodes ofG are determined by
those inH . It is routine to confirm thatG is indeed well-sorted, withU(G) = G′ and
G ◦F = H . This completes the proof of the lemma. �

We now claim:

Proposition 6.9 ((safe stratified sorting)Every stratified sorting is safe.

Proof Let Σ be stratified, with underlying basic signatureK and forgetful functor
U . First we require thatU creates RPOs. So let~D be a bound for~A in `BG(Σ),
with U-images~D′ and ~A′. Let (~B′, B′) be an RPO for~A′ to ~D′ in `BG(K). We

6.1. PLACE SORTING AND CCS 59

seek first a pre-image(~B, B) which is a sorted bound for~A to ~D. There is only one
possibility, since the sorts of the mediating interface of the triple and of its nodes are
uniquely determined by stratified sorting, and it is easily shown to be a relative bound.
Furthermore, by using the op-cartesian property of the existing arrows, we ensure a
unique mediating arrow to any other sorted relative bound(~C, C), thus establishing
(~B, B) as a sorted RPO.

Next, we require thatU reflects pushouts; this follows by Proposition 4.10. Finally,
the remaining three safety conditions are easily established. �

EXERCISE 6.2 For the built environment of Chapter 1, design a place sorting that
excludes control nestings not already used in the bigraphE. Hint: you probably need
disjunctive sorts, e.g.̂ar, allowing a building to contain both agents (a) and rooms (r).

What are the sorted interfaces of the bigraphsC, D andE, and of the redexes in
rulesB1–B3? �

Before leaving place sorting, let us consider how it can be used to introduce controls
of arbitraryrank k, a natural number. At present our atomic controls have rank 0, and
the others have rank 1, i.e. their ions have a single site. We did not introduce controls
with larger rank, since they can be encoded with the help of sorting. The diagram
indicates, in terms of ions, how to encode a controlM with rankk, using controls of
rank1.

· · · k times · · ·

M M
1 kdef

=

xnx2 . . .x1 xnx2 . . .x1

The encoding works by extending an existingΣ = (Θ,K, Φ) to Σ∗, as follows:

• Add a special sort ‘cell’ to Θ. Then, for each finite ordinalj, add toK a new
non-atomic controlj with sort ‘cell’. Call a node with controlj a j-cell.

• For each controlM of rankk, extendK by assigningM an arity, its rank, and a
sort fromΘ. Then refineΦ by requiring that ifM has rankk then eachM-node
has exactlyk children, namely aj-cell for eachj ∈ {1, . . . , k}; conversely,
require that the parent of every cell is a node with ranked control.

• Further refineΦ by imposing any required relationship between the sort assigned
to a cell’s parent and the sorts assigned to its children.

This characterizesΣ∗ in terms ofΣ, allowing freedom for extra sorting constraints
on ranked controls. Note that the refined sorting condition ensures that the sort ‘cell’
does not occur in interfaces; the encoding of a node with ranked control is never split
by composition. We can see that the degenerate casesk = 0 andk = 1 correspond

60 CHAPTER 6. SORTING

accurately to our present atomic and non-atomic controls. We may thus regard all
controls as ranked.

This concludes the presentation of place sorting. It could have been done at first
for place graphs only, and then extended to bigraphs. We wereled to do it directly for
bigraphs because our example, CCS, requires linking as wellas placing.

6.2 Link sorting, arithmetic nets and Petri nets

We now turn to the classification of links. We start with the simple example of arith-
metic nets, and continue by defining a particular class of link sortings illustrated by
these nets. We then apply this class of sortings to Petri nets. We treat both examples
using link graphs alone; the extension to bigraphs is trivial.

Since link graphs have no regions, their diagrams have no enclosing rectangles;
port-blobs can also be omitted from these diagrams without risk of confusion.

Definition 6.10 (link sorting) A link-sorting (discipline)is a tripleΣ = (Θ,K, Φ)
whereΘ is a non-empty set ofsorts, andK is a link-sorted signature, a basic sig-
nature enriched with a sort assigned to each member of the arity of each control.
Thus each port in a (link)-sorted link graph gets a sort. Furthermore, each link is
given a sort. For an open link, this appears in an interface, which take the form
{x0 : θ0, . . . , xn−1 : θn−1}; also each edge (closed link) in a bigraph is given a sort.1

Finally, Φ is a rule on such enriched bigraphs that is satisfied by the identities and
symmetries and preserved by composition and product.

The s-category and category of, respectively, concrete andabstractΣ-sorted link
graphs are writteǹLG(Σ) and LG(Σ). WhenΣ is understood, these link graphs are
often calledwell-sorted. �

Just as for place sorting, there is a forgetful functor for link sorting; it deletes link sorts
from the pointa and links of both interfaces and bigraphs. And again, it commutes with
the lean-support quotient functor. We need not repeat the details.

We are now ready to illustrate link sorting.

Example 6.11 (arithmetic nets)Adopt the basic signature

Karith
def
= {0 : 1, S : 2, + : 3, → : 2}

representingzero, successor, plusandforwarding. Here are the corresponding atoms,
together with an example of an arithmetic net as a link graph in LG(Karith):

1In previous work sorts were not assigned to edges; that is, they were assigned to open links but not to
closed links. In examples it seems that assigning sorts to edges is often redundant; nonetheless, it may be
necessary sometimes and it is also convenient for the theory. I am grateful to Mikkel Bundgaard for pointing
this out.

6.2. LINK SORTING, ARITHMETIC NETS AND PETRI NETS 61

→

S

x y

x y
0

S
+

+
+

x y

+

0

x

x y z

z

The nets resemble Lafont’s interaction nets, but allow sharing of subexpressions. Their
dynamics can be defined naturally in bigraphs, but here we confine ourselves to sorting.
We can illustrate the need for sorting in terms of our example. The illustrated net
makes sense according to the interpretation suggested by the node-shapes: the ‘output’
of each constructor is fed into any number of other constructors as input. But some nets
in LG(Karith) make no sense; for example, there is nothing to exclude a netin which an
input port receives input from no sources, or from two or moresources. As a first step
towards a sorting to exclude such nets, we define the following class of link sortings:

Definition 6.12 (many-one sorting) A many-one sortingΣ = (Θ,K, Φ) has two
sorts, i.e.Θ = {s, t}. The signatureK assigns sorts to control arities in some arbitrary
way. The formation ruleΦ is as follows:

no link has more than ones-point;
a link has sorts iff it has ans-point;
every closed link has sorts.

There is no constraint on the number oft-points in a link. �

It is helpful to think ofs andt as standing for ‘source’ and ‘target’. Many-one sortings
vary in their signature. Let us now defineΣarith to be a many-one sorting whose link-
sorted signature isKarith extended by a sort-assignment as follows:

Karith
def
= {0 : s, S : ts, + : tts, → : ts} ,

i.e. arities are refined to sort-sequences, with the convention that the last in each se-
quence pertains to ‘output’ ports. Taking into account alsothe sorting of interfaces,
here are the sorts assigned to our illustrated net:

0

S
+

+
+

t

t

t

t

t

t

t

s

s

s

s

s

x : t z : sy : s

62 CHAPTER 6. SORTING

The sorts of edges are not shown; they are implied by the sortsof ports.
The reader can see that, in the link-sorted s-category LG(Σarith), many senseless

nets have been excluded. It is an interesting exercise to check whether the sorting can
be extended to exclude other doubtful nets; for example, nets with certain cycles. (The
challenge is to find a sorting discipline that is preserved bythe categorical operations.)
At the end of this chapter we consider safety of many-one sorting. �

Let us now turn to Petri nets. Recall that a Petri net has two kinds of nodes, usually
called places and transitions, forming a directed bipartite graph. For each transitiont,
the places from which an arc enterst are itspre-conditions, and the places entered by
an arc fromt are itspost-conditions. Places may holdtokens; if all the pre-conditions
of t have a token thent canfire—meaning that each of its pre-conditions loses a token
and each each of its post-conditions gains one. Thus the net remains constant; only the
tokens move.

We look at a particular Petri net regime, calledcondition-eventnets. Their places
are calledconditions, and their transitions are calledevents. (This conveniently avoids
a clash with bigraph terminology, where the terms ’place’ and ’transition’ are already
in use!) In these nets a condition may hold at most a single token; thus we can represent
conditions by two controls, one (‘marked’) for holding a token, the other (‘unmarked’)
for holding no token. As with arithmetic nets, the dynamics of Petri nets can be well
represented in bigraphs, and this has been studied in detailelsewhere. Here we consider
only the sorting of condition-event nets.

Example 6.13 (condition-event Petri nets)Adopt the basic signature

Kpetri
def
= {M : 1, U : 1, Ehk : h+k}

representing amarked condition, an unmarked condition, and aneventwith h pre-
conditions andk post-conditions (h, k ≥ 0). Here are the corresponding atoms, to-
gether with an example of a condition-event (c/e) net:

x

U

E21

x y z

U U
U

M

U

E21 E12

E11

E11

x y

M

x

We depict the only port of a condition node as lying at its centre; thus the net has just
three closed links (edges) and two open links. The marked condition node represent
the presence of atokenon the node, saying that this condition ‘holds’; an unmarked
condition node has no token, so it does not ‘hold’. Two conditions have been made
accessible by the namesx andy, allowing the environment to ‘observe’ the net.

6.2. LINK SORTING, ARITHMETIC NETS AND PETRI NETS 63

Our illustrated net makes sense; but, as with arithmetic nets, certain link graphs in
LG(Kpetri) make no sense. For example, two event nodes should not be linked by an
edge that contains no condition. To exclude senseless nets,we can again use a many-
one sortingΣpetri. But when we modifyKpetri to assign sorts to to control arities we
see a striking difference fromKarith:

Kpetri
def
= {M : s, U : s, Ehk : th+k} .

That is, we assignt to all event ports ands to all condition ports. Taking into account
also the sorting of interfaces, here are the sorts assigned to our illustrated net:

U UU

M

U

E21 E12

E11

E11

s t

t

t t
t

t

t

t

t

t

s

s

s

s

x : s y : s

Again, the sorts of edges are not shown, but can be deduced. The reader may like to
identify which senseless configurations have been excludedby the sorting. �

Having used two members of the family of many-one link sortings, we now estab-
lish that these sortings are all safe, in the sense of Definition 4.6.

Lemma 6.14 Let U : LG(Σ)→ LG(K) be the forgetful functor for link graphs with
a many-one sortingΣ; similarly for bigraphs. Then every link graph inLG(Σ) and
bigraph inBG(Σ) is op-cartesian forU .

Proof Consult the diagram of Definition 4.9, withU for F , and use capital letters
for arrows (since we are dealing with link graphs). AssumeF : I→ J andH : I→K
to be many-one sorted; assumeF ′ andG′ unsorted such thatU(F) = F ′ andU(H) =
G′ ◦F ′. We require uniqueG such thatU(G) = G′ andH = G ◦F .

Since the interfaces forG are fixed, and sorts of ports are determined by the sorted
signature, there is exactly oneG : J→K such thatU(G) = G′. It is then routine to
check thatG is well-sorted, and thatG ◦F = H . �

We are now ready to prove

Theorem 6.15 (many-one sorting is safe)Every many-one link sorting is safe.

Proof It will be enough to prove this for link graphs. First, we establish that the
forgetful functorU : LG(Σ)→ LG(K) of the sortingΣ creates RPOs. Let~D bound ~A

in LG(K), and let~D′ and ~A′ be their unsorted images. Consider the construction of an

64 CHAPTER 6. SORTING

unsorted RPO(~B′, B′), with mediating interfaceI ′, for ~A′ to ~D′. Assign sorts to its
ports and edges as dictated by the sorted signature ofΣ. It can then be found that sorts
can be assigned also to the names inI ′, creating a sorted interfaceI for a triple(~B, B)

that make it a relative bound for~A to ~D.
To establish this as an RPO, consider any other sorted relative bound(~C, C). Its

U-image(~C′, C′) is a relative bound also for~A′ to ~D′; so there is a unique mediating
arrow from(~B′, B′) to (~C′, C′). Now, by the lemma, use the op-cartesian property of
sorted link graphs such asB0 ◦A0 to ensure that a unique mediating arrow exists from
(~B, B) to (~C, C). This establishes(~B, B) as an RPO, as required.

Next, we have to show thatU reflects pushouts. But this is immediate from the
lemma combined with Proposition 4.10. Finally, as with stratified sorting, it is easy to
establish the three remaining conditions of safety. �

Let us look briefly at another simple case of link sorting.

Definition 6.16 (plain sorting) Call a link sortingplain if its formation rule imposes
only one constraint: that all points in a link have the same sort as the link. �

For example, this provides a sorting to represent a version of CCS with several sorts of
channel. Each channel may be shared by many senders and many receivers. To make
communications respect the sorting, we represent the channel by a link of sortθ, say,
and require all points in this link (e.g. ‘send’ and ‘get’ nodes) also to have sortθ. This
example gets more interesting in theπ-calculus, where such nodes have extra ports
used to pass links as messages.

EXERCISE 6.3 (1) Show that the forgetful functorU for plain sorting is in general
not op-cartesian.Hint: Consider two sortsθ, θ′. In the notation of Definition 4.9, show
howf may have an idle namex : θ which prevents the existence of a suitableg.

(2) In contrast, prove that every plain sorting is safe (see Definition 4.6).Hint: If
~B is an IPO for~A, then no name in the codomain of~B is idle inbothB0 andB1. �

6.3 The impact of sorting

To a considerable extent, the power of sorting lies in the variety of possible formation
rules. This is true even for place-sorting and link-sortingindependently, and doubly
true when they are combined. We illustrated this combination when we considered
adding plain link sorting to CCS, which is already place-sorted. It is remarkable that
the notion ofbindingor locality of links can be expressed by such a combination; the
formation rule naturally involves both places and links. One approach to binding is
outlined in Section 11.3. It has been adopted to encode theπ-calculus in bigraphs.

There is a price to pay; we must be sure that other features harmonise with sorting.
We have already insisted that composition and tensor product respect sorting. Now
let us look briefly at the derived products and nesting. First, for the parallel product
F0 ‖F1 and merge productF0 |F1 with Fi : Ii→ Ji, we insist that whenever a name
x is shared betweenI0 andI1 then it has the same link sort in both; similarly forJ0

andJ1. In addition, for merge product we insist that all roots ofF0 andF1 have the

6.3. THE IMPACT OF SORTING 65

same place sort. Next, for the nestingF .G with F : I→〈m, X〉 andG : m→〈n, Y 〉,
we insist that each place inm has the same place sort in the outer face ofF as in the
inner face ofG, and that a namex shared betweenX andY has the same sort in each.

Even when these conditions are met, the productF0 ‖F1 may violate the formation
rule. For example, with many-one sorting, ifx : s is a shared outer name then the link
x in the product may have twos-points, which is not allowed.

In what follows, whenever we use these derived operators we assume that the rele-
vant formation rule is indeed respected.

PART II : MOTION

Chapter 7

Reactions and transitions

In this chapter we study dynamics at the general level of s-categories. It is based upon
Section 2.2 and Chapter 4, and is independent of the intervening work on bigraphs.

Recall from Chapter 2 the distinction between concrete and abstract bigraphs; the
former have their nodes and edges as support, while the latter have no support. In
s-categories, this distinction is less sharp; an spm category is just an s-category with
empty supports. Much of the work of this chapter therefore applies to both. However,
when we introduce behavioural equivalence in Section 7.2, we first make sure it is
robust (i.e. that the equivalence is preserved by context) in the case where the s-category
possesses RPOs; we are then able to retain this robust quality when the s-category is
quotiented, or abstracted, in a certain way—even if RPOs arethereby lost.

We begin in Section 7.1 with a notion of a basicreactive system, based upon an
s-category equipped withreaction rules. This determines a basicreaction relation
which describes how agents may reconfigure themselves. We refine this definition to a
widereactive system, with a notion of locality based on the widthof objects in a wide
s-category, introduced in Definition 2.14. We are then able to describe where each
reaction occurs in an agent, and thus to define awide reaction relation that permits
reactions to occur only in certain places.

In Section 7.2 we introducelabelled transition systems, which refine reactive sys-
tems by describing the reactions that an agent may perform, possibly with assistance
from its environment. These potential reactions are called(labelled) transitions; the la-
bel of a transition indicates how the environment contributes to it. In terms of them we
definebisimilarity, a behavioural equivalence which captures the idea that twoagents
behave the same if and only if they ‘react alike in all contexts’, i.e. they have the same
transitions. In a basic reactive system, bisimilarity may not be acongruence, i.e. it may
not be preserved by context; but we show that it is so in a wide reactive system, for a
tractable notion of transition system based upon RPOs (Definition 4.3). This prepares
for the dynamic theory of bigraphs in Chapter 8.

In Section 7.3 we introduce a natural notion ofsub transition system, in which the
set of labels is reduced. Under certain conditions we show that this can only increase
the bisimilarity relation between agents in the smaller system. We also recognise the
possibility that it preserves the relation exactly. This indeed occurs, as we illustrate in

67

68 CHAPTER 7. REACTIONS AND TRANSITIONS

terms of CCS in a later chapter.
In Section 7.4, via a quotient functor, we transfer transition systems and their bisim-

ilarities to abstract reactive systems. Finally, on this basis, we outline the general pro-
cedure by which we shall derive a robust behavioural theory for abstract bigraphs from
concrete ones.

Notation We here revert to the convention of Section 2.2 and Chapter 4,in using
lower case letters to denote arrows in an s-category. Recallthat a ground arrow or agent
is one with domainǫ, the origin. The lettersa, b will always denote agents, andr, s will
always denote agents that are redexes or reacta of reaction rules (Definition 7.1). We
often call an arrowc a contextif it is used in compositionc ◦a with an agent. �

7.1 Reactive systems

In process calculi it is common to present the dynamics of processes by means of
reactionsof the forma ⊲ a′, wherea anda′ are agents. These reactions define all
the possible changes of state. We generalise this to s-categories, as follows:

Definition 7.1 (basic reactive system)A basic reactive system, written`C(`R), con-
sists of an s-categorỳC equipped with a set̀R of reaction rules. An arrowa : ǫ→ I
in `C with domainǫ is aground arrowor agent, often writtena : I.

Each reaction rule consists of a pair(r : I, r′ : I) of ground arrows, aredexand a
reactum. The set̀R must be closed under support translation, i.e. if(r, r′) is a rule
then so is(s, s′) wheneverr ≏ s andr′ ≏ s′.1

Thereaction relation ⊲ over agents is the smallest such thata ⊲ a′ whenever
a ≏ c ◦ r anda′ ≏ c ◦ r′ for some reaction rule(r, r′) and contextc for r andr′. �

In Chapter 8 we shall work with reactions in bigraphs, which possess a strong
notion ofplace, allowing us to describewherea reaction occurs. Basic reactive systems
have no notion of place. In Definition 2.14 we introduced it with the concept of width;
recall that an s-categorỳC is wide if it is equipped with a functorwidth : `C→NAT.
We now exploit that definition to define a notion of activity, which describes the places
in a wide agent where reactions are permitted.

Definition 7.2 (wide reactive system (WRS))A wide reactive system (WRS)`C(`R)
is a wide s-categorỳC equipped with a set̀R of reaction rules, and also anactivity
relation

act ⊆ `C(I→ J)× width(I)

1A stricter requirement would be: if(r, r′) is a rule then so is(ρ�r, ρ�r′), for any support translationρ.
This prevents the redex and reactum from being support-translated independently; thus it allows us to track
the identity of nodes through reaction, and thereby get a grip on causality in a bigraphical reactive system.
This stricter approach is examined in Section 11.1, and is a promising topic for further research. We have not
pursued it far in this book, since our more liberal approach still yields enough control of identity to recover
theory for existing process models.

7.1. REACTIVE SYSTEMS 69

for each homset. Iff has domainI and(f, i) ∈ act then we sayf is activeat i; if
this holds for alli ∈ width(I) thenf is active. We impose conditions on activity as
follows, denoting the widths of the domains off andg by m andn:

− the identities and symmetries are active
− g ◦f is active ati ∈ m iff f is active ati andg is active atwidth(f)(i) ∈ n
− f ⊗ g is active ati ∈ m+n iff f is active ati ∈ m or g is active ati−m ∈ n
− if f ≏ f ′ andf is active ati thenf ′ is active ati .

Now define alocation ı̃ of an objectI to be a subset ofwidth(I). The reaction relation
⊲̃ between agents is defined as follows:a ⊲̃ a′ whenevera ≏ c ◦ r anda′ ≏

c ◦r′ for some reaction rule(r, r′) and active contextc : I→ J such that̃ ⊆ width(J)
is the location given bỹ = {width(c)(i) | i ∈ width(I)}. �

Thus̃ records the regions ofd ◦ r where the reaction occurs.
To test this definition, let us anticipate what activity willmean in bigraphs. There

we shall designate certain controls as active, and ‘f is active ati’ will mean that every
ancestor-node of the sitei of f has an active control. With this interpretation, it is easy
to check that the four conditions hold.

EXERCISE 7.1 In bigraphs, a non-atomic control can be either active or passive. We
say that a node is active iff its control is active. Check that, with the above interpre-
tation, bigraphs satisfy the condition ong ◦f stated in Definition 7.2. You need only
consider place graphs.

SupposeA is an active control andB passive, both with arity 0. ThusA, B : 1→ 1
are ions, with onlyA active. Using these, give an example of two bigraphsf andg
such thatg ◦f is active butg is not active at every site. �

The notion of WRS, which enriches a basic reactive system with a width functor
and an activity relation, allows us to develop a dynamic theory at the general level of
s-categories. In general a WRS isconcrete, since s-categories have support. A special
case of a WRS is an abstract one based upon an spm category, since this is just an
s-category with empty supports.

Definition 7.3 (abstract WRS) A WRS isabstractif its underlying s-category is an
spm category. �

We created an spm category of abstract bigraphs in Definition2.20, by means of
the lean-support quotient functor[[·]] which forgets both supports and idle edges. This
functor was the quotient of a bigraphical s-category by lean-support equivalence≎
(Definition 2.19), which includes support equivalence≏.

We wish similarly to quotient a concrete WRS to form an abstract one. At this gen-
eral level we have no notion of leanness, so there is no lean-support quotient functor.
We can indeed quotient by support equivalence≏, but we can do better, and find a fam-
ily of quotients of which lean-support equivalence is an instance specific to bigraphs.

Definition 7.4 (structural congruence) An equivalence relation≡ on each homset
of a wide s-categorỳC is a structural congruenceif it is preserved by composition

70 CHAPTER 7. REACTIONS AND TRANSITIONS

and tensor product and preserves width, i.e. iff ≡ g thenwidth(f) = width(g). It
is called anabstractionif includes support equivalence. We denote the≡-equivalence
class off by [[f]].

In a WRS`C(`R) an abstraction isdynamicif in addition it respects reaction and
activity; that is,

− if f ⊲ı̃ f ′ andg ≡ f theng ⊲ı̃ g′ for someg′ ≡ f ′;
− if f is active ati andf ≡ g theng is active ati. �

Structural congruences should not be confused with behavioural congruences such as
bisimilarity; in particular, we define the latter only over ground arrows, while structural
congruences apply to all arrows.

EXERCISE 7.2 Check that, in bigraphs, both≏ and≎ are abstractions. �

Definition 7.5 (quotient wide s-category) Let `C be a wide s-category, and let≡ be
an abstraction oǹC. Then

C def
= `C/ ≡

is the wide spm category whose objects are those ofC, and whose arrows[[f]] : I→ J
are≡-equivalence classes of the homsetI→ J in C. Composition, tensor product,
identities and symmetries are defined just as for support quotient in Definition 2.15,
and inC we definewidth([[f]])

def
= width(f). �

To form an abstract WRS we can quotient a concrete WRS by a dynamic abstraction:

Definition 7.6 (quotient WRS) Let `C(`R) be a WRS, and≡ a dynamic abstraction
on `C. Then defineC(R), the quotient of̀C(`R) by≡, as follows:

− C = `C/≡, andR = {([[r]], [[r′]]) | (r, r′) ∈ `R}
− [[f]] is active ati iff f is active ati. �

An abstract WRS has its own reaction relation ⊲ ı̃ indexed by locations. How does
the reaction relation in a concrete WRS relate to that of its abstract quotient? The
answer is simple, and included in the following theorem thatjustifies the above con-
structions.

Theorem 7.7 (abstract WRS)The construction of Definitions 7.5 and 7.6, applied
to a concrete WRS̀C(`R), yields an abstract WRSC(R), whose underlying wide spm
categoryC is the codomain of a functor of wide s-categories

[[·]] : `C→C .

Moreover the construction preserves the reaction relation, in the following sense:

(1) if f ⊲ı̃ f ′ in `C(`R) then[[f]] ⊲ı̃ [[f ′]] in C(R)

(2) if [[f]] ⊲ı̃ g′ in C(R) then f ⊲ı̃ f ′ in `C(`R) for somef ′ with [[f ′]] = g′.

In this sense, abstraction of a WRS preserves its behaviour.We now turn to a more
refined notion of behaviour, and we shall find that it, too, is preserved by abstraction.

7.2. TRANSITION SYSTEMS 71

7.2 Transition systems

As we have seen, neither the basic nor the wide reaction relation, i.e. neither ⊲ nor
⊲ı̃, takes account of the reactions arising from cooperation between an agent and its

environment. For this purpose we introduce labelled transition systems.

A labelled transitionbetween agents takes the forma ℓ
⊲ a′, where thelabel ℓ is

drawn from some vocabulary expressing the possible interactions between an agent and
its environment. This is more refined than a reactive system,sinceℓ can witness the
possibility thata contains only part of a redex, relying on the context or environment to
supply the rest. Thusa may have exactly the same unaided reactions as another agent
b, but may contain a part of a redex thatb does not; then, when we place it in a context,
a may behave differently fromb.

Henceforward we shall use ‘transition’ to mean ‘labelled transition’. In general,
transitions do not presuppose reaction rules; it is possible to definethe dynamics of
bigraphs by transitions, as indeed has been done for variousprocess calculi. But later
we shall find that we can derive transitions from reaction rules.

We seek notions of behavioural equivalence of agents such that, whenevera and
b are equivalent, they are also equivalent in all contexts; that is, c ◦a and c ◦ b are
equivalent for all contextsc. Transitions are important for this purpose, since they
represent not only theactualbehaviour of agents, but also theirpotentialbehaviour in
collaboration with a context.

We now define transition systems formally.

Definition 7.8 (transition system) A transition system (TS)for a wide s-category is
a quadruple2

L = (Agt, Lab, Apl, Tra)

whereAgt is a set of agents,Lab is a set oflabels, Apl ⊆ Agt×Lab is theapplicability
relation, andTra ⊆ Apl× Agt is thetransition relation.

When(a, ℓ) ∈ Apl we say thatℓ applies toa. A triple (a, ℓ, a′) ∈ Tra is called a

transition; we write it a ℓ
⊲ a′. We sometimes calla thesourceanda′ the target of

the transition. Ifc is an arrow such thata ∈ Agt impliesc ◦a ∈ Agt whenever defined,
then we callc anL-context.

A transition system israw if its labels contain no graphical structure. �

Many behavioural equivalences or preorders can be built upon transition systems. For
example, two agents are said to betrace equivalentif, starting from each one, the same
sequences of transition labels can be observed. Another example is thefailures order-
ing of CSP; an agenta is said torefineanother,b, if the ‘failures’ of a are included in
those ofb. The theory of these can be developed in the same way as that ofbisimilarity,
which we now define:

Definition 7.9 (bisimilarity, congruence) Let `C be equipped with a transition sys-
temL. A simulationfor L is a binary relationS between agents such that ifaSb and

2This formulation of transition systems is due to O.-H. Jensen [46].

72 CHAPTER 7. REACTIONS AND TRANSITIONS

a ℓ
⊲ a′, and alsoℓ applies tob, then there existsb′ such thatb ℓ

⊲ b′ anda′Sb′. A
bisimulationis a symmetric simulation.

Bisimilarity for L, denoted by∼L, is the largest bisimulation. It is acongruenceif
a ∼L b impliesc ◦a ∼L c ◦ b for everyL-contextc. �

When the transition systemL is understood we shall often write∼ instead of∼L.
The above definition is standard, except for the extra condition thatℓ applies tob.

Note that the largest bisimulation is well-defined; it is simply the union of all bisim-
ulations. So another way to describe bisimilarity is to say thata andb are bisimilar,
a ∼L b, if there exists a bisimulation containing the pair(a, b).

Our definition of a transition system constrains neither itslabels nor its transitions.
In particular, it leaves open whether these are raw or not. For example, in theπ-calculus
a raw TS was defined first, and later a reactive system was defined and shown consistent
with it. The TS was also found to yield a congruential bisimilarity.

Here, by contrast, we have two aims. First, we wish toderivea TS from a given
set of reaction rules, since we wish to have only a single notion of dynamics for a
reactive system. Second, we wish to prove the bisimilarity of this derived TS to be a
congruence. We first achieve these aims in a way that is simpleand informative, though
unsatisfactory. It relies on declaring the label of a transition to be a bigraphical context
for its source agent. Later we shall need to refine this approach.

Definition 7.10 (full transition system) In a WRS with rules̀R, a transition system
is full if each labelf is a bigraph, andf applies to an agenta iff it is a context fora.

Moreover, each transitiona f
⊲ a′ is such that, for some reaction rule(r, r′) ∈ `R and

active contextd for r andr′, the following diagram commutes anda′ ≏ d ◦ r′.

r
a

f

d

The full transition systemFT has all ground arrows as agents, all arrows as labels, and

all transitionsa f
⊲ a′ that satisfy the above conditions for some rule(r, r′) ∈ `R. �

In the diagram we may think ofa containing part of a redexr, andf supplying the
remainder of that redex.

We now give the simple proof that bisimilarity forFT is a congruence. This is
hardly surprising, because by allowing any context to be a label we have allowed our
transitions to ‘observe’ an agent in any context.

Proposition 7.11 (congruence of full bisimilarity) In any WRS, bisimilarity forFT

is a congruence.

Proof Assuming thata ∼FT b, we wish to show thatc ◦a ∼FT c ◦ b, wherec is any

context fora andb. For this purpose, suppose thatc ◦a
f

⊲ a′; then we seekb′ such

thatc ◦ b
f

⊲ b′ anda′ ∼FT b′.

7.2. TRANSITION SYSTEMS 73

(1) (2) (3) (4)

r

f

c ◦a d

f ◦c

r
d

s
e

f ◦c

s
e

f

a b c ◦ b

For some reaction rule(r, r′) the diagram (1) commutes,d is active anda′ ≏ d ◦ r′.

Then (2) also commutes; hence there is a transitiona
f ◦ c

⊲ a′. Sincea ∼FT b, for

someb′ we have the transitionb f ◦ c
⊲ b′ anda′ ∼FT b′. So, for some rule(s, s′) and

active contexte, (3) commutes andb′ ≏ e ◦s′. Then (4) commutes, soc ◦ b
f

⊲ b′ and
we are done. �

This result is pleasant, but needs to be refined. The defect ofFT is that it allows ar-
bitrary contexts as labels. Labels will be arbitrarily large—much larger than needed
to represent the cooperation between an agent and its environment in creating a redex.
Furthermore, sincef ◦a = d ◦ r, the contextd may contain much of this environment;
it follows that the targeta′ ≏ d ◦ r′ of the transition will also be large. If labels are to
be contexts, then we would like to restrict them to be small insome sense. We shall
shortly define a notion of minimal label. But there is anotherdifficulty, as follows.

A weakness of taking labels to be contexts is that such a labelf in a transition

a
f

⊲ a′ does not recordwhere, within f ◦a, the redex of a possible reaction occurs.
It then turns out that, if we limit the class of contexts permitted as labels, we lose the
congruence of bisimilarity. This is best seen with the help of an example, showing that
if we limit label contexts to those that are minimal (to be defined shortly) then two
agents that have the same transitions—and therefore bisimilar—can be distinguished
by placing them in a larger context which only permits reaction in certain places.

Example 7.12 (non-congruence)This example shows that bisimilarity based upon
unlocated transitions is not in general a congruence for bigraphs. Take the basic signa-
tureK = {K, L, M}, each with arity zero, and declareK andL to beatomic, andM to
bepassive—i.e. it can contain no reaction. Let(K, L) be the only reaction rule, where
K means the atomK.1. It can then be shown thata ∼ b in the TS which has only
minimal contexts as labels, wherea = K⊗ L andb = L⊗ K.

L

M

KL L∼

M

K K

a ∼ b c
def
= M | id1

M

K L 6∼

c ◦a 6∼ c ◦ b

But for the contextc as shown we havec ◦a 6∼ c ◦ b. For in b the redexK lies in an
active context, so there is a transitionc ◦ b id

⊲ ; but c ◦a has noid-labelled transition,
since its redexK lies in a passive context, theM-ion. �

Returning now to WRSs with their wide reaction relations ⊲ı̃, we shall refine
the notion of contexts-as-labels to take account of location of the underlying reaction,

74 CHAPTER 7. REACTIONS AND TRANSITIONS

and thus refine bisimilarity so as to make it a congruence. If we add this quantum of
information to a transition, then we are able to limit the transitions of a TS to those that
are minimal in a precise sense.

Definition 7.13 (contextual transition) In a WRS, a transitiona ℓ
⊲ a′ is contextual

if its label ℓ takes the form(f, ̃), wheref : I→ J is a context fora and̃ a location of
J . The label applies to an agenta iff f ◦a is defined.

