The space and motion of
communicating agents

Robin Milner
December 1, 2008

to my family:

Lucy, Barney, Chle,
and in memory of Gabriel

Contents

Prologue Vil

Part| : Space 1
1 The idea of bigraphs 3
2 Defining bigraphs 15

2.1 Bigraphsandtheirassembly
2.2 Mathematical framework oL
2.3 Bigraphical categories L oo

3 Algebra for bigraphs 27
3.1 Elementary bigraphs and normalforms. 27
3.2 Derivedoperations

4 Relative and minimal bounds 37

5 Bigraphical structure 43
5.1 RPOsforbigraphs.
5.2 IPOsinbigraphs,
5.3 Abstractbigraphslack RPOs

6 Sorting 55
6.1 PlacesortingandCCS
6.2 Link sorting, arithmetic netsand Petrinets 60
6.3 Theimpactofsorting

Part Il : Motion 66

7 Reactions and transitions 67
7.1 Reactivesystems
7.2 Transitionsystems e
7.3 Subtransitionsystems

Vi

7.4 Abstract transition systems

8 Bigraphical reactive systems

8.1 DynamicsforaBRS
8.2 DynamicsforaniceBRS

9 Behaviour in link graphs

9.1 Arithmeticnets
9.2 Condition-eventnets

10 Behavioural theory for CCS

10.1 Syntax and reactions for CCS in bigraphs . . .
10.2 Transitions for CCSin bigraphs

Part 1l : Development

11 Further topics

11.1 Tracking
11.2 Growth
113 Binding
11.4 Stochastics

12 Background, development and related work

Appendices

A Technical detail

A.1 Supporttranslation
A.2 Public versus privatenames

A.3 RPOsforlinkgraphs
A.4 Quotient of atransitionsystem
A.5 Unambiguityoflabels.

A.6 Faithfulness of engaged transitions
A.7 Recovering bisimilarity for CCS

B Solutions to exercises
Bibliography
Index

Glossary of terms and symbols

CONTENTS

165

173

181

Prologue

The informatic challenge

Computing is transforming our environment. Indeed, thenteromputing’ describes
this transformation too narrowly, because traditionallgneans little more than ‘cal-
culation’. Nowadays, artifacts that both calculate and camicate pervade our lives.
It is better to describe this combination as ‘informatic®nnoting not only the pas-
sive stuff (numbers, documents, ...) with which we comphite,also the activity of

informing, or interacting, or communicating.

The stored-program computer, which sowed the seeds ofrelnisformation sixty
years ago, is itself a highly organised informatic enginecgised to the task of cal-
culation. Computers work binternal communication among their parts; no-one ex-
pected that, within half a century, most of their work—notinting highly specialised
applications—would involveexternalcommunication. But within twenty-five years
arose networks of interacting computers; the control @&rattion then became a prime
concern. Interacting systems, such as the worldwide weletwarks of people with
phones, are now commonplace; software takes part in thetrmbst prominent is
communication, not calculation.

These artifacts will be everywhere. They will control dress motorway traffic,
via communication among sensors and effectors at the madsid in vehicles; they
will monitor and treat our health via communication betwelewices installed in the
human body and software in hospitals. Thus the term ‘ubdgsitomputing’ repre-
sents a vision that is being realisedn 1994 Mark Weiser, a pioneer of this vision,
wrote?

Populations of computing entities will be a significant perour environ-
ment, performing tasks that support us, and we shall beljavg@ware of
them.

This suggests that informatic behaviour is just one of tinel&iof phenomena that im-
pinge upon us. Other kinds are physical, chemical, metegicdl, biological, ...,
and we have a good understanding of them, thanks to an evolitde of scientific

1The terms ‘ubiquitous’ and ‘pervasive’ mean roughly the samhen applied to computing. | shall only
use 'ubiquitous’.
2Citations of related work will be found in Chapter 12.

Vii

Viii PROLOGUE

concepts and engineering principles. But understandilidpas to evolve for the be-
haviour of a population of informatic entities; we have no¢ tvisdom to dictate the
appropriate concepts and principles once and for all, hewerell we understand the
individual artifacts that make up the population.

This understanding is unlikely to evolve in large steps. ghalities we shall at-
tribute to ubiquitous systems are extraordinarily variand complex. Such a system,
or its component agents, will keelf-aware possesseliefsabout their environments,
possesgoals enternegotiationto achieve goals, and be able ddaptto changing
circumstances without human intervention. Here is an ingete list (in alphabetical
order) of concepts or qualities, all of which will be used pesify and analyse the
behaviour of ubiquitous systems:

agent, authenticity, belief, connectivity, continuouasp, data protection,
delegation, duty, encapsulation, failure managementeghsory, history,
knowledge, intelligence, intention, interaction, latgnlocality, motion,
negotiation, protocol, provenance, route, security;selhagement, spec-
ification, transaction, trust, verification, workflow.

Much has been written about principles and methods of syd&sign that can realise
these qualities, and much experimental work done in thattdon. That body of work
is one part of the background for this book, and is discussegteater detail—with
citations—in Chapter 12.

The design task for ubiquitous systems is all the harderusecthey will be at
least an order of magnitude larger than present-day saftagstems, and even these
have often been rendered inscrutable by repeated adhotatidap Yet ubiquitous
systems are expectedddapt themselves without going offlifsince we shall depend
upon their continuous operation). It is therefore a conipglécientific challenge to
understand them well enough to gain confidence in their pgidace. This has been
adopted as one of the Grand Challenges for Computing Réslepthe UK Computing
Research Committee.

Looking at our list of system qualities in greater detail, maice that some are
more sophisticated, or ‘higher-level’, than others. Sosueh as trust, are properties
normally attributed to humans, not to artifacts. But wherassertion such as ‘A trusts
B’ is made at a high level of modelling, we expect it to be rezdi at a lower level by
As behaviour; for example, A may grant B’s requests on th&idaf evidence of B's
past behaviout. If a stratification of modelling can be achieved by such szdions,
then the task of description and design of ubiquitous syste&ithbecome tractable.

To model ubiquitous systems of artifacts will be hard enought, as the reader
may already be thinking, such systems will also containmna&turganisms. They will
occur at dramatically different levels; we already mentidpeople with phones, and
we should also include more elementary biological entiti®s should seek to model
not only interactive behaviour among artificial agents, &igb interaction with and
among natural agents. Ultimately our informatic modellgigpuld merge with, and
enrich, natural science.

3A behaviourist philosopher might insist that this is theaningof ‘A trusts B’, even for humans.

Space

Where can we start, in building a stratified model of ubiqusteystems? The key term
here is ‘stratified’. The agents of a ubiquitous system stariidin the same relation as
musical instruments stand to an orchestra. Instrumengssekiong before orchestras;
how to combine them in groups and then into the whole woule pazzled the early
virtuosi of each instrument. It would have gradually emergew the physical qualities
of each instrument would combine to realise qualities ofgt@mip; for example, how
the tone-colours of different wind instruments would yitié more abstract quality of
tenderness, or of humour, in a wind quartet. Thus graduairges the huge spectrum
of qualities of a whole orchestra.

Where this analogy becomes strained is in the brute fagizgfa ubiquitous system
will involve millions of agents, whereas an orchestra hassaenmundred instruments.

Let us return to stratification. In a ubiquitous system, alituattributed to a
larger subsystem must be realised by simpler propertiemafler subsystems or of
individual components. This realisation, in turn, suredpdnds on how the system and
its subsystems are constructed. So, to realise systentigsialve must first understand
possible structures for ubiquitous systems. We may be fgtdta this conclusion;
it poses a challenge more accessible than that of realisingah-like qualities in a
machine. Structure is itself difficult, especially for sysis that will reorganise their
own structure. But one can at least make proposals abouttsiyhe ingredients of
structure, without being bewildered by the immense randebfvioural qualities that
it will support.

This book works out such a proposal. It starts from the reitmgrthat a notion of
discrete spacés shared by existing informatic science on the one hand ranainent
ubiquitous systems on the other. This space involves jusethf the concepts listed
above:agent locality andconnectivity When we come to reconfiguration of the space
we must consider two more of those conceptstionandinteraction

At this point, the reader may object: “How can you be sure tmatcan base our
understanding of system behaviour on these concepts? Notoaxplain systems that
have some of the intelligence of humans, and these chosemstsnare at the level
of the basic structure of matter! Your proposal is analogoudaiming that we can
base our understanding of the brain on chemistry.” The grapbswer is: | anmotsure
that these concepts are sufficient; but | do claim they aressry. Brain researchers
are faced with a task harder than ours in many ways; but trefoatunate that much
chemistry was known before brain research began. We, ortltiee band, have work
to do to formulate the analogue of chemistry for ubiquitoystesms.

Let us now turn to discussing a space of agents, based upalityaand connectiv-
ity. Since these ideas pervade the whole book, we shall de¢hetm by the simpler
words placing and linking. It is instructive to reflect how placing and linking run
through existing informatics. Even before the stored-progcomputer, calculation
depended on ways to organise space—not the space of Euctideaetry, but a dis-
crete space involving properties like adjacency and contant. Arabic numerals use
one-dimensional placing to represent the power of diditis; dllows two-dimensional
placing to be used to arrange data in the basic numericatitdgs—addition, mul-
tiplication, and so on. Algorithms for solving differertiequations with a manual

X PROLOGUE

calculator deployed the use of placing for data and calicran sophisticated ways.

In stored-program computers the space became more refiregrams use one
storage register to ‘point at’ another; thatis, an integeiable is used to index through
a sequence of elements (where previously a human calcwatdd run his or her fin-
ger through the sequence). Thus linking became distinch fsample properties of
placing, such as adjacency or containment. Placing anthijnixecame independent;
for example, an elemepiacedwithin an array can bénkedto something else occu-
pying a distant place.

It is striking that wireless networks allow us similarly toirtk of linking as inde-
pendent of physical placing in ubiquitous systems. We asghis independence when
we describe the internet. Moreover placing and linking aarither physical or virtual;
we even mix the two within a single system, using the relatidps of physical entities
as metaphors for relating the virtual ones. These metatiangnd in our vocabulary
for software: flow chart, location, send and fetch, pointesting, tree, etc. Concurrent
computing expands the vocabulary further: distributedesysremote procedure call,
network, routing, etc.

Motion

Any model of ubiquitous systems based on placing and linkivizether of physical
or virtual entities or both, must accommodate motion andrattion. In fact it is
unsatisfactory to separate these two concepts, so | tenohtitate them. (In moving
into a room, | can be said to interact with the room.) The pitoelow illustrates a
mixture of the physical with the virtual; it also shows howystem may reconfigure
itself.

It represents a change of state in which a mes$dgmoves one step closer to its
destination. The three largest nodes may represent cesindri buildings, or software
agents. In each case the senslef the message is in one, and the receiRér another.
The message is en route; the link frdvhback toS indicates that the message carries
the sender’s addresll handles a ke that unlocks a lock, reaching an agerit that
will forward the message tB. This unlocking can be represented byeaction rule
such rules define how a part of the system may change bothaitsgland its linking.

A rule that defines the above reconfiguration is as follows:

Xi

Here, both key and lock are virtual; but of course physicabrdiguration can happen
in the same system. For example, at any time the (physicediver R may move
away from her location. Can the message chHasad catch her up? Perhaps some
interaction between her and the forwarding agkmhakes this possible. Indeed, as
she goesR may construct an informatic record of her (physical) joyrreand send it
back to assist the forwarding agent. So there is no doubtatimabddel of space and
interaction has to coordinate informatic and physicalteEgi

I shall show that these diagrams, and their reconfiguratimma presentation of a
rigorous theory. | aim to develop that theory to the point ihaan begin to underlie
experiments with real systems, and so form the basis forigethat deal with the
more subtle notions mentioned above, such as beliefsagglfeness and adaptability.

The bigraph model

The graphical structures we have just illustrated will biéeckbigraphs Like an ordi-
nary graph, a bigraph has nodes and edges, and the edgdlinédes. But unlike an
ordinary graph, the nodes can be nested inside one anothabi§raph haknk struc-
ture andplacestructure; hence the prefix ‘bi’ in bigragrBigraphs will be introduced
with more detail in Chapter 1, but a few comments will be hellpere:

e The two structures—placing and linking—will be treatedaépéndently in the
basic theory of bigraphs. This accords with our observatian both pointers
in computer programs and wireless links in the real world adoitrarily cross
place boundaries. This independence property has anogiefip when first
introduced, it was found to simplify the theory of bigrapmamatically.

e The reader may ask “What is the space in which bigraphs lidenaove?” The
answer is that bigraphs themsehas the space of the model. My proposal is
that this notion of space is enough to represent an enornaoge rof structures.
Experiment with this simple space will reveal whether an@wh more complex
space is required.

e A single bigraph may represent both virtual and physicaitiest(a country, a
message, ...). This may seem surprising, but creates nouttiffi indeed, it is
very convenient. To push our example a little further, imagihat the receiver
R is a traveller who carries a laptop in which she makes a sctiermap of
the places she visits. This physical laptop is then repteddny a node in the

4The term ‘bigraph’, as used here, was introduced in 2001centy found that the term was already
used then as a synonym for ‘bipartite graph’, a well-esséield notion in graph theory. The meanings differ,
but the use of the same term is unlikely to cause confusion.

Xii PROLOGUE

bigraph, and the virtual structure (the map) it contains tmayepresented by the
contents of that node.

Generality

Let us now discuss the degree of generality achieved by figrawill they serve as a
platform for building ubiquitous systems? To answer thisest present the bigraph
model as a design tool, to be used not only for analysis but agea programming
language; then experiments can be done to reveal its powlagearerality.

But to establish the model as a candidate for this long-ter@, e must first
make sure that it accommodates, or generalises, alreastyngpiheories of interactive
agents. This shorter-term challenge is more well-defineslnWst encode each previ-
ous model—including its rules of interaction—into bigraphndeed bigraphs should
not only represent the agents and reactions of previous Isiatiey should also pro-
vide theory that applies uniformly to those models. In otlwerds, bigraphs should
tend to unify theories of processes.

This book gives priority to the latter challenge: to geniseaéxisting process mod-
els. Therefore in Chapter 12, the final chapter, | explain bigraphs have drawn ideas
from preceding models, and were developed in order to sinengand generalise their
theory. The result has been positive. To give perspectigeel a brief summary here.
(A little familiarity with process models will be helpful ithe next paragraph, but it
can be skipped.)