A contextual transition(a, (f, ̃), a′) is written a
f

⊲̃ a′. It has an
underlying reaction rule(r, r′) with widthm such that for some active
d : I→ J the diagram commutes,̃ = {width(d)(i) | i ∈ width(I)}

anda′ ≏ d ◦ r′. A contextual transitiona f
⊲̃ a′ is minimal if its

diagram is an IPO.

r

f

da

A transition system iscontextualif its transitions are contextual, and its agents and
labels are closed under≏. It is minimal if its transitions are minimal. �

In the transitiona f
⊲̃ a′ we are justified in calling the label(f, ̃) contextual, not

only becausef is a context fora, but also becausẽ is the range ofwidth(d), where
d is the context in which the underlying redex lies. Note that this redex itself cannot
be recovered from the information recorded in the transition; this opens the possibility
that two agents may be behaviourally equivalent even thoughtheir transitions are based
upon different reaction rules.

There are many minimal TSs. (The term ‘minimal’ applies to the transitions, not to
th system.) We now distinguish a family of them.

Definition 7.14 (largest minimal TS) Given a WRS and a setI of its objects, the
minimal TSMTI = (Agt, Lab, Apl, Tra) is defined as follows:

− Agt has all agentsa : I for I ∈ I
− Lab has all labels occurring inTra

− Apl has all pairs(a, ℓ) whereℓ = (f, ı̃) is a transition label withf ◦a defined

− Tra has all minimal transitionsa f
⊲ı̃ a′ for a, a′ ∈ Agt.

We shall writeMT for MTI whenI is understood. �

Thus we are mainly interested in two species of transition system: raw and minimal.
Minimal TSs are the ones that we shall derive uniformly for any WRS. But we shall
also consider raw TSs that are specific to particular processcalculi, including some that
have been studied in depth, in order that the bisimilaritiesthey induce can be compared
with those induced by derived TSs.

To clarify the relationship between reactions and contextual transitions, it is help-
ful to compare them with diagrams. Here are the reactiona ⊲̃ a′ and the tran-

sition a
f

⊲̃ a′, both based upon a reaction rule(r, r′). Like-named entities in the
two diagrams are unrelated. In each cased is active, and̃ ⊆ width(J) is given by
̃ = {width(d)(i) | i ∈ width(I)}. The reaction can also be seen as a contextual

transitiona idJ ⊲̃ a′ whose label has an identity context. Conversely, underlying the
transition there is a reactionf ◦a ⊲̃ a′. The transition is minimal if its square is an
IPO.

7.2. TRANSITION SYSTEMS 75

a≏
a′

r′r I

d
a

J f

r
d

a′

≏
r′

J

I

a contextual transitiona f
⊲̃ a′a reactiona ⊲̃ a′

Width plays two roles in Definition 7.13. It takes part in the assertion thatd is active,
i.e. active everywhere in the widthm of its domain; it also defines the locatioñ in
terms ofm. Note that, sincẽ is a location in the codomain off , another transition

b
f

⊲̃ b′ may have the same label(f, ̃), even if its underlying reaction rule has width
different fromm.

EXERCISE 7.3 Prove that in a concrete WRS the transition relation is consistent with
reaction, i.e. thata f

⊲ı̃ a′ impliesf ◦a ⊲ı̃ a′. Hint: Very easy! �

Let us revisit Example 7.12, to see why it does not contradictthe congruence of
bisimilarity for MT. The reason is that we no longer havea ∼ b, since their transitions
have different locations; in fact,a id

⊲ı̃ a′ andb id
⊲̃ b′, wherẽı = {0} and̃ = {1}.

We are now ready for our main result that applies to all wide reactive systems: that
bisimilarity for MT is indeed a congruence. The importance of this is that the labels of
this TS are tractable, since each one is part of the cospan of an IPO.

We begin by recalling the standard technique of ‘bisimulation up to . . . ’. It is well
known3 that if an equivalence≡ is included in bisimilarity, then to establish bisimilarity
it is enough to exhibit abisimulation up to≡ ; that is, a symmetric relationS such that
wheneveraSb then each transition ofa is matched byb in S≡, the closure ofS under
≡. It is easy now to prove the following:

Proposition 7.15 (bisimulation up to support equivalence)

(1) Support equivalence≏ is a bisimulation forMT.

(2) To provea ∼M b it is enough to show that(a, b) ∈ S for someS which is a
bisimulation up to≏.

EXERCISE 7.4 Prove this.Hint: For the first part, use Proposition 4.5(5), concerning
support translation of RPOs (and hence for IPOs). �

We may now prove the congruence theorem.4

Theorem 7.16 (congruence of minimal bisimilarity) In a wide reactive system with
RPOs, equipped withMT, bisimilarity of agents is a congruence; that is, ifa0 ∼ a1

thenc ◦a0 ∼ c ◦a1, wherec is any context fora0 anda1.

3This property is valid forstrongbisimilarity, which is what concerns us here.
4There are many behavioural equivalences for transition systems other than bisimilarity. It has been

shown [54] that some of them, e.g. the failures equivalence [44], are also congruences for derived TSs.

76 CHAPTER 7. REACTIONS AND TRANSITIONS

Proof We establish the following as a bisimulation up to≏:

S
def
= {(c ◦a0, c ◦a1) | a0 ∼ a1, c any context} .

(1) (2) (3) (4)

e0

f

r1

g

r0

c ◦a0

gg

c′ c′
f f

a0 d0
r0

a1 d1 d1
r1

a1

e1e0

c c

Suppose thata0 ∼ a1, and thatc ◦a0
g

⊲̃ b′0, for some labelg that applies toc ◦a1. It
is enough to findb′1 such thatc ◦a1

g
⊲̃ b′1 and(b′0, b

′
1) ∈ S

≏.
There exist a ground reaction rule(r0, r

′
0) with codomainH0, and an active context

e0 such thatb′0 ≏ e0 ◦ r′0 and ̃ = {width(e0)(h) | h ∈ width(H0)}, and moreover
diagram (1) is an IPO. There exists an RPO(f, d0, c

′) for (a0, r0) relative to the bound
(g ◦ c, e0), so by RPO theory each square in diagram (2) is an IPO, withd0 active , and
c′ active at̃ı = {width(d0)(h) | h ∈ width(H0)}.

So the lower square underlies a transitiona0
f

⊲ı̃ a′
0, wherea′

0 = d0 ◦ r′0. Now
f ◦a1 is defined (sinceg ◦ c ◦a1 is defined andg ◦ c = c′ ◦f) anda0 ∼ a1, so there is

a transitiona1
f

⊲ı̃ a′
1 with a′

0 ∼ a′
1. But support translation ofa′

1 preserves both of
these properties; so we may assume a rule(r1, r

′
1) with codomainH1 and an actived1

such thata′
1 = d1 ◦ r′1, |c′| ∩ |a′

1| = ∅ andı̃ = {width(d1)(h) | h ∈ width(H1)}, and
moreover diagram (3) is an IPO,

Now replace the lower square of (2) by diagram (3), obtainingdiagram (4) in which,
by RPO theory, the large rectangle is an IPO. Moreovere1

def
= c′ ◦d1 is active, sincec′ is

active at̃ı. Hencec ◦a1
g

⊲̃ b′1 whereb′1
def
= e1 ◦ r′1. Finally (b′0, b

′
1) ∈ S

≏ as required,
becauseb′0 ≏ c′ ◦a′

0 andb′1 ≏ c′ ◦a′
1 with a′

0 ∼ a′
1. �

Having understood how a contextual transition system can bederived for a WRS,
and in particular how its bisimilarity may be a congruence, we can consider the TS
as weaned from the reaction rules that gave birth to it. But the reaction rules remain
important for many applications.

7.3 Sub transition systems

Consider a wide s-category equipped with a TS, either raw or contextual. It can happen
that bisimilarity is unaffected if we reduce the transitionsystem itself, i.e. discard some
of the transitions. To set the scene, let us define what it means to reduce an arbitrary
transition system.

Definition 7.17 (sub transition system) A transition systemM is a sub transition
systemof L, writtenM ≺ L, if each of the four components ofM is a subset of the
corresponding component ofL. �

7.4. ABSTRACT TRANSITION SYSTEMS 77

In general, the bisimilarity of the sub-TSM is incomparable with that ofL. For
example, ifM has no labels then all its agents are bisimilar; on the other hand ifa ∼ b
in L, and each has transitions inL, then by keeping inM the transitions ofa but
omitting those ofb we find thata 6∼ b inM.

Let us now consider a natural class of sub-TSs:

Definition 7.18 (definite sub transition system) LetM ≺ L. ThenM is adefinite
sub transition system ifAgtM andLabM define the other two components ofM, in
this sense: for alla, a′ ∈ AgtM andℓ ∈ LabM

− if ℓ applies toa in L then it applies toa inM

− if a ℓ
⊲ı̃ a′ is a transition inL then it is a transition inM. �

Proposition 7.19 (definite sub-TS)LetM be a definite sub-TS ofL, and leta ∼L b.
Then alsoa ∼M b.

Proof It is easy to show that∼L is a bisimulation forM. �

So by restricting attention to a definite sub transition system we can only increase its
bisimilarity relation. This raises an important question:are there situations in which
the relation remains unchanged? For now, let us only make a definition:

Definition 7.20 (faithful sub transition system) M is a faithful sub transition sys-
tem ofL if, restricted to the agents ofM, we have∼M = ∼L . �

Thus, by reducingL to a definite and faithful sub transition system, we show that
the omitted labels contribute nothing to distinguishing agents by their behaviour. This
both clarifies our understanding and lightens the task of establishing bisimilarity. In
Chapter 8 we shall achieve this for bigraphs under certain conditions.

7.4 Abstract transition systems

We now wish to see how both raw and contextual transition systems behave under a
quotient of a wide s-category that yields a wide spm categoryequipped with an abstract
TS. We shall be interested in TSs that harmonise with a structural congruence, in this
sense:

Definition 7.21 (respect) A dynamic abstraction≡ respectsa raw transition system
if, whenevera ℓ

⊲ a′ andb ≡ a, thenb ℓ
⊲ b′ for someb′ ≡ a′.

It respectsa contextual transition systemL if, whenevera f
⊲ı̃ a′ andb ≡ a and

g ≡ f , where(g, ı̃) ∈ LabL with g ◦ b defined, thenb g
⊲ı̃ b′ for someb′ ≡ a′. �

There are many possible dynamic abstractions on bigraphs. They do not necessarily
respect by a transition system.

EXERCISE 7.5 Answer the following informally for bigraphs:

(1) Let A : 1 andB : 1 be atomic controls. For two arbitrary bigraphsF andG in the
same homset, defineF ≡ G to mean that they are identical when everyB-node linked

78 CHAPTER 7. REACTIONS AND TRANSITIONS

to anA-node is deleted. LetF denote the result of deleting everyB-node linked to
anA-node. Is it true thatG ◦F = G ◦F ? Is≡ a structural congruence, or even an
abstraction? Does it respectMT?

(2) Let A andB be non-atomic controls with equal arity. DefineF ≡ G to mean
that they are identical when everyB-node is replaced by anA-node. Is≡ a structural
congruence, or even an abstraction? Does it respectMT, provided that no parametric
redex contains anA- or B-node ? �

Let us now return to the transition systems induced by quotient. Given a transition
systemL and an abstraction≡ for a concrete WRS, the≡-quotient functor induces a
TS for the quotient abstract WRS by simply applying the functor to every bigraph in
each of the four components ofL. The main difference between raw and contextual
TSs is that, in the former, the labels are left unchanged. To be precise:

Definition 7.22 (transitions for a quotient) Let `C be a wide s-category equipped
with a raw or contextual transition systemL = (Agt, Lab, Apl, Tra), and let≡ be an
abstraction oǹC. Denote the≡-quotient of`C by C, an spm category. Then the
contextual transition system[[L]] = (Agt′, Lab′, Apl′, Tra′) inducedby ≡ on C has
components generated as follows:

ForL raw:
− if a ∈ Agt then[[a]] ∈ Agt′

− Lab′ = Lab

− if (a, ℓ) ∈ Apl then([[a]], ℓ) ∈ Apl′

− if a ℓ
⊲ a′ in Tra then[[a]] ℓ

⊲ [[a′]] in Tra′ .

ForL contextual:
− if a ∈ Agt then[[a]] ∈ Agt′

− if (f, ı̃) ∈ Lab then([[f]], ı̃) ∈ Lab′

− if (a, (f, ı̃)) ∈ Apl then([[a]], ([[f]], ı̃)) ∈ Apl′

− if a
f

⊲ı̃ a′ in Tra then[[a]]
[[f]]

⊲ı̃ [[a′]] in Tra′ . �

This may not make bisimilarity a congruence inC, even if it is so iǹ C. However the
next theorem, proved in Appendix A.4, ensures this in the presence of respect.

Theorem 7.23 (bisimilarity induced by quotient) Let `C be a wide s-category that
is equipped with a raw or contextual transition systemL. Let≡ be an abstraction on
`C that respectsL. Denote the≡-quotient of`C by C, an spm category. Then the
following hold for[[L]]:

(1) a ∼ b in `C iff [[a]] ∼ [[b]] in C.

(2) If bisimilarity is a congruence iǹC then it is a congruence inC.

Thus, a transition system and its bisimilarity are treated well by a suitable quotient
of a wide s-category. We can harmonise this treatment with a suitable quotient of a
WRS`C(`R) (Definition 7.6), as follows:

7.4. ABSTRACT TRANSITION SYSTEMS 79

Proposition 7.24 (quotient reaction and transition) Let `C(`R) be a concrete WRS
equipped with a contextual TSL based upoǹR, and let≡ be a dynamic abstraction
for the WRS.

Then in the quotient WRS (Definition 7.6), equipped with the transition system in-
duced fromL as in Definition 7.22, transition is consistent with reaction:

p
g

⊲ı̃ p′ impliesg ◦p ⊲ı̃ p′ .

EXERCISE 7.6 Prove this.Hint: You need Exercise 7.3 and Theorem 7.7. �

These results prepare for a uniform procedure that yields a behavioural congruence
for an abstract WRS. The procedure moves to a concrete WRS andback again. It is
justified because support is necessary for deriving a tractable behaviour model based
upon a transition system. Given an abstract WRSC(R), the procedure has three steps:
Move to a concrete WRS; construct a concrete transition system there; then bring it
back to the abstract WRS. Here are the steps in more detail:

(A) Define a concrete WRS̀C(`R) such thatC andR are the quotients of̀C and
`R by some dynamic abstraction≡;

(B) Derive a contextual transition systemL for `C(`R) with an associated behavioural
congruence∼L, and ensure that≡ respectsL;

(C) Use Definition 7.22 to transferL to the abstract WRSC(R), and Theorem 7.23
to ensure a behavioural congruence inC(R).

In Chapter 8 we shall find that this can be done for any bigraphical reactive system
(BRS), as defined in Definition 8.6, satisfying very general conditions. In that case
the chosen abstraction≡ will be lean-support equivalence, the transition systemL will
be derived using the RPOs of Chapter 4, and the behavioural congruence∼L will be
bisimilarity (though other behavioural congruences are likely to work also).

Thus contextual reactive systems yield a generic behavioural theory. Its importance
is not only that it specialises to bigraphs, but also that it provides insight for reactive
systems in general. Indeed the special case of bigraphs is itself generic, since—as cited
in Chapter 12—many different process calculi can be faithfully encoded in bigraphs.
Our three-step procedure will be illustrated for a class of Petri nets in Chapter 9 and
for finite CCS in Chapter 10.

80 CHAPTER 7. REACTIONS AND TRANSITIONS

Chapter 8

Bigraphical reactive systems

As a first step in defining the dynamics of bigraphs, we refine the notion of a reaction
rule to make itparametric. This leads to the formal definition of a bigraphical reactive
system (BRS), and then to a taxonomy of BRSs, followed by their behavioural theory.

We begin by illustrating the notion of parametric reaction:

Example 8.1 (CCS reaction in bigraphs)In Example 3.18 we gave the redex of the
usual CCS reaction rule as an example of a bigraphical algebraic expression; we now
look at the whole rule.

xR′R
x

alt alt

0

1

2

3

getsend

10

x | d0 | d2alt. (sendx.d0 | d1) | alt. (getx.d2 | d3)

The rule is parametric. The parametric redexR = alt. (sendx | id) | alt. (getx | id) has
four sites, to be filled by arbitrary parametersd0, . . . , d3. Sites0 and2 are for pro-
cesses, and sites1 and3 are for alternations (summations). The reactumR′ = x | id | id
has two sites, to be filled by parameters as indicated by the back-pointing arrows. The
placing of parameters is also shown by the algebraic expression. This rule discards
parameters1 and3.

Recall that in CCS the input and output prefixes are guarding;they prevent internal
reaction. To capture this we have to defineactivity for bigraphs, and to declare all CCS
controlspassive, in the sense that we now define. �

Definition 8.2 (dynamic signature, activity) A signature isdynamicif it assigns to
each controlK a statusin the set {atomic, passive, active}. We say that aK-node is
atomic if its control is assigned the statusatomic, and so on.

81

82 CHAPTER 8. BIGRAPHICAL REACTIVE SYSTEMS

A bigraphG : 〈m, X〉→〈n, Y 〉 is activeat i ∈ m if every ancestor node of sitei is
active.G is activeif it is active at every site (see Definition 7.2). �

In the CCS signature we declare the controls ‘alt’, ‘ send’ and ‘get’ all to be passive,
ensuring that reaction only occurs at the top level. In contrast, for the calculus of mobile
ambients (see Figure 1.1) we declare the ambient control ‘amb’ to be active, to allow
reactions inside an ambient.

The initial purpose of this chapter is to explain how parametric reaction rules gen-
erate the reaction relation of a BRS, as the basis for the dynamic theory of BRSs. We
then specialise to BRSs the theory of transition systems andbehavioural equivalence
developed for WRSs in Chapter 7. That theory was first developed for a concrete WRS,
based upon an s-category, and transferred at the end to its quotient abstract WRSs based
upon an spm category. Similarly, much of the present chapteris devoted to answering
the question: What conditions on a concrete BRS allow us to obtain a tractable minimal
TS whose behavioural equivalence is a congruence? Recall that in a minimal TS every
transition is based upon an IPO, and thatMT is the largest such TS, having all possible
agents and all possible minimal transitions between them.

In Section 8.1 we define parametric reaction formally, and then deduce from Chap-
ter 7 that, in asafeconcrete BRS equipped with the minimal transition systemMT,
bisimilarity is always a congruence; this is because safeness ensures that RPOs exist.
In Section 8.2 we identify conditions under whichMT can be reduced to more tractable
transition systems, while preserving the bisimilarity equivalence—hence also preserv-
ing its congruence.

Finally, we transfer this transition system to the quotientabstract BRS, via the
lean-support quotient functor. It turns out that the same conditions ensure that the
behavioural congruence is preserved for this abstract BRS.

Notation We now resume the convention that arbitrary bigraphs are denoted by up-
per case italic letters, and ground bigraphs by lower case. However,I, J, K denote
interfaces, andX, Y, Z denote name-sets. We use sans-serif lettersA, B, C, K, L, M, N
for arbitrary controls. We useR, S for parametric redexes (Definition 8.5),r, s for
ground redexes, andL, M for arbitrary contexts used as labels. �

8.1 Dynamics for a BRS

The CCS rule shown above illustrates how the parameter of a redexR is instantiatedfor
the reactumR′. In general we shall have a redexR : m→ J and reactumR′ :m′→J ,
both parametric, and the reaction rule will specify aninstantiation mapη : m′→m
which determines, for eachj ∈ m′, which factor of the parameter ofR should occupy
thejth site ofR′. Care is needed to define instantiation precisely. Considera simple
example that duplicates its parameter:

8.1. DYNAMICS FOR A BRS 83

double
R R′

We might expect this rule to generate reactions of the formdouble.a ⊲ a | a, where
a is any ground prime. So ifa has a closed link, saya = /x ◦Ax (with A atomic), there
would be a reaction

a ⊲ (/x ◦Ax) | (/x ◦Ax) .

But we havedouble.a = /x ◦ (double.Ax), so there exists also a reaction

a ⊲ /x ◦ (Ax |Ax) .

This shows that—since closure is not located—it is unclear whether or not the closed
link is itself duplicated.

To settle this issue, we shall defineinstantiationof a parameter in terms of its
discrete normal form, established uniquely in Definition 3.10. The effect is that all
replicated closed links will be shared, as in the second alternative above. To avoid
sharing such a link, under a replicating reaction, one must express it instead as abound
link as explored in Section 11.3. This has already been carried out in a translation of
theπ-calculus into bigraphs1, but it lies beyond the main scope of this book.

Definition 8.3 (instantiation) In a bigraphical s-categorỳC = `BG(Σ), let 〈m, X〉
and〈n, X〉 be two sorted interfaces (sorts not shown), and letη : n→m be a map of
finite ordinals that preserves place sorts. Define theinstancefunction

η : `C〈m, X〉→ `C〈n, X〉

on agents as follows: Given an agentg : 〈m, X〉, find its DNFg = λ ◦ (d0⊗· · ·⊗dm−1)
(Proposition 3.9). Then

η(g)
def
= λ ◦ (d′0 ‖ · · · ‖ d′n−1),

whered′j ≏ dη(j) for eachj ∈ n. The function is defined up to≏. �

We use the parallel productd′0 ‖ · · · ‖ d
′
n−1, rather than the tensor product, because

any replicated factors in the product—as will occur ifη is non-injective—will share
names. Note also thatη(g) has the same outer namesX asg.2

Linking commutes with instantiation. For ifg = λ ◦d and we wish to instantiate
f = µ ◦g, then we first find the DNFf = µ ◦λ ◦d; so we may applyµ before or after
instantiation, with no difference of result. Formally:

Proposition 8.4 (linking an instance) Linking commutes with instantiation; that is,
µ ◦η(g) ≏ η(µ ◦g) .

1see [47]
2This is implied by the convention stated at the start of Section 3.2: forλ : Y →X, the composition

λ ◦ f still has outer namesX (though some may be idle) even whenf has fewer outer names thanY .

84 CHAPTER 8. BIGRAPHICAL REACTIVE SYSTEMS

Proof Let g : 〈m, X〉, with η : m′→m. Take the DNFg = λ ◦d, whereλ : Y →X .
Thenη(g) = λ ◦d′, whered′ = d′0 ‖ · · · ‖ d′m′−1 with eachd′i ≏ dη(i). So

η(µ ◦ g) = η(µ ◦ (λ ◦d)) = η((µ ◦λ) ◦d)
≏ (µ ◦λ) ◦d′ = µ ◦ (λ ◦d′) ≏ µ ◦η(g) . �

Before going further, we must take account of the fact that weare working in
`BG(Σ), whereΣ is an arbitrary sorting. Although̀BG(Σ) is required to be an s-
category (Definitions 6.1 and 6.10), it does not require all our elements—in particular
join , substitution and closure—and the derived operators of parallel and merge prod-
uct and nesting to exist at all sorts. For example, many-one sorting demands that each
s-link contain exactly ones-point, and this excludes non-trivial substitution at sorts

(though it admits them at sortt). This also means that some uses of parallel product
(‖) violate many-one sorting.

Since we are developing a dynamical theory based upon reaction rules we shall
make the following assumption: if, in a BRS, a reaction rule allows a parameter to
have a name of sortθ, then the BRS must admit substitutions and closures at sortθ.3

From now on in this chapter we are involved with an arbitrary sorting, possibly
under some constraints. To avoid heavy notation we continueto write an interface as
〈m, X〉, even though the roots inm and the names inX may carry place sorts or link
sorts respectively.

We are now able to define the dynamics of bigraphs, relying on Definition 7.1 for
the way the reaction relation is determined by a set of groundreaction rules.

Definition 8.5 (parametric reaction rules) A parametric reaction rulefor bigraphs
is a triple of the form

(R : m→J, R′ : m′→ J, η)

whereR is theparametric redex, R′ theparametric reactum, andη : m′→m a map of
finite ordinals.R andR′ must be lean, andR must have no idle roots or names. The
rule generates all ground reaction rules(r, r′), where

r ≏ R.d , r′ ≏ R′.η(d)

andd : 〈m, Y 〉 is discrete. �

In Example 8.1 we may think ofR either as taking a parameter of width 4, or as taking
four prime parameters. The definition of ground rules, usingnesting, ensures that the
names of the parameter are exported to the context in which the redex resides.

EXERCISE 8.1 Assume the place sorting for CCS introduced in Definition 6.5. In
the parameterd = d0⊗· · ·⊗d3 shown in Example 8.1, assume thatdi has outer names
Yi (i ∈ 4) andY =

⊎
i Yi. Write down the sorted interfaces ofR, R′, r, r′ and eachdi.

�

3This question does not arise for our application of many-onesorting to Petri nets, since its reaction rules
are not parametric.

8.1. DYNAMICS FOR A BRS 85

Our present definition of parametric rules is rather simple,but the reader may think
of ways to vary it. Here are two features that could be varied:

• Why do we make parameters discrete? In fact the reaction relation would be
unchanged if we allowed arbitrary agents as parameters, since instantiation of an
agent is defined in terms of its underlying discrete bigraph.But discrete param-
eters simplify analysis, especially for transitions and bisimilarity.

• Can we track the identity of nodes through a reaction? Our definition does not
allow this, but it would be useful in some applications. Lookagain at the rules
B1–B3 for the built environment in Chapter 1; we may well wish to stipulate that
the agent involved is the same, before and after the reaction. It is not difficult
to alter the definition to admit such tracking, by means ofsupport; this allows
properties of a system’s history to be expressed, such as ‘agentu has never visited
roomv’. Thus support has broader usage than ensuring the existence of RPOs
(and hence the derivation of transition systems). Trackingis examined further in
Section 11.1.

We are now ready to define our central concept:

Definition 8.6 (bigraphical reactive system (BRS)) A (concrete) bigraphical reac-
tive system (BRS)over Σ consists of̀ BG(Σ) equipped with a set̀R of parametric
reaction rules closed under support equivalence; that is, if R ≏ S andR′ ≏ S′ and`R
contains(R, R′, η), then it also contains(S, S′, η). We denote the BRS bỳBG(Σ, `R).
It is safeif its sortingΣ is safe. �

Having seen how parametric rules generate ground rules, it is easy to check that each
BRS is a reactive system. Moreover there is an obvious width functor for bigraphs;
for an interfaceI = 〈m, X〉 definewidth(I) to bem, and for a bigraphG : I→ J
definewidth(G)(i), for all i ∈ width(I), to be the uniquej ∈ width(J) such that
j = prntk

G(i) for somek. Without further proof we can now assert:

Proposition 8.7 (BRSs are wide) Every BRS is a wide reactive system.

Recall that in Chapter 7 we equipped a WRS only with ground reaction rules, not with
parametric rules. We could indeed have defined parametric rules for a WRS, but we
have more reason to do so for a BRS. This is because bigraphs have a rich structure that
permits us to classify BRSs according to the structural properties of their parametric
rules, such as those mentioned at the end of Definition 8.6.

All the work in Chapter 7 on transition systems and bisimilarity—especially on
contextual transition systems—can be applied to BRSs, provided they are safe (ensur-
ing RPOs). Most importantly, from Theorem 7.16 we deduce:

Corollary 8.8 (congruence of bisimilarity) In any safe concrete BRS equipped with
MT, the transition system with all minimal transitions, bisimilarity ∼ is a congruence.

Now let us transfer this congruence to an abstract BRS BG(Σ,R), where BG(Σ)
andR are obtained by the lean-support quotient functor[[·]] of Definition 2.19 and
Theorem 2.20. We must first prove that the minimal transitionsystemMT respects≎:

86 CHAPTER 8. BIGRAPHICAL REACTIVE SYSTEMS

Proposition 8.9 (abstraction respects transitions)In a concrete BRS withMT:

(1) Every label context is lean.

(2) Lean-support equivalence respects the transitions. That is, whenevera L
⊲ı̃ a′,

if a ≎ b andL ≎ M where(M, ı̃) is a label withM ◦ b defined, thenb M
⊲ı̃ b′

for someb′ such thata′ ≎ b′.

(3) Lean-support equivalence is a bisimulation.

Proof For (1), use Proposition 5.24(1) and the fact that every discrete agent is lean.
For (2), use Proposition 5.24(2); the fact that each redex islean ensures that it cannot
share an idle edge with the agenta. Then (3) follows directly from (2). �

We are now ready to transfer the congruence results of Corollary 8.8 from concrete
to abstract BRSs. The following is immediate from Theorem 7.23:

Corollary 8.10 (behavioural congruence in a safe abstract BRS) Let `BG(Σ,`R)
be a safe concrete BRS, and letBG(Σ,R) be its lean-support quotient. Let∼ denote
bisimilarity both for the transition systemMT in `BG(Σ,`R) and for transition system
it induces inBG(Σ,R). Then

(1) a ∼ b iff [[a]] ∼ [[b]].

(2) Bisimilarity∼ is a congruence inBG(Σ,R).

Thus we have assured a congruential behavioural equivalence for a broad class of BRSs
characterised by only one condition: that they are safe. Butthe results of this section
apply more widely; they apply to any BRS that has RPOs. As we have seen, safeness
is an easily-checked sufficient condition for RPOs to exist.

Let us now see how this enables us to specialise the three-step procedure defined at
the end of Chapter 7, in order to develop the behavioural theory of a given safe abstract
BRS BG(Σ,R), as follows:

(A) Take the structural congruence≡ to be lean-support equivalence≎. Equip the
(concrete) bigraphical s-category`BG(Σ) with concrete reaction rules`R which
consists of all lean preimages ofR by the lean-support quotient functor[[·]], yield-
ing the concrete BRS̀BG(Σ,`R). This automatically satisfies the sorting disci-
pline of Σ, and also the constraints (no idle names or roots) on redexes, since
these conditions are unaffected by the lean-support quotient.

(B) Since the concrete BRS is safe, it has RPOs; hence we can equip it with the
minimal transition systemMT, and this yields a congruential bisimilarity∼MT ,
which is respected by≎.

(C) Finally, taking the quotient of the transition systemMT by [[·]], we arrive back
in the abstract BRS BG(Σ,R) equipped with a transition system[[MT]] having a
congruential bisimilarity.

8.2. DYNAMICS FOR A NICE BRS 87

We now turn to additional conditions that can make a BRS easier to handle. The
most prominent of these are conditions on the rule-setR; they have the effect of further
reducing the transition systemMT, making it more tractable. Apart from this, the three-
step procedure remains unchanged; the reader will find it helpful to bear this procedure
in mind as a background for understanding the behavioural theories of Petri nets and
CCS, developed in Section 9.2 and Chapter 10 respectively.

8.2 Dynamics for a nice BRS

The minimal transition system is quite tractable, since each support element of a la-
bel lies either in the agent or in the underlying redex. As we shall now see, for cer-
tain classes of BRS our derived transition systems become still more tractable, and
indeed—for BRSs that encode known process models such as Petri nets—closer to
known semantic treatments. In Definition 8.18 we shall use the adjective ‘nice’ to de-
note a class of BRSs with several pleasant attributes, and then prove a theorem to show
how this eases the theory of their transition systems.

We begin by asking: Having limitedMT to contain only minimal transitions, can
we even remove some of these without affecting bisimilarity—and hence without los-
ing behavioural congruence? We may try including only thosetransitions whose agents
make a non-trivial contribution to the underlying reaction. Also the agents that arise
in our applications are often prime—indeed this will be truefor CCS—so we may try
restricting ourselves to prime agents. To be precise:

Definition 8.11 (engaged transition, prime transition) A transitiona L
⊲ı̃ a′ based

on a reaction with parametric redexR, isengagedif |a|∩|R| 6= ∅. A transition isprime
if both a anda′ are prime. �

We might expect a disengaged transitiona L
⊲ı̃ a′ to be redundant. If the agenta

shares no node or edge with the parametric redexR then surely any other agentb
should be able to make a transition with the same label, to some suitableb′? If so, then
we could ignore such transitions without affecting the bisimilarity. But this argument
needs to be made precise, and depends upon constraints that we define below.

Another incentive to include only the engaged transitions is that we are more likely
to be able to confine attention to prime transitions. For suppose that an agenta is prime,
and also that a parametric redexR has prime outer face; then in an engaged transition
a L

⊲ı̃ a′ based onR, the ground redexr will also be prime, with|a| ∩ |r| 6= ∅.
It follows that any IPO(L, D) for the span(a, r) will have prime outer face, hence
a′—and indeed the transition—will be prime. On the other hand,if the transition is
disengaged then—by Corollary 5.21—even ifa is primea′ will not be so.

Note that if a transitiona L
⊲ı̃ a′ is prime then its locatioñı must be the singleton

{0}; we therefore write simplya L
⊲ a′.

It will turn out that we can often exclude disengaged transitions without affecting
bisimilarity. We shall show this for any BRS that issimple, unary, unambiguousand
affine. We now define the first three of these properties (we come to ‘affine’ later); they
are satisfied by a wide range of BRSs, including finite CCS.

88 CHAPTER 8. BIGRAPHICAL REACTIVE SYSTEMS

Recall that a link isopenif it is a name, otherwiseclosed. Also recall from Defini-
tion 8.5 that a parametric redex is lean and has no idle names or roots. We now submit
it to further constraints:

Definition 8.12 (simple, unary) A parametric redex issimpleif it is

− open: every link is open
− guarding: no site has a root as parent
− inner-injective: no two sites are siblings.

A parametric redex isunary if its outer face is unary. A reaction rule issimple, or
unary, if its redex is so. A BRS issimple, or unary, if all its reaction rules are so. �

Simpleness is not a severe constraint. For ‘guarding’ and ‘inner-injective’ one can
argue convincingly that they only exclude redexes that are either unnecessary because
their work can be done by other rules, or over-permissive because they allow wild
reconfigurations. The ‘open’ constraint limits expressivepower somewhat, but greatly
eases analysis; and it is remarkable that the rules requiredto model CSP, CCS,π-
calculus, Petri nets and mobile ambients are all open.

All the conditions in Definition 8.12 pertain to individual reaction rules. But there is
an important condition that pertains to a set`R of rules, and is concerned with how they
relate to each other. Recall that an engaged transitiona L

⊲ı̃ a′ based on a parametric
redexR is one in which|a| ∩ |R| 6= ∅. Thus ‘engaged’ is a property of a transition
together with its underlying redex. Indeed, a transition may be engaged if it arises from
a redexR, but disengaged if it arises from another redexS:

Definition 8.13 (ambiguity) A label of a transition systemL is ambiguousif it oc-
curs both in an engaged and in a disengaged transition. A transition system isambigu-
ousif it has an ambiguous label. �

EXERCISE 8.2 This exercise deals with place graphs. Take two controlsA, B : 0,
with B atomic. LetR = A ◦ (id1 |B) and R′ = B be the redex and reactum of a
parametric rule. Note thatR has one site;R′ has none.

Prove that the prime transitiona L
⊲ a′ is ambiguous, wherea = a′ = Bv and

L = Aw ◦ (id1 |Bu). (The superscripts on ions denote their nodes.) �

Under certain conditions, one of which excludes ambiguity,we shall be able to re-
duce the transition systemMT to one containing only engaged transitions. Our sub-TS
will be restricted to prime agents, and we constrain every labelL in a prime transition
to be unambiguous, i.e. theL-transitions are either all engaged or all disengaged.

Recall from Definition 3.19 the notion of atight bigraph. Roughly speaking (the
definition is precise) a bigraphR is tight if, when it occurs within some prime agentg,
andg is ‘split’ into two parts each containing a non-empty part ofR, then these two
parts must be non-trivially linked. The instance that concerns us is wheng = L ◦a,
wherea andL are the source and label of a transition, andR is a parametric redex. The
following is proved in Appendix A.5:

8.2. DYNAMICS FOR A NICE BRS 89

Proposition 8.14 (unambiguous label)Let L be the label of a prime transition in
MT, in a safe BRS where every redex is simple, unary and tight. Then the labelL is
unambiguous.

We now define a sub transition system ofMT with unambiguous labels and engaged
transitions:

Definition 8.15 (prime engaged transition system)In a safe concrete BRS, assume
that every parametric redex is simple, unary and tight. LetPE be the sub-TS ofMT

consisting of

AgtPE —all prime agents at certain interfaces
LabPE —the labels of all prime engaged transitions witha, a′ ∈ AgtPE

AplPE —the restriction ofAplMT to AgtPE× LabPE

TraPE —the restriction ofTraMT to AplPE× AgtPE . �

The agent interfaces are typically determined in terms of the sorting of the BRS.
We now summarise as a theorem what we have established do far.The main result

is that, under certain conditions, tightness ensures thatPE is definite.4 It appears that
tightness holds for a wide range of calculi, including CCS, Petri nets and the calculus
of mobile ambients5.

Theorem 8.16 (prime engaged transitions are definite)In a safe concrete BRS where
every parametric redex is simple, unary and tight:

(1) Every label ofPE is unambiguous

(2) Every transition ofPE is engaged

(3) PE is a definite sub transition system ofMT

(4) ∼MT ⊆ ∼PE restricted to prime agents.

Proof (1) follows from Proposition 8.14, since for everyL ∈ LabPE there is some
engagedL-transition inTraPE. (2) follows directly from the definition ofPE, Defini-
tion 8.15. (3) follows from the definition of ‘definite’, Definition 7.18. (4) is a direct
corollary of Proposition 7.19. �

Clause (4) of the theorem prompts us to ask whetherPE is faithful to MT, i.e.
whether the bisimilarities coincide on the agents ofPE. The following example, due to
Ole Jensen, shows that sometimes they do not:

4In [65], Corollary 9.14, it was wrongly stated that another condition fulfils this purpose —namely that
the BRS should lacksubsumption, in a precise sense. The theory was applied there only to CCS and to a
class of Petri nets, whose rules are in fact tight, so nothingfalse was deduced.

It must be emphasized that tightness is just one condition that excludes ambiguity, and suffices for our
present purpose. Other conditions, possibly weaker, may well exist.

5See Jensen [46].

90 CHAPTER 8. BIGRAPHICAL REACTIVE SYSTEMS

Example 8.17 (unfaithful engaged transitions)LetL : 0 be a non-atomic control, and
let M : 1 andN : 0 be atomic. For the atomic controls, adopt the convention that Mx

meansMx.1 andN meansN.1. Consider the following two reaction rules:

L.d ⊲ d | d
Mx |Mx ⊲ Mx .

This defines a BRS that is safe, simple and unary. However, we can exhibit two agents
a andb such thata ∼PE b but a 6∼MT b. Let a = /x ◦Mx andb = N. Neither has
an engaged transition, hence/x ◦Mx ∼PE N. (The closure/x prevents an engaged
transition bya.) But each can do a uniqueL-transition, distinguishing them as follows:

/x ◦Mx
L

⊲ /x ◦ (Mx |Mx) id
⊲ /x ◦Mx

N
L

⊲ N |N 6 id ⊲ .

ThusPE is not faithful toMT. �

The unfaithfulness in this example depends upon the interaction between closure and
the replication caused by the ruleL.d ⊲ d |d. We shall therefore be content to prove
faithfulness of prime engaged transitions for BRSs that lack replication, i.e. the instan-
tiation mapη in every reaction rule is injective.

Definition 8.18 (affine, tight, nice) A reaction rule isaffineif its instantiation mapη
is injective, andtight if its redex is tight (see Definition 3.19).

A reaction rule isniceif it is safe, simple, unary, affine and tight. A BRS`BG(Σ,`R)
is nice if all its reaction rules are nice. Similarly for an abstractBRS BG(Σ,R). �

We have adopted the term ‘nice’ to avoid repeated adjectives. The following results are
for nice BRSs, though they may well hold under more relaxed conditions.

We now assert the faithfulness theorem. It depends on one further condition,
namely that the interfaces of prime agents are chosen so thatthey are allhard, as
defined in Definition 6.2. The full proof is in Appendix A.6.

Theorem 8.19 (engaged transitions are faithful)In a nice BRS, letPE be a prime
engaged transition system whose agents are hard. Then

(1) PE is faithful to the minimal transition systemMT.

(2) ∼PE is a congruence.

We are now ready to transfer the congruence results of Corollary 8.8 to nice abstract
BRSs, just as we did for safe abstract BRSs in the previous section. Note that niceness
is independent of the concrete/abstract distinction; a concrete BRS is nice if and only
if its lean-support quotient is nice.

Corollary 8.20 (behavioural congruence in an nice abstractBRS) Let `BG(Σ,`R)
be a nice concrete BRS, andBG(Σ,R) its lean-support quotient. Assume that the agents
of the prime engaged transition systemPE are hard. Let∼PE denote bisimilarity both
for PE in `BG(Σ,`R) and for the corresponding bisimilarity induced inC. Then

8.2. DYNAMICS FOR A NICE BRS 91

(1) a ∼PE b iff [[a]] ∼PE [[b]].

(2) Bisimilarity∼PE is a congruence inBG(Σ,R).

Proof It is routine to check thatPErespects lean-support equivalence. The result then
follows from the faithfulness theorem, Theorem 8.19, together with Theorem 7.23.�

The reader’s patience may be taxed by the various conditionswe have imposed in
this chapter, to achieve reasonable properties of behaviour. The bigraph model may be
considered too permissive! But a broad framework has seemednecessary, to embrace
a variety of existing process calculi; and something is learned from discovering, within
such a framework, properties which those calculi share and which explain why they
work well. This knowledge will be useful for the invention ofnew specific calculi.

On a broader frontier, there are applications whose structure and reactions can be
formulated as BRSs, but where the concepts of labelled transition systems and be-
havioural equivalence are less relevant. Such applications are likely to arise in biolog-
ical systems and in ubiquitous computing.

92 CHAPTER 8. BIGRAPHICAL REACTIVE SYSTEMS

Chapter 9

Behaviour in link graphs

In this chapter we explore the behaviour of our two examples in link graphs: arithmetic
nets and Petri nets. These were both introduced in Chapter 6,as applications of many-
one sorting. The simple algebraic manipulations of link graphs in this chapter are
analogous to the algebra developed for bigraphs in Chapter 3.1

9.1 Arithmetic nets

In Example 6.11 we introduced arithemetic nets as a simple example of link graphs.
With the many-one sorting discipline they constitute LG(Σarith), with signature

Karith
def
= {0 : s, S : ts, + : tts, → : ts} .

Here again are the atoms, and the typical net, that were shownin Example 6.11:

→

S

x y

x y
0

S
+

+
+

x y

+

0

x

x y z

z

The net represents the equationsy = S0 + (0 + x) andz = S0 + (S0 + (0 + x)),
with many shared subexpressions. Here we bring LG(Σarith) to life with a setRarith

of reaction rules, shown in the following diagrams. They usethe forwarder ‘ →’ to
avoid links containing more than one outer name. The question mark ‘?’ denotes any
node (with one or more target ports). The rules define a link-graphical reactive system
LG(Σarith,Rarith).

1See [55] for work that covers both the theory of link graphs and the applications treated here.

93

94 CHAPTER 9. BEHAVIOUR IN LINK GRAPHS

x

→

(3)
yx

?

?

y

0

→

S+

S

y0 y1y1y0

y1y0
(2)

(1)

0
+

+
S

x1x0

x x y0 y1

x1x0

As these pictures show, link graph diagrams are simpler thanthose for bigraphs. Since
there are no places, there is no role for dotted rectangles representing roots or sites. A
node is no longer a place, so the nodes can contain nothing, therefore links never cross
boundaries; this removes the need for blobs to represent ports, since their purpose in
bigraphs is to distinguish ports from crossing-points.

EXERCISE 9.1 Apply the three rules as far as possible to the typical net previously
shown. You should obtain a net which represents the equations y = S0 + x and
z = SS0 + x. Propose some extra rules, besides rule (3), for tidying up anet. �

If a net has cycles then our evaluation rules will not ‘solve’it, in the sense that they
solve the typical net by ‘expressing’y and z in terms ofx. However, reaction is
well-behaved. To establish this, we shall first show that reaction for arithmetic nets
is strongly confluent; that is, if g ⊲ g0 andg ⊲ g1 then there existsg′ such that if
g0 ⊲ g′ andg1 ⊲ g′. Giveng, define acritical pair to be a pairr0, r1 of distinct
redexes occurring ing and sharing at least one node. For example,g may contain a
critical pair, represented byf , consisting of two redexes of rule (1) sharing anS-node.

S+f ′ =

f0

f1

= f

S

S+

S

+

+

You may check that if either redex is applied first, then the other still exists; moreover,
the resultf ′ of applying both is the same, independently of the order.

Proposition 9.1 (confluence)With the rules (1), (2) and (3) as defined, arithmetic
nets are strongly confluent.

EXERCISE 9.2 Prove this.Hint: First show the confluence property for disjoint re-
dexes; then enumerate and examine every possible critical pair. �

9.2. CONDITION-EVENT NETS 95

Let us now confine attention to what we may callexplicit nets: those which have no
cycles (as defined in the next paragraph), no inner names, andouter names all with sort
s. The latter condition excludesx in the typical net shown at the start of this section,
since it has sortt. It is clear that ifg ⊲ g′ andg is a explicit net, then so isg′. Then
our rules will evaluate every explicit net to a unique normalform—a net to which no
rule applies—representing equations that express each outer name as a numeral of the
form S · · ·S0.

To justify this claim we should define a well-founded measureof explicit nets that
is is decreased by every reaction. This is not so easy; it is not enough to measure a net
simply by its number of nodes, because rule (1) increases this quantity. The following
is helpful: Define apathto be a sequencev0, k1, v1, k2, v2, . . . of nodesvi and natural
numberski, where for each contiguous triplev, k, v′ there is a link from thes-port of
nodev to thekth t-port of nodev′. A path may be either infinite, or finite—of length
n—ending in somevn. A cycle is a path withvn = v0; it generates an infinite path.
With the help of the notion of path one can prove

Proposition 9.2 (termination) Every reaction sequence of a explicit net is finite.

EXERCISE 9.3 Prove this.Hint: What quantity, in terms of paths, is decreased by
every reaction by rule (1)? Using this, construct a well-founded linear ordering that is
reduced by every reaction of a explicit net. �

From Propositions 9.1 and 9.2 we finally deduce

Theorem 9.3 (normalisation) Every reaction sequence for a explicit net with outer
names~y terminates in a unique normal form, representing the expression of eachyi as
a numeral of the formS · · ·S0.

We leave the theory of arithmetic nets at this point. It can beextended to the
derivation of transition systems, but our main aim has been to show that the graphical
representation is at least convenient, and even helpful, inanalysing a reactive system
other than a process calculus.

9.2 Condition-event nets

In Example 6.13 we introduced a class of Petri nets calledcondition-eventnets, or c/e
nets. We defined a many-one sorting disciplineΣpetri for them, and we now recall that
such sortings are always safe. Here again is our example, with sorts, of a typical c/e
net:

96 CHAPTER 9. BEHAVIOUR IN LINK GRAPHS

U UU

M

U

E21 E12

E11

E11

s t

t

t t
t

t

t

t

t

t

s

s

s

s

x : s y : s

These nets form a link-graphical s-category`LG(Σpetri), where names have two roles.
First, they provide the interfaces through which nets are composed; second, they pro-
vide a means to observe the behaviour of nets. So we now proceed to define what
an observation is, and when two nets are behaviourally equivalent. Since c/e nets are
modelled in link graphs, our results depend on a behaviouraltheory for link graphs
analogous to the theory for bigraphs. We shall not give details of this theory, which is
fully developed elsewhere. The reader can rest assured thatall the relevant concepts
and properties are analogous to, though often simpler than,those in bigraphs.

Several ways to compose nets have been defined in the Petri-net literature, and they
typically lead to a notion of behavioural equivalence. It isinteresting to see how such
notions compare with ours, which is based upon derived transitions. To make such
a comparison we here define behaviour in two independent ways. The first is by a
raw transition system, whose bisimilarity requires no link-graph theory; the second is
by the derived system of engaged transitions, and on the characterisation of derived
transitions in terms of RPOs.

We are able to prove that the two bisimilarites coincide. It follows that the raw
bisimilarity is a congruence, since the derived one is knownto be so. We omit here two
important steps in the published proof2: first that the engaged transitions are indeed
faithful to the minimal transition system, and second that the congruence of the result-
ing bisimilarity is transferred from concrete to abstract link graphs. The conditions for
these two results in link graphs—analogous to our Theorem 8.19 and Corollary 8.20—
are simpler in link graphs than in bigraphs.

We shall therefore work in concrete link graphs; at the end weshall transfer our
results to abstract link graphs. As a first step we define a reactive system`CE =
`LG(Σpetri,`Rpetri), by adding reaction rules̀Rpetri to `LG(Σpetri). These rules must
be based upon the usual firing rule for c/e nets, namely:

an event with all pre-conditions and no post-conditions marked may ‘fire’,
thus unmarking its pre-conditions and marking its post-conditions.

Since we have indexed our event controls by the number of pre-conditions and post-
conditions,̀Rpetri will contain one reaction rule for each event controlEhk. Forh = 1
andk = 2 the rule is drawn as follows (the diagram can be interpreted either as concrete
or as abstract):

2See [55].

9.2. CONDITION-EVENT NETS 97

y2 y2y1x1 x1 y1

A reaction rule for condition-event nets

How may we conduct experiments, or observations, on a condition-event net? To
simplify matters, let us assume that we are concerned only with the behaviour ofs-
nets—those nets whose interfaces contain onlys-names. Thus every outer name is the
name of a condition. We shall adopt the following form of experiment: the observer
can detect and change the state (marked or unmarked) of any named condition. For
example, our illustrated net can do nothing by itself (no event can ‘fire’), but if the
observer gives it a token atx then theE21 event can fire, followed by either the middle
event or theE12 event; after the latter the observer can remove a token aty, and so on.

So we capture behaviour in the form of a raw transition systemLr, whose agents
are the grounds-nets in`CE. Its transitions are of three kinds:

a +x
⊲ a add a token atx

a −x
⊲ a remove a token atx

a τ
⊲ a an event withina fires.

A condition holds at most one token, so for each named conditionx exactly one of the
first two transitions can occur.3 Thus the labelsℓ in Lr take the form+x,−x or τ , and
they are applicable to all the agents. We denote the bisimilarity of Lr by∼r.

We now turn to derived transitions. Because many-one sorting is safe,̀ CE has
RPOS; hence the minimal transition systemMT exists. Furthermore, the rules`R are
such that the engaged transitions are faithful toMT; hence they generate the same bisim-
ilarity asMT. Let us denote the engaged transition system byLg, and its bisimilarity—
which is a congruence—by∼g. We now proceed to characterizeLg; it corresponds
to the prime engaged TS in a WRS, but that notion of prime is absent in link graphs.
Thereafter we shall prove that∼g coincides with∼r.

A labelL in Lg takes two forms; up to isomorphism, either it is just an identity, or
it is the product of an identity with an opens-net having exactly oneEhk-node, linked
to zero or moreM-nodes as pre-conditions andU-nodes as post-conditions. Since
transitions are engaged, it contains strictly fewer thanh+k such conditions (because
the agent must supply at least one). A labelL applies to an agenta iff the composition
L ◦a exists.

For the identity labels, we note thata id
⊲ a′ iff a ⊲ a′; an identity label signifies

a transition with no help from the context. A typical non-identity label for the caseE21

is shown here:

3A τ -transition is not really an observation, as it occurs without the observer’s participation. We have
defined what is called astrongbisimilarity. To avoid givingτ -transitions the same status as others, it is
standard practice to adoptweakbisimilarity instead.

98 CHAPTER 9. BEHAVIOUR IN LINK GRAPHS

A typical label inLg

It lacks one pre-condition and one post-condition, to be supplied by the agent. The
dashed link indicates an identity on zero or more names.

The diagram below shows the anatomy of a transitiona L
⊲ a′ with this label. Note

thata′ takes the formL ◦a. In what follows we shall often writea for as-net that differs
from a only by the marking or unmarking of some conditions; we call it a residualof
a. We see that a single transition may change the marking of several named conditions
of a. Any other agentb with the same interface asa will have a similar transition,
provided only that it has the same initial marking of its named conditions.

a′

L

x1 x2 x1 x2

a

L

a

Anatomy of a transitiona L
⊲ a′ in Lg

The two TSsLr andLg are significantly different, so it is not clear that they will
induce the same bisimilarity. We shall now prove that they doso. We shall first show
that ∼g ⊆ ∼r in `CE. This asserts that if we can distinguish twos-netsa andb by
using ‘experiments’ that are labels inLr of the form+x,−x or τ , then we can also do
so using ‘experiments’ that are labels inLg, i.e. certain link graph contexts. So among
these contextual labels we look for those that can do the job of the experiments+x,
−x andτ .

It turns out that the contextual label to mimic an experiment+x or−x need only
involve a singleE11 event; it takes the formP ⊗ id, whereP is respectively aninput
or output probe. The probes are denoted byinxz andoutxz, and are shown in the first
column of this diagram:

9.2. CONDITION-EVENT NETS 99

Probes for observing transitions in as-net

PROBE

x z

x z

x

x

TWIG

x

x

x

x

inxz

outxz outxz out¬x

in¬x

INPUT

OUTPUT

inxz

SPENT PROBE

x

x z

z

x

x

The second column shows thespentprobesP , residuals of the probes that result from
firing their events. The third column shows the spent probes with their post-conditions
closed; they are defined byin¬x

def
= /z ◦ inxz andout¬x

def
= /z ◦outxz. In these expressions

we have omitted identities; for example/z ◦ inxz abbreviates(/z ⊗ idx) ◦ inxz. We use
the term ‘twig’ for these closed spent probes, because, up tothe equivalence∼g, they
can be ‘broken off’. The intuition is simply that a twig occurring anywhere in a net can
never fire. We express this formally as follows:

Lemma 9.4 For any agenta with x as an outer name,in¬x ◦a ∼g out¬x ◦a ∼g a .

Again we have abbreviated(in¬x ⊗ idY) ◦a to in¬x ◦a, whereY are the names ofa.
We shall use such abbreviations in what follows, but only in acomposition which
determines the omitted identityid.

EXERCISE 9.4 Prove this lemma.Hint: Prove that{(a, in¬x ◦a) | a any agent} is a
bisimulation. �

Now to prove that∼g ⊆ ∼r it is enough to show that∼g is anLr-bisimulation.

For this, suppose thata ∼g b, and leta ℓ
⊲ a in Lr. We must findb such thatb ℓ

⊲ b
anda ∼g b. If ℓ = τ this is easy, because then our assumption implies the reaction

a ⊲ a, and hencea id
⊲ a in Lg; but then by bisimilarity inLg we haveb id

⊲ b ∼g a,
and by reversing the reasoning fora we get thatb τ

⊲ b and we are done.
Now let ℓ = +x (the case for−x is similar), so thata +x

⊲ a. This means thata
has an unmarked condition namedx, so that inLg we have

a inxz⊗id
⊲ a′ = inxz ◦a .

100 CHAPTER 9. BEHAVIOUR IN LINK GRAPHS

Hence by bisimilarity inLg we have

b inxz⊗id
⊲ b′ = inxz ◦ b

wherea′ ∼g b′ andb is the residual ofb under the transition. This residualb differs
from b only in having a marked condition namedx that was unmarked inb, and hence
we also haveb +x

⊲ b in Lr. It remains only to show thata ∼g b. We deduce this using
the congruence of∼g and Lemma 9.4:

a ∼g in¬x ◦a = /z ◦ inxz ◦a = /z ◦a′

∼g /z ◦ b′ = /z ◦ inxz ◦ b = in¬x ◦ b ∼g b .

Therefore we have proved what we wished:

Lemma 9.5 ∼g ⊆ ∼r in `CE.

It remains to prove the converse,∼r ⊆ ∼g . It will be enough to prove that

S
def
= { (C ◦a, C ◦ b) | a ∼r b }

is a bisimulation up to≏. We get the required result by considering the caseC = id.4

So let us assume thata ∼r b, and thatC ◦a M
⊲ a′′ in Lg. (This includes the case

thatM = id.) Then there is a reaction ruler and contextD such that(M, D) forms an
IPO for (C ◦a, r), as shown in the left-hand diagram, anda′′ ≏ D ◦ r′.

We now take the IPO(L, A) for (a, r) relative to(M ◦C, D), and properties of
IPOs yield the right-hand diagram, in which the upper squareis also an IPO:

C

a

L

r

M

D

A

C′

DC ◦a

M

r

IPOs underlying transitions ofC ◦a anda

So there is a transitiona L
⊲ a′, wherea′ ≏ A ◦ r′; note also thata′′ ≏ C′ ◦a′. Up to

isomorphism, eitherL is an identity or it has a single event node.
If L = id thena ⊲ a′, hencea τ

⊲ a′ in Lr. Sincea ∼r a′ we haveb τ
⊲ b′ with

a′ ∼r b′. Then alsob L
⊲ b′, with underlying IPO as in the left-hand diagram below:

4The proof outlined here resembles that of Theorem 7.16, the congruence theorem. The replacement of
one IPO by another relies, as in that proof, on the fact that support translation preserves IPOs; here we omit
that argument. The present proof is simpler; there is no notion of either width or active control in link graphs,
so the location index in transitions and the argument about activity can both be omitted here.

9.2. CONDITION-EVENT NETS 101

C
L

s

M

E

B

C′

s

L

b bB

IPOs underlying transitions ofb andC ◦ b

. We then proceed, as in the non-identity case below, to construct the right-hand dia-
gram and to findb′′ with C ◦ b M

⊲ b′′ and(a′′, b′′) ∈ S≏.

If L has an event node then we consider the anatomy of the transitiona L
⊲ a′, as

exemplified in an earlier diagram. We know that the residuala differs froma only in
the changed marking of zero or more named conditions. It follows therefore that inLr

there is a sequence of transitions

a
ℓ1 ⊲ a1 . . .

ℓn ⊲ an = a (n ≥ 0)

whereℓi ∈ {+xi,−xi}; each transition marks or unmarks a single named condition.
Moreovera′ = L ◦a. Sincea ∼r b there exists a similar sequence

b ℓ1 ⊲ b1 . . . ℓn ⊲ bn = b

with a ∼r b. This implies thatb has the same initial marking asa for the named condi-
tions involved in the transitions. But we know thatL ◦ b is defined (since we assumed
M ◦C ◦ b = C′ ◦L ◦ b to be defined), so inLg there is a transitionb L

⊲ b′ = L ◦ b.
Its underlying IPO is shown in the left-hand diagram above. Also it has an underlying
reaction rule(s, s′), with b′ ≏ B ◦ s′. Now we form the right-hand diagram by replac-
ing this IPO for the lower square in the previous right-hand diagram. Since both small
squares are IPOs, so is the large square; therefore it underlies anLg-transition

C ◦ b M
⊲ b′′

def
= E ◦ s′ .

To complete our proof we need only show that the pair(a′′, b′′) lies inS≏. We already
know thata′′ ≏ C′ ◦a′ = C′ ◦L ◦a. We can now compute

b′′ = E ◦ s′ = C′
◦B ◦ s′ ≏ C′

◦ b′ = C′
◦L ◦ b ,

and hence(a′′, b′′) ∈ S≏ sincea ∼r b. It follows that∼r ⊆ ∼g.
So we have proved the coincidence of our two bisimilarities:

Theorem 9.6 (coincidence of concrete bisimilarities)In `CE the two bisimilarities
∼g and∼r for concretes-nets coincide. Hence, since∼g is a congruence, so also is∼r

is a congruence.

We now transfer this result to abstracts-nets. We may regard the creation of an abstract
contextual TSLr as an instance of the three-step procedure defined at the end of Chap-
ter 7. The starting point is an abstract reactive systemCE = LG(Rpetri), whereRpetri

are the reaction rules depicted earlier, regarded as abstract rules. The three steps are

102 CHAPTER 9. BEHAVIOUR IN LINK GRAPHS

(A) create the concrete reactive system`CE, whose reaction rules̀Rpetri are lean
preimages ofRpetri under the lean-support quotient functor[[·]];

(B) Derive the minimal transition systemLr = MT in `CE, and use the analogue of
Proposition 8.9 to ensure that it respects lean-support equivalence≎;

(C) TransferLr to CE by Definition 7.22, which applies the functor[[·]] to every link
graph in every concrete transition.

At the conclusion of the process, Theorem 7.23 ensures that∼r is a congruence inCE,
and characterized bya ∼r b in `CE iff [[a]] ∼r [[b]] in CE.

Finally, it is clear that the raw transition systemLg also respects≎, so Theo-
rem 7.23 also ensures thata ∼g b in `CE iff [[a]] ∼g [[b]] in CE. Putting these facts
together with Theorem 9.6 we arrive at

Corollary 9.7 (coincidence of abstract bisimilarities) In CE the two bisimilarities
∼g and∼r for abstracts-nets coincide, and are congruences.

This result provides evidence that the general notion of behavioural theory in bi-
graphs and link graphs is compatible with a notion specific toa particular model: con-
dition/event nets. Further evidence is provided by our study of CCS in Chapter 10.

This concludes our study of behaviour in link graphs.

Chapter 10

Behavioural theory for CCS

In this chapter we shall see how our dynamic theory for a nice BRS can be applied to
recover the standard dynamic theory of CCS.

Section 10.1 deals mainly with the translation of finite CCS into bigraphs, covering
both syntactic structure and the basic features of reaction. It begins with a summary of
all work done on CCS in previous chapters, in order to gather the whole application of
bigraphs to CCS in one chapter. It then presents the translation into bigraphs, which
encodes each structural congruence class of CCS into a single bigraph. It ends with the
simple result that reaction as defined in CCS terms correponds exactly to reaction as
defined by bigraphical rules.

Based upon this summary, Section 10.2 lays out the contextual transition system
derived for finite CCS by the method of Chapter 8, recalling that its bisimilarity is
guaranteed to be a congruence. This congruence is finer than the original bisimilarity
of CCS. This is because the original is not preserved by substitution; on the other hand,
our derived contextual TS contains transitions that observe the effect of substitution on
an agent, and this yields a finer bisimilarity that is indeed acongruence. By omitting
the substitutional transitions from the contextual TS, we then obtain a bisimilarity that
coincides with the original.

This contextual TS is more complex than the original raw one,since its labels are
parametric. But we are able to reduce it to a smaller faithfulcontextual TS whose labels
are no longer parametric, and this corresponds almost exactly with the original raw TS
for CCS.

Section 10.2 ends with a brief analysis of the strength of thecongruence for the
derived system, including its substitutional transitions.

10.1 Syntax and reactions for CCS in bigraphs

We begin this section with a summary of what has been done on finite CCS in previous
chapters. The summary takes us as far as reaction for CCS. Thesorting disciplineΣccs

was given in Definition 6.5, and the rule-setRccs consists of the single rule given in

103

104 CHAPTER 10. BEHAVIOURAL THEORY FOR CCS

Example 8.1. Together, these define the abstract BRS

BGccs
def
= BG(Σccs,Rccs) .

We then amplify the summary, by proving that the translationof CCS into bigraphs as
completely accurate; in particular, that it respects structural congruence.

Syntax for finite CCS (Definition 6.3)

P, Q range overprocessesandA, B overalternations(sums).

processes P ::= A
∣∣ νxP

∣∣ P |P
alternations A ::= 0

∣∣ µ.P
∣∣ A+A

actions µ ::= x
∣∣ x .

Structural congruence (Definition 6.4)

Structural congruence is the largest equivalence≡ preserved by all term constructions,
and such that

(1) P ≡α Q impliesP ≡ Q, and A ≡α B impliesA ≡ B;
(2) | and+ are associative and commutative under≡, andA + 0 ≡ A;
(3) νxνyP ≡ νyνxP ;
(4) νxP ≡ P and νx (P |Q) ≡ P | νxQ for anyx not free inP ;
(5) νx (A+µ.P) ≡ A + µ.νxP for anyx not free inA or µ.

Sorting discipline (Definition 6.5)

The CCS place-sortingΣccs has sortsΘccs = {p, a} and signature

Kccs = {alt : (p, 0), send : (a, 1), get : (a, 1)} .

Σccs is hard for sortp (Definition 6.2), and also requires that

all children of a rootr : θ have sortθ, and
all children of a nodev : θ have sort opposite toθ.

Translation to bigraphs (Definition 6.6)

The translation of finite CCS into BGccs maps processes and alternations respectively
into ground homsets with unary interfaces of the form〈p, X〉 and〈a, X〉. The maps
PX [·] andAX [·] are defined for arguments whose free names are included inX :

AX [0] = X | 1
PX [A] = alt.AX [A] AX [x.P] = sendx.PX [P] (x ∈ X)

PX [νxP] = /y ◦Py⊎X [{y/x}P] AX [x.P] = getx.PX [P] (x ∈ X)
PX [P |Q] = PX [P] | PX [Q] AX [A+B] = AX [A] | AX [B] .

10.1. SYNTAX AND REACTIONS FOR CCS IN BIGRAPHS 105

Bijection of the translation (Theorem 6.7)

(1) The translationsPX [·] andAX [·] are surjective on prime ground homsets.

(2) P ≡ Q iff PX [P] = PX [Q], and A ≡ B iff AX [A] = AX [B].

Safeness of CCS sorting (Proposition 6.9)

Σccs is a safe sorting.

Parametric reaction for CCS (Example 8.1)

xR′R
x

alt alt

0

1

2

3

getsend

10

x | d0 | d2alt. (sendx.d0 | d1) | alt. (getx.d2 | d3)

This parametric reaction rule(R, R′, η) is the only reaction rule for CCS in bigraphs.
The controls ‘alt’, ‘ send’ and ‘get’ are all declared to be passive. The parametric redex
R = alt. (sendx | id) | alt. (getx | id) has four sites, to be filled by arbitrary parame-
tersd0, . . . , d3. Sites0 and2 are for processes, and sites1 and3 are for alternations
(summations). The reactumR′ = x | id | id has two sites, to be filled by parameters as
dictated by the instantiation mapη, represented by back-pointing arrows. The placing
of parameters is also shown by the algebraic expression. Parameters1 and3 of R are
discarded by the rule.

This concludes our summary of work from previous chapters. We now amplify it
by proving the structural accuracy of the CCS translation, claimed in Theorem 6.7.

Let us first give more detail of the proof of the theorem. Concerning the structural
congruence laws note that clauses 4 and 5, taken in reverse, allow a restrictionνx to
be pulled outwards from any parallel component and any summand respectively. This
gives rise to the following:

Proposition 10.1 (CCS normal form) Every CCS process is structurally congruent
to a normal formνx1 · · · νxk P (k ≥ 0), whereP is anopen process formcontaining
each namexi free. Open process forms are defined recursively as follows:

• anopen process formis a process termP1 | · · · |Pm (m > 0), where eachPj is
an open sum form;

• an open sum formis a summation termA1+ · · ·+An (n ≥ 0), where eachAk

takes the formµ.P for some open process formP .