Each process model (for example Petri nets, CSP, mobileaantshi-calculus) de-
fines processes syntactically, and then presents its riile®oaction. Thus each model
is represented in bigraphs by two parametersoring discipline—which includes a
signature—that make the bigraphs represent the model’s formal estiind a set of
reaction rulesto represent their behaviour. These two parameters yibigraphical
reactive systeniBRS) that is specific to the model. BRSs for several processets
are presented in the book. Often the agreement with the nedghct; in other cases
nearly exact. It is worth making specific points:

e For the purpose of both analysis and programming, manyiegistodels have
a convenient algebraic (i.e. modular) representation o€ggses. In bigraphs
there is a uniform algebraic presentation, and this bedrsse celation to that of
existing models. Thus bigraphs contribute uniformity gbesssion.

e Some calculi, including CCS and thecalculus, define what it means for two
processes to behave alike. This is callhavioural equivalenceA typical
example is bisimilarity. Such an equivalence is usually agraence—i.e. it
is preserved by insertion of the processes into any enviemmrhe proof of
congruence has typically been somewhat ad hoc. Bigraphsdera degree of
uniformity here; in bigraphs not only do we treat bisimitgruniformly across
process calculi, but we also provide a uniform proof of coegice.

e For most of the book we retain the full independence of plaeind linking; this
yields most of the results. However Section 11.3 defineoumilfy a way to relax

Xiii

this independence; it defines how to localise a link and thete represent the
bindingof a name; this has allowed us to to handle (for examplejtbalculus.

Thus the aim to generalise or subsume existing processlice¢gsues as a focus for
developing our model. But these very calculi do not only @sfm an engineering role,
as a means to express and analyse the design of complex systesn also aspire
to advance the fundamental science of informatics. Thesesgmt a challenge to the
models of computation that were dominant in the twentietiwg. By exposing com-
putation as an especially disciplined form of informatihéaeiour, they have opened
the way to a science of such behaviour in which the determgiaad hierarchy found
in traditional computing are the exception, not the rule.eyrheplace calculational
structure with communicational structure.

This book can therefore be seen as advancing the scienceafigoicational struc-
tures. For example, | carry out much of the work of the bookati¢vel ofwide reac-
tive systemsmore general than bigraphs. But by working in the explipace of bi-
graphs | attempt to bridge between the engineering and teeceof communication.
Indeed, such a model extends the repertoire of models biaila natural scientists.
For example, with the help of a stochastic treatment of auton we are able to apply
the bigraphical model to the predictive analysis of biotadjsystems. This application
lies beyond the scope of the present book, but is explainigiteanhore in Section 11.4.

Rigour

Working at a broad frontier of informatics, spanning sceeand engineering, demands
prioritisation; as | have already stated, it lies beyondgbepe of a single book both
to explore all possible applications (natural and artifjcéad to establish a model in
full detail. | have chosen to do the latter because, as we saheipreceding section,
there already exist many precise models in the form of pocakuli, and they pose
an accessible challenge—to recover them as instances ofeaimpartial study. This
challenge, to establish commonality among existing formadiels, must itself be ad-
dressed formally if we are to make it a firm platform on whichaokle a still wider
range of applications. But | have interleaved formal depaient with discussion, and
have not relied on previous knowledge of any particular muidtical theory.

| use the medium of category theory, but the level at whichel iiss elementary,
and | define every categorical conceptthat | use. Largernmitic systems are complex,
and any rigorous model must control this complexity by mezfrexdequate structure.
After many years seeking such models, | am convinced thagoaes provide this
structure most convincingly. It is true that they can alsprezs deep mathematical
abstractions, many of which at present lie beyond the istexkinformatic scientists.
But there is a sharp division of motive between pursuingeafasstractions per se and
using categorical primitives as a means to understandrirdtic structure. The work
in this book is of the latter kind. Readers familiar with gages will follow their
use here without difficulty; others who wish to tame inforimatructure may find this
work a pleasant way to learn some mathematics suited to tinpope.

Models are built to aid people’s understanding, and difiepeople seek different
levels of understanding. Engineering scientists seek @oigs model; software de-

Xiv PROLOGUE

signers seek something softer, but with equal intuitions, this is even more true for
their client companies and for end-users. So we would likenmwv that softer mod-
els of communicating agents can arise from our rigorous indeatunately, by their
very nature these systems involve a concept of space, whidilécted in the idea of
bigraphs and lends itself to informal understanding bagemhwdiagrams. Through-
out the book | work as much as possible with bigraphical diatg; they express the
rigorous ideas but do not replace them.

Deployment

It is one thing to develop a rigorous model; quite anothargho bring it into use by
those concerned mainly with applications. But this usage jgimary goal for our
model; moreover, it is only by deploying the model in appiicas that we can subject
it to stringent testing.

Even protypical applications tend to be complex; one negdtbimk of phenomena
in ubiquitous computing and in biology. It follows that seéire tools are essential
for exploring the efficacy of the model, both for scientificayrsis and for advanced
software engineering. Such tools have several rolegragrammingand specifying
complex systems; isimulating themwith the help of stochastic dynamics; and in
visualisingthem at various levels of abstraction, exploiting the greglpresentation
inherent in the model.

Work in these directions is under way at the IT UniversityW)Tin Copenhagen,
as outlined in Chapter 12. A strategy exists for modular tmslelopment, which can
proceed in collaboration among different institutions. duld be glad to hear from
anyone willing to contribute seriously to this development

Outline of the book

Bigraphs are developing in various ways. All these develemisiare based upqure
bigraphs: those in which the independence of placing akahlgns strictly maintained.
So most of the book is devoted to pure bigraphs, whose theanoie or less settled.
Part | presents their structure; Part Il handles their bieluayand Part 11l deals with
their development, past and future.

In Part I, Chapter 1 introduces bigraphs starting from saamadhotions in graph
theory. The main idea of bigraphs is to treat the placing &edihking of their nodes
as independently as possible. Chapter 2 defines bigrapimsfigr together with the
operations that build them; it then introduces various &inticategory that will help
to develop their theory. Chapter 3 develops the algebragrbphs, with operations
for both placing and linking; it also derives operations fizan from process calculi.
Chapter 4 defines relative pushouts, a categorical tootfoctsiral analysis. Chapter 5
applies this tool to bigraphs, preparing for the later d®ion of transitions. Chapter 6
develops a sorting discipline for bigraphs that is remiag®f many-sorted algebra.

In Part Il, Chapter 7 defines the notion of a wide reactiveesyus(WRS), more
general than bigraphs. For such systems it defines reacties and derives (labelled)

XV
1. The idea of bigraphs
2. Categorical framework

3. Algebra for bigraphs 4. Relative pushouts

5. Bigraphical structure 6. Softing 7. Reactive systems

~N | 7

8. Bigraphical reactive systems

N

9. Behaviour in link graphs 10. Behavioural theory for CCS
11. Further topics 12. Development and related work

Figure 1: Dependency among the chapters

transition systems; it then obtains important results ascthe congruence of bisimi-
larity. WRSs have an abstract notion of space, enough taaélaction to be confined
to certain places. Chapter 8 specialises this work to blggapielding the more re-
fined notions of a bigraphical reactive system (BRS) anddtssition systems; it also
identifies certain well-behaved kinds of BRS. Chapter 9 lisggyraphs, a simplified
version of the theory, to analyse behaviour in arithmetis aed Petri nets. Chapter 10
applies bigraphs to CCS, and recovers its original theory.

In Part lll, Chapter 11 discusses several developmentsiugyare bigraphs. First,
it examines how tdrack the identity of agents through interaction; this would allo
one to express, and to verify, assertions about a BRS suckazh“agent receives
each message at most once” or “Mary has visited three roamee she entered the
building”. Second, it proposes a generic way to represesmizgyith infinite behaviour
using finite bigraphs, with the help of rules for structugedwth Third, it discusses
how to constrain placing and linking so that certain linksénscope or arebound in
the familiar way that variables in a programming languagestszope or are bound as
formal parameters of a procedure. Finally, it summarisesnmework on thestochastic
interpretation of bigraphical systems; this is essentakimulating nondeterministic
systems, in particular in biological applications, whére more likely of two possible
reactions is that which is attributed the higher rate in ggoeential distribution.

Chapter 12 outlines how bigraphs have developed, and dissuslated work with
full citations. These show how much the work of this book ow@y close col-
leagues, as well as to influences from other research inégat

XVi PROLOGUE

Using the book

The chapters need not be read in strict sequence. Mosgy,daapters point back to
what they need from earlier ones. Figure 1 gives a guide taépendency among
chapters. For example if you reach Chapter 8 by going downetthaide, you read
about bigraphs and then get the theory when you need it; ifgach it down the right
side you stay at the general level of reactive systems asd®pgssible. Leaping ahead
may also be useful; for example, those who know somethingafgss calculi may
leap from Chapter 1 to Chapter 10, to gain motivation formang to the intervening
chapters.

The book is suitable for teaching yourself; there are mary@ses, and solutions
to all of them. The book is suitable for a Masters’ course, igtiee amount of theory
included can be adapted to the students’ knowledge. Patite dfook can be used for
an optional final year Undergraduate course.

The book can also serve as the foundation for a lecture cdbaseconcentrates
upon the intuition of bigraphs and their experimental usenave designed such a
course; from my websitéttp://www.cl.cam.ac.uk/ ~rm135, the reader may
download a sequence of seventy or more slides that | have Asedmpanying them
is (or, at the time of writing, will soon be) a slide-by-slidarrative, linking the slides
together and making copious reference to this book—edhetia locating the un-
derlying rigorous development. This combination of slidesl narrative will evolve
in response to my own experience, and to the experience efotitho use them. |
shall be delighted to receive comments by emaill35\@ccam.ac.uk)from any-
one, based on such experience; thus | hope to improve thesslide narrative and
ultimately the book itself.

Acknowledgements

| owe much to early collaboration on bigraphs with Jameyéredind Ole Hagh Jensen.
I am most grateful for their creative insights. | thank Ripl Gardner and Peter Sewell
for important contributions in work that led from actionisttures (a previous model)
to bigraphs. Several people have generously given time refldareading, helping
me to express things better: Samson Abramsky, Mikkel Buadjdroels Damgaard,
Marcelo Fiore, Sam Staton and David Tranah.

| also thank warmly all those | have worked with, or learntnfrain this subject
over nearly thirty years, in particular: Martin Abadi, Sson Abramsky, Jos Baeten,
Martin Berger, Jan Bergstra, Gérard Berry, Lars Birke@ive Blackwell, Gérard
Boudol, Mikkel Bundgaard, llaria Castellani, Luca Cargefldriana Compagnoni,
Troels Damgaard, Vincent Danos, Rocco De Nicola, HartmutgztMarcelo Fiore,
Philippa Gardner, Arne Glenstrup, Andy Gordon, Matthew hessy, Thomas Hilde-
brandt, Jane Hillston, Yoram Hirshfeld, Tony Hoare, Koheinda, Alan Jeffrey, Ole
Hggh Jensen, Jan-Willem Klop, Jean Krivine, Cosimo Lan&me Larsen, Jamey
Leifer, Alex Mifsud, George Milne, Kevin Mitchell, Faron Mer, Ugo Montanari,
Uwe Nestmann, Mogens Nielsen, Catuscia Palamidessi, Rk, Joachim Parrow,
Carl-Adam Petri, Benjamin Pierce, Gordon Plotkin, John &ow&ylvain Pradalier,
K.V.S. Prasad, Corrado Priami, Michael Sanderson, Davatey®rgi, Vladi Sassone,

XVii

Peter Sewell, Mike Shields, Sam Staton, Bernhard Steffehin Gtirling, Chris Tofts,
Angelo Troina, David Turner, Rob Van Glabbeek, Bjorn Vigidavid Walker, Glynn
Winskel, Nobuko Yoshida.

| acknowledge the Préfecture of tHe-de-France Region for the award of a Blaise
Pascal International Research Chair, which enabled meuvanaé this work during a
recent year in Paris. | warmly thank Jean-Pierre JouannadicCatuscia Palamidessi,
who were my welcoming hosts Etole Polytechique at Saclay during this period.

Robin Milner
Cambridge, June 2008

PART | : SPACE

Chapter 1

The idea of bigraphs

In this chapter we develop the notionlw§raphfrom the simple idea that it consists of
two independent structures on the same set of nodes.

To prepare for the formal Definitions 1.1-2.7, we start infally from two well-
known concepts: &restis a set of rooted trees; anchgpergraphconsists of a set of
nodes, together with a set of edges each linking any numbevass.

Idea A bigraph with noded” and edges® has a forest whose nodes dre it also
has a hypergraph with nodés and edges-.

Let us call an entity with this structuretere bigraph We shall use”, G to stand for
bare bigraphs. Here is a bare bigragthaving noded” = {uy,...,v5} and edges
E = {eq, e1, ea}, with its forest and hypergraph:

bare bigraphG;

forest of;

Vo V4
C/ v2 (0
U1
U3

The upper diagram presents both the forest and the hypérgtalepicts the forest by
nesting. The lower two diagrams represent the two strustseparately, in a conven-
tional manner. Thehildren of each node are the nodes immediately below it in the

3

4 CHAPTER 1. THE IDEA OF BIGRAPHS

forest (i.e. immediately within it, in the upper diagram)usv; andwv, are children
of vy, which is theirparent

An edge is represented by connected thin lit@$ias two edges that each connect
three nodes, and one that connects two nodes. The pointsdt e edge impinges
on its nodes are callgabrts shown as black bloBs

We now add further structure to a bare bigraph. It will alloigraphs to be com-
posed, and will allow one bigraph to be considered as a coemg@f another. Here
is I, informally a ‘part’ of G, having only some of its nodes and with one hyperlink
broken. Can we call it a componentGf?

bare bigraphZ’ on
v3
U1 €9

€1

To make it so, we adihterfacego bare bigraphs, thus extendiftandG into bigraphs
F andG. This will allow us to represent the occurrencefofis a component daf by
an equatiorG = Ho F, whereH is some ‘host’ or contextual bigraph. We do this
extension independently for forests and hypergraphs; estavith interfaces will be
called aplace graphand a hypergraph with interfaces will be callelink graph

Let us illustrate with the bare bigragh. A place graph interface will be a natural
numbern, which we shall treat as a finite ordinal, the set {0,1,...,n—1} whose
members are all preceding ordinals. A place grapler andinner interfaces—or
facesas we shall call them—index respectively iit®ots and itssites For the forest
of F we choose the outer face = {0, 1,2}, providing distinct roots as parents for
the nodes, v3 andwv,. For the inner face of we choosd), i.e. it has no sites. This
extends the forest to a place grah: 0 — 3, an arrow in a precategorwhose objects
are natural numbers. It is shown at the left of the diagraravel

roots ... Q 1 2

outernames...x Yy
place graph J) link graph U3 v
P. V4 L.
FP0-3 o ” J} Frof—{ay} e
U1 €9
Vs Us

The outer and inner faces of a link graph ameme-sets respectively, itouter and
inner names For the hypergraph of we choose outer facgry}, thus naming the
parts of the broken hyperlink, and inner fag€ This extends the hypergraph to a

1By making ports explicit we permit distinct roles to be play®y the edges impinging on a given node,
just as each argument of a given mathematical function @alistinct role.

2We shall define precategories in Chapter 2. For now, it is ghda know that a precategory has two
kinds of entity,objectsandarrows that each arrow goes from a tail to a head, both of which ajectd) and
that these entities behave nicely together. Both objeatsaamows may have all kinds of structure.

3We use single letters for names, so we shall often write &gy, . . .} of names agxy - - - }, or even
aszy - - -, when there is no ambiguity.

link graphF" :) —{xy}, an arrow in a precategory whose objects are finite name-sets
Names are drawn from a countably infinite vocabulary

Finally, abigraphis a pairB = (B", Bl) of a place graph and a link graph; these
are itsconstituents Its outer face is a paifn,Y'), wheren andY are the outer faces
of B” and B' respectively. Similarly for its inner facén, X). For our example
F = (FP F) these pairs aré3, {zy}) and (0, () respectively. We call the trivial
interfacec = (0, 0) the origin. ThusE is extended to an arrow : e —(3, {zy}) in a

precategory whose objects are such paired interfdcegll be drawn as follows:

bigraph
Fre—(3,{zy})

The rectangles i'—sometimes calledegions—are just a way of drawing its roots,
seen also iFP. The link graphF' has fourinks. Two of these are the edges and
es, also callectlosedlinks; the other two are namedandy, and are calledpenlinks.

Let us now add interfaces to the bare bigra@phextending it into a bigrapty. It
has no open links, i.e. all its links are edges, so the namigrés outer face will be
empty. Let us give it two roots; then, @ is placed in some larger context, andv,
may be in distinct places—i.e. may have distinct parentse diagram below shows
G and its constituents. Note that there is no significance iareva link ‘crosses’ the
boundary of a node or region in a bigraph; this is becausedtest and hypergraph
structures are independent.

bigraph
G:e—(2,0)
roots... 0 1
Vo V4
place graph link graph
GP:0—-2 1 2 s Gt:p—0
U3

We are now ready to construct a bigrafitsuch thatz = H o F, illustrating com-
position, which will later be defined formally. The inner éaaf H must be(3, {zy}),
the outer face of”; to achieve thisH must have thresites0, 1 and2, and inner names
x andy. Here arel{ and its constituents, with sites shown as shaded rectangles

6 CHAPTER 1. THE IDEA OF BIGRAPHS

bigraph
H: (3, {zy}) —(2,0)

roots... 1
Vo . €0
place graph link graph v
HP :3—-2 U2 HL:{my}—>@ vg)
sites ...'(1 2 innernames...'x Y

In the place graph, each site and node has a parent, a nodetpinrthe link graph,
each inner name and port belongs to a link, closed or open.asusis insignificant
where links ‘cross’ node or root boundaries, so it is indigant where they ‘cross’ a
site. We draw inner names below the bigraph and outer nanoe® dth this is merely
a convention to indicate their status as inner or outer. Aeamay be both inner and
outer, whether or not in the same link.

In general, letF': I — J and H : J — K be two bigraphs with disjoint nodes and
edges, wheré = (k, X), J = (m,Y) andK = (n, Z). Then the composite bigraph
HoF:I— K is just the pair of composited7” o FP, H- o F'), whose constituents
are constructed as follows (informally):

e To form the place grapi/* o FP : k — n, for eachi € m join thei'" root of FP
with thei*® site of HP;

e To form the link graphH'o F': X — Z, for eachy € Y join the link of F*
having the outer namgwith the link of - having the inner namg.

ThusH andF are joined at every place or link in their common faGevhich ceases to
exist. The reader may like to check these construction&ffand /" as in our example.

In our formal treatment, operations on bigraphs will be d=fim terms of their
constituent place and link graphs. But it is convenient,@reh necessary for practical
purposes, to have diagrams not only for the constituentgdouhe bigraphs them-
selves, such as fdr, G andH in the example above. Such a diagram must be to some
extent arbitrary, because we are trying to represent pai linking, which are inde-
pendent, in two dimensions! In particular, note that we tdrasvn outer names above
the picture (inF' andG for example), and we have drawn inner names below the picture
(in H for example). Other conventions are possible.

It will be helpful to look now at Figure 1.2, at the end of thisapter, showing
the anatomical elements of bigraphs that will later be ddffioemally. In the present

chapter we give only one formal definition, which determihew to introduce differ-
ent kinds of node for different applications.

Definition 1.1 (basic signature) A basic signaturgakes the forn(K, ar). It has a
set/C whose elements are kinds of node calbetrols and a mapr : K — N assign-
ing anarity, a natural number, to each control. The signature is dermtéd when
the arity is understood. A bigraph ovErassigns to each node a control, whose arity
indexes thgortsof a node, where links may be connected. O

A signature suitable for our example &6 = {K:2, L:0, M:1}. (Thus arities are
made explicit.) Here is our bigragh: e —(2, (), with controls assigned to the nodes:

bigraphG
with controls

We have omitted node- and edge-identifiers, as we oftenwhalh they are irrelevant.
To end this chapter, let us look at a realistic (but simplifiedample, which indicates
that bigraphs can go beyond the usual topics for processlcalc

Example 1.2 (a built environment) The next diagram shows a bare bigratover
the signatur&l = {A:2, B:1, C:2, R:0}, which classifies nodes as agents, build-
ings, computers and rooms. The node-shapes are not sighjs@ept to indicate the
purpose of each port. The figure represents a state which hamge because of the
movement of agents, and perhaps other movements. Thinledivilhagents as con-
ducting a conference call (the long link). An agent in a rooayralso be logged in
(the short links) to a computer in the room, and the compureasbuilding are linked

to form a local area network. O

bare bigraphE

Bearing in mind our earlier example, the following exercigk be instructive.

EXERCISE 1.1

8 CHAPTER 1. THE IDEA OF BIGRAPHS

(1) Draw a bare bigrapP representing the three agents that are inside rooms. Make
this into a bigraptD by defining its outer face.

(2) Propose an outer face that makgsnto a bigraph®, allowing the possibility
that the two buildings may be situated in different citiesa® the bigraphC,
with sites, such that'o D = E. O

Although the detailed study of dynamics is deferred to Ral¢t us now illustrate how
bigraphs can reconfigure themselves. We are free to defifexatit reconfigurations
for each application. This is done bgaction ruleseach consisting of eedex(the
pattern to be changed) andesactum(the changed pattern). Part of the idea of bigraphs
is that these changes may involve both placing and linking.

The redex and reactum of a rule are themselves bigraphs, anchatch any part of
a larger bigraph. (This remark will be made precise in ParHere are three possible
rules for built environments, such as the systém

RuleB1 is the simplest: an agent can leave a conference call. Tlee+ethe left-hand
pattern—can match any agent; the out-pointing links meanetther of her ports may
at first be linked tazero or moreother ports, in the same place or elsewhere. If she is
linked in a conference call to other agents, perhaps in dithiédings, the reaction by
B1 will unlink her; any link to a computer is retained.

RuleB2 shows a computer connecting to an agent in the same placai(pably a
room). The redexinsists that at first the agent s linked toamaputer and the computer
is linked to no agent. Ruld31 andB2 change only the linking—not the placing—in a
bigraph, though the redex 82 does insist on juxtaposition.

Rule B3, by contrast, changes the placing; an agent enters a rooain Age rule
requires the agent and the room to be in the same place (pagduebuilding). The
site (shaded) allows the room to contain other occupangs,aecomputer and other
agents. The matching discipline allows these occupante tmked anywhere, either
to each other or to nodes lying outside the room.

Another feature oB3 is that its redex allows the lower port of the agent to be
already linked to a computer somewhere, perhaps in anotioen.r B3 retains any
such link. Equally, there may be no such link—the contextnicl the rule is applied
may close it off. Thu83 can be applied to the system representebyr E, allowing
an agent in the right-hand building to enter a room.

Taking this a step further, observe thatiihan agent and a computer are linked
only when they occupy the same room. Moreover, starting figrour rulesB1-B3
will preserve this property, since onB3 creates such links, and only within a room.
We therefore call the property anvariant for E' in the system with this rule-set. We
now briefly discuss invariants.

Given a rule-set, we refer to the configurations that a systeiy adopt astates
The rule-set determines a reaction relatier> between states. The diagram below
shows the staté&’s adopted byF after three reactions

E—F1—> Ey—> F3;

in the first,B1 is applied to the third agent from the left; in the secoRd,is applied
to the fourth agent; this enablBg to be applied to that agent in the third reaction.

We say that a property of states is (anjariantfor £ (under a given rule-set) if it holds
for all states reachable froi via reactions permitted by the rule-set, i.e. it holds for al
E’ suchthatt — --- — F’. For example, under the rule-4&t—B3, the property
‘there are exactly five agents’ is invariant fbt

Of course, our present rule-set is very limited. The follogvexercise suggests how
to enrich this rule-set a little, and explores what invaisanay then hold.

EXERCISE 1.2

(1) Add a ruleB4 to enable an agent linked with a computer to sever this linld, a
another ruleB5 to allow an agent unlinked to a computer to leave a room. Give
a few examples of invariants fd& under the rule-se81-B5.

(2) Instead ofB4 and B5, design a single rul®6 that allows an agent to leave
a room, simultaneously severing any link with the computdow does this
change affect your invariants? O

Our behavioural model of the occupants of a building is crefleourse. But reac-
tion rules of this kind, hardly more complex, are beginniodind realistic application
in biological modelling. A crucial refinement is to add stastic information that de-
termines which reactions are more likely to occur, and fioeesto preempt others. In

10 CHAPTER 1. THE IDEA OF BIGRAPHS

the built environment, an interesting refinement is to allyents to discover who is
where, and record this information via the computers; tistésges are then combined
so that the system become$lective meaning that it can represent (part of) itself, and
answer questions such as “where is ageft. 4

In another direction, bigraphs can model process calculihis case, the controls
of a bigraph represent the constructors of the calculus. Mexample, we take the
calculus of mobile ambients, which partly inspired the jgr model. In mobile am-
bients the main constructor ismb’ with arity 1, representing aambient—a region
within which activity may occur; its single port allows an bi®nt to be named. Other
constructors represent commands, or capabilities.

oz v
ampb
amb

The above diagram shows two ambients, each with arbitrartecdrepresented by the
sites; one ambient also contains ar capability, which refers to the other ambient by
name. Let us use this example to illustrate the algebraguage for bigraphs, which
we shall develop in later chapters. Here is the algebraia fer the above system:

ambg.(iny.do | d1) | amby.ds .

The combinator|’ represents juxtaposition, and is commutative and asseejahe
combinator .’ denotes nesting. We shall see in Chapter 3 that both corrdssare de-
rived from the categorical operations of composition amge product. The metavari-
ablesdy, d; andd, stand for parameters, i.e. arbitrary occupants of the.sites

Let us now look at the dynamics of ambients. The above bigispin fact, the
redex of one of the reaction rules for mobile ambients, tlufeehich are shown in
Figure 1.1. In the first rule, then” command causes its parent ambient named
together with all its other contents, to move inside the ambhamedy. The ‘in’
command, having done its job, vanishes; this exposes iteotsto reactions with
the ambient’s other occupants. Note that reconfiguratipeisnitted within anamb’
node, but not within anin’ node; the occupant of ann’ node has a potential for
interaction, which becomes actual only when the node itssdfvanished.

In the second rule, conversely, theut’ command causes the exit of its parent
ambient from its own parent. These two rules provide our éxstmple of moving
sub-bigraphs from one region to another.

Finally, in the third rule thedpen’ command causes an ambient node to vanish,
exposing its contents to interactions in a wider region.

4These experimental applications are discussed, withiaitin Chapter 12.

11

EXERCISE 1.3 Modify rule A3 to use asend’ command instead obpen’. It should
send its contents into the ambient with which it is linked] &men vanish. Also modify
the rule so that this occurs even when ¢led command is not adjacent to the ambient,
but may be anywhere outside Hint: Use two regions, as in the bigraphat the start
of the chapter. To juxtapose two regions but keep them distirse ‘|| " instead of ‘| ".
Use ‘1’ to denote the empty bigraph with one region. O

This concludes our informal introduction to both the stametand the reconfigura-
tion of bigraphs. Our notion of reaction is not complex; néveless it can represent
process calculi such as CCS, mobile ambients and Petri fi¢ts.representation of
CCS will be analysed in Chapter 10. Also, with the help of kastic rates, rules
nearly as simple as ours are proving to be useful in moddtlialpgical processes.

Our next task is to define bigraphical structure formallytha following chapter.
It will make precise the anatomy illustrated in Figure 1.2.

12

Al

A3

CHAPTER 1. THE IDEA OF BIGRAPHS

open,.dy|amb,.d; —» x|dy|d;

Figure 1.1: Reaction rules for mobile ambients

13

ROOT (REGION) O.-L)J"_I'._ER NAME

Yo

)
CONTROL """ i .
NODE--""‘ ‘
S N EDGE
SITE - e -.

INNER NAME

PLACE = ROOTOI NODE Or SITE

LINK = EDGEOr OUTER NAME
POINT = PORTOI INNER NAME

Figure 1.2: Anatomy of bigraphs

14

CHAPTER 1. THE IDEA OF BIGRAPHS

Chapter 2
Defining bigraphs

In Section 2.1 we define bigraphs formally, together withdamental ways to build
with them.

In Section 2.2, using some elementary category theory, wednce a broader
mathematical framework in which bigraphs and their operatican be expressed. The
reader can often ignore this generality, but it will yielduéis which do not depend on
the specific details of bigraphs.

In Section 2.3 we explain how tte@ncreteplace graphs, link graphs and bigraphs
over a basic signature each form a category of a certain kifedthen use the tools of
the mathematical framework to introdualestractbigraphs; they are obtained from the
concrete ones of Section 2.1 by forgetting the identity afewand edges.

Throughoutthis chapter, when dealing with bigraphs wepresan arbitrary basic
signaturefC.