Normal forms are helpful in the following:

106 CHAPTER 10. BEHAVIOURAL THEORY FOR CCS

EXERCISE 10.1 (not needed for what follows) Prove Theorem 6.7. Here is an out-
line, with suggestions on how to complete it.

(1) We have to prove that the translationPX [·] is surjective on the homsetǫ→〈p, X〉,
and thatAX [·] is surjective onǫ→〈a, X〉. Every well-sorted agent in these homsets
can be built from smaller ones. (For example, a non-basic agent of sorta is built either
from two others by merge product, or from an agent of sortp by nesting.) This allows
one to prove, by induction on the size (number of nodes) of an agent, that there is
always a CCS process or alternation that translates into it.More specifically, one first
proves the following for allopenagents, by induction:

for all open agentsg : ǫ→〈p, X〉 there existsP for whichPX [P] = g, and
for all open agentsf : ǫ→〈a, X〉 there existsA for whichAX [A] = f.

The basis of the inductive proof is that there exists a CCS alternation (which one?) that
translates into the unit1 : ǫ→〈a, X〉. The inductive step is that, as you make a bigger
agent (of sortp or a) either by adding a single node or by forming a merge product,
you can each time find a CCS process or alternation that translates into it.

Having done this proof for open agents, finish by showing thatevery agent with
closedlinks (formed by closure, of course) is also the translationof a CCS agent.

(2) The forward implication needs a lemma which can be provedby induction on the
structure of process normal forms:

Lemma P ≡α Q impliesPX [P] = PX [Q] , and
M ≡α N impliesAX [M] = AX [N] .

Then the main property can be proved by a similar induction. You may wish to prove
the main property first, assuming the Lemma (which is harder).

For the reverse implication the task can be reduced to proving the property by
induction on the structure of ground bigraphs. An importantstep is to show in bigraphs
that if ai (i ∈ m) and bj (j ∈ n) are ground molecules such thata1 | · · · | am =
b1 | · · · | bn, thenm = n, andai = bπ(i) for some permutationπ onm. �

Having established the structural accuracy of the translation, we turn to dynamics.
Finite CCS has the single reaction rule

(x.P + A) | (x.Q + B) −→ P |Q ,

which may be applied anywhere not under an action prefix. On the other hand in BGccs

we have the single reaction rule from Example 8.1. It is easy to demonstrate that there
is an exact match between the reaction relations generated in CCS and in BGccs, in the
following sense:

Proposition 10.2 (comparing reaction)P −→ P ′ iff PX [P] ⊲PX [P ′] .

10.2. TRANSITIONS FOR CCS IN BIGRAPHS 107

10.2 Transitions for CCS in bigraphs

So far all our work has been done in the abstract BRS BGccs, especially in characteriz-
ing its reactions. We are now ready to conduct the three-stepprocedure defined at the
end of Chapter 7, in order to develop the behavioural theory of BGccs.

For step (A) we define the concrete BRS

`BGccs
def
= `BG(Σccs, `Rccs) ;

this is just the s-categorỳBG(Σccs) equipped with the reaction rules`Rccs, which are
all lean preimages of the single abstract rule ofRccs under the lean-support quotient
functor[[·]].

As step (B) of the procedure we definePE the prime engaged contextual transition
system (Definition 8.15), and assert that:

Corollary 10.3 (concrete bigraphical bisimilarity for CCS) The bisimilarity∼PE in
`BGccs is a congruence.

Proof The result depends on the proof that the CCS redex is tight; see Exercise 3.4.
After that it is straightforward to check that`BGccs is nice Definition 8.18, and that
the agents ofPE are hard;Σccs ensures the latter. The result then follows from the
faithfulness theorem, Theorem 8.19. �

This completes step (B). For the final step (C) we transfer thetransition systemPE

to the abstract BRS BGccs, as dictated by Definition 7.22. We would like to know that
this yields a transition system whose bisimilarity is againa congruence. Let us use
the termPE both for the concrete transition system and for its abstractimage under the
quotient by[[·]], and let∼PE denote the bisimilarity in both cases. Then, because of nice-
ness, finally by Corollary 8.20 we deduce congruential bisimilarity in our bigraphical
representation of CCS:

Corollary 10.4 (abstract bigraphical congruence for CCS)

(1) Two processes are bisimilar (∼PE) in BGccs iff their concrete pre-images are
bisimilar in `BGccs.

(2) ∼PE is a congruence inBGccs.

This completes our procedure for deriving a transition system and behavioural con-
gruence for CCS. We devote the rest of the chapter to an analysis of this congruence.
This is necessary partly because the original bisimilarityfor CCS was a congruence in
a weaker sense than ours, and partly because we wish to refine our derived transition
system, to make it more economical without losing its bisimilarity.

We begin with a structural analysis of the transitions inPE, recalling that —in their
concrete form iǹBGccs—they are engaged.

108 CHAPTER 10. BEHAVIOURAL THEORY FOR CCS

Notation Hitherto we have writtenλ ◦G in applying a linking to a bigraph, thus
emphasizing that linkings are bigraphs in their own right. From now on in this chapter
we shall abbreviate this composition toλG. For example, the reactum in case 4 of
Figure 10.1 is/Z ◦ y/x ◦ · · · . To save parentheses we also assume such compositions
bind more tightly than a product; thusλG |F means(λ ◦G) |F . �

The transitions ofPE are tabulated in Figure 10.1, and we now explain them. The
algebraic expressions can be interpreted either in the abstract BRS or (with support
understood) in the concrete one. Every prime transitionp L

⊲ p′ arises from a ground
rule (r, r′) with redex

r = alt. (sendx.d · ·) | alt. (getx.e · ·)

where ‘· ·’ stands for any further factors in a discrete merge product,and the pair(p, r)
has(L, D) as an IPO, withD active. Alsop shares at least one of the nodes of the
underlying parametric redexR—the twoalt-nodes, thesend-node and theget-node.
Sincep has sortp, if it shares thesend-node then it must also share the parentalt-node;
similarly if it shares theget-node. So there are two sharing possibilities:

• p shares both nodes in one factor ofR but none in the other;

• p shares all four nodes ofR.

The former divides clearly into two symmetric cases. The latter also divides into two
cases; either thesend- andget-ports are joined by a closed linkx, or they belong to
different open links. This explains why the figure has four cases.

p : I L : I→ J p′ :J condition
1 /Z(alt.(sendx.a · ·) | b) idI | alt.(getx.c · ·) /Z(a | b) | c x /∈ Z

2 /Z(alt.(getx.a · ·) | b) idI | alt.(sendx.c · ·) /Z(a | b) | c x /∈ Z

3
/Z(alt.(sendx.a0 · ·)
| alt.(getx.a1 · ·) | b)

idI /Z(a0 | a1 | b) none

4
/Z(alt.(sendx.a0 · ·)
| alt.(gety.a1 · ·) | b)

y/x
/Z y/x

(a0 | a1 | b)
x 6= y;
x, y /∈ Z

Figure 10.1: The four forms for a transitionp L
⊲ p′ in PE

We show the structure ofp, L andp′ in each case, taking account of the fact that
anyalt-node shared withR must occur actively inp. In the tablea, b, c, . . . stand for
any processes (c discrete), and ‘· ·’ stands for zero or more factors in a merge product;
in the labels of cases 1 and 2 this product must be discrete. Ineach rule, the factor
| b may also be absent. According to our convention for substitutions,y/x here is in

10.2. TRANSITIONS FOR CCS IN BIGRAPHS 109

the homset〈p, X〉→〈p, Y 〉, whereY = (X \ x) ∪ y; its link map sendsx to y and is
otherwise the identity.

The reader will note that the expressions for labels in our table areparametric. For
example in case 1, even for fixedp, there is a family of labelsL, according asc and
the unspecified factors ‘· ·’ vary. Moreoverc reappears in the reactump′, whereas the
factors ‘· ·’ are discarded. Parametric labels arise naturally when labels are contexts.
But as we shall see shortly, in this case the transition system PE can be further reduced
to a faithful one whose labels are not parametric.

We now embark on an analysis of these transitions. We shall need to establish a
promised property. Recall from Definition 6.5 thatnil

def
= alt.1.

Proposition 10.5 (unit for merge product) p ∼PE p | nil .

Proof We shall prove the following relation to be a bisimulation:

S
def
= {(p, p | nil) | p an agent} .

Assume the transitionp L
⊲ p′. Then the pair(p, p′) matches the forms in one of the

four cases of the figure. In each case, if we replaceb by b | nil then we obtain a transition
p | nil ⊲ p′ | nil, and we also have(p′, p′ | nil) ∈ S so we have matched the assumed
transition while remaining inS.

In the other direction, assume the transitionp | nil
L

⊲ p′′. Then, in all four cases
of the figure, we find thatb takes the formb′ | nil andp′′ takes the formp′ | nil. Then by

replacingb by b′ we find thatp L
⊲ p′; again we have matched the assumed transition

while remaining inS. This completes the proof. �

We are now ready to compare our derived transition system with the original CCS
transitions. They areraw transitions, using the non-contextual labels

ℓ ::= x
∣∣ x

∣∣ τ

where the first two represent sending and receiving a message, andτ represents a com-
munication within the agent. Rather than reverting to CCS syntax, we set up the transi-

tionsp
ℓ
−→ p′ of this raw system directly in BGccs; this will ease our comparison. The

agents and label of each transition are characterized in Figure 10.2. This raw system
determines a bisimilarity which we shall denote by∼ccs.

EXERCISE 10.2 Prove thatp ∼ccs p | nil. Hint: As in Proposition 10.5, show that
S

def
= {(p, p | nil) | p an agent} is a bisimulation for the raw transition system. �

It can be seen that the raw transitions of Figure 10.2 correspond closely to the first
three forms shown in Figure 10.1; the notable difference is that, in the first two forms,
the contextual labelL is composed with the agentp , and the resultp′ of the transition
is therefore larger than for the raw transitions.

However, no raw transition corresponds to the fourth (substitution) form of Fig-
ure 10.1. This relates to the fact that the original CCS bisimilarity is not preserved by

110 CHAPTER 10. BEHAVIOURAL THEORY FOR CCS

p ℓ p′ condition
1 /Z(alt.(sendx.a · ·) | b) x /Z(a | b) x /∈ Z

2 /Z(alt.(getx.a · ·) | b) x /Z(a | b) x /∈ Z

3
/Z(alt.(sendx.a0 · ·)
| alt.(getx.a1 · ·) | b)

τ /Z(a0 | a1 | b) none

Figure 10.2: The three forms for a raw CCS transitionp
ℓ
−→ p′

substitution. Let us definePEm to bePE (Figure 10.1) without the substitution labels.
The subscriptm stands for ‘mono’, because all the labels except the substitution label
are mono. Call the weaker bisimilarity forPEm mono bisimilarity, and denote it by∼m.
The above remarks suggest that∼m should coincide with the original CCS bisimilarity.
We now verify this claim; the proof is in Appendix A.7.

Theorem 10.6 (recovering CCS)Mono bisimilarity recovers CCS, i.e.∼m = ∼ccs.

The proof of this theorem can be interpreted either in the concrete`BGccs or in the
abstract BGccs. This is natural in view of Theorem 7.23, which relates the concrete
and abstract bisimilarities closely. The same is holds for Theorem 10.7 below, which
asserts another coincidence of bisimilarities. In general, we have worked in a concrete
BRS to establish behavioural equivalence as a congruence, which we have transferred
to the abstract BRS by Theorem 7.23 under the stated conditions.

Let us examine the contextual transition systemPE more closely. The raw CCS
transition system is simple by comparison; a raw label such asx is much less cumber-
some than the corresponding contextual labelidI | alt.(getx.c · ·). The latter involves
categorical notation, but more seriously it is doubly parametric—bothc and·· are pa-
rameters. Can this parametric family of labels be replaced by a single contextual label,
while remaining faithful toPE?

This is indeed possible. We define the contextual transitionsystemPE as shown in
Figure 10.3. The only differences from Figure 10.1 are the simpler labels in cases 1
and 2, and the corresponding omission ofc from p′. The corresponding system without
the fourth case isPEm. Let us denote the bisimilarities forPE andPEm by≃ and≃m

respectively.
We shall now show thatPEm is faithful to PE, i.e. that≃m = ∼m. (The proof can

easily be extended to showPEm faithful to PE). Although PE is faithful to MT, the
reduction of transitions in the two cases is different. In moving from MT to PEwe omit
certain transitions (the disengaged ones) each of which is redundant in itself; in moving
from PE to PE we replace a uniformly definedfamilyof transitions by a single one.

Theorem 10.7 (non-parametric transitions are faithful) ≃m = ∼m.

Proof (outline) We know that∼m = ∼ccs, so it is enough (and simplest) to prove
that≃m = ∼ccs. We leave this as an exercise. �

10.2. TRANSITIONS FOR CCS IN BIGRAPHS 111

p : I L : I→ J p′ : J condition
1 /Z(alt.(sendx.a · ·) | b) idI | alt.getx.nil /Z(a | b | nil) x /∈ Z

2 /Z(alt.(getx.a · ·) | b) idI | alt.sendx.nil /Z(a | b | nil) x /∈ Z

3
/Z(alt.(sendx.a0 · ·)
| alt.(getx.a1 · ·) | b)

idI /Z(a0 | a1 | b) none

4
/Z(alt.(sendx.a0 · ·)
| alt.(gety.a1 · ·) | b)

y/x
/Z y/x

(a0 | a1 | b)
x 6= y;
x, y /∈ Z

Figure 10.3: The four forms for a transitionp L
⊲ p′ in PE

EXERCISE 10.3 Prove the theorem. AsPEm is almost identical with the raw CCS
system, the proof is simpler than the proof of Theorem 10.6.Hint: It may help to
prove first thatp ≃m p | nil. �

Having successfully matched mono bisimilarity∼m to original CCS, we naturally
ask the question: how well does our derived congruence agreewith congruences previ-
ously proposed for CCS? The original proposed congruence, which we shall call∼c

ccs,
was defined simply as the largest congruence included in∼ccs. Since∼ccs is preserved
by all CCS operations,∼c

ccs was characterized as follows:

P ∼c
ccs Q

def
⇐⇒ for all substitutionsσ, σP ∼ccs σQ .

Another candidate isopen bisimilarity, which is the smallest relation∼o
ccs such that,

for all substitutionsσ,

if P ∼o
ccs Q andσP

ℓ
−→P ′, thenσQ

ℓ
−→Q′ andP ′ ∼o

ccs Q′ for someQ′.

This is known to be strictly finer than∼c
ccs. How does it compare with∼, our derived

congruence? Both are coinductively defined, so it is easy to prove that∼ is at least as
fine as∼o

ccs, i.e.∼ ⊆ ∼o
ccs. In fact this inclusion is again strict. A counter-example to

equality is provided by the pair

P = νz((x + z) | (y + z)) Q = νz((x.y + y.x + z) | z)

where we abbreviateµ.0 toµ. This pair illustrates an interesting point. When translated
into BGccs, P has a transition labelledx/y; this can be seen as an ‘observation’ by the
environment ofP that, by connecting thex-link with they-link, it enables a transition
of P that was previously impossible. On the other hand,Q has no such transition; so
P 6∼ Q. But the raw transition system lacks such precise ‘observations’, and indeed
P ∼o

ccs Q.
This concludes our study of bigraphs applied to CCS, which has revealed consid-

erable agreement with its original theory.

112 CHAPTER 10. BEHAVIOURAL THEORY FOR CCS

PART III : DEVELOPMENT

Chapter 11

Further topics

In this chapter we suggest some natural lines of developmentfor bigraphs. These lines
have usually been explored to some extent, without reachinga uniquely best treatment.

11.1 Tracking

S-categories, with their notion of support, allow us to identify the elements occurring
in a bigraph. This has enabled us to derive labelled transitions, and thence to define
congruential behavioural relations. Hitherto we have usedsupport only to identify
elements statically, not to track them through reaction. Byclosing the reaction relation
g ⊲ g′, and similarlyg ⊲ı̃ g′, under independent support translations ofg andg′,
we forget the history of the elements ofg′, e.g. its nodes; they could be inherited from
g or they could be newly created.

Let us now see how to track support along a sequenceg1 ⊲ g2 ⊲ · · · of re-
actions. Suchtracking1 allows us to express historical properties of behaviour. For
example, consider a reaction sequenceg ⊲∗g′; if a support element ofg′ can be
tracked back tog this may have significance. It means that an individual component (a
node or edge) ofg still exists ing′, and may be said to be part of the cause of a further
reactiong′ ⊲ g′′. Let us look at two reaction rules that might employ tracking.

N
M

N

(1)

A R
A

R
copy

(2)

N
M

1The word ‘trace’ may be preferred to ‘track’, but it is already overloaded. In process theory, ‘trace’
means something like a sequence of elementary observations, while in category theory it refers to a kind of
loop-formation in spm categories.

115

116 CHAPTER 11. FURTHER TOPICS

In rule (1), which appeared in Chapter 1, we may wish to track the identity (i.e. support
node) of both the agentA and the roomR. This is necessary if we wish to express a
historical statement like “thisagent has visitedthis room”. We would also like to track
the parameter of the rule—i.e. whatever occupies the shadedsquare in any particular
application of the rule.

In the redex of rule (2), a ‘copy’ command refers to a memory registerM. Provided
that the register contains anN-atom, the effect of the command is to replace itself and
its current contents by a copy of the contents of the register. In this case we ‘lose track’
of the copy command and all its contents (they vanish), but wemay wish to track the
register, and also both copies of all its contents. This is a case where two later support
elements are tracked back to a single earlier one; this phenemenon is calledresiduation
in theλ-calculus and more generally in term-rewriting systems.

In these examples, the support of a node was always tracked toa node with the
same control. But this is not always what we want. A simple example is in Petri nets,
as modelled in Example 6.13; to express a historical property such as reachability, e.g.
“ this marking is reachable fromthat one”, we have to track the support of each con-
dition node, whose control varies betweenM (marked) andU (unmarked). Of course
every reaction in a Petri net leaves the net unchanged, ignoring marking; so in that case
we expect the reaction rules to track each node in the reactumto the corresponding
node in the redex.

We propose a revision of the definition of reaction to expresstracking. First we
adapt Definition 7.1 to admit ground tracking reaction rulesover an s-category:

Definition 11.1 (ground tracking) A basic tracking reactive system̀C(`R) is an s-
categorỳC equipped with a set`R of ground reaction rules of the form(r : I, r′ : I, τ),
where thetracking mapτ : |r′| ⇀ |r| is a partial map of supports.`R is closed under
support translations on the supports of a redex and reactum,in the following sense: For
any rule of the given form, and any support relationsρ andρ′ on r andr′ respectively,
there is also a rule(ρ �r, ρ′ �r′, ρ ◦τ ◦ (ρ′)−1) .

We define thetracking reaction relationa ⊲σ a′ to mean thata = D ◦ r and
a′ = D′ ◦ r′ for some tracking rule(r, r′, τ), whereD = ρ �D′ andσ = τ ⊎ ρ. If σ(s)
exists for a support elements ∈ |a′| , then we calls a residualof σ(s). �

Note that the tracking mapτ in a rule is many-one; this allows for the possibility
that factors of a redexr may be replicated by the rule and other factors discarded.
Also, although we still allow arbitrary support translation of r andr′, as in Chapter 7,
the definition takes care to vary the tracking map accordingly. Finally, in defining
the tracking relation, we ensure that support in the contextis tracked by a support
translation fromD to D′.

We now adapt Definition 8.5 toparametrictracking reaction rules:

Definition 11.2 (parametric tracking) A parametric tracking reaction rulefor bi-
graphs is a quadruple of the form

R = (R : m→J, R′ : m′→ J, η, τ) ,

11.2. GROWTH 117

as in Definition 8.5 but with fourth component atracking mapτ : |R′|⇀ |R|, a partial
map of supports. The rule generates all ground tracking rules of the form

(R.d, R′.d′, τ ⊎ σ)

whered = d0 ⊗ · · · ⊗ dm−1 is a discrete parameter,d′ = d′0 ‖ · · · ‖ dm′−1 is the
instance ofd defined byρj �d′j = dη(j) for eachj ∈ m′, andσ = ρ0 ⊎ · · · ⊎ ρm′−1 .

A tracking BRS̀ BG(Σ,`R) has a set̀R of tracking rules closed under support
translation as in Definition 11.1. �

In connection with tracking, let us briefly examine a refinement of reaction rules
that has been studied for many years in the graph-rewriting community, but has so
far been ignored in bigraphs. It consists in identifying a part of a parametric redex
that remains unchanged in the passage from the redex to the reactum. Let us call it a
contextualreaction rule, and represent the unchanged part by a contextC. Ignoring
tracking, a simple form of contextual rule is

(C : J→K, R :m→ J, R′ : m′→ J, η) .

In generating ground reaction rules the pair(C ◦R, C ◦R′) is treated just as previously
the pair(R, R′) was treated. Such explicit contexts allow a finer analysis ofthe possible
conflict between two rule applications within an agentg. Hitherto, two redexes that
overlap would be regarded as conflicting; but if the rules arecontextual, and only their
contextual parts overlap, then they need not be regarded as conflicting, since one of the
reactions will not preclude the other.

Now, taking tracking into account, in a reaction by a rule with contextC we would
naturally track the support ofC by a bijective tracking map, i.e. by a support translation.
We leave the details as an exercise.

EXERCISE 11.1 Adapt Definition 11.2 to contextual rules, ensuring that thecontext
is tracked through reaction. Express rule (1) in the preceding diagram so that the room
R is treated as context. �

11.2 Growth

So far all sets of elements in a bigraph—its nodes, edges, names, roots, and sites—are
assumed to be finite. In some cases there is good reason; for example, RPOs do not
exist if an interface may have an infinity of names or places. There is less reason for
the node-set or edge-set to be finite; but also, there is advantage in having it finitely
generated in some sense.

Consider structural congruence in CCS. A standard way to represent recursive
definition in CCS has been to introduce a set—even infinite—ofprocess identifiers
A, B, . . ., and to define their meaning by structural congruence axiomsof the form

A(x, y, . . .) ≡ PA

118 CHAPTER 11. FURTHER TOPICS

wherex, y, . . . are name parameters andPA a process with free names amongx, y,
PA may also contain ‘recursive calls’ of the processesA, B, Thus process defini-
tions are treated as rules of structural congruence, and understood as defining the way
a process expression maygrow, or unfold, ad infinitum.

In Chapter 10 we presented all the rules for structural congruence in CCS, apart
from process definitions; under translation of finite CCS into bigraphs, these rules turn
into equalities. Taking the hint from CCS, can we then treat process definitions by im-
posing structural congruence upon bigraphs themselves? And are there other uses for
the infinite bigraphs defined by unfolding these definitions?We now begin to investi-
gate this question. The theory appears elegant and convincing, enough to conjecture
that it will help to integrate the treatment of process calculi.

Definition 11.3 (germination) A germination ruleis a pair(K~x, gK) whereK~x is a
discrete atom andgK : 〈1, {~x}〉 a lean epi ground bigraph. We callK a seed.

Given a concrete BRS̀C, let ∆ be a set of germination rules each with a distinct
seed not in the signature of`C. We assume∆ to be closed under support equivalence.
Extend the signature of`C by the seeds, declaring them atomic. Denote the result by
`C(∆); call it a growingBRS. The same applies to an abstract BRS, omitting closure
under≏.

Thegermination relation֒→∆ on bigraphs is determined as follows:G →֒∆ Ĝ if
G = C ◦ (id⊗ K~x) andĜ ≏ C ◦ (id⊗ gK) for some(K~x, gK) ∈ ∆ and contextC. �

Thus germination replaces a seedK occurring inG by gK to formĜ. We shall drop the
subscript∆ from →֒ when it is understood. The following depends on the fact thattwo
germinations inG either arise from the same rule or occur disjointly:

Lemma 11.4 If G →֒ G0 andG →֒ G1, then eitherG0 ≏ G1 or there existŝG such
thatG0 →֒ Ĝ andG1 →֒ Ĝ.

We now define an ordering and equivalence based upon germination:

Definition 11.5 (growth order, equivalence) Thegrowth order≤∆ andgrowth equiv-
alence≡∆ are essentially the transitive reflexive closure, and the symmetric transitive
reflexive closure, of germination. To be precise:

(1) ≤∆
def
= (→֒ ∪ ≏)∗

(2) ≡∆
def
= (→֒ ∪ ←֓ ∪ ≏)∗ . �

Again, we shall drop the subscript∆ when understood.
In what follows a hat—as in̂A—will always mean a growth, while a prime as inA′

will always mean the result of a reaction or transition.(F0, F1, . . .) ≤ (G0, G1, . . .)
meansFi ≤ Gi for all i, andF ≤ G, H meansF ≤ G andF ≤ H .

The following properties of≤ are essential:

Proposition 11.6 (congruence, confluence, independence)

(1) Growth≤ is congruential: ifF ≤ G thenF ◦H ≤ G ◦H , H ◦F ≤ H ◦G and
F ⊗H ≤ G⊗H . Similarly for the equivalence≡.

11.2. GROWTH 119

(2) Growth is confluent: ifG ≤ G0, G1 then there existŝG such thatG0, G1 ≤ Ĝ.

(3) The parts of a composition or product grow independently: if E ◦F ≤ G, then
G = Ê ◦ F̂ for someÊ, F̂ such that(E, F) ≤ (Ê, F̂). Similarly for product.

We now begin to justify the claim that growth respects dynamics. We shall therefore
be concerned mainly with ground bigraphs.

Assumptions In this development we shall relax the assumption adopted inDefini-
tion 8.5 that the parameterd of a parametric reaction is discrete. For in a ground redex
r = R.d, althoughR cannot contain seeds,d may contain them; when one of them is
germinated we haved →֒ e which may be non-discrete, Thenr →֒ R.e, and we may
wishR.e to be a ground redex underlying a transition.

Instead, we make the weaker assumption that a parameterd should be lean and epi;
if d →֒ e thene will also be lean and epi, by our assumption on germination rules.
Since discreteness of parameters was useful in Chapter 8 forour dynamic theory, we
leave it open how far that theory needs revision in the presence of growth.

We also assume that reaction rules are affine; this allows us to prove Proposi-
tion 11.7, on which later results depend.2

We now assert that, under our assumptions, growth does not prevent reaction. This is
because no seed occurs in a parametric redex. Formally:

Proposition 11.7 (growth preserves reaction)In a growing BRS with affine rules, if
f ⊲ f ′ andf ≤ g, theng ⊲ g′ for someg′ such thatf ′ ≤ g′.

Moreover growth can enable reaction, since it can create a redex. To reflect this we
define a more permissive reaction relation:

Definition 11.8 (growing reaction) Let us use ⊲⊲ , with a double arrow head, to
denotegrowing reaction, which we define as follows:

f ⊲⊲ f ′ iff g ⊲ g′ for someg, g′ such that(f, f ′) ≤ (g, g′) . �

The idea is to allowf to grow in order to enable a reaction. Clearly ⊲⊲ ⊇ ⊲ .
Growing reaction behaves well:

Proposition 11.9 (growing affine reaction)

(1) If f ⊲⊲ f ′ andD is active thenD ◦f ⊲⊲ D ◦f ′ whenever defined.

(2) If f ⊲⊲ f ′ andf ≤ g, theng ⊲⊲ g′ for someg′ such thatf ′ ≤ g′.

EXERCISE 11.2 Prove this.Hint: For (2) use confluence with Proposition 11.7.�

2An alternative assumption would be that the resultgK of a generation is open, i.e. contains no closed
links. In binding bigraphs, whereboundlinks are possible in an open bigraph, this assumption will be less
of a constraint.

120 CHAPTER 11. FURTHER TOPICS

A good way to think of growing reaction (⊲⊲) is that it represents the ordinary
reaction relation but executed on fully grown bigraphs (possibly infinite), which contain
no generators. Essentially, these represent the equivalence classes of≡∆.

An obvious question is whethergrowing transitionsbehave well. We shall answer
this by showing that, when defined in a natural way, the minimal ones do indeed induce
a congruential bisimilarity.

Definition 11.10 (growing transition) A quadruple(f, (L, ı̃), f ′), writtenf L
⊲⊲ı̃ f ′,

is agrowingtransition if there exists a transitiong M
⊲ı̃ g′ with (f, L, f ′) ≤ (g, M, g′).

It is minimalif the transition ofg is minimal.
Denote by≃ the bisimilarity induced by the minimal growing transitions.

How does growth relate to IPOs? It is rather easy to see that if~A ≤ ~B then there may
be no IPO for~A even if ~B has an IPO; indeed,~A may not even have a bound. However,
crucially, IPOs are preserved by growth. We now make this precise.

Lemma 11.11 In concrete bigraphs, assume that~B is an IPO for ~A, and that an open
atoma : I occurs inA0. Replace this atom in both~A and ~B with an epi ground bigraph
g : I whose support is fresh. Then the result is an IPO(B0, B̂1) for (Â0, Â1), such that
(A0, A1, B1) ≤ (Â0, Â1, B̂1).

A0

B0 B1

id

C1

A1

C0

C0
C1id

id id

id⊗a
id⊗a

C

DB0

A1
A0

B1

id⊗a

A1⊗id id⊗a

Proof Under the assumption there are two possibilities: eithera occurs inA0 and
A1, or it occurs inA0 andB1. (Note that it cannot occur inB0.)

In the first case we haveA0 = C0 ◦ (id ⊗ a) and A1 = C1 ◦ (id ⊗ a); in the
second caseA0 = C ◦ (id ⊗ a) andB1 = D ◦ (id ⊗ a). Sincea is epi, and hence
id ⊗ a is epi, these decompositions are uniquely determined. Since a is also open, by
Proposition 5.19 and Corollary 5.21 the main IPO can be resolved into four and two
IPOs respectively, as in the diagrams.

Now, replacea by g in these diagrams, forminĝA0, Â1 andB̂1. Sinceg is epi,
the squares containinga remain IPOs wheng replacesa; so in each case the new full
diagram represents an IPO satisfying the required condition. �

EXERCISE 11.3 State where the assumption thata is open and epi is needed, in
building these IPO diagrams. �

11.2. GROWTH 121

Proposition 11.12 (growth preserves idem-pushouts)Let ~A have an IPO~B. Let
A0 ≤ Â0 and |Â0|#|B0|. Then there exist̂A1, B̂1 such that(A1, B1) ≤ (Â1, B̂1)

such that(Â0, Â1) has IPO(B0, B̂1).

Proof We know this holds when≤ is replaced by≏. So since≤ = (→֒ ∪ ≏)∗, we
need only prove it for֒→. This is immediate by Lemma 11.11, since in applying the
lemma we takea to be a seed, i.e. a discrete atom, which is both open and epi.�

We now apply these results. The following is immediate from Proposition 11.12:

Corollary 11.13 (growth preserves transition) If f L
⊲ı̃ f ′ andf ≤ g with |g|#|L|,

theng L
⊲ı̃ g′ for someg′ such thatf ′ ≤ g′.

Let us now turn to the ‘growing bisimilarity’≃. It turns out that the two bisimilar-
ities are incomparable, as the following shows:

Example 11.14 (incomparable bisimilarities)Consider an example in place graphs.
Let K andL be distinct atomic controls, andM a passive control. Let(K, M.K) be a
germination rule and(M, id) a reaction rule; thus we have

K →֒ M.K and M.e ⊲ e

for all parameterse. Then∼ and≃ are incomparable. For on the one hand we have
K ∼ L butK 6≃ L; on the other hand we haveK 6∼ M.K butK ≃ M.K.

This can be understood as follows. In the first case∼ allows no growth soK andL

are indistinguishable, while≃ allows growth ofK, enabling a distinction. In the second
case, the lack of growth in∼ means that the reaction rule can apply toM.K but not to
K, while≃ allows growth and thus removes the distinction. �

EXERCISE 11.4 Prove these assertions, at least in terms of engaged transitions. You
may assume that non-engaged transitions play no part in the argument. �

Despite this disagreement, bisimilarity for growing transitions seems the natural
way to represent the behavioural equivalence of infinite bigraphs. To reinforce the
intuition, we now show that this bisimilarity is preserved by all contexts.

Theorem 11.15 (congruence of growing bisimilarity)Let a0 ≃ a1. ThenC ◦a0 ≃
C ◦a1 for all contextsC with the compositions defined.

EXERCISE 11.5 Prove the theorem.Hint: Follow the proof of Theorem 7.16 as
closely as possible, but move back and forth between growingtransitions and standard
ones. For this purpose you need Definition 11.10 and also Proposition 11.12. �

It is worth noting that the proof of this theorem, just as the proof of Theorem 7.16, uses
no special features of bigraphs; it therefore holds for widereactive systems in general.3

A next step is to investigate parametric germination; that is, when the seedK~x is an
ion, and germination takes the formK~x.e →֒ g whereg may contain the parametere.
If so, it can represent not only recursive definition (e.g. inCCS), but also replication in
theπ-calculus, which is often expressed as a structural congruence!P ≡ P | !P .

At this point we leave the study of growth for future work.
3Certain assumptions are needed; for example, that growth ina compositionC ◦ a occurs independently

in C and ina.