2.1 Bigraphs and their assembly

Notation and terminology We frequently treat a natural number as a finite ordinal,
the set of all preceding ordinals: = {0,1,...,m—1}. We write S # T to mean that
two setsS andT are disjoint, i.e.S NT = (). We write S & T for the union of sets
known or assumed to be disjoint. ffhas domairs andS’ C S, thenf | S’ denotes
the restriction off to S’. For two functionsf andg with disjoint domainsS andT’
we write f & ¢ for the function with domairS W T such that(f W¢g) [S = f and
(fWg) T = g. We writelds for the identity function on the sét.

In defining bigraphs we assume that names, node-identifielr £dge-identifiers
are drawn from three infinite sets, respectiv&ly) and¢&, disjoint from each other.

We denote the interfaces, or faces, of bigraphg by K. Every bigraph will be a
pair of a place graph and a link graph, which will be callecctastituentsWe denote
bigraphs and their constituents by upper case letters. , H. O

We begin by defining place graphs and link graphs indepefydent

15

16 CHAPTER 2. DEFINING BIGRAPHS

Definition 2.1 (concrete place graph) A concrete place graph
F = (Vp,ctrlp,pratp) :m—n

is a triple having an inner face and an outer face, both finite ordinals. These index
respectively theitesandrootsof the place grapht has a finite set» C V of nodes
acontrol mapctrig : Vg — K and aparent map

protp my Ve = Ve Wn

which is acyclic, i.e. ifprnt’ (v) = v for somev € Vi theni = 0. O

Definition 2.2 (concrete link graph) A concrete link graph
F = (VF, EF, ctrlp, llnk,‘p) XY

is a quadruple having an inner fageand outer facé”, both finite subsets of’, called
respectively thénner andouter name®f the link graph F' has finite setd/» c V of
nodesandEr C £ of edgesa control mapctrir : Ve — K and alink map

linkp: XWPpr—EpdY

wherePr = {(v,i) | i € ar(ctrip(v))} is the set oportsof F. Thus(v, i) is theith
port of nodev. We shall callX @ Pr thepointsof F, andEr ¥ Y its links. O

A bigraph is simply the pair of its constituents, a place grapd a link graph:

Definition 2.3 (concrete bigraph) An interfacefor bigraphs is a paif = (m, X)
of a place graph interface and a link graph interface. Wermathe width of 7, and
we say that/ is nullary, unary or multiary according asn is 0,1 or >1. A concrete
bigraph

F = (Vp,Ep, ctrip, protp, linkp) : (k, X) —=(m,Y)

consists of a concrete place graph = (Vr, ctrlp, prnt) : k—m and a concrete
link graphFt = (Vp, Ep, ctrip, linkp): X — Y. Itis written F = (FP, F1). O

We have now defined all the anatomy of bigraphs, as illustrat&igure 1.2 at the end
of Chapter 1.

We have called our three graphical structucescrete this refers to the fact that
their nodes and edges are identified by membeng ahd€. We have already used
these identifiers in defining a bigraph, to ensure that itselgraph and link graph
have the same node set and the same control map.

We now define these identifiers to be thgportof a graphical structure, and we
explain how it can be varied in a disciplined way.

1An alternative would be to define a link graph interface asraiinal numberk, just like a place graph
interface. Thus, instead of alphabetic names, we wouldsgmt each name by an ordinat k. Our choice
to use a special repertoit® of names is not arbitrary; as explained in Appendix A.2, é@lgs a distinct
technical advantage.

2.1. BIGRAPHS AND THEIR ASSEMBLY 17

Definition 2.4 (support for bigraphs) To each place graph, link graph or bigraph
is assigned a finite s¢f'|, its support For a place graph we defing| = Vx, and for
a link graph or bigraph we definé'| = Vi W Ep.

For two bigraphg” andG in the same homset, a support translagon?’| — |G|
from F' to G consists of a pair of bijectiongy : Vr — Vi and pg : Er — E¢ that
respect structure, in the following sense:

e ppreserves controls, i.etrlg o py = ctrig. It follows thatp induces a bijection

def

pp: Pr— Pg on ports, defined byp((v,4)) = (pv (v),).
e p commutes with the structural maps as follows:

protgo(ld, Wpy) = (Id, Wpy)oprnty
linkcg o (ldx (] pp) = (ldy (] pE) olinkp .

Given F' and the bijectiorp, these conditions uniquely determigeé We therefore

denoteG by p+ F, and call it thesupport translation ofF' by p. We call F and G

support equivalentand we writeF” = G, if such a support translation exists.
Support translation is defined similarly for place graphs lamk graphs. O

The purpose of interfaces is to enable bigraphs todmposegfor this we require
the outer face of one to equal the inner face of the other. Pl@sof composition were
shown in Chapter 1; we think of it as placing one bigraph indbietext represented by
another.

Definition 2.5 (composition and identities) We define composition for place graphs
and link graphs separately, and then combine them for thgosition of bigraphs.

e If F:k— mandG:m — n are two place graphs witlF"| # |G|, their composite
GoF = (V,ctrl,prnt) : k—n

has node¥ = V¢ W Vi and control magtrl = cirlg W ctrig. Its parent maprnt is
defined as follows: liv € kW Vi W V; is a site or node ofi o F' then

protp(w) if w e kW Vp andprnt p(w) € Vp
def

prot(w) = ¢ prota(j) ifw e kW Ve andprntp(w) =j €m
protg(w) ifwe Vg .

The identity place graph at isid,,, = (0, O, I,y) : 70— m.2
e If F:X—Y andG:Y — Z are two link graphs withF'| # |G|, their composite

GoF = (V,E,ctrl,link): X — Z

2In contrast told, we writeid to denote the identity for composition of graphical struesy and more
generally for composition of arrows in any kind of categosgd Section 2.2).

18 CHAPTER 2. DEFINING BIGRAPHS

hasV = Vr W Vg, E = Erp W Eq, ctrl = ctrlp W ctrlg, and its link maplink is
defined as follows: I € X W Pr W Py is a point ofG o F' then

linkr(q) if ¢ € X W Ppandlinkr(q) € Er
link(q) £ { linke(y) if ¢ € X w Ppandlinkp(q) =y €
link,g(q) if qc Pa .

Y

def

The identity link graph af isidx = (0,0, 0k, ldx): X — X.
e If F:I— JandG:J— K are two bigraphs with?'| # |G|, their composite is

GoF E(GPoF? G'oFY): T— K
and the identity bigraph d = (m, X) is (id,,, idx). O

EXERCISE 2.1 Prove for bigraphs that' o (Bo A) = (C o B) o A when either side is
defined. Hint: Prove it separately for place graphs and for link graphs) thear the
results. O

We now turn to the second principal way to make larger bigsdipbm smaller
ones. We can think of composition as putting one bigraph profanother. We can
also put two bigraphs side-by-side. We define this operatialfedjuxtaposition only
when they are disjoint. To be precise:

Definition 2.6 (disjoint graphical structures) Two place graphd’; (i = 0,1) are
disjointif |Fy| # | F1|. Two link graphsF; : X; —Y; aredisjointif Xo# X1, Yo # Y1
and|Fy| # | Fy|. Two bigraphs; aredisjointif F{ # FY and F}; # F-.

In each of the three cases we writg# F. O

We now define the juxtaposition of disjoint interfaces argjaint bigraphs. Juxta-
position is monoidal, i.e. it is associative and has a unit.

Definition 2.7 (juxtaposition and units) We define juxtaposition for place graphs
and link graphs separately, and then combine them in ordextapose bigraphs. In
each case we indicate the obvious unit for juxtaposition.

e For place graphs, the juxtaposition of two interfaggs(i = 0, 1) is mo+m, and
the unitis0. If F; = (V;, ctrl;, prat;) : m; — n,; are disjoint place graphs & 0, 1),
their juxtapositionFy ® Fy : mg+m1 — ng+ny is given by

FooF £ (Vo W VA, ctrip W ctrly, prnt, © prat}) ,

whereprnt’ (mo+i) = no+j wheneveprnt, (i) = j .

e For link graphs, the juxtaposition of two disjoint link gifamterfaces isX, ¥ X,
and the unitig). If F; = (V;, E;, ctrl;, prot;) : X; —Y; are disjoint link graphsi(=
0, 1), their juxtapositionfy ® F; : Xo W X1 — Yy W Y7 is given by

F0®F1 d:ef (‘/()L‘!'J‘/l, EQL‘!‘JEl, Ct’f’loH‘J Ct’f’ll, lmkotdlmkl) .

2.2. MATHEMATICAL FRAMEWORK 19

e For bigraphs, the juxtaposition of two disjoint interfades= (m,, X;) (i = 0,1)
is (m, + m1, Xo W X1) and the unitis = (0,0). If F;: I, — J; are disjoint bigraphs
(i = 0, 1), their juxtapositionty ® Fy: Iy ® Iy — Jy ® Jp is given by

def

Fa,@F = (FY® FY, Fy ® FT) . O

This completes our definition of the graphical structured toncern us, together
with the fundamental operations upon them.

2.2 Mathematical framework

This section introduces certain kindsaztegory which serve to classify bigraphs and
to develop some of their theory. We assume no previous kruimelef category theory;
we shall only use its elementary concepts, explaining themeintroduce them.

Any kind of category deals with two main kinds of entitpbjectsand arrows
For example, in the categorye$ the objects arsetsSy, Ss, S3, ... and the arrows
arefunctionsf, g, . .. between sets. If a functiofi takes members of s&; to mem-
bers of setS, then one writesf : S; — Ss, as in normal mathematical practice. In
categories this practice is generalised; each arfewwhich may be quite different
from a function—has domain/ and acodomainJ/, both objects, and again we write
f:I— J. The main categories deployed in this book have objectsateainterfaces
(of different kinds) and arrows that are graphical struesur

Any kind of category is concerned with tleempositionof two arrowsf: 7 — J
andh : J — K to produce a third arrowy = ho f: I — K. This equation is drawn as a
diagram:

which is said tocommute because the two ways of going fromto X' mean the
same. For example, in Chapter 1 we composed two bigraphs— (3, {zy}) and
H:(3,{zy})—(2,0)toyieldG = Ho F: ¢ —(2,0).

Different kinds of category may have other operations kesicbmposition, and
may have different properties. We shall be concerned witin kinds, which can be
arranged in a hierarchy as follows:

SPM CATEGORY

N

S-CATEGORY CATEGORY

N

PRECATEGORY

20 CHAPTER 2. DEFINING BIGRAPHS

Of these kinds, s-categories are new; the other three ardastd Moving upward to
the left (\) in the hierarchy gains more operations on arrows; movingaug to the
right () changes composition from a partial to a total operation.

Our work will be mainly with two of these kinds. We shall oftee concerned
with concretebigraphs, whose explicit support allows us to determinenvbree bi-
graph shares nodes and/or edges with another. For this gikpe work mainly in
s-categories On the other hand, faabstractbigraphs, where support is absent, we
work mainly insymmetric partial monoidgbr spn) categories

Using the hierarchy, we now introduce the features of both sptegories and s-
categories, one by one. We begin with categories (DefinRi@), which lead to spm
categories (Definition 2.11); then we introduce precatiegqiDefinition 2.12), which
lead to s-categories (Definition 2.13).

Definition 2.8 (category) A categoryC has a set obbjectsand a set oarrows We
shall often denote objects Hy J, K and arrows byf, g, h. Each arrowf has adomain
andcodomainboth objects; if these areand.J then we writef : I — .J, I = dom(f)
and.J = cod(f). We writeC(I — J), or just(I — J), for thehomsebf I andJ, the
set of arrowsf : I — J.

For each object there is aridentityarrowid; : I — I; we write justid whenI is
understood. Theompositiony o f of f andg satisfies the following:

(C1) gofisdefinediffcod(f) = dom(g)
(C2) ho(gof)=(hog)ofwhen eitheris defined
(C3) idof=fandf = foid. O

Terminology We shall often say thatis acontext forf, meaning thag o f is defined.

We often need to move from one category to another, preggsaime structure. Hence
the following important notion.

Definition 2.9 (functor) A functor 7 : C — D between two categories is a function
taking objects to objects and arrows to arrows; it takes ttmnaf : I — J in C to the
arrowF(f): F(I)— F(J)inD.

More generally, let) be ann-ary partial operation on objects and/or arrows in both
C andD. ThenF preserve® if F(¢(x1...,2,)) = ¢(F(x1),...,F(x,)), meaning
that if the left-hand side is defined then so is the right-hsidd.

Similarly, if R is a relation on objects and/or arrows@) and also irD, thenF
preserveR if R(xy...,zy,) = R(F(z1),...,F(xn)).

Every functor must preserve both composition and idestitie O

The initial requirement simply says thatpreserves the domain and codomain opera-
tions,dom andcod. In the caser = 0 of the second requirement,is a single object
or arrow in each category, e.g. an identity.

We now proceed in two steps to apm categoryan enriched kind of category
possessing a form giroduct A special case of this product is thgxtapositionof
bigraphs, as defined in Section 2.1.

2.2. MATHEMATICAL FRAMEWORK 21

Definition 2.10 (partial monoidal category) A category ispartial monoidalwhen it
has a partiatensor productz both on objects and on arrows satisfying the following
conditions.

On objects] ® J and.J ® I are either both defined or both undefinetihe same
holds forl ® (J ® K) and(I ® J) ® K; moreover, they are equal when defined. There
is aunit objecte, often called therigin, for whiche I = I @ e = I for all I.

On arrows, the tensor product ¢f Iy — I; andg: Jy — J; is defined iffIy ® Jy
andl; ® J; are both defined. The following must hold when both sides afimeld:

M) fe(@geh)=(fegeh
M2) def=f®id.=f
(M3) (fi®@g1)o(fo®@g0) = (fiofo) @ (g1090) -

A functor of partial monoidal categories preserves unit @mgor product. O

In (M1), from the conditions stated, either both sides affendd or both are undefined.
In (M2) both products are defined. Equation (M3) is best érpldby a diagram show-
ing composition as vertical connection, and tensor prodsi¢torizontal juxtaposition:

(M3) .

This says that tensor product commutes with composition.

Henceforth we shall use the term ‘product’ to mean ‘tensodpct’ unless oth-
erwise qualified. We now enrich a partial monoidal categgnatiding arrows called
symmetrieswhich allow the factors in a product to be re-ordered. THagydfour laws,
explaining how they relate to composition, product and tlemtities.

Definition 2.11 (spm category) A partial monoidal category isymmetriqspn* if,
whenever! ® J is defined, there is an arrow ;: I ® J — J ® I called asymme-
try, satisfying the following equations—illustrated in theagiam below—when the
compositions and products are defined:

(Sl) Ve = id[

(S2) vs1071,5 =idrgs

(83) 711,]10(][@9):(g®f)o/ylo,J0 (forf:IO_>Ilv g:J0_>J1)
(S4) vigsx = (vi,x @idy)o(idr ® V1K) -

A functor between spm categories preserves unit, producsgammetries. O

S3This is a variant of the standard definition, which requidest i © J is always defined. We relax
this condition because, in bigraphs, we have chosen togept®pen links by names drawn from an infi-
nite alphabet, rather than by ordinal numbers, yielding @mmemoother representation of process calculi.
Appendix A.2 explains the choice in more detail. We have &stbphe strict form of ‘monoidal’, i.e. the
equations are required to hold exactly, not merely up to @pmsm.

4In a previous paper [65] the name ‘ssm’ was used, connotingrsstric and strict. Here we replace an
‘'ss’ by ‘sp’, for ‘symmetric partial’, leaving ‘strict’ to b understood.

22 CHAPTER 2. DEFINING BIGRAPHS

(S2) (S4)

I J I J K I J K 1 J
— ’y —

7 ¢

I J I J

EXERCISE 2.2 In an spm category an arrow ggound or anagent if its domain is
the origine. Definecontext expressiorto build one agent from another, as follows:

Cuo=1[11 (geC) | €C®9)| (hel)

whereg is ground and the products and compositions are well-forimedheir operands
are in appropriate homsets. This syntax ensures that evetgxt expressiod con-
tains exactly one occurrence of the ‘holé. LetC[a] denote the ground bigraph built
by C from any groundu: thus[a] = a. The homset ofi must ensure that[a] is
well-formed.

A particular form of context expression is jugt [-]. Prove that these particular
context expressions are fully general; that is, for evetliere exists an arroy such
that f oa = C[a] for all a. Hint: use induction on the structure 6f

Which laws of an spm category are needed in the proof? O

We now introduce the notions of precategory and s-cateddiy.can adapt most
details from the notions of category and spm category. Thim wifference is that
composition of two arrowg : I — J andg: J — K is not always defined. As we shall
see later, this limitation is a price we pay for dealing witle bccurrencesof one
bigraph within another. This handling is smooth; at the lef@ur work, s-categories
lose little of the character of an spm category, and the egoay of concrete bigraphs
has useful properties not present in the corresponding spegary.

Definition 2.12 (precategory) A precategory C is like a category except that com-
position of f andg may be undefined even whead(f) = dom(g). We use a tag, as
in "C, to distinguish precategories. Composition satisfiesdleviing conditions (the
first being weaker than for a category):

(CY) if go fisdefined therod(f) = dom(g)
(C2) ho(gof)=(hog)of when eitheris defined
(C3) idof=fandf= foid.

We understand C3 to imply that composition of an arrbwith the identities on its
domain and codomain are always defined.
A functor between precategories is exactly as a functor @etvcategories. [

Now, an s-category enriches a precategory by adding a pemntisor product and
symmetries, just as an spm category enriches a categotgoliraposes sharper con-
ditions under which composition and tensor product are ddfin

2.2. MATHEMATICAL FRAMEWORK 23

For this purpose we introduce the notion of a seswbport generalising the sup-
port of bigraphs introduced in Section 2.1. We presupposi@farite vocabularyS
of support elementshen we shall associate a finite set of support elementseaiti
arrow. This association will be arbitrary, subject to simpbnstraints detailed in the
following definition.

Definition 2.13 (s-category) An s-categoryC is a precategory in which each arrow
f is assigned a finitsupport| f| C S. Further, 'C possesses a partial tensor product,
unit and symmetries, as in an spm category. The identitieand symmetries; ; are
assigned empty support. In addition:

e For f:I— J andg:J — K, the compositionyo f is defined iff / = J’ and
|f1# |gl; then|go f| = [f| W]g].

e Forf:Iy— I; andg: Jy — Ji, the tensor product ® g is defined iffI; ® J; is
defined ¢ = 0, 1) and|f| # [g|; then|f @ g = [f| ¥ |g].

The equations (M1)-(M3) and (S1)—(S4) from Definitions 2ah@ 2.11 are required
to hold when both sides are defined.

Arrows f andg in the same homset are said tosapport-equivalentand we write
f = g, ifthere is a bijectiorp: | f| — |g|, called asupport translationthat respects the
structure off. A functor between s-categories preserves tensor prodoitf,symme-
tries and support equivalence. O

Appendix A.1 shows the ‘structure-respecting’ condititimest must be satisfied by any
support translation in an s-category. We shall not refehé&sé conditions explicitly;
we shall mainly be concerned with them in the specific caseguaphs, for which the
conditions are stated explicitly in Definition 2.4.

We shall soon see that bigraphs over a given basic signaturedn s-category. Of
course, they have detailed structure (nodes etc) not grasan arbitrary s-category,
and this admits new features. But there is one importanafeahat we can capture at
the general level of s-categories, and that will be usefulifalerstanding the dynamics
of reactive systems in general. It represents one way intwthie behaviour of such
systems depends upon its spatial configuration. We exgreseirms of NaT, the spm
category whose objects are natural numbers (considereddsefinite ordinals) and
whose arrows are functions between them. kT Nve take the tensor product to be
addition, with unit0.

Definition 2.14 (wide s-category) An s-category C is wideif it is equipped with a
functorwidth: "C — NAT.]

Note that this is really a functor between s-categoriesabse any spm category is
also an s-category with empty supports. The intuition of whdth functor is that,
for an object/, the ordinalwidth(I) indexes the ‘regions’ of, while for an arrow
f:1—J the functionwidth(f) tells us the unique region of in which each region
of I lies. The width functor tells us no more about the spatialcitire of objects and
arrows; but as we have seen, bigraphs have a detailed sgtatieture defined by their
nodes, and this structure certainly yields a width functor.

24 CHAPTER 2. DEFINING BIGRAPHS

Some of the work of this book is done at the general level ofevdecategories,
and is thus independent of possible variations of the nadfdmigraph. In particular
they lead in Chapter 7 to a general theorywide reactive systems (WRSgegluding a
crucial theorem concerning the congruence of behaviogalelence. In Section 2.3
we shall see that the width functor for bigraphs allows usqmress théocality of any
potential reaction of a bigrapf and thereby to determine the contexts in which that
reaction can occur.

Let us now relate s-categories with spm categories. Asdyrazntioned, every
spm category can be seen immediately as an s-category: cveevghpports are all
empty. Conversely, from any s-category we obtain an spngoagejust by hiding the
support. To be precise:

Definition 2.15 (support quotient) For any s-categonyC, its support quotient
CE'C/=

is the spm category whose objects are thos&Cpfand whose arrowf|: I — J are
support-equivalence classes of the hom&gf — .J). The composition off]: I — J
with [¢]: J — K is defined adg]o[f] £ [¢'c /'], wheref’ € [f] andg’ € [g] are
chosen with disjoint supports.

The tensor product is defined analogously. The identitiessgmmetries o€ are

singleton equivalence classes since they have empty suppor O

This definition is unambiguous, since the properties of suipjpanslation ensure that
the construction of a composite or productGndoes not depend upon the choice of
representative arrows if©. We now justify the definition by a theorem.

Theorem 2.16 (support quotient) The support quotien® = "C/= is an spm cate-
gory. Its construction defines a functor of s-categories

[]:'C—C

called thesupport quotienfunctor. If “C is wide, with width functowidth, thenC can
be enriched to a wide spm category by equipping it with thethimwidth : C — NAT

def

defined on objects as i€ and on arrows byidth([f]) = width(f).

This completes our mathematical framework. We are now réadgsert that con-
crete place graphs, link graphs and bigraphs all form sgoaies, the latter being a
wide s-category.

2.3 Bigraphical categories
In this section we cast concrete bigraphs and their comsiitplace graphs and link

graphs as s-categories. We also cast their correspondsitaebstructures as spm
categories.

2.3. BIGRAPHICAL CATEGORIES 25

Definition 2.17 (graphical s-categories) A basic signaturéC was defined in Defini-
tion 1.1. Concrete place graphs, link graphs and bigraplisavarbitrary were defined
in Definitions 2.1, 2.2 and 2.3. We now cast each of these lkifidsaph as arrows in
an s-category, denoted respectively Bg(K), "LG(K) and BG(K).

The objects in these three s-categories are catiezifaces or faces For place
graphs they are natural numbers, for link graphs they artefimime-sets, and for
bigraphs they are pairs of a natural numbeand finite name-set.

Supportfor the three kinds of graph was defined in Definition 2.4, vatipport
elementy) W £. Compositiorandidentitieswere set out in Definition 2.5, arjdxta-
positionandunitsin Definition 2.7, determiningensor product

To complete our definition it remains to defisgmmetriesy; ; as follows:

iN'PG: Y = (0,0, prat), where prat(i) = n-+i (i € m)
and prnt(m+j) =7 (j €n)
in"LG: VXY = idxwy
in"BG: Y(m,X),(n,Y) < <’7m,n7’7X,Y> . O

Thus, if v is a symmetry of bigraphs, thepo G just reorders the regions @f but
leaves its names unchanged.

It is a routine matter to prove that this data defines threatsgories. Moreover,
the s-category of bigraphs is easily seen to be wide; thiséstd the spatial nature of
place graphs, which yields an obvious width functor. We viregse important results
together as a theorem:

Theorem 2.18 (graphical s-categories)PG(K), 'LG(K) and ‘BG(K), as defined in
Definition 2.17, are all s-categories.

Further, we may equipBG(K) with a width functor, as follows. For each interface
I = (m, X), definewidth(I) = m, and for each bigrapt¥’ and any site of F', define
width(F')(¢) to be the unique root that is an ancestorioin F. Then 'BG(K), so
equipped, is a wide s-category.

EXERCISE 2.3 What bigraphs exist in a homset BG(K) of the form (I —¢) ?
Which of these have empty support? O

Our final task in this chapter is to define the spm category sfrabt bigraphs. But
we need first to consider a technical point concerniltg links those links to which
no points are mapped. Recall that a link is either an outerenaman edge. The reader
may think that idle links are useless, but they arise inélytan our framework.

To see how an idle (outenamemay arise, consider the reaction rules illustrated
in Chapter 1. Each reaction rule may be writter—1’, wherer is the redex and
r’ the reactum. We needandr’ to have the same outer face, because reactions by
this rule take the forn' o r—C' o7/, whereC' is a context for both- and+’. But
the points linked to a name in » may no longer exist in”, because the reaction
discards the nodes ofto which they belong. Examples of this are the mlefor built
environments, or the rul&3 for mobile ambients, both illustrated in Chapter 1. Then
idle edgesalso arise; for in the reactioff or—> C o7’ the contextC may have an
edgee containing only the point; thene will be an idle edge o o 7.

26 CHAPTER 2. DEFINING BIGRAPHS

We are now ready to define the wide spm category of abstracjitig. In forming
these from the concrete ond®G(K) we wish to forget support; we also wish to forget
idle edges. So it is not quite enough to quotient the condrggephs by support
equivalence. For suppode and G are identical except that' has idle edges, but
G has none. Then they are not support-equivalent; the sugpottent[F] still has
idle edges, although they are unidentified, wh# has none. We therefore need to
quotient by a slightly larger equivalence, as follows:

Definition 2.19 (lean, lean-support quotient) A bigraph islean if it has no idle
edges. Two bigraphg’ and G arelean-support equivalentritten F' < G, if they
are support-equivalentignoring their idle edges. It islgagen that both composition
and tensor product preserve this equivalence.

For the bigraphical s-categorBG(K), its lean-support quotient

BG(K) £ 'Be(K)/<=

is the spm category whose objects are thos@af(K) and whose arrowG] : I — J,
calledabstract bigraphsare lean-support equivalence classes of the hofiiset) in
"BG(K). Composition, tensor product, identities and symmefioeshe lean-support
quotient are defined just as for support quotient in Definigal 5.

The spm categoriesd) of abstract place graphs ands{iC) of abstract link
graphs are constructed similarly. O

We now justify the definition by a theorem.

Theorem 2.20 (abstract bigraphs) The lean-support quotie®G (K) = "BG(K)/ <
is an spm category. Its construction defines a functor of spiegories

[[]:"BG(K)— BG(K)

called thelean-support quotieritinctor. There are similar lean-support quotient func-

tors for place graphs and link graphs, yielding spm categefc () and L G(K).
Finally, BG(K) equipped with essentially the same width functoris(K) forms

a wide spm category.

This quotient is essential for our theory. In later chapteesshall move back and
forth between concrete and abstract bigraphs, accordingnéher or not we need to
identify support elements. For example, Chapter 3 is cavexbwith the algebra of
abstract bigraphs, which does not depend upon support;eattier hand Chapter 5
is concerned with a form of least upper bound for a pair of cetechigraphs, and this
notion is absent for abstract bigraphs because it depeitidsity upon support.

Chapter 3

Algebra for bigraphs

In this chapter we show how bigraphs can be built from smailfers by composition,
product and identities. In this we follow process algebrhere the idea is first to
determine how distributed systems are assemstiectturally, and then on this basis
to develop theidynamictheory, deriving the behaviour of an assembly from the be-
haviours of its components.

This contrasts with our definition of a bigraph as the pair pleee graph and a link
graph. This pairing is important for bigraphical theoryyasshall see later; but it may
not reflect how a system designer thinks about a system. Teba of this chapter,
allowing bigraphs to be built from elementabygraphs is a basis for the synthetic
approach of the system-builder.

Our algebraic structure pertains naturally to the abstragiaphs B (X). Much
of it pertains equally to concrete bigraphs. Propertiesy@d exclusively by concrete
bigraphs are postponed until Chapter 5.

3.1 Elementary bigraphs and normal forms

Notation and convention The placesof G:{(m,X) —(n,Y) are its sitesm, its
nodes and its roots. The pointsof G are its ports and inner nameés. Thelinks
of G are its edges and outer namésthe edges arelosedlinks, and the outer names
areopenlinks. A pointis said to b@penif its link is open, otherwise it islosed G is
said to beopenif all its links are open (i.e. it has no edges).

A place with no children, or a link with no points, is callatle. Two places with
the same parent, or two points with the same link, are callglthgs

If an interfacel = (m, X) hasX = () we may writel asm; if m =00orm =1
we may write it asX or as(X) respectively. When there is no ambiguity, especially in
interfaces, we shall often write a name §ety, z, ...} as{zyz--- }.

The unique bigraph with empty supportdr- I is often written!.

A bigraphg : e — I, with domaine, is calledground we use lower case letters for
ground bigraphs, and writg: 1. O

27

28 CHAPTER 3. ALGEBRA FOR BIGRAPHS

We now describe the elementary node-free bigraphs. For ldadhwe mention in
parentheses the Greek letter we shall use most often toalthresh, e.g¢ for placings.