122 CHAPTER 11. FURTHER TOPICS

11.3 Binding

Hitherto we have studied onlypure bigraphs, in which placing and linking are inde-
pendent structures over a set of nodes. We have exploited this independence in formal
definitions and in the development of theory. But we wish alsoaccommodate useful
dependencies between placing and linking. In particular wemay wish to assume, or to
enforce, that certain links are confined to certain places. This is exactly what is meant
by the scope of a name in programming or process calculi. Thus

we may wish to confine the use of a link to within a place.

This corresponds to what is usually called thebindingof names. Binding has indeed
been successfully treated in various ways for bigraphs, andhas been applied to recover
the behaviour of theπ-calculus, just as the behaviour of CCS is recovered in Chapter 10
of this book, and also to encode a version of theλ-calculus. These experiments have
revealed what appears to be a unified treatment, which we now propose.

Binding In the current notion of signature we define node controls, each with an arity
and an attribute in the set{active, passive, atomic}. Let us now define a fourth value,
‘binding’, for this attribute. Controls with this attribute will be calledbinding controls.
This enriches a signature to become abinding signature.

For nodes, ‘binding’ implies ‘atomic with arity 0’. For any binding controlβ we
shall call aβ-node abinding. But we shall also treat a binding node as a kind of link;
so it is a hybrid between a node and a link. To give it this status we extend the range of
a link map to include bindings. Thus, points can be bound.

For this purpose, we assume that bindings are drawn from an infinite setB, disjoint
from namesX , nodesV and edgesE . A quasi-binding bigraphover a binding signature
K takes the form

G = (V, B, E, ctrl , prnt , link) : I→J

in which the extra componentB ⊂ B is a finite set of bindings. The control map is
extended toctrl : V ⊎B→K, assigning controls both to nodes and to bindings. Further,
let m, X andn, Y be the widths and names ofI andJ , and letP be the ports ofG.
Then the parent map and link map ofG take the form

prnt : m ⊎ V ⊎B→V ⊎ n
link : X ⊎ P→B ⊎ E ⊎ Y .

In diagrams we shall draw bindings as little hollow circles.If q is a point—i.e. an inner
name or port—andlink (q) = b, with β = ctrl(b), then we say thatβ or b bindsq . We
can already distinguish bindings from closed links (edges), as illustrated here:

11.3. BINDING 123

e

y

M M
β

y

an edgee has no locality

y

M
e

binding has locality

y

M β

In the left-hand diagrame is an edge linking two ports. It makes no difference how we
draw an edge, as long as it abuts on its ports, because an edge itself has no location.
But the right hand diagram shows a binding controlβ binding the same two ports, and
the location ofβ matters. For if theβ-binding lies inside theM-node then it can only
link ports that lie within that node. This will be enforced byour binding discipline.

EXERCISE 11.6 Adapt the definitions of place graphs and link graphs, Definitions 2.1
and 2.2, to admit the addition of a binding-setB. Then adapt the Definition 2.5 which
defines composition for both place graphs and link graphs, paying particular attention
to the equations defining theprnt andlink maps for composite bigraphs. �

We now turn our attention to the binding discipline. For any bigraphG (pure or
quasi-binding), let us writew inG w′ to meanw′ = prntk

G(w) for somek ≥ 0, i.e. the
placew is adescendantof the placew′ in G. We writew in w′, omitting the subscript
G, when there is no ambiguity. Then for quasi-binding bigraphs we definelocalities
for ports and bindings as follows.

Definition 11.16 (locality) Let G be quasi-binding, with nodesV and bindingsB.
Recall that the portsPv of a nodev ∈ V take the formp = (v, i) for i ∈ ar(v). Then
the localitiesof ports and bindings are defined as follows:

locport
def
= {(prnt(v), p) | v ∈ V, p ∈ Pv}

locbind
def
= {(prnt(b), b) | b ∈ B} . �

Thus withinG each port and binding has a unique place—a node or a root. The scope
discipline for binding controls will dictate that ifb bindsp then the place ofp must be a
descendant of the place ofb. But this is not all we need for our scope discipline; it must
also be preserved by composition and product. This implies that our present notion of
interface is too weak, as shown by the following example.

Example 11.17 (bad binding)Let F be a quasi-binding bigraph, whose inner face is
〈1, x〉 with x bound by a binding controlβ. LetG have outer face〈2, x〉, with x linked
to a port in each of the two regions ofG. Then the bigraph(F ⊗ id1) ◦G breaks our
discipline, as shown in the diagram. �

124 CHAPTER 11. FURTHER TOPICS

G K L

β
F

x
K L(F ⊗ id1) ◦G
β

why locality is needed

To exclude such cases we enrich interfaces as follows.

Definition 11.18 (binding interface) A binding interfacetakes the form

I = 〈m, loc , X〉

whereloc ⊆ m×X is a binary relation between places and names. If(i, x) ∈ loc we
say thatx is local (to i in I). Otherwisex is non-local(in I). �

It is sometimes easier to write〈m, loc , X〉 in the form〈(X0), . . . , (Xm−1), X〉, where
Xi are the names local to the regioni; thus

⋃
i Xi ⊆ X .

Before we define the scope discipline, let us describe the effect it will have on
Example 11.17. Since theβ-binding binds the inner namex, it will require x to be
local to the inner face ofF , so this inner face must be〈(x), x〉 (where we omit curly
brackets around singleton sets). In diagrams, we shall write a local name in parentheses
at each interface, soF will be drawn as follows:

F
β

(x)

Thus the inner face ofF ⊗ id1 will be 〈(x), (∅), x〉, locatingx at only one site. But the
scope discipline will require the outer face ofG to be〈(x), (x), x〉, sincex is used in
both regions ofG. This difference of interfaces prevents the composition ofF ⊗ id1

with G, so it destroys our example.
We now state thescope disciplinewhich a quasi-binding bigraph must satisfy to

qualify as a binding bigraph. Given a bigraph, let us usew to range over its places,
q over its points andℓ over its links. Roughly, the scope discipline demands that
descendance and linking are compatible with binding. This means that if a link is local
to a placew, then every point in the link is local to a place beloww. More formally:

Definition 11.19 (binding bigraph) Given a quasi-binding bigraphG : I→ J , define
the localities of its points and links as follows:

locpoint
def
= locI ⊎ locport , loclink

def
= locbind ⊎ locJ .

We say that the points inlocpoint , and the links inloclink , arelocal (in G). ThenG is
a binding bigraphif it obeys the followingscope discipline:

11.3. BINDING 125

• Wheneverℓ = link(q) and(w, ℓ) ∈ loclink , there existsw′ such thatw′ in w
and(w′, q) ∈ locpoint . �

locpoint
qw′

link

w ℓ

in

loclink

Composition for binding bigraphs is just as we defined it for quasi-binding bigraphs,
and the definitions of identities, unit, product and symmetries are obvious. It can then
be proved that

Theorem 11.20 (binding bigraph categories)The concrete binding bigraphs over
any binding signature form an s-category, and the abstract ones form an spm cate-
gory.

EXERCISE 11.7 Prove that in binding bigraphs the identities obey the scopedisci-
pline, and that both composition and tensor product preserve the discipline.Hint: Pay
attention to your adapted definition of composition in Exercise 11.6. �

It has also been shown that if every name in an interfaceI = 〈m, loc , X〉 has at most
one location, i.e.loc is a map fromX to m ⊎ {⊥} (whereloc(x) =⊥ means thatx is
non-local) then RPOs exist in these s-categories; hence labelled transition systems can
be derived. By this means, for example, theory for the pi calculus has been recovered.

Inward binding We have defined the scope of aβ-binding to be its parent place; we
may thus callβ anoutward bindingcontrol. But we may need binding nodes that bind
within themselves. By a simple sorting discipline, as in Section 6.1, thisinward binding
can be achieved by nesting a number of bindings inside an ordinary node. These can be
ordered by using binding controls(1), (2), If K has arityk and we equip aK-node
with h binding controls, then we have turned theK-node into an inward binding control
with a double arityh→ k. The diagram shows the caseh, k = 2, 3:

Bxyz(pq)

x y z x y z

def
=

(1) (2)
B B

(p)
(p)

(q)
(q)

Let us now illustrate binding in the encoding of the finiteπ-calculus. The basic
signature differs slightly from the one for encoding CCS, tocater for the passage of
names as data. The controls ‘send’ and ‘get’ controls, previously both with arity 1, now

126 CHAPTER 11. FURTHER TOPICS

have dual arities writtensend : 0→ 2 andget : 1→ 1. Thus ‘get’ becomes an inward
binding control. Recall that the reaction rule in theπ-calculus is written

(xy.P + A) | (x(z).Q + B) −→ P | {y/z}Q .

The diagram below represents this in binding bigraphs. Notehow the meta-syntactic
substitution ofπ-calculus is encoded by a substitution which is itself a bigraph; it
substitutes a non-local namey for the local namez in parameterd2.

y
y x

R R′altalt

x

(z)(z)
send get

alt. (sendxy.d0 | d1) | alt. (getx(z)
.d2 | d3) ⊲ x | d0 | y/(z).d2

Operations The interfaces of binding bigraphs are more complex than forpure bi-
graphs. This gives rise to a richer family of linkings, and wenow discuss briefly a few
of the new phenomena that arise. Recall that in pure bigraphswe abbreviate a prime in-
terface〈1, X〉 to 〈X〉, and that we write a singletonX = {x} asx. In binding bigraphs
we also write〈(X)〉 for the prime binding interface whose namesX are all local.

Consider substitutions. The non-local substitutiony/z : z→ y is as before, but there
are now substitutionsy/(z) : 〈(z)〉→〈y〉 and(y)/(z) : 〈(z)〉→〈(y)〉. The first of these has
already been used in the reactum of theπ-calculus rule above, and the second may be
required if a reaction rule has non-local outer names. However the fourth possibility
(y)/z : 〈z〉→〈(y)〉 attempts to localise a non-local name, and this violates thescope
discipline.

So there is nobigraphwhich localises a non-local name; but we can define a partial
operationon bigraphs to do this. First, ifx is non-local in the interfaceJ , we define
(x)J to be the result of making thex local to every place inJ . We call this thelocal-
isationof x in J . Now suppose thatG : I→ J whereI is local, i.e. all its names are
local. In this case to makex local in J does not violate the scope discipline, and we
obtain thelocalisationof x in G:

(x)G : I→ (x)J (I local) .

Clearly one can then define multiple localisation(X)G, whereX is a finite set of
names. An especially useful case of localisation is whenI = ǫ, i.e.G is ground.

Substitution and localisation appear to represent the maineffect of binding on the
bigraphical operations.

Reactions We also have to adjust reaction rules and the reaction relation. For ex-
ample, we wish to define a reaction rule whose redex binds its parameter, as in the
π-calculus. This raises three points:

11.4. STOCHASTICS 127

• As parametric reaction rules are defined in Definition 8.5, a parameterd has to be
discrete, meaning that there are no closed links and the link map is bijective. But
this notion must be qualified so that it does not constrain thelocal names ofd,
whichare to be bound by the parametric redexR. The non-local namesY of d can
still be exported in a ground reaction whose redex is given byr ≏ (idY ⊗R) ◦d.

• Discreteness ofd should still require that it has no closed links. But it must be
permittedbound links. Then if a prime factor ofd—sayd0—is replicated by
a reaction, each copy ofd0 will have its own copy of any bound link. Thus,
for example, if we encode theπ-calculus with replication into bigraphs, each
π-calculus restrictionνxP will be faithfully modelled by a bound link.

• Some or all of the outer names of a redexR may be non-local. But we may wish
to allow reactions in a context in which the links involved will be local. This can
be achieved in two ways. We may simply defineR with a local outer name, say
(z), and use a substitution likez/(z) to make it non-local where required. Or we
may defineR with the outer namez non-local, and modify the way we define the
reaction relation ⊲ in Definition 7.1; define it now to be the smallest such that
a ⊲ a′ whenevera ≏ D ◦ (X)r anda′ ≏ D ◦ (X)r′ for some ground reaction
rule (r, r′) and contextD, whereX are the non-local names ofr. This use of
localisation respects the scope discipline becauser is ground.

Some of the points raised above, concerning both operationsand reactions, have
already been addressed in existing work. But a definitive treatment of binding is still
lacking, and is an important topic for future research.

11.4 Stochastics

As mentioned in the prologue to this book, it is important to deploy bigraphs in exper-
imental applications in order to assess their modelling power. Many applications, such
as ubiquitous computing, are inherently non-deterministic, at least in the sense that in
modelling them we are ignorant of precise details of timing.But to aid experiment
we must ensure that simulations are realistic; this entailssomehow attaching relative
probabilities to reactions. Consider, for example, our simple example in Chapter 1 of
behaviour in a built environment; once we have defined enoughrules to express simple
behaviour of people we would like to experiment with the effect of varying the relative
rates of their actions.

For this purpose we can attach a stochastic rate to each inference rule. Indeed, in bi-
ological applications this approach may be considered essential to the model; typically
there is a large population of entities (e.g. of protein molecules), and if each entity can
perform a certain reaction then the speed of reactions may plausibly be computed as
the product of the population size and the stochastic rate assigned to that reaction rule.
This approach is adopted, for example, in theκ-calculus [27] for biological modelling.

Taking a hint from this work, stochastic bigraphs have recently been defined [51].
In the context of bigraphs, what corresponds to population size is the number of distinct
occurrences within an agentg of a given ground redexr; to get the reaction speed

128 CHAPTER 11. FURTHER TOPICS

this count is multiplied by the rate attached to the given reaction rule. The count,
i.e. the number of distinct occurrences ofr, is easily defined in terms support. (This
use of support is quite distinct from its role in deriving contextual transition rules via
RPOs.) One detailed point: one must avoid double counting inthe case of support
automorphisms of the redexr.

Let us give a more precise idea of the approach, omitting a fewdetails. Assume
that we have a familyR of reaction rules, where each ruleR has an associated rateρR.
Given agentsg andg′, we may wish to compute the rate of the reactiong ⊲ g′. This
reaction may occur with different underlying rules, so we sum overR:

rateR[g, g′]
def
=

∑

R∈R

rateR[g, g′] .

Now for a given ruleR, we defineµR[g, g′] to be the number of distinct ground rules
(r, r′) generated byR such that, for some active contextC, C ◦ r = g andC ◦ r′ ≏ g′.
Then

rateR[g, g′]
def
= ρR · µR[g, g′] ,

and this completes our definition of the rate of the reactiong ⊲ g′.
In previous work [42, 71] associated with process calculi, rates have been attached

not only to reaction rules, but also to labelled transitions. In that work, the speed of
communication depends on the rate attached independently to the two or more tran-
sitions that perform the communication. However, the theory of bigraphs suggests a
different approach: since labelled transitions arederived from reaction rules, rather
than defined independently, one would expect to derive the rate of a transition from the
rate of its underlying reaction rule. This indeed can be done, rather simply. It remains,
however, to find criteria that determine in what circumstances to prefer one approach
to the other.

Thus work on a stochastic interpretation of bigraphs is still in progress. Much
will be learned by experiment, both in biology and in ubiquitous computing. But it
is already clear that some such interpretation is a necessity, not a luxury; it is also
encouraging that it can be done generically, not tailor-made for each application.

Chapter 12

Background, development and
related work

In this chapter we place the bigraph model in the broader informatic context.
The bigraph model attempts to bridge between two distinct cultures. On the one

hand is the adolescent culture of ubiquitous computing; on the other hand is the more
mature theory of concurrent processes. The first two sections of this chapter describe
the two cultures in enough detail to show how the bigraph model fits into each of them,
and how together they demand the existence of some such model. In the third section
I describe how bigraphs evolved as a generic model of processes. Finally I describe
ongoing work to create software tools that will bring bigraphs to life as a language for
programming and simulation, thus admitting experiments that will help to assess the
scientific value of this model.

Background in ubiquitous computing Let us first look at the vision of ubiquitous
computing. Mark Weiser [79] is generally credited with forming this vision and inspir-
ing research that will bring it to reality; I quoted him briefly in the Prologue. The vision
represents one of the most ambitious aspirations of computer science, and has been
adopted as a Grand Challenge by the UK Computing Research Committee (UKCRC).
The title of its manifesto [1], “Ubiquitous computing: Experience, Design and Sci-
ence”, reflects the insight that to realise the vision demands collaboration among three
distinct research communities: those concerned with the human-computer interface
and human behaviour, those concerned with engineering principles and design patterns
for large systems, and those concerned with theoretical models and the languages that
bring them to life. These three themes cannot be addressed inisolation.

The first theme, human involvement, is well represented by a recently completed
six-year research project, the Equator project [2]. On thatwebsite can be found cita-
tions of the work carried out. The role of humans in a ubiquitous system is two-fold;
first as users of a massive software system, and second as entities forming part of the
system, and to be modelled as such. There is a close analogy with the role of humans
in an economic system. The Equator project performed extensive experiments aiming

129

130 CHAPTER 12. BACKGROUND, DEVELOPMENT AND RELATED WORK

to link the human sciences with the role played in society by informatic systems. Here
is a quotation from the final project report:

Equator aimed to forge a clearer understanding of what it means to live in
an age when digital and physical activities not only coexistbut cooperate.
This is the age we are now entering, and it promises radical change in how
we communicate, interact, work and play; that is, how we live. But to
fulfil that promise requires more than new technology. We need equally
new ways of thinking about technology, and thus also about ourselves.

One may add that, to support new thinking about how the technology relates to society,
we also need accurate understanding of the technology in itsown terms. This is exactly
how the first of the three themes depends upon the second and third.

The second theme, engineering principles and design, is well-represented by a wide
range of papers, both previous to the Grand Challenge initiative and arising from it. A
few examples will illustrate the breadth of the engineeringchallenge. Wooldridge [81]
puts forward the concept of an intelligent agent as a model for building self-managing
and decision-taking systems. Jenningset al [46] advocate negotiation, underpinned by
game theory, as a principle underlying the interaction of agents in a non-hierarchical
population. Slomanet al [77], in the context of health-care, propose a model of the
‘self-managed cell’, a generic design concept for ubiquitous systems; notably, the
model offers an explanation of how two ubiquitous systems, conforming to this pattern,
may combine organically into a single system. Crowcroft [25] examines structural de-
sign criteria for systems to manage driverless vehicles on the highway. Dixet al [28]
explore informally how space and locality may be used in a semantic model of mobile
systems.

Besides their engineering significance, such papers yield insight into how models—
formal or informal—of advanced software can provide systems to underpin a highly
instrumented human society.

The third theme, then, is concerned with conceptual modelling. There remains a
question: given a variety of models for ubiquitous systems,how will the models fit
together? Each one will deal with some concepts such as thoselisted in the Prologue,
but a single model is unlikely to deal with all of them. So how can they provide an
integrated scientific understanding of ubiquitous computing? In a recent paper [66]
I proposed atower of models. The idea is that, just as some models are designed to
explain reality, so a model at a higher level may explain, or may be implemented by, a
lower-level model. For example, in the Prologue I suggestedhow the complex concept
of trust (between informatic agents) can be implemented at alower level.

There is surely a precedent in natural science for this levelling of models. It is cru-
cially significant in informatics, whose ultimate realities are extraordinarily complex
artifacts, and can only be understood via many levels of abstraction.

Background in mathematical models The history of informatics is rich with such
levelling of understanding, either formal or informal. We now turn to models that
are formal, embodying some kind of mathematical theory. In contrast with the recent
surge of interest in uniquitous systems, over the past half-century there has been a

131

progression of mathematical models of computation, each ofwhich typically deals with
a well-delineated range of phenomena. Without going back tobasic models such as
Turing machines and automata theory, let us confine attention to models of interactive
processes; these are the models that I have tried to draw together in the present book.

An early theory of concurrent processes was Petri nets [70] in the 1960s; it was per-
haps the first that gave a significant mathematic structure todiscrete events. In 1979,
with Milne, I explored certain aspects of algebraic structure for processes [59, 60]. A
tradition of self-contained algebraic calculi for concurrent systems began around that
time; early representatives are the Calculus of Communicating Systems (CCS) [61],
Communicating Sequential Processes (CSP) by Hoareet al [13, 44], and Process Al-
gebra by Bergstra, Klop, Baetenet al [8, 3].

Bigraphs have also used ideas from many other sources: the Chemical Abstract
machine (Cham) of Berry and Boudol [6], the bisimilarity of Park [68], theπ-calculus
of Milner, Parrow and Walker [67] with extended theory by Sangiorgi and Walker [73],
the interaction nets of Lafont [52], the mobile ambients of Cardelli and Gordon [18],
the sharing graphs of Hasegawa [38], the distributedπ-calculus of Hennessy [39], the
explicit fusions of Gardner and Wischik [34] developed fromthe fusion calculus of Par-
row and Victor [69], Nomadic Pict by Wojciechowski and Sewell [80]. In each of these
cases my emphasis has been not to extend the work in its own terms, but rather to use
its inspiration to find a framework that can embrace them all.Particularly helpful was
a wide-ranging survey by Castellani [19] of the notion of locality, and the many ways it
has been defined and deployed in process models. Particularly influential was the work
of Meseguer and Montanari [58] explaining Petri nets in monoidal categories [58].
More generally, the idea of using monoidal categories for computational structure can
be traced back to Benson [5]. A good textbook for basic category theory is by Barr and
Wells [4].

Graphs and their transformation are often chosen as the way to model spatially-
aware systems. There is a long tradition ingraph-rewriting, based upon thedouble
pushout(DPO) construction originated by Ehrig [29]. That work typically uses a cat-
egory with graphs as objects and embeddings as arrows. In contrast, our s-categories
have interfaces as objects and graphs as arrows. These formulations can be linked, both
via cospans by Gadducci, Heckel and Llabrés [31] and via an isomorphism between the
category of graph embeddings and a coslice of an s-category (over its origin) by Cattani
et al [20]. Ehrig [30] investigated these links further, after discussion with the author,
and we believe that useful cross-fertilisation is possible. Gadducciet al [31] represent
graph-rewriting by 2-categories, whose 2-cells correspond to our reactions. Several
other formulations of graph-rewriting employ hypergraphs. An example is by Hirsch
and Montanari [43]; their hypergraphs are not nested as bigraphs are, but rewriting
rules may replace a hyperedge by an arbitrary graph.

Besides graph rewriting, there is a variety of other frameworks for modelling con-
current interactive behaviour; for example1

• term rewritingby a group of authors led by Klop [78], which can accommodate
arbitrary equational axioms;

1We use the term ‘framework’ to mean not just a single process calculus (e.g. CCS) but a method or style
for defining a family of such calculi.

132 CHAPTER 12. BACKGROUND, DEVELOPMENT AND RELATED WORK

• rewriting logic led by Meseguer [57, 22] which includes MAUDE, an automated
logic for rewriting;

• the tile modelled by Montanari [32], whose tiles represent rewriting rules and
can be composed in two dimensions, one to yield longer rewritings and one to
yield compound rules;

• X-KLAIM, led by De Nicola [7], designed to program distributed systems through
multiple tuple spaces and mobile code.

Thus we are in the early days of the search for an agreed framework for the design and
analysis of spatially-aware systems. In the bigraph model most of the effort hitherto has
been devoted to integrating pre-existing theories. From now on, the emphasis is likely
to change towards case studies in different application topics, and in the provision of
computer-assisted tools fopr their analysis.

Development of bigraphs The bigraph model arose fromaction calculi[62], the au-
thor’s first attempt at a spatial framework unifying processcalculi. In action calculi
there was a technical difficulty, which was resolved by the main idea of bigraphs: that
locality (placing) and connectivity (linking) should be treated independently. Gard-
ner [33] contributed significantly to the emergence of this idea. This independence
also reflects a property of real-life systems; we need only think of wireless networks.

The technical difficulty with action calculi arose as follows. One criterion for their
success was that they should recover theory for existing process calculi, in particu-
lar their behavioural equivalences and pre-orders, which are often based upon labelled
transition systems. This recovery depends upon treating certain contexts as labels.
How to choose these contexts remained an open problem for many years. As a first
step, Sewell [76] was able uniformly to derive satisfactorycontext-labelled transitions
for parametric term-rewriting systems with parallel composition and blocking, and
showed bisimilarity to be a congruence. It remained a problem to do it for reactive
systems dealing with connectivity, such as theπ-calculus, and to do it uniformly across
bigraphical calculi.

This problem was solved by Leifer and Milner [55], who definedminimal contex-
tual labels in terms of the categorical notion ofrelative pushout(RPO), also ensuring
that behavioural equivalence is a congruence. These results were extended and refined
in Leifer’s PhD Dissertation [54], and applied by Cattaniet al [20] to action graphs
with rich connectivity. Leifer and Milner [55] showed how toderive these transition
systems in any categorical model possessing relative pushouts. The demonstration by
Leifer [54] that action calculi possess them was hard, but inbigraphs the independence
of placing and linking rendered it tractable, as expounded by Jensen and Milner [48].
This allowed those three authors [47, 48, 56, 65, 46] and Bundgaard and Sassone [17]
to recover a significant amount of the theory of several calculi, via their embedding in
bigraphs.

S-categories appear to be well-suited to the work of this book. However, they can
be recast in the context of enriched category theory [50, 53]. Technically, they are
equivalent to categories enriched over the category of species of structures [49] with

133

respect to the multiplication monoidal structure.2 The notion of relative pushout has
been generalised to groupoidal 2-categories by Sassone andSobocinski [74, 75], thus
again re-casting bigraphs within a standard categorical framework.

As abstract bigraphs form a symmetric partial monoidal category, it has been im-
portant to examine their equational theory. Milner [64] provided a sound and complete
axiomatisation of the structure of pure bigraphs; it is rather simple, due to the inde-
pendence of placing and linking. This axiomatisation has been refined by Damgaard
and Birkedal [26] for a version of the binding bigraphs outlined in Section 11.3; it re-
mains sound and complete. I conjecture that this result can also be adapted to concrete
bigraphs.

Hennessy and Milner [40] demonstrated in 1985 that process calculi are closely
associated with modal logics; for example, two processes are bisimilar if and only if
they satisfy the same sentences in such a logic. A first step has been taken for bigraphs
in this direction by Conforti, Macedonio and Sassone [23, 24]. For a spatial model such
as bigraphs, an attractive goal is a logic that expresses properties such as “Mary has
not visited this room before”, which depend upon tracking the identity of individuals
through time, as briefly discussed in Section 11.1.

Grohmann and Miculan have generalised bigraphs todirected bigraphs[35, 36],
whose link graphs are self-dual; that is, their link graphs have a symmetric structure
with regard to composition. Importantly, RPOs still exist.The mild extra complexity
of directed bigraphs adds expressive power; indeed, the authors show how to encode
the fusion calculus of Parrow and Victor [69], which cannot be handled directly in
bigraphs.

Implementation and Application The modelling of large-scale informatic systems
is still at an experimental stage. Moreover, as with programming languages, the useful
experiments are those carried out with real applications, involving real users and an
assessment of their experience. With this in mind, a group [9] led by Birkedal at the
IT University (ITU) of Copenhagen has embarked on the designand implementation
of a bigraphical language for specification and programming, and its implementation
as a simulator. As with many languages, the workhorse for theimplementation is
a matching algorithm, in this case for bigraphs; the implemented algorithm is based
upon specification by an inference system [12]. The first experiments with the lan-
guage are now (2007) being carried out in the (ITU) laboratory, on topics including
ubiquitous computing [10], context-aware systems [11], mobile resources [16], and
business processes [41]; the authors include Birkedal, Bundgaard, Damgaard, Debois,
Elsborg, Glenstrup, Hildebrandt, Niss and Olsen.

It is worth giving a little detail about one such experiment,involving location-
awareness, a special case of context-awareness. A location-aware system maintains a
record of the physical location of agents via events from hardware sensors; it is then
able to answer queries from agents such as “where is device X?”. This can be regarded
as a refinement of the simple example of a built environment used in Example 1.2. The
model used, called aPlato-graphical model[11], combines three BRSs into one; the
first W (‘world’) models the built environment, the secondL (‘locality’) models the

2I am grateful to Marcelo Fiore for making me aware of this.

134 CHAPTER 12. BACKGROUND, DEVELOPMENT AND RELATED WORK

information about location reported by sensors inW , and the thirdA models an appli-
cation that queriesL aboutW . A large class of real location systems and applications,
such as the Lancaster tour guide [21], can be represented andsimulated. Experiments
are continuing.

As explained in Chapter 6, most applications of bigraphs involve not only a signa-
tureK, but also a sorting discipline that determines the admissible bigraphs overK.
Sorting disciplines for process calculi are given in theoretical papers already cited [48,
56, 65], and have also been studied for polyadic pi-calculusby Bundgaard and Sas-
sone [17] and reactive systems by Bundgaard, Debois and Hildebrandt [14].

Finally, inspired by pioneering work [72] on applying process calculi to biology,
a stochastic treatment of the behaviour of bigraphs is proposed by Krivine, Milner and
Troina [51], in the spirit of the stochasticκ-calculus by Danoset al [27]; it associates a
stochastic rate to each reaction rule. This work shows how rates for labelled transitions
can be derived uniformly, and applies the model to cell behaviour (membrane budding)
in biology. Many applications of bigraphs, including biology, are non-deterministic;
thus the stochastic treatment has special relevance to implementation, in order to yield
useful simulation.

Conclusion It can be seen from this work that the bigraph model is being developed
through a combination of mathematical intuition and experiment. The experiment in-
volves real interactive systems—both natural, as in biology, and artificial as in ubiqui-
tous computing and business systems. The model tests the hypothesis that the simple
ideas ofplacingand linking, both physical and metaphorical, unite the mathematical
foundation of interactive systems with their applications.

APPENDICES

136 CHAPTER 12. BACKGROUND, DEVELOPMENT AND RELATED WORK

Appendix A

Technical detail

A.1 Support translation

Recall thatS is an infinite repertoire of support elements. This appendixcomplements
Definition 2.13 by axiomatizing the notion of support translation introduced there.

Definition A.1 (support translation) For any arrowf : I→ J in an s-categorỳC
and any partial injective mapρ :S ⇀ S whose domain includes|f |, there is an arrow
ρ�f : I→ J called asupport translationof f . Support translations satisfy the following
equations when both sides are defined:

(T1) ρ � idI = idI (T5) ρ �f = (ρ↾ |f |)�f
(T2) ρ �(g ◦f) = ρ �g ◦ρ �f (T6) |ρ �f | = ρ(|f |)
(T3) Id|f | �f = f (T7) ρ �(f ⊗ g) = ρ �f ⊗ ρ �g .
(T4) (ρ′ ◦ρ)�f = ρ′ �(ρ �f)

Two arrowsf andg aresupport-equivalent, writtenf ≏ g, if ρ�f = g for some support
translationρ. �

Readers familiar with category theory will recognise theseaxioms as closely related
to the conditions governing 2-cells in a 2-category. More precisely, support translations
correspond to the isomorphisms between arrows.Groupoidal2-categories (where all
2-cells are isomorphisms) have been proposed as an alternative basis for bigraphs, and
that work continues. They differ from our s-categories, since the latter associate a
support set with each arrow. At the same time, s-categories are convenient for many
proofs, and support provides a direct means of tracking the history of individual agents
(Section 11.1); it plays a role similar to labels and residuation in theλ-calculus.

A.2 Public versus private names

In this appendix we explain the decision to represent names alphabetically, drawn from
an infinite alphabetX , rather than by ordinals. Let us callX thepublic names.

137

138 APPENDIX A. TECHNICAL DETAIL

The alternative to public names is to use interfacesI = 〈k, m〉 wherek indexes
places as before, andm = {0, . . . , m−1} is a finite ordinal indexing names, instead
of a finite setX ⊂ X of public names. These ordinal names are no longer public. Let
us call themprivate names; they are private to an interfaceI, and therefore private to
each bigraph havingI as its inner or outer face.

The immediate consequence of adopting private names is thatthe tensor product of
two interfaces, and therefore of two abstract bigraphs, is always defined. For such a
pair ofFi : 〈ki, mi〉→〈ℓi, ni〉, the tensor product becomes

F0 ⊗ F1 : I→ J ,
whereI = 〈k0+k1, m0+m1〉 andJ = 〈ℓ0+ℓ1, n0+n1〉 .

This alternative has two advantages. First, there is simplicity in using the same regime
for indexing names as for indexing regions. But the major advantage is that, by con-
forming exactly to the standard notion of symmetric monoidal category, it allows the
theory of the latter to be applied to bigraphs without any adaptation.

Why then should we adopt our present regime of a repertoireX of public names?
First, the partial definedness of tensor product complicates our theory only slightly.
For example the proof that our axiomatisation of bigraphical structure is sound and
complete [64], as asserted in Theorem 3.6, is rendered no more complex. Second—
a pragmatic advantage—the use of different indexing regimes for names and regions
adds notational clarity in technical manipulations.

Third, public names yield a major advantage in deriving operations that are stan-
dard in process calculi, especially the parallel and merge products ‘‖ ’ and ‘ | ’ and the
nesting operation ‘.’ as detailed in Chapter 3. For example, to juxtapose in parallel a
seta1, . . . , an of agents sharing certain channels for interaction, one requires only a
single derived product ‘‖ ’ that is commutative and associative, and one writes

a1 ‖ · · · ‖ an .

On the other hand, if names are private then such a juxtaposition must be written

σ ◦ (a1 ⊗ · · · ⊗ an) ,

whereσ is a specific substitution (a map of finite ordinals). To distributeσ over this
product requires a hierarchy of smaller substitutions. Onecan avoid explicit mention
of substitutions, but only by deriving a family of parallel products, each composing
different substitutions with a tensor product.