Definition 3.1 (placing, permutation, merge) A node-free bigraph with no links is
aplacing(¢). A placing that is bijective from sites to roots isp@rmutation(w). A
placing with one root and sites is denoted byerge,,. O

elementary placings:

All permutations can be built (using composition, produad &entities) from the ele-
mentary symmetryy; ;. All placings can be built fromy; 1, 1 andjoin. For example,
merge, = 1 andmerge,, | = join o (id; ® merge,,).

Definition 3.2 (linking, substitution, closure) A node-free bigraph with no places
is alinking (\). Linkings are generated by composition, product and iteatfrom
two basic forms: elementasubstitutiond// X, and elementarglosuregz: © — e, as
shown in the diagram.

Yy
elementary linkings: \
/ \ T
x

1T vevnnn Ip T
/X : X —y Jx T —e€
A substitution(o) is a product of elementary substitutionsclasureis a product of

elementary closures. A bijective substitution is calle@@aming(«). We denote the
empty substitution fronato z by z: € — . O

Note that a closurgr o G may create an idle edge ifis an idle name of+. Intuitively
idle edges are ‘invisible’, and indeed we shall see later twoignore them.

EXERCISE 3.1 Show that every linking can be built from elementary linksngsing
identities, composition and product. Is composition neagsfor this? O

In any (pre)category aisomorphismor iso is an arrow. : I — J that has an inverse
1 J—T; thatis,.'or = id; andior™! = id;. Isos are an important class of
node-free bigraphs, characterized as follows:

Proposition 3.3 (isomorphism) Place graph and link graph isos are respectively per-
mutationsr and renamingsv. Bigraph isos are pairgr, o).

There is only one kind of elementary bigraph that introducsges:

3.1. ELEMENTARY BIGRAPHS AND NORMAL FORMS 29

Definition 3.4 (ion) For each controK : n, the bigraphKz:1—(1,{Z)} having a
singleK-node with ports are linked bijectively todistinct nameg’ is called adiscrete
ion. O

1 ... Tnp

discrete ion:

Definition 3.5 (atom, molecule) If the site of a discretd-ion is filled by 1:0 — 1
(see Definition 3.1), the result isdiscrete atomKzo1; if it is filled by a discrete
bigraph (see Definition 3.8 belows: I —(1,Y), then it is adiscrete moleculg Kz ®
idy) o G. O

r yp =24

discrete atom:%

qu ol (Kfcyz ® idpq) ° qu

The diagram shows examples. Note héy,. ®id,, exports names from the molecule.
We shall shortly discuss non-discrete constructions, iitkvpoints may be linked.

We can express all bigraphs algebraically in terms of el¢amgiplacings, linkings
and ions, using composition, product and identities. Thislias to both BG(X) and
BG(K), but in 'BG(K) we may wish to make support explicit in the algebraic expres
sion of a bigraph. This is easy, because nodes are createbyiuns, and edges only
by closure. So we need only annotate ions and closures witk-ramd edge-identifiers
respectively, thus?Kz and®/x.

Given the elements and operations of our algebra, whattisétsry? When do two
expressions denote the same bigraph? This question hasabhserred, at least for
abstract bigraphs. We omit the proof, but it is worth recogdhe result here:

Theorem 3.6 (axioms for bigraphs) Two bigraphical expressions denote the same
abstract bigraph if and only if they can be proved equal byeheaations of an spm
category (Definitions 2.8-2.11), together with the axioafmitated below.

In other words, the axioms are bosoundand complete They say simple things:
The place axioms say thgiin is commutative, has a unit and is associative; the link
axioms say that the formation of links obeys obvious rulkes;riode axiom says that
we can name ports arbitrarily. Since the ssm axioms are radk sppecific to bigraphs,
this result means that theructureof bigraphs is straightforward, as it should be; we
should expect the subtlety of a behavioural model to liesdynamics

30 CHAPTER 3. ALGEBRA FOR BIGRAPHS

Symmetry axiom: ¥, x),(n,y) = Ymn @ idxwy

Place axioms: join oy 1 = join
joino(l® idl) =idy
join o (join ® idy) = joino (idy ® join)

Link axioms: Z/zx = id,
Jrox =id,
fyoY/z =[x
Z/(YWy)o(idy ®Y/X) =%/(Y W X)

Node axiom: (id; ® o)oKz = Koz

Axioms for bigraphical structure

Let us now return to properties of bigraphs that can be espreslgebraically.
We begin with theoccurrenceof one bigraph within another. We adopt the following
definition, which applies to both concrete and abstractdpulys:

Definition 3.7 (occurrence) A bigraphF occursin a bigraphG if the equationz =
Cy o (F ®idy) o Cy holds for some interfacé and bigraph€’y andC;. O

The identityid; is important here: it allows nodes 6f; to have children irCy as well
asinF', and allowsC;, andC), to share links that do not involvE. It appears to be the
natural way to define occurrence, as the following exeraiggssts.

EXERCISE 3.2 Make sure that the definition implies the right thing, in siempases:
i.e.thatF' occursinF'oC,Co F, F®C andC ® F'. Less trivially, show that a ground
bigrapha occurs in a ground bigraph iff ¢ = Coa for someC. Also prove that
occurrence is transitive, i.e. F occurs inF' and F' occurs inG then £ occurs inG. [J

We now come to two kinds of bigraphprime anddiscrete which are important
both for the algebraic structure of bigraphs (Propositid®) &nd for their dynamics
(Definition 8.5). In both cases we are concerned with bregpkiown a bigraph into
parts; for example, Proposition 3.9 shows that every bigiaghe composition of a
linking with a discrete bigraph.

Definition 3.8 (prime, discrete) A prime bigraph has no inner names and a unary
outer face; its homset takes the form— (X).

A link graph or bigraph igiscreteif it has no closed links, and its link map is
bijective. Thus it is open, no two points are siblings, andhame is idle. O

An important prime ismerge,,: n— 1, wheren > 0; see Definition 3.1. It has no
nodes, and maps sites to a single root. A bigrapi: m —(n, X) with no inner
names can be merged into a prieerge ® idx) o G. As here, we shall usually omit
the subscript from merge.

3.2. DERIVED OPERATIONS 31

Note the absence of inner names in a prime bigraph. This esishe unique de-
composition of a bigraph into a linking and discrete prinassfollows:

Proposition 3.9 (discrete normal form) Every bigraphGG: (m, X) —(n, Z) can be
expressed uniquely, up to a renaming¥nas

G = (id, ® \)o D

where)\: Y — Z is a linking andD : (m, X) —(n,Y) is discrete. Further, every dis-
crete D may be factored uniquely, up to permutation of the sites off éactor, as

D=a®@(Py® - ®P,_1)om)
with o a renaming, eactP; prime and discrete, and a permutation of all the sites.

Note that a renaming is discrete but not prime, since it has zero width and also has
inner names; this explains why a renaming is needed in tieepiactorisation. In the
special case thdD is ground, the result simplifies as follows:

Corollary 3.10 (ground discrete normal form) A ground bigraphy : (n, Z) can be
expressed uniquely, up to renaming¥nasg = (id, @ \) o (dp ® - - - @ dj,—1), Where
A:Y — Zis a linking and thei; are discrete primes.

This analysis of a bigraph into smaller discrete ones isiattdor the proof that our
algebraic theory is complete (Theorem 3.6). It can be seemtaacting all non-trivial
linking from a bigraph’= at the very first step. But it may not be how a designer would
wish to build a bigraph from smaller ones. Instead, she mefepto push all linking—
both substitutions and closures—inwards as far as posaitideshall shortly see how
to break down a bigraph in this alternative way.

3.2 Derived operations

Notation We often omit:..® id;’in a compositionF' ® id;) o G when there is no
ambiguity; for example we writ@werge o G for (merge ® idx) o G.

Given a linking\: Y — Z, we may wish to apply it to a bigrapfi : I —(m, X)
with fewer names, i.& = X W X’. Then we may write\ o G for (id,,, @ \) o (G® X”)
whenm and X’ can be understood from the context. O

If X ={x1,...,z,} we shall write/X to mean/z; ® - - - ® xy.
We now generalise the tensor product. We define an operaticomes closer to
the ‘parallel composition’ of process calculi by allowingmes to be shared.

Definition 3.11 (parallel product) Theparallel product || is given on interfaces by

(m, X) || (n, Y)Y E (m+n, X UY).

32 CHAPTER 3. ALGEBRA FOR BIGRAPHS

Now letG; : I; — J; (1 = 0, 1) be two bigraphs with disjoint supports. Denote the link
map ofG; by link; (i = 0, 1), and assume further thatk U link, is a function. Then
the parallel product

GO || Glijo H11—>JOH Jl

is defined just as tensor product, except that its link mameallname-sharing. [

Let X;,Y; be the names of;, J; respectively { = 0,1). Because the supports of
G, are disjoint, the condition thdink, U link, is a function amounts to requiring
that, for every inner name € X, N Xj, there exists an outer namec Yy N Y;
such thatlinkq(z) = link,(x) = y. Thus tensor product is the special case in which
XoﬂXleoﬂle(/)

Proposition 3.12 (parallel product) The parallel product of bigraphs is associative;
thatis,F' || (G || H) = (F || G) || H when either side is defined. It also hids as unit.
Furthermore it satisfies the ‘bifunctorial’ property whenth sides are defined:

(F1]| G1) o (Fo || Go) = (F1oFp) || (G10Go) -

Proof Straightforward from the definition, noting that the coiatiton link maps is
satisfied on one side iff it is satisfied on the other side. O

The reader may be concerned th@f| G is only defined wherlinkp U linke is a
function. Indeed, in previous wolkK || G was permitted only when the inner facesrof
andG are disjoint, ensuringnk p# link ¢ and thus implying our constraint. However,
the useful bifunctorial property is then lost.

From another point of view, the present definition is natui@l it can be shown
that the constraint on link maps holds if and only if there lsiggaphsF’ andG’ and
a substitutiorr, with all three inner faces disjoint, such thét= F’ || o, G = o || &,
andF' |G = F'|| o || G’. Thus, given the disjointness of suppofs] G is defined iff
the two bigraphs treat their open inner names the same.

Notation Parallel product allows further convenient abbreviatioRer example, if

def

X = {x1,...,2,} we define¥/X = Y/z1| --- ||Y/xn. Also, if G has outer face
(n, X & Z), we shall write¥/X o G to mean(¥/X ||id;) o G, wherel = (n, Z). This
makes sense evenyfe X W Z. O

Itis common to nest, inside an ion, a bigraph of width 1 thatek names with the ion.
We therefore define mestingoperation as follows:

Definition 3.13 (nesting) Let F': I —(m,X) andG :m —(n,Y’) be bigraphs. De-
fine thenestingG.F': I —(n, X UY) by:

G.F £ (idx | G)o F . O

Example 3.14 (nesting) The diagram below uses nesting to describe a non-discrete
version of the discrete molecule shown earlier. It can bétevri(K,,. || id,.)oL,.,
using parallel product to create the sharing of names. \Wighnesting operation we
can also write it a%,,.L,.. O

3.2. DERIVED OPERATIONS 33

molecule: (Kuy. [[idy:)olys = Koporlys o

Nesting will be found to express the prefixing operation ofSCC

Notation If A is an atomic control then we may abbreviate the aforhto justA;
this is justified because an atomic node can only cortain O

EXERCISE 3.3 Prove that nesting is associative; thaths,(G.F) = (H.G).F for
F:I1—(k,X), G:k—(m,Y) and H:m —(n, Z). Hint: Expand the definition of
nesting, then use associativity of parallel product andthenctorial property. [

We now derive a form of parallel product that produces bigsagpf unit width:

Definition 3.15 (merge product) The merge product| is defined on interfaces by
(m,X)|(n,Y) £ (X UY). On bigraphs, under the same condition as for parallel
product, it is defined by

Go|G1 E mergeo(Go||Gr): Io || It — Jo | J1 O

Proposition 3.16 (merge product) Merge product is associative, and (on bigraphs of
unit width) it hasl as unit.

By introducing derived products and nesting, we clothe #tegorical operations—
composition and tensor product—in a way that yields coresgralgebraic expression.
As we shall soon see, this brings us closer to the form of esswa found in process
calculi. Thus we have exposed spm categories as a foundatithese calculi. One ad-
vantage, already mentioned, has been the existence of ahfmmm (Proposition 3.9)
that enables the proof of algebraic completeness (Theorén 3

However, we can now show that our derived operations—thdhgi may not
support a completeness theorem—allow us to break down agiign the alternative
way we mentioned, pushing linking inwards. It works for &y bigraphs, but here
we shall give it just for ground bigraphs, as another corgltd Proposition 3.9:

Corollary 3.17 (ground connected normal form) If Y = {y1,...,yn}, let us write
/Y for i1 ®---® Jy,. Then a ground bigraph: (n, Z) can be expressed uniquely, up
to renaming onY’, asg = (id,,z) ® /Y)o(poll - || pn—1), Where thep; are prime
and each closed link € Y has ports in more than ong.

This form of factorisation—sharing names as deeply as plessican be continued
into the primeg; by means of merge product and nesting. Here is an example, for
ground bigraph used in Chapter 1; we assumeKhatatomic.

34 CHAPTER 3. ALGEBRA FOR BIGRAPHS

g=Jyzo(pollp1)

bo

You may check thaty = M,,.(/zo (Kyz.1|L.(Ks2.1))) @andp; = K.,y.(M,.1).1

Example 3.18 (CCS redexes)We shall use the process calculus CCS as a running
example throughout this work. We begin with the redex of teeall CCS reaction
rule, which we shall study in detail in Chapter 8, as a goodrgda of an algebraic
expression. In the notation of CCS, the reaction rule takesdrm

(x.P4+A)|(z.Q+ B)—P|Q

whereP,), A, B areparametersi.e. arbitrary CCS expressions. This parametricity
will be represented as four sites in a non-ground bigr&plsee the diagram below.
The meaning of the rule is that an interaction betweandz can occur, and if so then
the alternativest and B will be discarded.

alt. (send, |idy) | alt. (get, | id1)

Note that send’ (sending) andget’ (receiving) are controls of arity, and alt’ repre-
senting summation has arify The algebraic expression &, as shown, makes good
use of the nesting operation. Note that the reftds prime. It may be surprising that
merge product not only represents what is called ‘paratiehgosition’ in CCS, but
also (together withalt) represents summation. In Chapter 10 we shall see how this
works; essentially, the reaction rule provides the diffieeein meaning between these
two operations.

The parametric rule generates an infinite familygodund redexes, once the pa-
rameters are supplied as ground bigraphs. It turns outttisa¢énough to assume these

1These expressions containl' many times. This is necessary when an empty node has nameto
control, such a¥ or M here.

3.2. DERIVED OPERATIONS 35

parameters to be discrete; so, since the inner width (idthvaf inner face) ofR is 4,
these parameters form a single paraméten, Y) = dy ® diy ® do @ ds, with d; : (Y;),
whereY” = 4, Y;. Thus each ground redex can be expressed as

R.d = alt.(send,.dy | dy) | alt.(get,.d2 | d3) . O

To end this chapter, let us use the CCS reBex alt.(send,, | id) | alt.(get, | id) to
illustrate another phenomenon. We shall meet it in Defini8G and Proposition 8.14
to characterize certain well-behaved transition systémkjding the one we derive for
CCS. The reader may safely ignore it until then, but we amallylkere because it is a
structural property with some intrinsic interest.

We shall need to deal with cases in which a bigréphespecially a redex—occurs
in the compositionG = Bo A of two bigraphs, but not in eithed or B alone. In-
deed, this is exactly what gives rise to communication in Cfogif p and ¢ are
(bigraphs representing) CCS processes, thenay containalt.(send, | id) while ¢
containsalt.(get, | id). In this case we hav& = p|q, A = pandB = id; | ¢, so the
interface betweer and B is unary.

But there are other ways to decompose the CCS rétlekor example, we have
R = Qo P whereP = send, || get, and@ = alt| alt|id,, so the interface betwedh
and@ may be multiary. In this case, it turns out thafifoccurs inG = Bo A, where
A has a unary outer face, then this occurrence cannot ariseanooccurrence aP in
AandQin B.

This phenomenon will affect how we derive transition systeeng. for CCS, so we
need to treat it more formally.

Definition 3.19 (split, tight) A split for F' is a pairA, B such thatF’ occurs inBo A

and both|A| N |F| and|B| N | F| are non-empty. The split is-ary if A has ann-ary

outer face. The split iight if some portin|A| N | F| is linked to a port in B| N | F|.
Finally, F' is tight if every unary split forF is tight. O

The notion of a split helps to address the question: if a Ipigfa can be split into two
parts across the boundary of a composition, then how arevh@arts of F' related?
It depends upon the interface of the composition. Our defmif tightness is a little
arbitrary, but will help to measure how closely linked are tiedexes in bigraphical
reactive systems.

For example, consider any split, B for R, the CCS redex. In general there need
be no link between the two parts; we may have= Bo A whereA = send, || get,,
andB = alt|alt |id,, and no port ofd is linked to a port ofB (indeedB has no ports).
But note that the interface of the split is not unary. If we sider only unary splits, we
find that there is always a linked pair of portsi®in opposite parts of the composition.
SoR is tight.

EXERCISE 3.4 Prove that the CCS redex is tight.
RulesA1-A3 for mobile ambients anB1-B3 for the built environment are given
in Chapter 1; which of their redexes are tight? O

36

CHAPTER 3. ALGEBRA FOR BIGRAPHS

Chapter 4

Relative and minimal bounds

This chapter introduces an important structural notiomaigenerallevel of a precat-
egory. We begin with some motivation from bigraphs.

Structural analysis for bigraphs is more challenging thas fior algebraic terms.
Terms are tree-like, and trees enjoy the property thatwordubtrees of a larger tree,
either they are disjoint or one is contained in the other.sT&inot the case with bi-
graphs. For example, consider the built environment of Ex}arh.2; one may consider
one subsystem consisting of the agents and the computersnather consisting of
the rooms and the agents. They have a non-trivial intesedthe agents.

This situation can be represented generally in a categgoyemategory, but let us
restrict attention to bigraphs. A bigraph, even a grounddpmb, can often be decom-
posed in two ways; for example = Cyo fo = C10 f1. We say thatfy and f; both
occurin g. Do theseoccurrence®verlap? What, if any, is the smallest parof g that
contains them both, i.g.= Doh, withh = D;o f; andC; = Do D; (i = 0,1)?

o

N

Dy Dy

fo /

In abstract graphs this question has no definite answer. rBliei dynamic theory of
bigraphs we shall need answers to such questions. Theyiaria® distinct ways.
First, two reconfigurations—aeactionsas we shall call them—of a bigraghmay
be possible; this means that two differeetiexes—the parts to be reconfigured—may

occur ing. If they overlap, then one reaction may preclude the otleeming what is
known as a critical pair; we have to analyse such possitidlicts Second, a system

1The words ‘abstract’ and ‘general’ can be confused. They#en used as synonyms, but in this work
‘abstract/concrete’ distinguishes only between graphahich the nodes and edges are unidentified and
those in which they are identified. On the other hand ‘gerspectific’ represents a spectrum from lesser to
greater definition; for example, it proceeds from ‘precatggthrough ‘s-category’, then through the class
of all bigraphical s-categories, then to any specific bigiegl s-category such as®.s or ‘BGccs.

37

38 CHAPTER 4. RELATIVE AND MINIMAL BOUNDS

may be able to contribute to a reaction—it may contain paet ifdex—and we wish
to know whether the environment contains the missing parthat they can jointly
react; we have to analyse sugbtentialreactions. We would like to know, for a given
potential reaction, what is the minimal environment thahpés it to occur.

This motivates the notion aélative pushoufRPO), which we develop here in the
general framework of an arbitrary precategory.

Notation While we are working at this general level, we revert to usower case
letters for arrows in this chapter. We shall frequently lfSe denote a paiffy, f1 of
arrows. If their domains coincide the pair ispan if their codomains coincide it is a
cospan If the shared domain of a spdﬁis H and the codomains ailg and,, then
we may writef : H — I, with a dual notation for cospans. We shall also fise to
mean the sparfy o g, f1 o g, with a dual notation for cospans. O

Definition 4.1 (bound, consistent) If f is a span ang@ a cospan such thgt o fo =
g1 0 f1, then we callj aboundfor f. If f has a bound it is said to lm®nsistent [

Before defining relative pushouts, we recall the standatiwnaof pushout:

Definition 4.2 (pushout) A pushoufor a spanf is a bound: for f such that, for any
boundg, there is a unique arrow such thatho h = g. O

We are now ready for the main definition of this chapter:

Definition 4.3 (relative pushout) Let g be a bound forf. A bound for f relative to
gisa triple(ﬁ, h) of arrows such thak is a bound fotfandhoﬁ = ¢. We may call
the triple arelative boundvheng is understood.

A relative pushoutRPQO) for frelative tog is a relative bountﬂl_i, h) such that for
any relative bound#, k) there is a unique arroyfor which joh = k andkoj = h.
(See the right-hand diagram.)

We say that a precategongs RPOsf, whenever a span has a bound, it also has an
RPO relative to that bound. O

9o h g1

kg

H
[/h %1’1

S \7

We shall often omit the word ‘relative’; for example we mayl qah h) a bound (or
RPO) forf tog.

The more familiar notion, a pushout, is a boundor fsuch thatfor any bound
g there exists a which makes the left-hand diagram commute. Thus a pushaut is
leastbound, while an RPO providesainimalbound relative to a given bouri

39

Suppose that we can construct an R@bh) for fto g, what happens if we try to
iterate the construction? More precisely, is there an RRGQ fo 4? The answer lies
in the following important concept:

Definition 4.4 (idem pushout) If f: H — I'is a span, then a cospgn — J is an
idem pushoutlPO) for f if (g,id) is an RPO forf to g. O

The attempt to iterate the RPO construction will yield Haenebound (up to isomor-
phism); the minimal bound fofto any boundj is reached in just one step. This
is assured by the first two parts of the following propositiatnich summarises the
essential properties of RPOs and IPOs on which our workselie

Proposition 4.5 (properties of RPOs)In any precategoryC:

(1) Ifan RPO forfto g exists, then it is unique up to isomorphism.
(2) If (ﬁ, h)is an RPO forf to g, thenh is an IPO for f.

(3) If his an IPO for f, and an RPO exists fof to hoh, then the triple(h, h) is
such an RPO.

(4) Suppose that the diagram below commutes, and flaty has an RPO to the
pair hiohg, faog1. Then
ho hi

—

o if the two squares are IPOs, so is the rectangle; T
flT sz

o if the rectangle and left square are IPOs, so is thé0

right square. —
go g1

(5) If "Cis an s-category, then any support translation of an RPO iRRO.

(6) Every pushoutis an IPO.

Proof (partial) We prove (1) here. We pose (2) and (3) as Exerciseardd 4.2.

For (1), assume tha, 1) is an RPO forf to 7, with mediating object. We must
show thal(E, k), with mediating objecfs, is also an RPO iff thereisanigso H — K
such thateo: = h andk = o h.

(=) Assume tha(E, k) is also an RPO. Each of the two RPOs is a relative bound; by
comparing each with the other, or with itself, we first dedtioee properties:

there exists unique: H — K such that: = zoh andkox = h ; (a)
there exists uniqug: K — H such thath = yok andhoy =k ; (b)
there exists unique: H — H such thati = zoh andhoz = h . (c)

It then follows thaty o « = id, since both satisfy the equations of.(Similarly we find
xoy = id. Hencex is an iso, readily seen to have the required property.

40 CHAPTER 4. RELATIVE AND MINIMAL BOUNDS

(«<) Assume an isa: H — K with inverse//, such thatoh = k andko: = h.
Let (7, /) be any relative bound. Then, sin¢, h) is an RPO, there exists unique
z:H—Lsuchthatoh = fandloz = h.

To prove(E, k) an RPO we require a unique: K — L satisfying the equatiorfs:
wok andlow = k. Now ¢ = (z0t/)ok andlo(z04') = k; thusw = zo ./ satisfies
the equations. Moreover, for any satisfying the equations we finfd= (w' o) oh
andlo (w' ot) = h, hence by the unicity of we have(w’ o) = z. Thereforew = w’,
ensuring unicity ofw. O

EXERCISE 4.1 Prove (2) in Proposition 4.5. That is, assume t(lfaﬁ) is an RPO
for frelative tog, and prove that is an IPO forf. O

EXERCISE 4.2 Prove (3) in Proposition 4.5. That is, assume ﬂ’fwg an IPO forf,
and that an RPO exists fgrrelative toh o hg, ho hq; then prove thath, h) is such an
RPO. O

These properties are powerful; for example, they will eaaislto define behavioural
equivalences which ameongruencesi.e. they are preserved by composition and ten-
sor product, and hence by all derived operations such afigdanad merge products,
nesting, substitution and merging. Thus, if a subsystepkced by a congruent sub-
system, then the behaviour of the whole system is unchariged will be illustrated
for both Petri nets in Chapter 9 and CCS in Chapter 10, thuBraging existing theory
for these process models.

These benefits only fully accrue in a precategory lezegt RPOsi.e. it has an RPO
for every bounded span. In Chapter 5 we shall show that theegzory of concrete
bigraphs over any basic signature has RPOs.

However, we need more than this. In Chapter 6 we shall defiregtegyories of
bigraphs that obey a wide range of so-calsedting disciplinesthese often impose
structural constraints, which may preclude the existerig¢gsame or all) RPOs. Such
a discipline’A typically consists of an s-category of bigraphs whose @aear whose
points and links—have been assigned certain sorts, andhihéigraphs permitted are
those that satisfy a structural constraint expressedinsterf the sorts. A simple exam-
ple is when each place is assigned one of the smats br ‘ blue’, and the admissible
bigraphs are those in which the parent of each notias a different colour from,
while the parent of each sitehas the same colour as

As we shall see in Chapter 6, every sorted bigraphical syoage’A is built on a
basic signaturé&’, and has a functor

U:A—"BG(K)
called aforgetful functor, because it forgets the sortsAf We want'A to be well-

behaved; in particular, to have RPOs. A sufficient conditarthis is that the functor
"U is safe, according to the following general definition:

2A similar functori/ : A — BG(K) of spm categories exists for abstract bigraphs, wieie the lean-
support quotient ofA.

41

Definition 4.6 (safe functors and sorting) A functor 7 : A — "B of s-categories is
safeif it creates RPOs and isomorphisms, and also reflects ttentproducts and

—

pushouts. These properties are defined as follows, where nite (/) to mean

F(fo), F(f1):

e F creates RPO#, given a spanf bounded by: in ‘A, any RPO in'B for F(f)
relative toF (1) has anF-preimage that is an RPO fgtrelative toh.3

e F createsisomorphisnifs for any object/,, in ‘Aand isomorphism : F(1y) — K1
in "B, there is a unique objed and isomorphism: Iy — I in ‘A such that
F(u,) = (k, K1).

o F reflects identitiesf, wheneverf is an arrow inA such that such tha(f) is
an identity, thenf is itself an identity.

o F reflects products, wheneverF(g) = F(fo) ® F(f1), thenalsg = fo ® f1.

e F reflects pushouts, for f bounded byjin ‘A, wheneverF(g) is a pushout for
F(f) theng is a pushout forf.

A sorting discipline issafeif its forgetful functor is safe. O

These conditions are not necessarily independent. Thegharsen with a view to
deriving transition systems. At least one of the conditisrimplies by one or more of
the others; the reader may enjoy the puzzle of verifying this

The following is important for deriving transition systefios sorted bigraphs:

Proposition 4.7 (transferring RPOs) LetF : ‘A — "B create RPOs, and assume that
"B has RPOs. Then

(1) ‘A has RPOs.
(2) F preserveRRPOs; that is, if(g, g) is an RPO in'A for f relative toh, then

= —

F(g,g)is an RPOIn'B for F(f) relative toF (h).

Proof (outline) The first part is immediate from the definition. Foe second part,
first construct an RPQK’, k') in "B for F(f) relative toF (k). ThenF creates from
this an RPQ(k, k) in A for f relative tok. By Proposition 4.5(1), this RPO coincides
with the given RPQ(g, g) up to an isomorphism between their mediating interfaces.
Hence, since functors preserve isomorphighh, k') coincides similarly with7 (g, g),

and the latter is therefore itself an RPO B O

The last four conditions for safety, when satisfied by a sgrtiiscipline (Chapter 6)
will allow us to make its derived transition system more taéte. It will turn out
that a quite wide class of sorting disciplines satisfy the fienditions, including our
formulation of both Petri nets and CCS in bigraphs.

Here is another property that will be useful later:

3This RPO-preimage may not be unique; it may vary by an isoeanthdiating object.

42 CHAPTER 4. RELATIVE AND MINIMAL BOUNDS

Proposition 4.8 (creating IPOs) If a functor 7 is safe then it creates IPOs; that is, if
g boundsf, andF(g) is an IPO forF(f), theng is an IPO for f.