Thus, although the embedding of process calculi in bigraphscan probably be
achieved using private names, it will be less direct and may be cumbersome. It is
remarkable that, though process calculi differ in other ways, they appear to agree in the
efficacy of public names. Therefore, by adopting these also for bigraphs, we lower the
barrier between it and the existing process theories. This serves two main purposes:
first, to investigate what is fundamental to those theories,and second, to serve as a tool
based upon those theories for design, analysis and programming.

For purposes closer to categorical mathematics, it should not be hard to reformulate
bigraph theory in terms of private names.

A.3. RPOS FOR LINK GRAPHS 139

A.3 RPOs for link graphs

In this appendix we prove the validity of the construction ofRPOs for link graphs.

Lemma 5.7 As defined in Construction 5.5,(~B, B) is a bound for~A relative to ~D.

Proof To proveB0 ◦A0 = B1 ◦A1, by symmetry it will be enough to consider cases
for p ∈W ⊎ P0, and for the value ofA0(p).

Case p ∈ P0 \ P2, A0(p) = e ∈ E0. Then(B1 ◦A1)(p) = B1(p) = D1(p) =
(D1 ◦A1)(p) = (D0 ◦A0)(p) = A0(p) = (B0 ◦A0)(p).

Case p ∈ P0 \P2, A0(p) = x0 ∈ X0. Then(B1 ◦A1)(p) = B1(p) = x̂0 = B0(x0) =
(B0 ◦A0)(p).

Case q ∈ W ⊎ P2, A0(q) = e ∈ E0 \ E2. Then(B0 ◦A0)(q) = A0(q) = e. Also
(D1 ◦A1)(q) = (D0 ◦A0)(q) = e, so for somex1 ∈ X1 we haveA1(q) = x1 and
D1(x1) = e, hencex1 /∈ X ′

1. Then(B1 ◦A1)(q) = B1(x1) = D1(x1) = e.

Case q ∈ W ⊎ P2, A0(q) = e ∈ E2. Then(D1 ◦A1)(q) = (D0 ◦A0)(q) = e, so also
A1(q) = e. Hence(B1 ◦A1)(q) = e = (B0 ◦A0)(q).

Case q ∈W ⊎P2, A0(q) = x0 ∈ X ′
0. ThenD0(x0) ∈ E3⊎Z, and so(D1 ◦A1)(q) =

(D0 ◦A0)(q) ∈ E3 ⊎ Z; hence for somex1 ∈ X ′
1 we haveA1(q) = x1 andD1(x1) =

D0(x0). Hence(B0 ◦A0)(q) = B0(x0) = D0(x0) = D1(x1) = B1(x1) = (B1 ◦A1)(q).

Case q ∈ W ⊎ P2, A0(q) = x0 ∈ X0 \ X ′
0. ThenD0(x0) = e ∈ E1 \ E2; hence

(D1 ◦A1)(q) = (D0 ◦A0)(q) = e, soA1(q) = e. So(B1 ◦A1)(q) = e = D0(r0) =
B0(x0) = (B0 ◦A0)(q).

We now proveB ◦B0 = D0 by case analysis.

Case x ∈ X ′
0. Then(B ◦B0)(x) = B(0̂, x) = D0(x).

Case x ∈ X0 \X ′
0. ThenB0(x) = D0(x) ∈ E0 \ E2, hence(B ◦B0)(x) = D0(x).

Case p ∈ P1 \P2, D0(p) ∈ E1 \E2. SinceD0 ◦A0 = D1 ◦A1 we haveA1(p) /∈ X1,
soB0(p) = D0(p) ∈ E1 \ E2; hence(B ◦B0)(p) = B0(p) = D0(p).

Case p ∈ P1 \ P2, D0(p) ∈ E3 ⊎ Z. SinceD0 ◦A0 = D1 ◦A1 there existsx ∈ X1

with A1(p) = x; moreover we readily deducex ∈ X ′
1, so B0(p) = 1̂, x. Hence

(B ◦B0)(p) = B(1̂, x) = D1(x) = (D1 ◦A1)(p) = (D0 ◦A0)(p) = D0(p).

Case p ∈ P3. Then(B ◦B0)(p) = B(p) = D0(p). �

Theorem 5.8 (RPOs in link graphs) L̀G(K) has RPOs; that is, whenever a span
~A of link graphs has a bound~D, there exists an RPO(~B, B) for ~A to ~D. Moreover
Construction 5.5 yields such an RPO.

Proof We have already proved that the triple(~B, B) built in Construction 5.5 is an
RPO candidate. Now consider any other candidate(~C, C) with intervening interface

140 APPENDIX A. TECHNICAL DETAIL

Y . Ci has nodesVı \ V2 ⊎ V4 (i = 0, 1) andC has nodesV5, whereV4 ⊎ V5 = V3. We
have to construct a unique mediating arrowĈ, as shown in the diagram.

C0

Ĉ
X1X0

C1

B

B1

D0 D1

A1

Z

B0

A0

X̂

C

Y

We defineĈ with nodesV4 as follows:

for x̂ = î, x ∈ X̂ : Ĉ(x̂)
def
= Ci(x)

for p ∈ P4 : Ĉ(p)
def
= Ci(p) .

Note that the equationŝC ◦Bi = Ci (i = 0, 1) determineĈ uniquely, since they force
the above definition. We now prove the equations (considering i = 0):

Case x ∈ X ′
0. Then(Ĉ ◦B0)(x) = Ĉ(0̂, x) = C0(x).

Case x ∈ X0 \X ′
0. ThenD0(x) ∈ E1 \E2, soB0(x) = D0(x), hence(Ĉ ◦B0)(x) =

D0(x). Also sinceC ◦C0 = D0 ∈ E1 \ E2 we haveC0(x) = D0(x).

Case p ∈ P1 \P2, D0(p) ∈ E1 \E2. SinceD0 ◦A0 = D1 ◦A1 we haveA1(p) /∈ X1,
soB0(p) = D0(p), hence(Ĉ ◦B0)(p) = D0(p). AlsoC0(p) = (C ◦C0)(p) = D0(p).

Case p ∈ P1 \ P2, D0(p) ∈ E3 ⊎ Z. ThenA1(v) = x ∈ X ′
1 with D1(x) = D0(p),

andB0(p) = 1̂, x. So(Ĉ ◦B0)(p) = Ĉ(1̂, x) = C1(x) = (C0 ◦A0)(p) = C0(p).

Case p ∈ P4. Then(Ĉ ◦B0)(p) = Ĉ(p) = C0(p).

It remains to prove thatC ◦ Ĉ = B. The following cases suffice:

Case x̂ = 0̂, x ∈ X , B(x̂) ∈ E4. Then(C ◦ Ĉ)(x̂) = Ĉ(x̂) = C0(x) = D0(x) =
B(x̂).

Case x̂ = 0̂, x ∈ X , B(x̂) ∈ E5 ⊎ Z. ThenD0(x) = B(x̂) ∈ E5 ⊎ Z, so for
somey ∈ Y we haveC0(x) = y andC(y) = B(x̂). But by definitionĈ(x̂) = y, so
(C ◦ Ĉ)(x̂) = C(y) = (C ◦C0)(x) = D0(x) = B(x̂).

Case p ∈ P4, B(v) ∈ E4. Then(C ◦ Ĉ)(p) = Ĉ(p) = C0(p) = D0(p) = B(p).

Case p ∈ P4, B(p) ∈ E5 ⊎ Z. ThenB(p) = D0(p) = C(y), whereC0(p) = y ∈ Y ,
and by definitionĈ(p) = C0(p), so(C ◦ Ĉ)(p) = C(y) = B(p).

Case p ∈ P5. Then(C ◦ Ĉ)(p) = C(p) = D0(p) = B(p).

HenceĈ is the required unique mediator; so(~B, B) is an RPO. �

A.4. QUOTIENT OF A TRANSITION SYSTEM 141

A.4 Quotient of a transition system

In this appendix we prove Theorem 7.23, justifying the transfer of a transition system
and its bisimilarity from a concrete WRS to its quotient abstract WRS.

Theorem 7.23 (bisimilarity induced by quotient) Let `C be equipped with a raw
or contextual transition systemL that respects a structural congruence≡. Denote the
quotient̀ C/≡ byC. Then the following hold for[[L]]:

(1) a ∼ b in `C iff [[a]] ∼ [[b]] in C.

(2) If bisimilarity is a congruence iǹC then it is a congruence inC.

Proof We treat only the contextual case; the raw case is simpler.

(1)⇒ We establish inC the bisimulation

R = {([[a]], [[b]]) | a ∼ b} .

Let a ∼ b in `C, and letp = [[a]], q = [[b]] andp
g

⊲ı̃ p′ in C. By definition of the
induced transition system, the triple(p, g, p′) has an[[·]]-preimage(a1, f1, a

′
1) such that

a1
f1

⊲ı̃ a′
1 in `C. Now, since the labels in a TS are closed under≏, there exists a label

(f, ı̃) with f ≏ f1 and bothf ◦a andf ◦ b defined. Hence by respect, sincef ≏ f1

impliesf ≡ f1, there existsa′ ≡ a′
1 such thata f

⊲ı̃ a′.

Sincea ∼ b andf ◦ b is defined, there existsb′ such thatb f
⊲ı̃ b′ anda′ ∼ b′. It

follows thatq g
⊲ı̃ q′ in C, whereq′ = [[b′]] and(p′, q′) ∈ R, so we are done.

(1)⇐ We establish iǹC the bisimulation

S = {(a, b) | [[a]] ∼ [[b]]} .

Let [[a]] ∼ [[b]] in C, and letp = [[a]], q = [[b]] wherea
f

⊲ı̃ a′ in `C with f ◦ b defined.
Thenp

g
⊲ı̃ p′ in C, whereg = [[f]] andp′ = [[a′]]. So for someq′ we haveq g

⊲ı̃ q′

with p′ ∼ q′.

This transition must arise from a transitionb1
f1 ⊲ı̃ b′1 in `C, whereq = [[b1]], g =

[[f1]] andq′ = [[b′1]]. But thenb1 ≡ b andf1 ≡ f ; we also havef ◦ b defined, andL

respects≡, so we can findb′ for which b
f

⊲ı̃ b′ andb′1 ≡ b′. But (a′, b′) ∈ S, so we
are done.

(2) Assume that bisimilarity iǹC is a congruence. InC, let p ∼ q with p, q : I, and
let r : I→ J be a context withr ◦p andr ◦ q defined. Then since[[·]] is surjective on
each homset, there exista, b : I andc : I→ J in `C with p = [[a]], q = [[b]] andr = [[c]];
moreover, sincec ≏ c′ ⇒ [[c]] = [[c′]], c can be chosen so thatc ◦a andc ◦ b are defined.

From (1)⇐we havea ∼ b, hence by assumptionc ◦a ∼ c ◦ b. Applying the functor
[[·]] we have from (1)⇒ thatr ◦p ∼ r ◦ q in C, as required. �

142 APPENDIX A. TECHNICAL DETAIL

A.5 Unambiguity of labels

In this appendix we prove that, under certain conditions, prime transition labels are
unambiguous, i.e. a label cannot belong to both an engaged and a disengaged transition.
We first need a lemma that characterises prime disengaged transitions.

Lemma A.2 Let a L
⊲ a′ be a prime disengaged transition, based on a parametric

redexR that is simple and unary. Leta : 〈X〉, and letr = R .(d0⊗ · · · ⊗ dm−1) be the
underlying ground redex. Then

(1) The outer nodes ofL are those ofR;

(2) The node-set ofa is non-empty and included in that ofdi for somei ∈ n;

(3) The single site ofL is guarded;

(4) Nox ∈ X is linked to any port inL.

Proof For (1), use|R| ⊆ |L| ⊆ |r|, with R guarding. For (2), recall that if|a|∩|r| =
∅ then the IPO would be tensorial, hencea′ non-prime, contra hypothesis.

For (3), use (2) and the fact thatR is guarding. For (4), appeal to the IPO construc-
tion and eachdi discrete. �

Now, using the notions ofsplit andtight redexfrom Definition 3.19, we prove:

Proposition 8.14 (unambiguous label) Let L be the label of a prime transition in
MT, in a safe BRS where every redex is simple, unary and tight. Then the labelL is
unambiguous.

Proof Suppose to the contrary that someL-transition is disengaged, but thatb L
⊲ b′

is engaged with underlying ground redexs = S.d such that(b, s) has IPO(L, E). We
shall derive a contradiction.

Let b : 〈X〉. BecauseL is the label of some prime disengaged transition, it satisfies
the conditions in Lemma A.2; thus its node-set is non-empty.Now each node ofL is
a node ofs; in particular each outermost node ofL must be an outermost node ofS,
sinceL ◦ b = E ◦ s andS is guarding. So|S| ∩ |L| 6= ∅. Also, |S| ∩ |b| 6= ∅ since the
transition is engaged.

Thus(L, b) is a unary split forS. By assumption this split is tight, hence some node
of b is linked viaX to some node ofL. But this contradicts Lemma A.2(4), completing
our proof that the transition ofb is disengaged. �

A.6 Faithfulness of engaged transitions

This appendix proves Theorem 8.19, asserting the faithfulness of engaged transitions
for prime agents in a nice concrete BRS`BG(Σ,`R). Thus, in an interface the re-
gions and names may have place sorts and link sorts respectively. As in Chapter 8,
we avoid heavy notation by leaving these implicit. Occasionally we need to pull

A.6. FAITHFULNESS OF ENGAGED TRANSITIONS 143

results from the unsorted BRS to the sorted one, back along the forgetful functor
U : `BG(Σ)→ `BG(K), whereK is the basic signature underlyingΣ.

We first show that, for primea, if we apply an affine instantiationη to G ◦a then
the result has a form independent ofa.

Proposition A.3 (affine instantiation) In `BG(Σ) let G : 〈X〉→〈m, Z〉 be a context,
and letη : n→m an injective map preserving place sorts. Then:

either there existsC : 〈X〉→〈n, Z〉 such that η(G ◦a) ≏ C ◦a for all a ;
or there exists a groundc : 〈n, Z〉 such that η(G ◦a) ≎ c for all a .

Proof SinceG has unary inner face, by Proposition 3.9 we can express it as

G = µ ◦ (idX ⊗ d0 ⊗ · · · dk−1 ⊗D ⊗ dk+1 · · · ⊗ dm−1)

for somek ∈ m and some linkingµ :X ⊎ Y →Z, wheredi : 〈Yi〉 (i 6= k) are all
discrete,D : 1→〈Yk〉 is discrete andY =

⊎
i∈m Yi.

Now anya : 〈X〉 can be expressed asa = λ ◦d for some linkingλ : W →X and
discreted : 〈W 〉. Then we can express the compositionG ◦a as follows:

G ◦a = µ ◦ (λ⊗ idY) ◦ (d0 ⊗ · · · dk−1 ⊗ dk ⊗ dk+1 · · · ⊗ dm−1)

wheredk
def
= (idW ⊗D) ◦d; its names areW ⊎ Yk. Sincedk is discrete this expression

for G ◦a is a DNF, and therefore by Definition 8.3 its instance byη is

η(G ◦a) ≏ µ ◦ (λ⊗ idY) ◦ (dη(0) ⊗ · · · ⊗ dη(n−1)) .

Sinceη is injective thedη(j) have disjoint name sets, so may be combined by⊗ rather
than by‖ as in Definition 8.3. Sinceη may not be surjective there are two cases:

(1) η(ℓ) = k for someℓ ∈ n. Then we may rewrite the instance as

η(G ◦a) ≏ µ ◦ (λ⊗ idY) ◦ (dη(0) ⊗ · · · ⊗ dk ⊗ · · · ⊗ dη(n−1))
= µ ◦ (λ⊗ idY) ◦ (dη(0) ⊗ · · · ⊗ ((idW ⊗D) ◦d)⊗ · · · ⊗ dη(n−1))
= C ◦a

whereC
def
= µ ◦ (dη(0) ⊗ · · · ⊗ (idX ⊗D)⊗ · · · ⊗ dη(n−1)) is independent ofa.

(2) η(ℓ) 6= k for all ℓ ∈ n. Then the inner namesW of λ : W →X are not among the
names ofdη(0) ⊗ · · · ⊗ dη(n−1). But it is easily seen thatλ ◦W ≎ X ; hence

η(G ◦a) ≏ µ ◦ (λ⊗ idY) ◦ (dη(0) ⊗ · · · ⊗ dη(n−1))

≎ c
def
= µ ◦ (X ⊗ idY) ◦ (dη(0) ⊗ · · · ⊗ dη(n−1))

which is independent ofa as required. �

We continue with a lemma that lifts an IPO property from unsorted to sorted bi-
graphs; it is that certain spans whose members have disjointsupport have an IPO that
is tensorial.

144 APPENDIX A. TECHNICAL DETAIL

Lemma A.4 In `BG(Σ), with Σ safe, letA : I ′→ I andB :J ′→J be both hard, with
disjoint supports, and letB be open with no idle names. Let the span(A⊗idJ′ , idI′⊗B)
have an IPO(C, D). Then, up to an iso at their common outer faceK, we have
C = idI ⊗B andD = A⊗ idJ .

Proof We use many safety properties from Definition 4.6. LetU : `BG(Σ)→ `BG(K)
be the sorting functor. SinceU preserves RPOs and identities, it also preserves IPOs.
SoU(C, D) is an IPO for the spanU(A⊗ idJ′ , idI′ ⊗ B). AlsoU preserves the prop-
erties assumed forA andB. Since bothU(A) andU(B) are hard, no other IPO for the
span can arise from place elisions, and sinceU(B) is open with no idle names, none
can arise from link elisions either. Hence, up to isomorphism, the IPO is unique, and
must be the tensorial IPO defined in Corollary 5.21; thus, forsome isoι′ we have

ι′ ◦U(C) = id⊗ U(B) and ι′ ◦U(D) = U(A) ⊗ id .

Now ι′ has inner faceU(K), and sinceU creates isos there exists an isoι with inner
faceK such thatU(ι) = ι′. We deduce

U(ι ◦C) = id⊗ U(B) and U(ι ◦D) = U(A)⊗ id .

But U reflects products, soι ◦C = id⊗B andι ◦D = A⊗ id as required. �

We next consider the IPO underlying a minimal transitiona L
⊲ı̃ a′ with redexR.

It can be decomposed into an IPO pair, as shown in the diagram,with R simple andd
discrete.

LredLpar

d idW⊗R

a DDpar

From now on we shall call a transitionsimplewhen its underlying redex is simple. We
need three lemmas about simple minimal transitions that aredisengaged.

Lemma A.5 Let the diagram underlie a disengaged simple minimal transition. Then
Dpar = D′ ⊗ idm for someD′, up to iso, wherem is the inner face ofR.

Proof Since|Dpar| ⊆ |a| we also have|Dpar| ∩ |R| = ∅. Let K be the outer face of
Dpar. It is enough to prove, for each sitei ∈ m, that (1)Dpar(i) = k is a root inK,
and (2)i has no siblings inDpar.
(1) SinceR is guarding,R(i) = v for some nodev, hence(Lred ◦Dpar)(i) = v. But
v is not inDpar by assumption, soDpar(i) = k andLred(k) = v for some rootk.
(2) Now supposei has a sibling, i.e.Dpar(w) = k for some site or nodew 6= i. Then
we have(Lred ◦Dpar)(w) = v, whence alsoR(w) = v. If w is a site this contradicts
R inner-injective; if it is a node then it contradicts|Dpar| ∩ |R| = ∅. Hence no suchw
can exist. This completes the proof. �

A.6. FAITHFULNESS OF ENGAGED TRANSITIONS 145

Lemma A.6 Let the diagram underlie a disengaged simple minimal transition based
upon(R, R′, η), wherea is prime and hard with|a| ∩ |d| 6= ∅. ThenD anda′ take the
following form up to iso, whereλ : W →W ′ is a linking:

Lred = idW ′ ⊗R , D = λ⊗ idJ and a′ = (idW ′ ⊗R′) ◦η(Lpar
◦a) .

Proof From Lemma A.5 we find thatDpar takes the formDpar = D′ ⊗ idm up to
iso, whereD′ has domainW andm is the inner width ofR.

First we claim thatD′ has no nodes. For sinced is discrete there exists a node
u ∈ |a| ∩ |d|. If there exists also a nodev ∈ |D′| thenv ∈ |a|, hence (sincea is prime)
u, v would be in the same region ofLpar ◦a but different regions ofDpar ◦d, contra the
commutation of the left-hand square.

Now any root inD′ would be idle, contradictinga hard (since the left square is an
IPO). HenceD′ has no roots, soD′ = λ : W →W ′, a linking, andDpar = λ⊗ idm.

Now consider the right-hand IPO.Dpar is hard, sincea is hard, andR is hard
and open since it is a parametric redex. Thus we may apply Lemma A.4, and this
immediately yields the first two equations. For the third:

a′ = D ◦ (idW ⊗R′) ◦η(d)
= (idW ′ ⊗R′) ◦ (λ⊗ idI′) ◦η(d)

(∗) = (idW ′ ⊗R′) ◦η((λ ⊗ idI) ◦d)
= (idW ′ ⊗R′) ◦η(Lpar ◦a)

where at(∗) we commute an instantiation with a linking, by Proposition 8.4. �

Lemma A.7 Let the span(a, d) have a bound(D, λ⊗ idm), wherea is hard andd, D
are discrete. Then the bound is an IPO.

Proof The properties assumed for the span and the bound are preserved by the
sorting functorU , so we shall first prove the lemma in the unsorted BRS`BG(K). The
result can then be lifted tòBG(Σ) using Proposition 4.8 asserting that a safe functor
creates IPOs.

λ⊗idm

D

d
a

B E

C

In `BG(K) let (B, C, E) be an RPO for(a, d) relative to(D, λ⊗ idm). Then(B, C) is
an IPO for(a, d), so it will be enough to proveE to be an iso.

Consider place graphs:CP has no idle roots sincea is hard; alsoEP ◦CP = id, so
EP is a place iso. Now consider link graphs:BL is discrete sincedL is so, and has the
same nodes asDL; henceEL is a link iso.

It follows thatE is an iso, completing the proof. �

We can now prove the faithfulness theorem.

146 APPENDIX A. TECHNICAL DETAIL

Theorem 8.19 (engaged transitions are faithful) In a nice BRS, letPE be a prime
engaged transition system whose agents are hard. Then

(1) PE is faithful to the minimal wide transition systemMT.

(2) ∼PE is a congruence.

Proof Since faithfulness means that∼PE = ∼MT when restricted to the agents ofPE,
(2) follows from (1) together with the congruence of∼MT . It remains to prove (1).

We know from Theorem 8.16 thatPE is definite, and hence that∼MT ⊆ ∼PE on
prime agents. For the converse,∼PE ⊆ ∼MT , we shall show that

S = {(C ◦a0, C ◦a1) | a0 ∼PE a1} ∪≎

is a bisimulation forMT up to support equivalence. We then obtain the main result by
takingC = id.

Suppose thata0 ∼PE a1. Let C ◦a0
M

⊲̃ b′0 be a transition ofMT with M ◦C ◦a1

defined. We must findb′1 such thatC ◦a1
M

⊲̃ b′1 and(b′0, b
′
1) ∈ S

≏.
There exists a ground reaction rule(r0, r

′
0) and an IPO—the large square in dia-

gram (a) below—underlying the given transition ofC ◦a0. MoreoverE0 is active, and
if width(cod(r0)) = m thenwidth(E0)(m) = ̃ andb′0 ≏ E0 ◦ r′0. By taking an RPO
for (a0, r0) relative to(M ◦C, E0) we get two IPOs as shown in the diagram. Note
thata0 is prime, butC ◦a0 andb′0 may not be.

Now D0 is active, so the lower IPO underlies a transitiona0
L

⊲ı̃ a′
0

def
= D0 ◦ r′0,

whereı̃ = width(D0)(m0). Again,a′
0 may not be prime. AlsoE is active at̃ı, and

b′0 ≏ E ◦a′
0. SinceM ◦C ◦a1 is defined we deduce thatL ◦a1 is defined, and we

proceed to show in three separate cases the existence of a transitiona1
L

⊲ı̃ a′
1, with

underlying IPO as in diagram (b). (We cannot always infer such a transition for which
a′
0 ∼PE a′

1, even thougha0 ∼PE a1, since the transition ofa0 may not be engaged.)
Substituting this IPO for the lower square in (a) then yieldsa transition

C ◦a1
M

⊲̃ b′1
def
= E ◦a′

1 .

In each case we shall verify that(b′0, b
′
1) ∈ S

≏, completing the proof of the theorem.

(a)
(b)

L

r0

M

a0

E

D1

L

r1

a1
D0

E0C

Case 1 The transition ofa0 is engaged.
Then sincer0 is prime, by considering the IPO(L, D0) and the outer face ofD0 we

find thata′
0 is prime, so the transition may be writtena0

L
⊲ a′

0 and lies inPE. Since

A.6. FAITHFULNESS OF ENGAGED TRANSITIONS 147

a0 ∼PE a1, there exists a transitiona1
L

⊲ a′
1 with a′

0 ∼PE a′
1. This readily yields the

required transition ofC ◦a1.

Case 2 |a0|# |r0|.
Consider the lower IPO of (a). Sincea0 is hard, andr0 both hard and open (since it is
a ground redex), we may apply Lemma A.4 to obtain that up to iso

L = id⊗ r0 and D0 = a0 ⊗ id .

Thena′
0 ≏ (id⊗ r′0) ◦a0. TakingC′ def

= E ◦ (id⊗ r′0) we haveb′0 ≏ C′ ◦a0.
Now, sinceL ◦a1 is defined,|a1|# |r0|. So, takingr1 = r0 andD1 = a1 ⊗ id,

we obtain again by Lemma A.4 that the diagram (b) is an IPO. Substitute it for the
lower square in (a), yielding a transitionC ◦a1

M
⊲̃ b′1

def
= E ◦a′

1. Thenb′1 = C′ ◦a1,
so(b′0, b

′
1) ∈ S

≏ as required.

Case 3 The transition ofa0 is not engaged, but|a0| ∩ |r0| 6= ∅.
Then there is a rule(R, R′, η) with |a0|# |R|, and a discrete parameterd0 such that

r0 = (idW0 ⊗R) ◦d0 and r′0 = (idW0 ⊗R′) ◦η(d0) .

AssumeR : m→ J . Sincea0 is prime, from Lemma A.6 we find that, up to isomor-
phism, the IPO pair underlying the transition ofa0 takes the form of diagram (c) below,
and moreover thata′

0 = (idW ′ ⊗R′) ◦η(Lpar ◦a0) .

(c) (d)

d0 idW0
⊗R

Lpar

a0

d1 idW1
⊗R

Lpar

a1

Lred = idW ′⊗R Lred = idW ′⊗R

λ1⊗idJλ1⊗idmλ0⊗idJ

We seek a similar transition fora1. First we claim that, since support equivalence
respects transition, we may assume that|a1|# |R|. For we may translate the support
of R, and hence ofL, M andC, in the diagram underlying the assumed transition
C ◦a0

M
⊲̃ b′0 without affecting its resultb′0, since the latter is defined only up to≏.

Moreover this support translation can achieve|a1|# |R|while retaining|a0|# |R| and
|d0|# |R|.

Now considerLpar ◦a1. By Proposition 3.9 there is a linkingλ1 : W1→W ′ and
discreted1 : W1 ⊗m such thatLpar ◦a1 = (λ1 ⊗ idm) ◦d1. Also, sinced0 is discrete,
we know by Proposition 5.19 thatLpar is discrete; hence(Lpar, λ1⊗ idm) is an IPO for
(a1, d1) by Lemma A.7. This is the left-hand square in diagram (d).

By Lemma A.4 the right-hand square of (d) is also an IPO. Since|Lpar|# |Lred|
and|d1|# |R|, we may paste the squares together to form a larger IPO. Therefore, by
manipulations as in Lemma A.6,

a1
L

⊲ı̃ a′
1

def
= (λ1 ⊗ idJ) ◦ (idW1 ⊗R′) ◦η(d1)

= (idW ′ ⊗R′) ◦ η(Lpar
◦a1) .

148 APPENDIX A. TECHNICAL DETAIL

As in the previous case, this yields a transitionC ◦a1
M

⊲̃ b′1
def
= E ◦a′

1. We now have

(b′0, b
′
1) = (F ◦η(Lpar

◦a0), F ◦η(Lpar
◦a1))

for a certain contextF , wherea0 ∼PE a1 (both prime). Sinceη is affine, we can appeal
to Proposition A.3 to find two cases. In the first case there is acontextC such that
η(Lpar ◦a) ≏ C ◦a for anya, and hence(b′0, b

′
1) ∈ S

≏. In the second case there is a
ground arrowc such thatη(Lpar ◦a) ≎ c for anya, henceb′0 ≎ b′1, so(b′0, b

′
1) ∈ S.

Thus the bisimulation up to support equivalence is established.

This completes the proof of the theorem. �

As we have seen in case 1 of the proof, when a simple transitiona L
⊲ı̃ a′ is engaged,

anda is prime, then so isa′. Thus, in proving the bisimilarity of prime agents, we can
indeed confine attention to bisimulations containing only prime agents.

A.7 Recovering bisimilarity for CCS

Theorem 10.6 (recovering CCS) Mono bisimilarity recovers CCS, i.e.∼m = ∼ccs.

Proof (⊇) To show∼m ⊇ ∼ccs it will suffice to prove that

S
def
= {(p1|q, p2|q) | p1 ∼ccs p2}

is a bisimulation forPEm; the result follows from Proposition 10.5 by takingq = nil.
Assumep1 ∼ccs p2, and letp1 | q

L
⊲ u1, whereL is not a substitution label. We seek

a transitionp2 | q
L

⊲ u2 such that(u1, u2) ∈ S. We consider the cases forL; we need
only consider cases 1 and 3 of Figure 10.1, since case 2 is likethe first.

Case 1 L = id | alt.(getxc · ·). Then, from Figure 10.1,p1 | q contains an unguarded
moleculealt.(sendxa · ·), in whichx is free. There are two subcases:

If the molecule lies inq, then from Figure 10.1

q = /Z(alt.(sendxa · ·) | b)
u1 = p1 | /Z(a | b) | c

wherex /∈ Z and we can assume no free name ofp2 lies inZ. Then, from Figure 10.1,
p2 | q

L
⊲ u2

def
= p2 | /Z(a | b) | c. But (u1, u2) ∈ S, so we are done.

On the other hand, if the molecule lies inp1 then

p1 = /Z1(alt.(sendxa1 · ·) | b1)
u1 = /Z1(a1 | b1) | q | c

wherex /∈ Z1 and we can assume no free name ofq lies inZ1. Then from Figure 10.2

there is a raw transitionp1
x
−→ p′1

def
= /Z1(a1 | b1), sou1 = p′1 | q | c. But p1 ∼ccs p2,

so for somep′2 we havep2
x
−→ p′2 ∼ccs p′1, and from Figure 10.2 we find

p2 = /Z2(alt.(sendxa2 · ·) | b2)
p′2 = /Z2(a2 | b2)

A.7. RECOVERING BISIMILARITY FOR CCS 149

wherex /∈ Z2, and we can assume no free name ofq or c lies in Z2. Then from
Figure 10.1 we findp2 | q

L
⊲ u2

def
= p′2 | q | c. But (u1, u2) ∈ S, so we are done.

Case 3L = id. Thenp1 | q has an unguarded pair of molecules, together corresponding
to a redex. There are four cases, depending on whether each molecule lies inp1 or in
q. If both lie in p1 or both inq the argument is easy; we therefore consider just one of
the remaining (symmetric) pair of cases.

Suppose then, consulting Figure 10.1, that

p1 = /Z1(alt.(sendx.a1 · ·) | b1)
q = /Z(alt.(getx.a · ·) | b)

u1 = /Z1(a1 | b1) | /Z(a | b)

where we can assume that no free name of one is closed in the other, andx /∈ Z1 ⊎ Z.
Then we have a raw transitionp1

x
−→ p′1

def
= /Z1(a1 | b1). But p1 ∼ccs p2, so there

existsp′2 with p2
x
−→ p′2 ∼ccs p′1, and by Figure 10.2 this takes the form

p2 = /Z2(alt.(sendx.a2 · ·) | b2)
p′2 = /Z2(a2 | b2) .

Then from Figure 10.1 we deducep2 | q
id

⊲ u2
def
= p′2 | /Z(a | b), and(u1, u2) ∈ S, so

we are done.

(⊆) To show∼m ⊆ ∼ccs we shall prove that∼m is a bisimulation for∼ccs. Assume
p ∼m q andp

α
−→ p′; we seek a matching transitionq

α
−→ q′ such thatp′ ∼m q′.

If α = x then the structure ofp andp′ is dictated by case 1 of Figure 10.2. Now,
choosingL = alt.(getx.nil), we find from case 1 of Figure 10.1 thatp L

⊲ p′ | nil.

Sincep ∼m q we haveq L
⊲ q′′ with p′ | nil ∼m q′′. By case 1 of both Figures 10.1 and

10.2 there existsq′ such thatq′′ = q′ | nil andq
x
−→ q′. Appealing to Proposition 10.5,

we then findp′ ∼m q′ as required.
The argument forα = x is similar. The argument forα = τ is even simpler, using

case 3 of both Figures 10.1 and 10.2. This completes the proofof the theorem. �

150 APPENDIX A. TECHNICAL DETAIL

Appendix B

Solutions to exercises

Solutions for Chapter 1

1.1

(1)

A
A

A
AA A

wy zx

bigraphD : ǫ→〈3, {wxyz}〉bare bigraphD̆

(2) Choose interface〈2, ∅〉; the diagram forE is similar to that forE3.

bigraphC : 〈3, {xyzw}〉→〈2, ∅〉

A

R
R

C

B

RA

B

R
C

CC

x y w z

1.2

151

152 APPENDIX B. SOLUTIONS TO EXERCISES

A

C

A

B4

A

C

R R

A

B5

(1) With B1–B5 there are at least the following invariants:

the structure of buildings and rooms is unchanged;
each room contains a single computer, linked to the infrastructure of its building;
each computer is linked to at most one agent, who is in the sameroom;
there are exactly five agents;
there is at most one conference call in progress;
an agent who leaves a conference call never rejoins it.

B6

A
R

R

A

(2) WhenB4 andB5 are replaced byB6 all the above hold, and also:

an agent cannot unlink from a computer without leaving the room.

When you have read Definition 8.5 and the remarks following it, you will see that some
of these invariants make sense only when the identity of an agent (i.e. its support) can
be tracked through a reaction.

1.3

0

throw

amb

1
0

1

amb

throwx.d0 ‖ ambx.d1 ⊲ 1 ‖ ambx.(d0 | d1)

x x

Solutions for Chapter 2

2.1 For link graphs, suppose thatA : X→Y , B : Y →Z, C : Z→W . Let link0, link1

be the link graphs ofC ◦ (B ◦A) and(C ◦B) ◦A respectively. They both take points
p ∈ X ⊎ PA ⊎ PB ⊎ PC to links inEA ⊎EB ⊎ EC ⊎ Z.

153

Consider the six possible cases.

• p ∈ X ⊎ PA. Thenlink0(p) lies inEA, or in EB, or in EC ⊎W .

• p ∈ PB . Thenlink0(p) lies inEB or in EC ⊎W .

• p ∈ PC . Thenlink0(p) lies inEC ⊎W .

In each case provelink1(p) = link0(p). It is just a matter of unpacking the definition
of composition.

The argument for place graphs is similar.

2.2 For the inductive basis, withC = [·], takef = id.
For the inductive step, first supposeC′ = g⊗C (the caseC′ = C⊗g is similar), and

assume there existsf such thatf ◦a = C[a] for all grounda. Then takef ′ = g ⊗ f ,
and provef ′ ◦a = C′[a] as follows:

f ′ ◦a = (g ⊗ f) ◦a
= (g ⊗ f) ◦ (idǫ ⊗ a) by M2
= (g ◦ idǫ)⊗ (f ◦a) by M3
= g ⊗ (f ◦a) by C3
= g ⊗ C[a]
= C′[a] .

Now supposeC′ = h ◦C; then takef ′ = h ◦f , and justify it as follows:

f ′ ◦a = (h ◦f) ◦a
= h ◦ (f ◦a) by C2
= h ◦C[a]
= C′[a] .

2.3 Any bigraphG : I→ ǫ has an empty place graph, since a non-empty place graph
implies at least one root. Also, in the link graphGL : X→∅ of G, every link is an edge.
But if G has empty support then it has no edges, soX = ∅, I = ǫ andG = idǫ.

Solutions for Chapter 3

3.1 A linking is just a map from inner names to outer names and edges. So a substi-
tutionσ from X to Y is just a tensor product of elementary substitutions

σ
def
= y0/X0 ⊗ · · · ⊗ yn−1/Xn−1, whereX = X0 ⊎ · · · ⊎Xn−1 andY = {~y} .

Now partitionY into Z = {y0 · · · yk−1} andW = {yk · · · yn−1}. We get any link
mapλ by setting /W

def
= /yk ⊗ · · · ⊗ /yn−1, and forming λ

def
= (idZ ⊗ /W) ◦σ . This

use of composition is the only way to close a substitution.

154 APPENDIX B. SOLUTIONS TO EXERCISES

3.2 The expressionG can be specialised to the four quoted cases by setting (1)C1 =
id andI = ǫ, (2) I = ǫ andC0 = id, (3)C1 = id andC0 = idJ ⊗C (for F : J→K),
and (4)C1 = γK,I andC0 = (idJ ⊗ C) ◦γI,J .

To show thatg = C ◦a implies thata occurs ing, takeF = a, I = ǫ, C0 = idǫ. For
the converse, assume thatg = C ◦ (a⊗ idI) ◦C′; we must findD such thatg = D ◦a.
Indeed, sincea is ground we haveg = C ◦ (a ⊗ C′); the result follows by taking
D = C ◦ (id⊗ C′).

If E occurs inF andF occurs inG then we have

F = C1 ◦ (E ⊗ idI) ◦C0 and
G = D1 ◦ (F ⊗ idJ) ◦D0 ,

So one can deduce ‘E occurs inG ’, i.e. G = B1 ◦ (E ⊗ idK) ◦B0, by settingK =
I ⊗ J , B1 = D1 ◦ (C1 ⊗ idJ) and B0 = (C0 ⊗ idJ) ◦D0.

3.3
H.(G.F) = (idX∪Y ‖H) ◦ (idX ‖G) ◦F

= (idX ‖ idY ‖H) ◦ (idX ‖G) ◦F
= ((idX ◦ idX) ‖ (idY ‖H) ◦G) ◦F
= (idX ‖ (H.G)) ◦F
= (H.G).F .

3.4 Recall thatR is open, so has no edges. Consider any splitA, B for R. Let
(u0, u1) be thesend-node andget-node ofR, and letv0, v1 be their respective parents,
thealt-nodes. SinceA must have at least one node ofR, at least one of(u0, u1) must
be inA.

If both (u0, u1) are inA then, sinceB must have at least one node ofR, A can
contain at most one of(v0, v1) If it contains neither, then theA-parents of(u0, u1) must
be distinct roots ofA, since their parents(v0, v1) in B ◦A are distinct. IfA contains
exactly one of(v0, v1), sayv0, then by a similar argument the parents of(v0, u1) must
be distinct roots ofA. In both these cases the split is non-unary.

ThereforeA contains exactly one of(u0, u1) andB contains the other. So the split
is tight, since these two nodes are linked.

The redexes ofA1–A3 andB1 are tight (in the case ofB1 there is no split); those
of B2 andB3 are not tight.

Solutions for Chapter 4

4.1 Assume that(~h, h) is an RPO for~f relative to~g. We have to prove that~h is an
IPO. So, for an arbitrary bound(~ℓ, ℓ) for ~f relative to~g, we seek a uniquey such that

y ◦~h = ~ℓ andℓ ◦y = id .

First, we know thatℓ ◦~ℓ = ~h, and also that(~ℓ, h ◦ ℓ) is a bound for~f relative tog,
whence there exists uniquex such that

x ◦~h = ~ℓ andh ◦ ℓ ◦x = h .

155

Now, as in the proof of Proposition 4.5(1), we can show thatℓ ◦x = id; thusy = x
satisfies the required equations fory. But anyy satisfying these equations also satisfies
the equations forx. This assures unicity fory, and we are done.

4.2 Assume that(~k, k) is an RPO. Since~h is an IPO,(~h, h) is a bound for~f relative
to (h ◦h0, h ◦h1); so there exists uniquex such that

x ◦~k = ~h andh ◦x = k .

Hence(~k, x) is a bound for~f relative to~h, which is an IPO, so ifH is the codomain of
~h there exists uniquey such that

y ◦~h = ~k andx ◦y = idH .

Now since(~k, k) is an RPO, it follows from Proposition 4.5(2) that~k is an IPO. Since
(~h, y) is a bound for~f relative to~k, we deduce that there exists uniquez such that

z ◦~k = ~h andy ◦ z = idK .

From x ◦y = idH and y ◦ z = idK we deducex = z. It follows that x : K→H
is an iso with inversey. So since(~k, k) is an RPO, from the equations forx and
Proposition 4.5(1) we deduce that(~h, h) is also an RPO, as required.

4.3 LetF : À→ `B, and assume~g bounds~f in À. So, denotingF -images by a prime,
~g′ bounds~f ′ in `B. Assume that this is a pushout; then we want to prove that~g is a
pushout for~f in À.

Let ~h bound ~f in À. Denote the arrowg0 ◦f0 = g1 ◦f1 by g, and the arrow
h0 ◦f0 = h1 ◦f1 by h. We require uniquek such thatk ◦~g = ~h. It is enough to find
somek satisfying these equations; uniqueness follows from two facts:

• k′ will be the unique arrow iǹB such thatk′ ◦~g′ = ~h′, and

• g is op-cartesian, sok is the unique preimage ofk′ such thatk ◦g = h.

Now, for eachi ∈ {0, 1}, sincegi is op-cartesian there exists a preimageki of k′ such
that ki ◦gi = hi. But these equations imply thatki ◦g = h, sok0 = k1 sinceg is
op-cartesian, and our required arrow isk

def
= k0 = k1. This completes the proof.

Solutions for Chapter 5

5.1 We prove the epi case for link graphs. (The other cases are similar.)
AssumeF : X→Y is epi; we prove that it has no idle names. SupposeY = y ⊎Z

wherey is idle in F . pick G = G ⊗ idZ andH = H ⊗ idZ as shown. ThenG 6= H
butG ◦F = H ◦F , contradictingF epi.

156 APPENDIX B. SOLUTIONS TO EXERCISES

BA

G H

BA

yy

Now assumeF has no idle names; we prove it to be epi. LetG ◦F = H ◦F . ThenG
andH have the same nodes, edges and control map; so to proveG = H it remains to
prove thatlinkG = linkH . For this, letq be any point ofG (and hence ofH). If q is a
port, then it is a port ofG ◦F , and we have

linkG(q) = linkG ◦F (q) = linkH ◦F (q) = linkH(q) .

On the other hand, ifq is an inner name, sayq = y ∈ Y , theny is not idle inF so
y = linkF (p) for some pointp of F . But then

linkG(y) = linkG ◦F (p) = linkH ◦F (p) = linkH(y) .

This completes the proof thatF is epi.

5.2 The namey should not be merged withx0 in B0; instead we addy to the outer
face ofB0, defininglinkB0(y) = y and linkB(y) = x. Then alsoy1 should not be
merged withx1 in B1; instead, definelinkB1(y1) = y (thus keeping the outer faces of
B0 andB1 equal).

5.3 CL0: If v ∈ V2 then it is a node ofB0 ◦A0 = B1 ◦A1, hencectrl0(v) =
ctrlB0 ◦A0(v) = ctrlB1 ◦A1(v) = ctrl1(v).

CL1: Take i = 0. SinceA0(p) = e ∈ E0 we havep ∈ W ⊎ P0. Also
(B0 ◦A0)(p) = e, so(B1 ◦A1)(p) = e. But e ∈ E1 by assumption, henceA1(p) =
e = A0(p) as required, hence alsop ∈W ⊎ P1, hencep ∈ W ⊎ P2 as required.

CL2: Takei = 0. SinceA0(p2) = e ∈ E0 we have(B0 ◦A0)(p2) = e, hence
(B1 ◦A1)(p2) = e. But p2 6∈ E1, so for somex ∈ X1 we haveA1(p2) = x as
required, andB1(x) = e. If also A1(p) = x thenp ∈ W ⊎ P1; so (B0 ◦A0)(p) =
(B1 ◦A1)(p) = B1(x) = e. But thenp is a point ofA0, soA0(p) = e as required.

5.4 In Construction 5.15 the edges ofC1 are defined to beE0 \E2. This holds for all
IPOs, since elisions change no edges. ButE0 = ∅, henceC1 has no edges.

5.5 The distinguished IPO(id, id) is the unique IPO for(A, A) up to iso, becauseid
has no nodes or edges, hence permits no elisions. But ifA is not epi it has an idle name
or idle root; this gives rise to an idle name or root in the IPO cospan.

157

5.6 (1) We have shown that there can be noK-node inB0; so to achievêC ◦B0 = C0

we needĈ to contain aK-node linked toz. But thenĈ ◦B1 = C1 fails, sinceC1

contains no suchK-node.
(2) In concrete link graphs, nodes have support. There are two cases for theK

nodes inA0 andA1. If they have the same support, i.e.A0 andA1 share aK-node,
then the RPO construction would require~C to have no nodes; hence(~C, C) would not
be an RPO. On the other hand of they have different supports, then ~D would not even
be a bound for~A; hence(~D, D) would not be an RPO. In either case exactly one of
(~C, C) and(~D, D) would be a relative bound—and it would be the required RPO.

Solutions for Chapter 6

6.1 The formation ruleΦ for stratified sorting constrains only place graphs, so we
can ignore link graphs when checking it. And since a place graph is a forest of trees, if
it is augmented with sorts then the forest satisfiesΦ iff each tree does.

A place interfacem augmented with sorts is a sequenceθ0 · · · θm−1 of sorts. So
in an identityidI augmented with sorts, each tree whose root has sortθ has just one
child with sortθ. This clearly satisfiesΦ.

Now suppose that each ofF andG, augmented with sorts, satisfiesΦ. Each tree
of a tensor productF ⊗ G is just a tree of eitherF or G, so clearlyF ⊗ G satisfies
Φ. Each tree of a compositionG ◦F is a tree ofG in which each sitei : θ is replaced
by some tree ofF whose root (with sortθ) is removed. Now every place inG ◦F is
either a root ofG or a node ofG or a node ofF ; the appropriate condition ofΦ can be
checked for each case separately.

6.2 Θ = {a, b, c, r, âc, âr}, K = {A : a, B : b, C : c, R : r}. Φ requires:

An a-node orc-node has no children (i.e.A andC are atomic);
all children of ab-node orâc-root have sorta, c or âc;
all children of ar-node orâr-root have sorta, r or âr;
all children of aθ-root have sortθ, whereθ ∈ {a, b, c, r}.

The interfaces are
E : ǫ→J whereJ = 〈b b, ∅〉 ;
D : ǫ→ I whereI = 〈a a a, {xyzw}〉 ;
C : I→ J .

Alternatively, replacea by âc in I.
The redex of ruleB1 can have sorta or âc; the redex ofB2 must have sort̂ac; the redex
of B3 must have sort̂ar.

6.3 (1) If x : θ, it may be that inlink g′(x) = e (say) wheree : θ′ in h; thenlinkg(x) : θ′

is forced, preventing the well-sorting ofg.
(2) Let ~A be bounded by~B in a plain-sorted s-category, and let the unsortedU-image
(~A′, ~B′) of this diagram be a pushout. We argue that(~A, ~B) is also a pushout.

158 APPENDIX B. SOLUTIONS TO EXERCISES

A′
0 A′

1A0 A1

D1

B0 B1

D0 C ? C′
D′

0 D′
1

B′
1B′

0

U
I′I

Let ~D bound~A; then its image~D′ bounds~A′. We require a unique mediating arrowC
in the left-hand diagram. A unique such arrowC′ exists in the right-hand diagram; so
define its preimageC by ascribing to all its ports and edges the sorts that they have in
D0 and inD1. If this makesC well-sorted, then it is the unique arrow required.

If a link of C contains no inner name inI then the link and its points are sorted as in
D0 andD1, so they obey the plain-sorting formation rule. Thus, to conclude thatC is
well-sorted, we need only show that ifx : θ is an arbitrary name inI thenlinkC(x) : θ.

Now ~B′ is a pushout, hence an IPO, sox is not idle in bothB′
0 andB′

1. Without
loss of generality,x has a pointp in B′

0, and hence inB0. SinceB0 is well-sorted,
p : θ in B0 and also inD0. SinceD0 is well-sorted,linkD0(p) has sortθ. But this link
(outer name or edge) is inC too; hence, by our construction,linkC(x) : θ as required.

A similar argument shows that the functor creates RPOs.

Solutions for Chapter 7

7.1 In bigraphs, to say ‘G ◦F is active ati’ means that all ancestor nodes ofi in G ◦F
are active. This is true iff all ancestor nodes ofi in F are active, and that all ancestor
nodes ofj in G are active, wherej is the ancestor root ofi in F . But this is the same
statement as ‘F is active ati andG is active atwidth(F)(i)’ .

Recall that1 : 0→ 1 is the place graph with no sites and one root. TakeF =
A⊗ 1 : 1→ 2 andG = join ◦ (A⊗ B) : 2→ 1. ThenG ◦F is active, butG is not active
at its second site.

7.2 Trivially both ≏ and≎ include support equivalence (≏). To see that≏ is pre-
served by◦ (for example), supposeF ≏ G andF ′ ≏ G′. ThenG, G′ are obtained
from F, F ′ by support translationsρ, ρ′ respectively. But ifF ◦F ′ andG ◦G′ are both
defined thenρ ⊎ ρ′ is also a support translation, and takesF ◦F ′ to G ◦G′; hence
F ◦F ′ ≏ G ◦G′.

Now letF− meanF with idle edges removed. To check≎ is preserved by◦ (for
example), note thatF ≎ G means thatF− ≏ G−. The rest follows from the fact that
(F ◦F ′)− = (F− ◦ (F ′)−)−.

7.3 From the commutation of the second diagram, prove that the first diagram com-
mutes whena is replaced byf ◦a.

159

7.4 For the first part, leta f
⊲ı̃ a′ anda ≏ b with f ◦ b defined. Then there is a

reaction rule(r, r′) and an IPO(f, d) for (a, r), such thata′ ≏ d ◦ r′. Let ρ be the
support translation such thatρ �a = b. Apply ρ, extended by the identity map, to the
whole IPO; then Proposition 4.5 yields an IPO(f, e) for (b, s), with e ≏ d ands ≏ r.
Pick s′ ≏ r′ so thate ◦s′ is defined; then(s, s′) is also a reaction rule (since these are

closed under≏), so if b′
def
= e ◦s′ thenb

f
⊲ı̃ b′ with a′ ≏ b′, as required.

For the second part, we must show that ifS is a bisimulation up to≏ thenS ⊆ ∼.
For this, we show thatS≏ is a bisimulation, for thenS≏ ⊆ ∼, which impliesS ⊆ ∼.

For this purpose, suppose thataS≏b, i.e. thata ≏ a1Sb1 ≏ b, and leta f
⊲ı̃ a′.

Then, since≏ is a bisimulation, there exista′
1, b

′
1 andb′ such thatb f

⊲ı̃ b′ anda′ ≏

a′
1S

≏b′1 ≏ b′. butS is closed under≏, soa′S≏b′. This completes the proof thatS≏ is
a bisimulation, and hence thatS ⊆ ∼, as required.

7.5 (1) G ◦F can differ fromG ◦F ; in the latter, aB-node inG can still be linked to
anA-node inF . But the equivalence is a structural congruence: this can beproved by
showing that ifF0 ≡ F1 then they have the same normal form, the result of removing
everyB-node linked to anA-node. It is not an abstraction; we may haveF ≏ G, but
F 6= G; if neither has aB node linked to anA-node thenF 6≡ G.

The equivalence does not necessarily respectMT; for the redex of a reaction rule
may contain aB-node; then if we drop aB-node from an agenta we may lose a transi-
tion.

(2) As in (1) the equivalence is a structural congruence, butnot an abstraction. It may
not respectMT, even if no redex contains aB- or A-node. For we may haveA passive
andB active; then replacingB by A may prevent a reaction—and hence a transition—
by turning an active context into a passive one.

7.6 By the definition of induced transitions there exista, f anda′ in C such that

p = [[a]], g = [[f]], p′ = [[a′]], with a
f

⊲ı̃ a′. By Exercise 7.3 it follows that
f ◦a ⊲ı̃ a′. So from Theorem 7.7 we deduce that[[f ◦a]] ⊲ı̃ [[a′]]. Since[[·]] is a
functor, we immediately deduceg ◦p ⊲ ı̃p′.

Solutions for Chapter 8

8.1 For the CCS rule:
R : 〈p a p a, ∅〉→〈p, x〉 R′ : 〈p p, ∅〉→〈p, x〉
r, r′ : 〈p, x ⊎ Y 〉
d : 〈p a p a, Y 〉 di : 〈θi, Yi〉 whereθ0, θ1, θ2, θ3 = p, a, p, a .

For the ruleB3, r = A.1 |R.d andr′ = R.(A.1 |d). (By convention, one can write
A.1 asA sinceA atomic.) For the interface see the solution to Exercise 6.2.

8.2 For an engaged transition takeR = Aw ◦ (id1 |Bv) , d = Bu ; for a disengaged
transition takeR = Aw ◦ (id1 |Bu) , d = Bv .

160 APPENDIX B. SOLUTIONS TO EXERCISES

Solutions for Chapter 9

9.1 The final net should be as on the left below. A clean-up rule is shown on the right,
where ‘?’ may be any control.

0 S

?

SS

y zx

9.2 If two redexes are disjoint then one reaction cannot destroyeither the nodes or
the linkage of the other. No critical pair can be formed from an instance of (1) with
an instance of (2). A critical pair of instances of (1) must share theS-node; a critical
pair of instances of (2) must share the0-node; in both cases—as already seen for (1)—
confluence holds. A critical pair of (3) with any of (1)–(3) can only share the?-node
and is clearly confluent.

9.3 Let theS-measureof any net be the number of distinct finite paths leading from an
S-node to a+-node. For explicit nets this measure is finite. For each explicit net, let its
measurebe the triplem = (mS, m+, m→) of its S-measure, its number of+-nodes,
and its number of→-nodes. Prove the following (the first being crucial):

• Rule (1) decreasesmS, while rules (2) and (3) do not increase it.

• Rule (2) decreasesm+, while rule (3) does not increase it.

• Rule (3) decreasesm→.

So the lexicographic ordering on measure is well-founded and decreased by reaction.

Solutions for Chapter 10

10.1 For (1), following the hint, in the inductive step we assume the property for
agents with less thann nodes and prove it for any agent withn nodes.

One such agent has the forma = sendx.p : 〈p, X〉, wherep hasn − 1 nodes. So
by inductive assumption there is a CCS processP such thatPX [P] = p; hence for the
CCS alternationx.P we haveAX [x.P] = a.

To complete the inductive proof, apply a similar argument for all ways (there are
four or five ways) of building larger agents from smaller ones.

For (2) follow the hint. We omit the proof of the Lemma here; itis not very instructive.

161

10.2 For example, suppose thatp | nil
x
−→ p′′. Then the pair(p | nil, p′′) matches the

forms in case 2 of the figure. It follows thatb takes the formb′ | nil, so thatp′′ takes the
form p′ | nil, wherep andp′ also match that case withb′ in place ofb.

We have therefore shown that the assumed transition is matched byp
x
−→ p′ such

that(p, p′) ∈ S. The same can be done for the other labelsα in place ofx.
In the other direction, starting with an assumed transitionp

α
−→ p′, it is even easier

to deducep | nil
α
−→ p′ | nil.

10.3 Having provedp ≃m p | nil, use this together with Exercise 10.2, to prove that
each of≃m and∼ccs is a bisimulation for the other.

Solutions for Chapter 11

11.1 The contextual rule is

(C :J→K, S : m→ J, S′ : m′→ J, η, τ)

whereτ : |S|′ ⇀ |S| is a tracking map. (We useS, S′ in place ofR, R′ to avoid
confusion with the room controlR.) Given a parameterd, defined′ andσ as before.
Then the ground rules generated take the form

((C ◦S).d , (C′
◦S′).d′ , ρ ⊎ τ ⊎ σ)

whereC = ρ �C′.
For rule (1) we construct the contextual rule (with the abovenotation) as fol-

lows. Let K = 〈1, xy〉 and J = 1 ⊗ K = 〈2, xy〉. Then the agent is the atom
a

def
= Axy.1 : ǫ→K, and the room ion isR : 1→ 1. Then for the contextual rule we take

C = idI |R, S = a⊗ id1 and S′ = 1⊗ (a | id1)

whereC : J→K andS, S′ : 1→J . Alsoη = {1 7→1}, andτ = {u 7→u} if we assume
a has support{u} in bothS andS′.

11.2 (1) Sincef ⊲⊲ f ′ there existg, g′ with g ⊲ g′ and(f, f ′) ≤ (g, g′). Hence
by congruence(C ◦f, C ◦f ′) ≤ (C ◦g, C ◦g′). But C ◦g ⊲ C ◦g′; hence by defini-
tion C ◦f ⊲⊲ C ◦f ′. Similarly for tensor product.

(2) Sincef ⊲⊲ f ′, we haveh ⊲ h′ where(f, f ′) ≤ (h, h′). By confluence,
there existsk with g, h ≤ k. By Proposition 11.7 There existsg′ such thatk ⊲ g′

andh′ ≤ g′. Therefore by definitiong ⊲⊲ g′; alsof ′ ≤ h′ ≤ g′, so we are done.

11.3 The first step in creating the left-hand diagram is to take theRPO for (id ⊗
a, id ⊗ a) relative to(B0 ◦C0, B1 ◦C1). The bottom square is then an IPO, and its
upper members are identities (up to iso) becausea is epi (see Exercise 5.5). The second
step is to take an RPO for(C0, id) relative to(B0, B0 ◦C0), and a matching IPO on the
other side. (The resulting IPOs are unique up to iso since an identity is both epi and
open.)

162 APPENDIX B. SOLUTIONS TO EXERCISES

The right-hand diagram results from taking the RPO for(id ⊗ a, A1) relative to
(B0 ◦C, B1). Since the lower square is an IPO, we know it is unique (up to iso) because
a is epi and open; hence it takes the form of the IPO defined in Corollary 5.21.

11.4 On the one handK ∼ L since∼ does not allow growth, butK 6≃ L since
K ⊲⊲ K andL 6 ⊲⊲ . On the other handK 6∼ M.K sinceM.K ⊲ K andK 6 ⊲ ,
butK ≃ M.K sinceK →֒ M.K.

11.5 As in the proof of Theorem 7.16, we establish the following asa bisimulation
for≃, up to≏:

S
def
= {(C ◦a0, C ◦a1) | a0 ≃ a1, C any context} .

(Here we omit mention of activeness; it is handled just as in the cited theorem.)

Let a0 ≃ a1, and suppose there is a grown transitionC ◦a0
M

⊲⊲̃ b′0. We have to

find b′1 such thatC ◦a1
M

⊲⊲̃ b′1 and(b′0, b
′
1) ∈ S

≏.

STAGE 1: By definition there is a standard transition̂C ◦ â0
cM

⊲̃ b̂′0, where

(C, a0, M, b′0) ≤ (Ĉ, â0, M̂ , b̂′0) .

This depends on Proposition 11.6(3), ensuring independentgrowth in C ◦a0. The
transition is based on an underlying IPO, and on a ground rule(r0, r

′
0) such that

b̂′0 ≏ E0 ◦ r′0. Take an RPO, yielding a pair of IPOs as shown in diagram (a).

(b)(a) (c)

â1

r1

L̂

D1

r′1

â′
1

≏â0 D0

r0

L

M̂

r′0

b̂′0C′

≏ â1 D1

L̂

̂̂
M

r1

C′ b̂′1

r′1

Ĉ

E0

̂̂
C

E1

STAGE 2: The lower IPO underlies a standard transitionâ0
L

⊲ı̃ a′
0

def
= D0 ◦ r′0. Ob-

serve that̂b′0 ≏ C′ ◦a′
0. By definition, we then have a grown transitiona0

L
⊲⊲ı̃ a′

0.

Sincea0 ≃ a1, there is a grown transitiona1
L

⊲⊲ı̃ a′
1 with a′

0 ≃ a′
1. Then, by defini-

tion, there exists a standard transitionâ1
bL

⊲ı̃ â′
1 such that

(a1, L, a′
1) ≤ (â1, L̂, â′

1) ,

where the transition is based on a ground rule(r1, r
′
1) and an IPO as shown in diagram

(b), with a′ ≏ D1 ◦ r′1. Moreover, since reaction rules and growth are closed under≏,
this triple may be chosen with support disjoint fromC′.

163

STAGE 3: We now turn attention to the upper IPO in diagram (a). SinceL ≤ L̂ and

|L̂| ∩ |C′| = ∅, by Proposition 11.12 there exist̂̂
C,

̂̂
M such that

(Ĉ, M̂) ≤ (
̂̂
C,

̂̂
M)

and(
̂̂
M, C′) is a IPO for(̂̂

C, L̂). We may paste this IPO onto diagram (b), and define
b̂′1

def
= E1 ◦ r′1, whereE1 = C′ ◦D1. Thus diagram (c) represents the standard transition

̂̂
C ◦ â1

ccM
⊲̃ b̂′1. Also b̂′1 ≏ C′ ◦ â′

1, so we defineb′1
def
= C′ ◦a′

1. So finally, since

(C ◦a1, M, b′1) ≤ (
̂̂
C ◦ â1,

̂̂
M, b̂′1)

we have a grown transitionC ◦a1
M

⊲⊲̃ b′1. Recalling thatb′0 ≏ C′ ◦a′
0, we have that

(b′0, b
′
1) ∈ S

≏, and the proof is complete.

11.6 In the definitions of both place graphs and link graphs, Definitions 2.1 and 2.2:
(1) add to the tuple representingF an extra componentBF , a finite set of bindings: (2)
extendctrlF :VF →K to ctrlF : VF ⊎ BF →K; (3) in formingG ◦F give it bindings
B = BF ⊎BG. In Definition 2.5, adapt the defining equations as follows:

• Let w range overk⊎VF ⊎VG⊎BF ⊎BG, and replace the conditionsw ∈ k⊎VF

andw ∈ VG by the conditionsw ∈ k ⊎ VF ⊎BF andw ∈ VG ⊎BG.

• Replace the conditionlinkF (q) ∈ EF by the conditionlinkF (q) ∈ EF ⊎BF .

11.7 It is easy to prove that the identities satisfy the scoping discipline, and that tensor
product preserves it. Here we confine ourselves to proving that composition preserves
the scoping discipline.

Let F : I→ J andG : J→K satisfy the scope discipline, and defineH : I→K
def
=

G ◦F . Let ℓ = linkH(q) in H , with (w, ℓ) ∈ loclinkH . We must findw′ such that
w′ inH w and(w′, q) ∈ locpointH . Sinceℓ is local it cannot be an edge inEH , so it is
either a name inK or a bindingb ∈ BH . We divide the argument into two cases:

Case 1 ℓ = b ∈ BF . Thenq ∈ X ⊎ PF whereX are the names ofI. We easily
verify that(w, b) ∈ loclinkF . Sinceb = linkH(q) in H andb is in F , it follows that
b = linkF (q) in F , hence by the scope discipline forF we deduce that there exists
w′ inF w with (w′, q) ∈ locpointF . Composition withG preserves these properties,
i.e.w′ inH w with (w′, q) ∈ locpointH , and we are done.

Case 2 ℓ ∈ BG ⊎ Z, whereZ are the names ofK. Now since(w, ℓ) ∈ loclinkH ,
we also have(w, ℓ) ∈ loclinkG. Furthermoreq ∈ X ⊎ PF ⊎ PG, so we treat the two
possible subcases forq:

(a) q ∈ X ⊎ PF . Then for some namey in J we haveℓ = linkG(y) andy =
linkF (q). Now by the scope discipline forG there exists a sites in J with
s inG w and(s, y) ∈ locJ . But then(s, y) ∈ loclinkF , so by the scope discipline
for F there existsw′ inF s with (w′, q) ∈ locpointF . It readily follows that
w′ inH w with (w′, q) ∈ locpointH , and we are done.

164 APPENDIX B. SOLUTIONS TO EXERCISES

(b) q ∈ PG. Then by the scope discipline forG we havew′ inG w with (w′, q) ∈
locpointG. It follows immediately thatw′ inH w with (w′, q) ∈ locpointH , and
we are done.

Bibliography

[1] Ubiquitous computing:experience, design and science.A Grand Challenge of
UKCRC, the UK Computing Research Committee.http://www-dse.doc.
ic.ac.uk/Projects/UbiNet/GC/Manifesto/manifesto.pdf .

[2] Equator. A 6-year Interdisciplinary Research Collaboration funded by the UK En-
gineering and Physical Sciences Research Council.http://www.equator.
ac.uk .

[3] Baeten, J. and Weijland, W. (1990),Process Algebra. Cambridge Tracts in Theo-
retical Computer Science 18, Cambridge University Press.

[4] Barr, C. and Wells, M. (1990),Category Theory for Computing Science. Prentice
Hall.

[5] Benson, D. (1975), The basic algebraic structures in categories of derivations.
Information and Control 28, pp1–29.

[6] Berry, G. and Boudol, G. (1992), The chemical abstract machine. Journal of The-
oretical Computer Science 96, pp217–248.

[7] Bettini, L. and De Nicola, R. (2005), Mobile distributedprogramming in X-
Klaim. In: SFM-05:Moby, 5th International School on Formal Methods for the
design of Computer, Communication and Software Systems: Mobile Computing,
Lecture Notes in Computer Science 3465, Springer-Verlag, pp29–68.

[8] Bergstra, J. and Klop, J.-W. (1985), Algebra of communicating processes with
abstraction, Theoretical Computer Science 37, pp77-121.

[9] Birkedal, L. and Hildebrandt, T. (2004), Bigraphical programming languages.
Laboratory for Context-Dependent Mobile Communication, IT University, Den-
mark.http://www.itu.dk/research/bpl/ .

[10] Birkedal, L.., Bundgaard, M., Damgaard, T., Debois, S., Elsborg, E., Glenstrup,
A., Hildebrandt, T., Milner, R. and Niss, H. (2006), Bigraphical programming
languages for pervasive computing. In:Proc. International Workshop on Com-
bining Theory and Systems Building in Pervasive Computing. pp653–658.

165

166 BIBLIOGRAPHY

[11] Birkedal, L., Debois, S., Elsborg, E., Hildebrandt, T.and Niss, H. (2006), Bi-
graphical models of context-aware systems. In:Proc. 9th International Confer-
ence on Foundations of Software Science and Computation Structure, Lecture
Notes in Computer Science 3921, pp187–201.

[12] Birkedal, L. Damgaard, T., Glenstrup, A. and Milner, R,(2007), Matching of
bigraphs. In:Proc. Workshop on Graph Transformation for Verification andCon-
currency, Electronic Notes in Theoretical Computer Science 175, Elsevier, pp3–
19.

[13] Brookes, S., Hoare, C. and Roscoe, W. (1984), A theory ofcommunicating se-
quential processes. J. ACM 31, pp560–599.

[14] Birkedal, L., Debois, S. and Hildebrandt, T. (2008), Onthe construction of sorted
reactive systems. In:Proc. 19th International Conference on Concurrency Theory
(CONCUR), Lecture Notes in Computer Science 5201, pp218–232.

[15] Bundgaard, M., Glenstrup, A., Hildebrandt, T., Højsgaard, E. and Niss, H. (2008),
Formalising higher-order mobile embedded business processes with binding bi-
graphs. In:Proc. 10th International Conference on Coordination Languages, Lec-
ture Notes in Computer Science 5052, pp83–99.

[16] Bundgaard, M. and Hildebrandt, T. (2006), Bigraphicalsemantics of higher-order
mobile embedded resources with local names. In:Proc. Workshop on Graph
Transformation for Verification and Concurrency, Electronic Notes in Theoret-
ical Computer Science 154, pp7–29.

[17] Bundgaard, M. and Sassone, V. (2006), Typed polyadic pi-calculus in bigraphs.
In: Proc. 8th ACM SIGPLAN International Conference on Principles and Practice
of Declarative Programming, pp1–12.

[18] Cardelli, L. and Gordon, A.D. (2000), Mobile ambients.Theoretical Computer
Science 240, pp177–213.

[19] Castellani, I. (2001), Process algebras with localities. In: Handbook of Process
Algebra, eds Bergstra, J., Ponse, A. and Smolka, S., Elsevier, pp945–1045.

[20] Cattani, G.L., Leifer, J.J. and Milner, R. (2000), Contexts and embeddings for
closed shallow action graphs. University of Cambridge Computer Laboratory,
Technical Report 496.

[21] Cheverst, K., Davies, N., Mitchell, K. and Friday, A. (2000), Experiences of
developing and deploying a context-aware tourist guide: the GUIDE project. In:
Proc. Mobicom, Boston, Massachusetts, pp20–31.

[22] Clavel, M., Eker, S., Lincoln, P. and Meseguer, J. (1996), Principles of Maude.
In: J. Meseguer (ed.)Proc. First International Workshop on Rewriting Logic and
ite Applications, Electronic Notes in Theoretical Computer Science 4, Elsevier,
pp1–25.

BIBLIOGRAPHY 167

[23] Conforti, G., Macedonio, D. and Sassone, V. (2005), Spatial logics for bigraphs.
In: International Conference on Automata, Languages and Programming, Lecture
Notes in Computer Science 3580, Springer-Verlag, pp766–778.

[24] Conforti, G., Macedonio, D. and Sassone, V. (2005), Bigraphical Logics for
XML. In: Proc. 13th Italian Symposium on Advanced Datebase Systems (SEBD),
pp392-399.

[25] Crowcroft, J. (2006), The privacy and safety impact of technology choices for
command, communications and control of the public highway.SIGCOMM Com-
put. Commun. Rev. 36(1), pp53–58.

[26] Damgaard, T. and Birkedal, L. (2006), Axiomatizing binding bigraphs. Nordic
Journal of Computing 13(1–2), pp58–77.

[27] Danos, V., Feret, J., Fontana, W. and Krivine, J. (2007), Scalable modelling of
biological pathways. In: Z. Shao (ed.),Proceedings of APLAS, 4807, pp139–
157.

[28] Dix, A. et al. (2000), Exploiting space and location as a design framework for
interactive mobile systems. ACM Trans. Comput. Human Interact, 7(3), pp285–
321.

[29] Ehrig, H. (1979), Introduction to the algebraic theoryof graph grammars. In:
Graph Grammars and their Application to Computer Science and Biology, Lec-
ture Notes in Computer Science 73, Springer Verlag, pp1–69.

[30] Ehrig, H. (2002), Bigraphs meet double pushouts. EATCSBulletin 78, October
2002, pp72–85.

[31] Gadducci, F., Heckel, R. and Llabrés, M. (1999), A bi-categorical axiomatisation
of concurrent graph rewriting. In:Proc. 8th Conference on Category Theory in
Computer Science (CTCS), Electronic Notes in Theoretical Computer Science
29, Elsevier Science.

[32] Gadducci, F. and Montanari, U. (2000), The tile model. In: Plotkin, G., Stirling,
C. and Tofte, M. (eds.)Proof, Language and interaction, MIT Press, pp133–166.

[33] Gardner, P. (2000), From process calculi to process frameworks. In:Proc. 11th
International Conference on Concurrency Theory (CONCUR), Lecture Notes in
Computer Science 1877, Springer-Verlag, pp69–88.

[34] Gardner, P. and Wischik, L. (2000), Explicit fusions. In: Proc. Mathematical
Foundations of Computer Science, Lecture Notes in Computer Science 1893,
Springer-Verlag, pp373–382.

[35] Grohmann, D., and and Miculan, M. (2007), Directed bigraphs. In:Proceedings
of 23rd MFPS Conference, Electronic Notes in Computer Science 173, pp121–
137.

168 BIBLIOGRAPHY

[36] Grohmann, D., and and Miculan, M. (2007), Reactive systems over directed bi-
graphs. In:Proceedings of 18th Conference on Concurrency Theory (CONCUR),
Lecture Notes in Computer Science 4703, Springer-Verlag, pp380–394.

[37] Grohmann, D., and and Miculan, M. (2008), An algebra fordirected bigraphs.
In:Proc. 4th International Workshop in Computing with Terms and Graphs, Elec-
tronic Notes in Theoretical Computer Science 203(1), pp49–63.

[38] Hasegawa, M. (1999), Models of sharing graphs. PhD Dissertation, Division of
Informatics, University of Ednburgh. Available as Technical Report ECS–LFCS–
97–360. Also in Springer Series of Distinguished Dissertations in Computer Sci-
ence.

[39] Hennessy, M. (2007),A Distributed Pi Calculus. Cambridge University Press.

[40] Hennessy, M. and Milner, R. (1985), Algebraic laws for non-determinism and
concurrency. Journal of ACM 32, pp137–161.

[41] Hildebrandt, T., Niss, H. and Olsen M. (2006), Formalising business process ex-
ecution with bigraphs and Reactive XML. In:Proc. 8th International Conference
on Coordination Models and Languages, Lecture Notes in Computer Science
4038, Springer Verlag, pp113–129.

[42] Hillston, J. (1996),A Compositional Approach to Performance Modelling. Cam-
bridge University Press.

[43] Hirsch, D. and Montanari, U. (2001), Synchronised hyperedge replacement with
name mobility. In:Proc. 12th International Conference on Concurrency Theory
(CONCUR), Lecture Notes in Computer Science 2154, Springer-Verlag,pp121–
136.

[44] Hoare, C.A.R. (1985),Communicating Sequential Processes, Prentice Hall.

[45] Dash, R., Parkes, D. and Jennings, N. (2003), Computational mechanism design:
a call to arms. IEEE Intell. Syst. 18(6), pp40–47.

[46] Jensen,O.H. (2006),Mobile Processes in Bigraphs. Monograph available at
http://www.cl.cam.ac.uk/ ˜ rm135/Jensen-monograph.html .

[47] Jensen, O.H. and Milner, R. (2003), Bigraphs and transitions. In:30th SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, ACM Press,
pp38–49.

[48] Jensen, O.H. and Milner, R. (2004), Bigraphs and mobileprocesses (revised).
Technical Report UCAM-CL-TR-580, University of CambridgeComputer Lab-
oratory.

[49] Joyal, A. (1986), Foncteurs analytiques et espèces destructures. In: Proc.
Colloque de combinatoire énumérative, Lecture Notes in Mathematics 1234,
Springer Verlag, pp126–159.

BIBLIOGRAPHY 169

[50] Kelly, G.M. (1982),Basic Concepts of Enriched Category Theory.Lecture Notes
in Mathematics 64, Cambridge University Press. Republished (2005) inTheory
and Applications of Categories, 10, pp1–136.

[51] Krivine, J., Milner, R. and Troina, A. (2008), Stochastic bigraphs. In:Proc. 24th
International Conference on Mathematical Foundations of Programming Sys-
tems, to appear in Electronic Notes in Theoretical Computer Science.

[52] Lafont, Y. (1990), Interaction nets. In:Proc. 17th ACM Symposium on Principles
of Programming Languages, ACM Press, pp95–108.

[53] Lawvere, F.W. (1973), Metric spaces, generalized logic, and closed categories.
Rendiconti del Seminario Matematico e Fisico di Milano XLII, pp135–166. Re-
published (2002) inReprints in Theory and Applications of Categories, 1, pp1–
37.

[54] Leifer, J.J. (2001), Operational congruences for reactive systems. PhD Disserta-
tion, University of Cambridge Computer Laboratory. Distributed in revised form
as Technical Report 521. Available fromhttp://pauillac.inria.fr/

˜ leifer .

[55] Leifer, J.J. and Milner, R. (2000), Deriving bisimulation congruences for reactive
systems. In:Proc. CONCUR 2000, 11th International Conference on Concur-
rency Theory, Lecture Notes in Computer Science 1877, Springer-Verlag,pp243–
258. Available athttp://pauillac.inria.fr/ ˜ leifer .

[56] Leifer, J.J. and Milner, R. (2006), Transition systems, link graphs and Petri nets.
Mathematical Structures in Computer Science 16, pp989–1047.

[57] Meseguer, J. (1992), Conditional rewriting logic as a unified model of concur-
rency. Theoretical Computer Science 96, pp73–155.

[58] Meseguer, J. and Montanari, U. (1990), Petri nets are monoids. Information and
Computation 88, pp105–155.

[59] Milne, G. and Milner, R. (1979), Concurrent processes and their syntax. J. ACM
26, pp302–321.

[60] Milner, R. (1979), Flow graphs and flow algebras. J. ACM 26, pp794–818.

[61] Milner, R. (1980),A calculus of communicating systems. Lecture Notes in Com-
puter Science 92, Springer Verlag.

[62] Milner, R. (1996), Calculi for interaction. Acta Informatica 33, pp707–737.

[63] Milner, R. (2001), Bigraphical reactive systems. In:Proc. 12th International
Conference on Concurrency Theory, Lecture Notes in Computer Science 2154,
Springer-Verlag, pp16–35.

[64] Milner, R. (2005), Axioms for bigraphical structure. Mathematical Structures in
Computer Science 15, pp1005–1032.

170 BIBLIOGRAPHY

[65] Milner, R. (2006), Pure bigraphs: Structure and dynamics. Information and Com-
putation 204, pp60–122.

[66] Milner, R. (2006), Ubiquitous computing: Shall we understand it? The Computer
Journal 49, pp383-389. (The firstComputer Journal Lecture).

[67] Milner, R., Parrow, J. and Walker D. (1992), A calculus of mobile processes, Parts
I and II. Journal of Information and Computation 100, pp1–40and pp41–77.

[68] Park, D. (1981), Concurrency and automata on infinite sequences. In:Proc. 5th
GI-Conference Conference on Theoretical Computer Science, Lecture Notes in
Computer Science 104, Springer-Verlag, pp167–183.

[69] Parrow, J. and Victor, B. (1998), The fusion calculus: expressiveness and sym-
metry in mobile processes. In:Proceedings of Logics in Computer Science 1998,
IEEE Computer Society Press, pp176–185.

[70] Petri, C. (1962),Kommunikation mit Automaten. Institut für Instrumentelle In-
formatik, Schriften des IIM 2, 1962.

[71] Priami, C. (1995), Stochasticπ-calculus. The Computer Journal 38(6), pp578–
589.

[72] Regev, A., Silverman, W. and Shapiro, E. (2001), Representation and simulation
of biochemical processes using theπ-calculus process algebra. In:Proc. Pacific
Symposium of Biocomputing 2001 (PSB2001), Vol 6, pp459–470.

[73] Sangiorgi, D. and Walker, D. (2001),Theπ-calculus: A Theory of Mobile Pro-
cesses, Cambridge University Press.

[74] Sassone, V. and Sobocinski, P. (2002), Deriving bisimulation congruences: a 2-
categorical approach. Electronic Notes in Theoretical Computer Science 68 (2),
pp105–123.

[75] Sassone, V. and Sobocinski, P. (2005), Locating reaction with 2-categories. The-
oretical Computer Science 333, pp297–327.

[76] Sewell, P. (2002), From rewrite rules to bisimulation congruences. Theoretical
Computer Science 274, pp183–230.

[77] Sloman, M.et al (2007), AMUSE: Autonomic management of ubiquitous e-
health systems. In:Concurrency and Computation: Practice and Experience, John
Wiley & Sons.

[78] Terese (2003)Term Rewriting Systems. Cambridge University Press.

[79] Weiser, M. (1991), The computer for the 21st century. Sci. Am. 265(3), pp94–
104.

[80] Wojciechowski, P.T. and Sewell, P. (1999), Nomadic Pict: Language and infras-
tructure design for mobile agents. In:Proc. ASA/MA, Palm Springs, California.

BIBLIOGRAPHY 171

[81] Wooldridge, M. (1999), Intelligent agents. In:Multi-Agent Systems, MIT Press.

[82] , Zhang, M., Shi, L., Zhu, L., Wang, Y., Feng, L. and Pu, F.(2008), A bigraphical
model of WSBPEL. In:2nd Joint !EEE/IFIP Symposium on Theoretical Aspects
of Software Engineering, IEEE Computer Society, pp117–120.

172 BIBLIOGRAPHY

Index

quotient
lean-support, 53

abstract, 37, 55
abstract bigraph,seebigraph
abstract BRS,seeBRS
abstraction, 70

dynamic, 70, 77, 79
active, 69, 81, 108
active context,seecontext
activity, 68, 81
acyclic, 16
affine, 87, 90, 119
agent, 7, 68

prime, 89
algebra, 27

many-sorted, 55
process, 27

algebraic term, 37
alpha-equivalent, 56
alternation, 56
alternation in CCS,seeCCS
ambiguous, 88
applicability, 71
arithmetic net,seenet, 60
arity, 7
arrow, 4, 20
associative, 29, 57, 104
atom, 29, 57, 60, 62

discrete, 29
atomic, 73, 81
axiom, 29

spm, 29

bare bigraph,seebigraph
bare signature,seesignature
basic signature,seesignature

behaviour
CCS, 96

behaviour of CCS,seeCCS
behavioural congruence,seecongruence
behavioural equivalence,seeequivalence
bigraph, 3, 5

abstract, 20, 24–26, 43, 53
bare, 3
binding, 122, 124

operations for, 126
concrete, 16, 20, 24, 40, 43
contextual, 4
discrete, 30
ground, 27
infinite, 121
place-sorted, 55
prime, 30
pure, xiv, 122
quasi-binding, 122
sorted, 55

bigraphical reactive system
abstract, 85, 86, 90
concrete, 85, 86
growing, 118
nice, 87, 90
safe, 82, 85, 86

binder, 122
binding, 121, 122

inward, 125
outward, 125

binding bigraph,seebigraph
binding control, 122
binding interface,seeinterface
bisimilarity, xii, 57, 67, 70, 71, 77

for CCS,seeCCS
growing, 120, 121
mono, 110, 111

173

174 INDEX

open, 111
weak, 97

bisimulation, 72, 109
up to, 75

bound, 38
least, 38
minimal, 35, 38
relative, 35, 38, 47, 139

BRS,seebigraphical reactive system
built environment, 7

c/e net,seenet, condition-event
category, 19, 20

partial monoidal, 21
symmetric partial monoidal, 20, 21

CCS, 34, 56, 79, 88
alternation, 104
behaviour, 103
bijective translation, 104
bisimilarity, 110, 148
congruence, 107
finite, 104
normal form, 105
observation, 111
parameter, 105
processes, 104
reaction relation, 106
reaction rule, 106
reactum, 105
redex, 105
safe sorting, 105
sorting, 103, 104
structural congruence, 57, 58, 104,

117
syntax, 104
transition, 107
translation to bigraphs, 104

child, 3, 57, 104
closed, 27, 88
closed link,seelink
closure, 28, 31, 58
codomain, 20
combination

of sortings,seesorting
commutative, 29, 57, 104
complete, 29, 31

composition, 5, 6, 17, 20
of bigraphs, 18
of link graphs, 17
of Petri nets, 96
of place graphs, 17

computer, 7
concrete, 37, 55

arrow,seearrow
bigraph,seebigraph
link graph,seelink graph

condition
consistency, 49
marked, in Petri net, 62
unmarked, in Petri net, 62

condition-event net,seePetri net
conflict, 37
confluence, 118

strong, 94
congruence, xii, 40, 67, 75, 90

behavioural, 70, 71, 79, 86
for CCS,seeCCS
non-, 73
of growing bisimilarity, 121
of minimal bisimilarity, 75
of wide bisimilarity, 85
structural,seestructural congruence,

69
for bigraphs, 118
for CCS,seeCCS

connected normal form,seenormal form
connected split,seesplit
connectivity,seelinking
consistency, 49
consistent, 38
consistent span,seespan
constituent, 5, 15
constraint, 87
context, 5, 20, 71, 117

active, 108
context expression, 22
contextual

bigraph,seebigraph
label,seelabel
transition system,seetransition sys-

tem
control, 7, 55, 60, 61

INDEX 175

control map,seemap, 16
cospan, 38, 44
create, 40, 58
critical pair, 94
CSP, 88

decomposition, 118
definite, 77, 89, 146
derived transitions

for CCS,seeCCS
for Petri nets,seePetri net

descendant, 123
diagram, 6
discrete, 30, 142

atom,seeatom
bigraph,seebigraph
ion, seeion
merge product,seeproduct
molecule,seemolecule
normal form,seenormal form
parameter,seeparameter

disengaged transition,seetransition
disjoint, 15

bigraphs, 18
DNF, seenormal form, discrete
domain, 20
dynamic, 81
dynamic signature,seesignature
dynamic theory, 37
dynamics, 29, 58, 67

edge, 3, 27
idle, 25, 28, 86

edge-identifier, 15
elision, 51
engaged, 88
epimorphism (epi), 43, 119
equivalence, 57, 58

behavioural, 40
lean-support, 26, 86

equivalence class, 44
equivalence relation, 44
event

in Petri net, 62
explicit net,seenet

face,seeinterface, 25

factorisation
prime, 31
unique, 31

failures ordering, 71
faithful, 89–91, 107, 110
faithful sub transition system,seetransi-

tion system
finite CCS,seeCCS
finite ordinal,seeordinal
forest, 3
forgetful functor,seefunctor, 40
formation rule,seesorting
forwarding in arithmetic net, 60
free name, 56
functions

pushout for, 44
functor, 20, 21, 42

forgetful, 63
lean-support quotient, 26, 53, 56
of s-categories, 23
support quotient, 24

generative, 118
germination, 118
ground

bigraph,seebigraph
ground arrow, 68
ground bigraph, 27
growing reaction,seereaction
grown

bigraphical reactive system,seeBRS
bisimilarity, seebisimilarity
transition,seetransition

growth, 117
growth equivalence, 118
growth order, 118
guarding, 88, 142

hard, 56, 90, 107, 145
homset, 20

ground, 57, 58
hypergraph, 3

idem pushout, 39, 48, 76, 120
family of, 48
distinguished, 51

176 INDEX

preserved by growth, 120
preserved by product, 52
preserved by support equivalence, 53
support translation of, 53
tensorial, 142
unique, is pushout, 53

identifier, 7
identity, 17, 18, 20

reflecting, 41
idle, 27, 43, 57, 88

edge,seeedge
infinite bigraph,seebigraph
inner name,seename
inner-injective, 88
instance function, 83
instantiation, 82, 83
interaction, 66
interface, 4, 16, 25, 44, 60

binding, 124
inner, 4
outer, 4
place-sorted, 55

invariant, 9
inward binding,seebinding
ion, 29, 32, 58, 121

discrete, 29
IPO,seeidem pushout
iso,seeisomorphism
isomorphism, 28, 41

join, 28
juxtaposition, 18, 21

label, 71
contextual, 73, 109, 110
minimal, 73
mono, 110
parametric, 109
unambiguous, 88, 142

labelled transition,seetransition
labelled transition system,see transition

system
lean, 26, 53, 84, 86, 88, 119
lean-support equivalent,seeequivalence
lean-support quotient,seefunctor
least bound,seebound

link, 5, 6, 16, 27
bound, 83
closed, 5, 108
open, 5, 108

link axiom, 29
link elision,seeelision
link graph, 4, 43

concrete, 16
link map,seemap
link sorting (discipline), 60
link-sorted signature,seesignature
linking, ix, 28
localisation in binding bigraphs, 126
locality, seeplacing, 67, 123, 124

of interface, 124
location, 69

many-sorted algebra,seealgebra
map

control, 16
link, 16
parent, 16

merge, 28, 30, 40
merge product,seeproduct
minimal bound,seebound
minimal transition,seetransition
mobile ambients, 88
molecule, 29

discrete, 29
mono bisimilarity,seebisimilarity
monomorphism (mono), 43
movement, 7
multiary, 16

name, 4
inner, 4, 6, 27, 43
local, 124
outer, 4, 27, 43
private, 138
public, 137
shared, 31

name-set, 4
nesting, 3, 32, 40, 58
net

arithmetic, 93
condition-event, 95

INDEX 177

explicit, 95
Petri,seePetri net

nice, 87, 90, 107
node, 3, 16
node axiom, 29
node shape, 7
node-free, 28
node-identifier, 15
normal form, 95

connected, 33
discrete, 31, 83
for CCS,seeCCS
ground discrete, 31

nullary, 16

object, 4, 20
observation, 97

Petri net, 96
occurrence, 4, 22, 30, 37, 115
op-cartesian, 42, 58, 59, 63, 64
open, 27, 88

bisimilarity, seebisimilarity
link, seelink

ordinal
finite, 4, 15

origin, 5, 21
outer name,seename
outward binding,seebinding

parallel composition, 31, 34, 58
parallel product, 31
parameter, 34, 84

CCS, 81
discrete, 35, 119
for CCS,seeCCS

parametric
label,seelabel
reaction rule,seereaction rule

parent, 4, 6, 27
parent map,seemap
partial monoidal category,seecategory
passive, 73, 81
permutation, 28
Petri net, 79, 88, 95

condition-event, 62
derived transitions, 97

sorting, 63
pi-calculus, 88, 122, 125
place, 27
place axiom, 29
place elision,seeelision
place graph, 4, 43

concrete, 16
place sorting, 55
place-sorted, 55
place-sorted bigraph,seebigraph
place-sorted interface,seeinterface
place-sorted signature,seesignature
placing, ix, 28
plus in arithmetic net, 60
point, 16, 27
port, 4, 16, 27
post-condition in Petri net, 62
pre-condition in Petri net, 62
precategory, 4, 22, 40
prefix, 58
prefixing, 33
prime, 30, 57, 87

agent,seeagent
bigraph,seebigraph
factorisation,seefactorisation
split, seesplit

process, 56
algebra,seealgebra

process definition, 57
processes in CCS,seeCCS
product

discrete merge, 108
merge, 33, 40, 58
parallel, 31, 40
tensor, 21

public name,seename
pure bigraph,seebigraph
pushout, 38, 44

idem,seeidem pushout
reflecting, 41, 42, 59, 64

quality
inherited in IPOs, 52

quotient
lean-support, 26, 85, 90
support, 24

178 INDEX

WRS, 78

raw transition system,seetransition sys-
tem

reaction, 37, 68
growing, 119
potential, 38
underlying, 87

reaction relation, 68
basic, 67
for CCS,seeCCS
tracking, 116
wide, 67

reaction rule, 8, 25, 67, 68
affine, 90
CCS, 34, 81
contextual, 117
for CCS,seeCCS
ground, 76, 85
nice, 90
parametric, 81, 84, 85
tracking, 116

reactive system, 23, 58
basic, 67, 68
tracking, 116
wide, 24, 67, 68

reactum, 8, 25, 68
CCS, 81
for CCS,seeCCS
parametric, 84

recursion, 117, 121
recursive call, 118
redex, 8, 25, 34, 37, 68

CCS, 81
for CCS,seeCCS
ground, 34
parametric, 84, 87
split, 142
tight, 142

reflect, 40
reflecting,seepushout
reflective, 10
region, 5
relative bound,seebound
relative pushout, 38, 43, 67, 76

construction of, 46, 47

creating, 41, 63
in bigraphs, 48, 54
in binding bigraphs, 125
in link graphs, 47, 139
in place graphs, 48
lacking in abstract bigraphs, 53
preserving, 41

renaming, 28, 31
replication, 90, 121
residual, 116
residuation, 116
respect, 77, 78, 85, 141
restriction, 56, 58
room, 7
root, 6, 16, 27, 43, 57, 104
RPO,seerelative pushout
rule-set, 9

s-category, 20, 23
graphical, 24
wide, 23, 67, 68

s-net, 97
safe, 40, 56, 63
safe sorting, 41, 58, 85
scope, 56
scope discipline, 124
seed, 118
shared name,seename
sharing

of nodes, 108
of nodes and sites, 47
of points, 44

sibling, 27, 43
signature

arithmetic, 93
basic, 7, 40, 55, 60, 62
binding, 122
dynamic, 81
link-sorted, 60, 61, 63
place-sorted, 55

simple, 87
simulation, 71
site, 5, 16, 27, 43
sort, 55, 60
sorted

bigraph,seebigraph

INDEX 179

sorting, 85, 93, 95
for CCS,seeCCS
for Petri nets,seePetri net
formation rule, 55
link, 60
many-one, 61, 63
place, 55, 57, 58, 60
plain, 64
safe, 41, 56
stratified, 57

sorting (discipline), 40, 54
sorting discipline, 41
sound, 29
soundness

of IPO construction, 51
of RPO construction, 47, 48

source, 61
space, viii, 1
span, 38, 40, 44

consistent, 49
split, 35

tight, 35, 142
unary, 35

spm,seecategory, symmetric partial monoidal
state, 9
status, 81
structural analysis, 37
structural congruence,seecongruence, struc-

tural, 77
for CCS,seeCCS

structure, 29
sub transition system,seetransition sys-

tem
substitution, 28, 31, 40, 58

in binding bigraphs, 126
transition,seetransition

subsystem, 7
successor in arithmetic net, 60
sum,seealternation
summation, 34
support, 16, 23, 85

empty, 23
for bigraphs, 17

support element, 23, 137
support equivalence, 23, 75, 85, 118
support equivalent, 17

support quotient,seefunctor
support translation, 23, 24, 39, 137

for bigraphs, 17
symmetric,seecategory
symmetry, 21, 23, 25, 28, 29
syntax of CCS,seeCCS

target, 61
tensor product, 21, 23, 31
tensorial IPO,seeidem pushout
termination, 95
tight, 35, 88
token in Petri net, 62
trace equivalence, 71
tracking, 85, 115

map, 116
parametric, 116
reaction rule,seereaction rule
reactive system,seereactive system

transition, 71
contextual, 74
disengaged, 87, 110
engaged, 87, 88, 108, 121
for CCS,seeCCS
growing, 120
labelled, 71
minimal, 74, 120
prime, 87, 108
prime disengaged, 142
prime engaged, 89
raw, 109
substitution, 109

transition relation, 71
transition system, 41, 71

abstract, 77
contextual, 74, 77, 110
definite sub, 77, 89
derived, 109
faithful sub, 77, 90, 110
full, 72
induced, 141
labelled, 67
minimal, 74, 87, 97
prime engaged, 89, 107
raw, 71, 96, 110
sub, 67, 76

180 INDEX

translation of CCS,seeCCS

unambiguous, 87
unary, 16, 35, 57, 87
unfolding, 118
unit, 21, 23, 29

for merge product, 109
up to bisimulation,seebisimulation

weak bisimilarity,seebisimilarity
well-sorted, 60, 63
wide reactive system, 85

abstract, 69
wide s-category,sees-category
width, 16, 67, 68
WRS,seewide reactive system

zero in arithmetic net, 60

INDEX 181

Glossary of terms and symbols
Each entry refers to the definition or constructionn.m which introduces it, except that
§ refers to chaptern or sectionn.m.

BIGRAPHS
F̆ , Ğ bare bigraph §1
A, B, . . . bigraph §1
I, J, . . . interface §1
m, n, . . . finite ordinal §1
x, y, . . . name §1
v node §1
e edge §1
X, Y, . . . name-set §1
〈m, X〉 interface §1
AP, . . . place constituent §1
AL, . . . link constituent §1
〈AP, AL〉 combination §1
X all names §2.1
V all nodes §2.1
E all edges §2.1
B all bindings §11.3
V node-set 2.1
E edge-set 2.2
B binding-set §11.3
w place 2.1
p port 2.2
q point 2.2
ℓ link 2.2
K, L, M control 1.1
β binding control §11.3
K signature 1.1
ar arity (of control) 1.1
ctrl control map 2.1
prnt parent map 2.1
in descendance relation §11.3
link link map 2.2
Σ sorting discipline 6.1
θ, Θ sort, set of sorts 6.1
Φ sorting formation rule 6.1
`BG(Σ) concreteΣ-bigraphs 6.1
BG(Σ) abstractΣ-bigraphs 6.1
U functor forgets sorts §6.1
s, t many-one sorts 6.12

CATEGORIES, SETS
A,B,. . . category 2.8
À,`B,. . . precategory 2.12
F functor 2.8
dom(I) domain 2.8
cod(I) codomain 2.8
(I→ J) homset 2.8
I, J, . . . object 2.8
f, g, . . . arrow 2.8
id identity (arrow) 2.8
◦ composition 2.8
⊗ tensor product 2.10
ǫ unit, origin 2.10
γ symmetry 2.11
S support elements 2.13
| · | support 2.13
ρ � support translation 2.13
≏ support equivalence 2.13
Id identity (function) 2.1
disjointness § 2.1
⊎ union of disjoint sets § 2.1
\ subtraction of sets 5.5

CATEGORIES FOR BIGRAPHS
`PG concrete place graphs 2.1
`LG concrete link graphs 2.2
`BG concrete bigraphs 2.3
≎ lean-support

equivalence 2.19
[[·]] lean-support quotient 2.19
PG abstract place graphs 2.19
LG abstract link graphs 2.19
BG abstract bigraphs 2.19

OPERATIONS
φ placing 3.1
π permutation 3.1
join join two sites 3.1
merge merge sites 3.1

182 INDEX

1 idle prime bigraph 3.1
λ linking 3.2
σ substitution 3.2
α renaming 3.2
·/· substitution 3.2
/· closure 3.2
ι isomorphism §3.1
K~x ion 3.4
‖ parallel product 3.11
| prime product 3.15
. nesting 3.13

GENERAL DYNAMICS
`R concrete reaction rules 7.1
r ground redex 7.1
r′ ground reactum 7.1

⊲ reaction relation 7.1
act activity relation 7.2
L transition system 7.8
ℓ transition label 7.8
Agt transition agents 7.8
Lab transition labels 7.8
Apl label applies to agent 7.8
Tra transition-set 7.8

ℓ
⊲ transition relation 7.8

∼,∼L bisimilarity 7.9
FT full transition system 7.10
ı̃, ̃ location 7.13

L
⊲ı̃ wide transition relation 7.13

MT minimal transition system 7.14
≺ sub transition system 7.17
R abstract reaction rules 7.6

BIGRAPH DYNAMICS
η instantiation map 8.3
η instance function 8.3
R parametric redex 8.5
R′ parametric reactum 8.5
PE prime engaged

transition system 8.15
τ tracking map 11.1

∆ germination rules 11.3
→֒∆ germination 11.3
≤∆ growth order 11.5

⊲⊲ grown reaction 11.8
L

⊲⊲ı̃ grown transition 11.10
≃ grown bisimilarity 11.10

APPLICATION TO CCS
ν, | process syntax 6.3
0, + alternation syntax 6.3
µ, x, x actions 6.3
≡α alpha equivalence 6.3
≡ structural congruence 6.4
p, a sorts of bigraphs 6.5
alt alternation control 6.5
send, get action controls 6.5
nil empty process 6.5
Kccs CCS signature 6.5
Σccs CCS sorting 6.5
P[·] translation of

processes 6.6
A[·] translation of

alternations 6.6
∼ccs raw bisimilarity § 10.2
τ raw transition label § 10.2
PEm mono prime engaged

transition system § 10.2
∼m mono bisimilarity § 10.2
∼c

ccs raw congruence § 10.2
∼o

ccs open bisimilarity § 10.2

OTHER APPLICATIONS
in, out ambient controls § 1
amb, open ambient controls § 1
0, S arithmetic controls § 6.2
+, → arithmetic controls § 6.2
Karith arithmetic signature § 6.2
M, U, E Petri-net controls § 6.2
Kpetri Petri net signature § 6.2
+x,−x, τ raw Petri-net labels § 9.2
∼r raw Petri-net

bisimilarity § 9.2