—

Proof We have thatF(g),id) is an RPO fotF(f) to F(g). SinceF creates RPOs,

there is an RPOI{,) for f to g, and this RPO is a preimage of the RRB(7), id).
But F reflects identities, and (1) = id, soh is an identity. It follows that, = g,

and hencg is an IPO as required. O

It will be useful to have a sufficient condition for a functorreflect pushouts. For
this we need a standard categorical notion:

Definition 4.9 (op-cartesian)

Let 7:’A — "B be afunctor. An arrowf: I — Jin ‘A is h /i\g ng F(h)
said to beop-cartesian forF if, forall h: I — K andg’ i
such thatF(h) = ¢’ o F(f), there exists uniqug such
thatF(g) = ¢’ andh = go f. Tf]."(f)/r
O

Proposition 4.10 (reflecting pushouts)If every arrow in the domain of a functd¥
is op-cartesian therF reflects pushouts.

EXERCISE 4.3 Prove Proposition 4.1({int: You need to use the op-cartesian prop-
erty more than once. O

We are now ready to apply these general notions, first to tebrgraphs in Chap-
ter 5 and then to sorted bigraphs in Chapter 6.

Chapter 5

Bigraphical structure

This chapter refines the structural analysis of concreteapltgs. In Section 5.1 we
establish some properties for concrete bigraphs, inctu®ROs. In Section 5.2 we
enumerate all IPOs for a given span. Finally, in Section Ze3how that RPOs do not
exist in general for abstract bigraphs.

5.1 RPOs for bigraphs

We begin with a characterisation of epimorphisms (epis)raodomorphisms (monos)
in bigraphs. These notions are defined in a precategorygustacategory, as follows:

Definition 5.1 (epi, mono) An arrow f in a precategory ispiif go f = ho f implies
g = h. Itismonoif fog = fohimpliesg = h. O

Proposition 5.2 (epis and monos in concrete bigraphsp concrete place graph is
epi iff no root is idle; it is mono iff no two sites are siblingé concrete link graph
is epi iff no outer name is idle; it is mono iff no two inner namage siblings.

A concrete bigraptG is an epi (resp. mono) iff its place gragh® and its link
graphG" are so.

EXERCISE 5.1 Prove the above proposition, at least for the case of epigmabhs.
Hint: Make the following intuition precise: €7 and H differ then, when composed
with F', the difference can be hidden if and onlyfifhas an idle name. O

The proposition fails formbstractbigraphs, suggesting that concrete bigraphs have
more tractable structure. We shall now provide further ek for this by constructing
RPOs for them.

The construction of RPOs ifBG is made easier by the fact that we can construct
them separately folPG and LG and then pair them. Moreover the constructions for
place graphs and link graphs have much in common. We shaltifssuss informally,
with examples, how it works for link graphs. Then we shallgam the formal con-
struction for both link graphs and place graphs withouttfartdiscussion. We prove
the validity of the link graph construction; the proof foapk graphs is similar.

43

44 CHAPTER 5. BIGRAPHICAL STRUCTURE

Pushouts were defined in Definition 4.2. Our construction BOR in bigraphs
adapts the standard construction of pushouts in the catefosets and functions,
which we now recall.

Example 5.3 (pushouts for functions) Letf: R—Sbea span of functions between

sets. What cospag: S—Tis a pushout? (For simplicity, assuntg # S;.) To

ensureyg o fo = g1 o f1 we must equate,(yo) andg; (y1) whenever, for some € R,

fo(z) = yo and f1(z) = y1. To ensure a pushout, we must equate no more than these.
To make this precise, define the least equivalence relation Sy & .S; such that

Yo = y1 whenever, for some, we havef;(z) = y; (i = 0,1). Then for eachy € Sy

definego(y) = [y]=, the equivalence class ¢f similarly for g, (y) wheny € S;. This

completes the pushout construction. O

A similar equivalence relation arises in the more complétirgpof RPOs for concrete
bigraphs, which is the main topic of this chapter. We thereéwitch back to our con-
vention of using upper case letters, usuallyH, for bigraphs and their constituents.

Example 5.4 (RPOs for link graphs) We shall now illustrate the RPO construction
for link graphs with the example in Figure 5.1, showing a sﬁdmunded by a cospan
D:X — Z. We assume the interfaceg, = {0, Y0, 20} and Xy = {x1,y1, 21, w1}

to be disjoint as in the previous example, to ease the digrusg/e wish to form an
RPO(B, B), whereB: X — X andB: X — Z.

nodes and edges: We assignRg and B; as few nodes and edges as possible to
achieve a bound. Assign 1B, all those inA4; but not in Ay, and similarly for
B;. B gets all those inD but not in A. Thus B, getswvy, By getsvs andeg,
and B getsvs ande;. The shapes of nodes reflect this assignment; for example
round nodes are shared Hy, and A;.

interface: We have to decide, for {0, 1}, which members of; will be linked in
B; to an outer name iX. We cannot export;, wy € X5 in this way, since their
links each contain a port that is closedAp, so we would lose the commutation
Byo Ay = By oAy But{zo, yo, z0, 21, 1 } can all be exported t&.

We then have to decide which of these five should share link& im the jargon

of Example 5.3, we look for the smallest equivalence thaté&zgiany pair of
these names sharing a pointﬁ) commutation requires us to give such a pair
the same link inX. The reader may check thto, yo, 21, y1 } must share a link,
but zo should have a separate link. We choase as names for these links.

links: It remains only to assign links to the portslﬁ1and all the points inB. This
assignment is dictated uniquely by the commutation equstio

The completed RPO is shown in Figure 5.2. O

EXERCISE 5.2 Suppose that, in Figure 5.1, the link from to yq is replaced by a
link from v, to some new outer namg and that we declargnk p, (y) = . From the
informal construction in Example 5.4, determine how the RBOB) should change,
if at all. O

5.1. RPOS FOR BIGRAPHS 45

Zo Yo 20 Ty Y1 z1 wq

By

Zo Yo 20 €1 Yy 21 w1

Figure 5.2: An RPQ B, B) for Ato D

46 CHAPTER 5. BIGRAPHICAL STRUCTURE

Notation When considering a spaﬁ: W — X of link graphs we shall adopt a nam-
ing convention for nodes, ports and edges. We denote theseiddA; (i = 0, 1) by
Vi, and denotd, N V4 by V5. We shall usey;, v}, ... to range oveW; (i = 0,1,2).
Similarly we usep;, € P; ande; € E; for ports and edges (= 0,1,2). We useg;
for points, i.e.q; € W w P,. When there is no ambiguity we writé(q) instead of
link 4(q). We user to meanl — i for i € {0,1}.

We defineX, + X, = {(i,z) | z € X;,i € {0,1}}, the disjoint sum of two sets.
This differs fromX, W X, which asserts that, and X; are already disjoint. BX \' Y’
we denote the elements &f notinY". O

Before giving the formal RPO construction, let us summaihgeintuition gained
from Example 5.4. To construct an RR@, B) for A relative to a bound), we
first truncateD by removing its outer names, and all nodes and edges notrpriese
A. (Support is essential for this purpose, in order to idgnides and edges.) Then
for the outer names af, we create a name for each link severed by the truncation,
equating these new names only when required to ensur@thatly = By o A;.

Construction 5.5 (RPOs in link graphs) Let the spanA W—>X be bounded by
D: X — Z. We construct an RPQB: X — X, B: X — Z) for A relative toD in
three stages, using the notational conventions introdabede.

nodes and edges:If V; are the nodes ofl; (= 0,1) then the nodes oD, are
(Vi \ Vo) W V3 for uniqueVs. Define the nodes dB; andB to beV; \ V4 (¢ = 0, 1) and
V3 respectively. Edges are treated exactly analogously, artd mherit the analogous
treatment from nodes.

interface: Construct the outer ngmefé of B as follows. First, define the names in
eachX; that must be mapped int§:

X E{re X, | Di(x)e BEswZ}.
Next, on the disjoint sunX, + X1, definex to be the smallest equivalence for which
(0,z0) = (1, :101) wheneverd(q) = xg andA;(¢) = x; for some poiny € W Ps.
Then defineX up to isomorphism as follows:
X & (X)+X))/=.
For eachr € X/ we denote by’, « the name inX corresponding to the-equivalence
class of(i, z).
links: Define B, to simulateD, as far as possibley; is similar):
, w [0,z ifzeX)
Forxz € Xy : BQ(SC) = { Do(x) if o ¢ X(l)
e 1,z if Ai(p) =z € Xy
Forpe P\ P»: By(p) & {’ Lol
pERAR T B® Do) it Avp) ¢ X0
Finally defineB, to simulate the common part &f, andD;:

Fori e X : B(#) % D;(z) wherez € X, andi,z = 2
Forpe Py: B(p) £ Di(p) . O

5.1. RPOS FOR BIGRAPHS 47

To prove this definition sound we have to show that the rigdrtehsides in the clauses
defining link mapsB; and B are well-defined links iB; and B respectively:

Lemma 5.6 The definition in Construction 5.5 is sound.

Proof The second clause definitig) (x) is sound, since it ¢ X, then by definition
Dy(z) € E1 \ E», which is indeed the port set &f,. Similar reasoning applies to the
second clause defining (p).

The first clause definind3(p) is sound, since ifd;(p) = =z withp € P, \ P,
then we haver € X{; for if not, thenD,(z) € Ey \ E2, which is impossible since
Dio0Ay = DgoAp.

Finally, the clauses defining are sound because the right-hand sides are indepen-
dent of the choice of and ofz; this is seen by appeal to the definition®fand the
equationD; o Ay = Dgo Ayg. O

The full justification of our construction lies in the follamg lemma and theorem, both
of which are proved in Appendix A.3:

Lemma 5.7 As defined in Construction 5.65, B) is a bound forA relative toD.

Theorem 5.8 (RPOs in link graphs) LG(K) has RPOs; that is, whenever a spAn
of link graphs has a bound), there exists an RPO fof to D. Moreover Construc-
tion 5.5 yields such an RPO.

We now proceed to the analogous construction of an RPO foaraugph —m of
place graphs. It closely resembles the one for link grapiosigh is a little simpler, so
we present it without introductory discussion.

Notation We name nodes just as we did for link graphs. Wejse€. to range over

the rootsm; of A; (: = 0,1). We shall also use, v/, . .. to range oveh & V5, where

h is the domain of eacH;, because shared sites behave just like shared nodes. When
there is no ambiguity we writél (w) instead ofprnt 4 (w). O

Construction 5.9 (RPOs in place graphs) An RPO(E: m—r1h, B: m—p),fora
spanA: h—m in PG relative to a bound: m — p, will be built in three stages.

nodes: If V; are the nodes ofl; (: = 0, 1) then the nodes ab; areV; \ V, W V3 for
uniqueVs. Define the nodes @B; andB to beV; \ V4 (i = 0, 1) andV; respectively.

interface: Construct the shared codomainof B as follows. First, define the roots in
eachm,; that must be mapped intd:

/ def

={rem; | Di(r) e V3up}.

Now on the disjoint summng, + m/, define> as the smallest equivalence for which
(0,79) = (1,r1) wheneverdy(w) = 1o and Ay (w) = r; for some shared place

48 CHAPTER 5. BIGRAPHICAL STRUCTURE

def

w € h W Vs Then defineh up to isomorphism byn
r € m} we denote théZ-equivalence class @i, r) by i, r.

(m{, +m})/= . For each

parents: Define B, to simulateD, as far as possibleq; is similar):

. 0,1 if € my
Forr € mg : By(r) & { D(:(r) i ; ¢ Zg

ILr AW =rem
Do(’l}) if Al (’U) §é mq .

Finally defineB, to simulate the common part &f, andD;:

Forve Vi \Va: Bolv) = {

a

e

D;(r) wherei,r = 7

Forrem: B(F)
Forve Vi : B(v)

o

e

Much as for link graphs, one must check that this definiticsoisnd, i.e. that the right-
hand sides in the clauses defining the parent nigpsnd B are well-defined places in
By and B respectively. The following is proved just like Theorem:5.8

Theorem 5.10 (RPOs in place graphs) PG(K) has RPOs; that is, whenever a span
A of place graphs has a bounid, there exists an RP@B B) for A'to D. Moreover
Construction 5.9 yields such an RPO.

Finally, we combine our two constructions by pairing:

Corollary 5.11 (RPOs in bigraphs) BG(K) has RPOs. In fact, if a spapf of bi-
graphs has a bound), then the following is an RPO fof to D:

(B,B) £ ((Bf, Bf), (B}, BY), (B”, BY))
where(BP, BP) is an RPO forAP to DP and (BL, B') is an RPO forAL to DL.

Proof Itis only necessary to manipulate pairings of place grapldiak graphs. It
is crucial that the node sets in the component&iit, BY) are identical with those in
(BL, BY), and hence the pairing of RPOs is defined. O

5.2 IPOs in bigraphs

To prepare for the derivation of labelled transition systewe have to characterize all
the IPOs for a given spaﬁ of bigraphs.

Although IPOs are defined as a special case of RPOs, theitraotisn is more
complex than that for RPOs. For RPOs, we had only to cons&rsingle RPO for
A relative to a given bound); in contrast, for IPOs we want to enumeratéaaily,
consisting of the lower squares of all the RPOs Aaass its boundD varies.

The reader may safely omit this section at first reading. Wiemeed specific
IPOs later we shall present them explicitly. Readers man titeeck that they are

5.2. IPOS IN BIGRAPHS 49

instances of the present general construction. We shallgimé the construction for
link graphs; it can be easily adapted to place graphs.

How does a link graph RP@E, B) vary, for a fixed spanﬁf relative to a varying
boundD? It turns out that there are conditions under whithemains fixed and only
B varies, so that in this casé is a pushout. Since our applications in later chapters
will satisfy these conditions, we shall be content here tavdea single distinguished
IPO for a given span; but we shall indicate when others eaist, how to construct
them from the distinguished one.

The first step is to establish when a span is consistent,aseahy bound at all.

Definition 5.12 (consistency conditions) We define threeonsistencgonditions on
aspamd : W — X. We use; to range over arbitrary points agglto range oveilV & P,
the shared points.

CcLO If v € V; thenctrly(v) = ctrly (v) .

cLl If A;(q) € Extheng € W P, andAz(q) = Ai(q) .

cL2 If Ai(q2) € E; \ Es thenAz(q2) € X5, and if alsoAz(q) = Az(g2)
thenq ceWuwh andAl(q) = AZ(QQ) . O

Let us expressL1 andcL?2 in words. Ifi = 0, cL1 says that if the link of any point
in Ay is closed and shared with;, thenq is also shared and has the same linkdin
CL2 says, on the other hand, that if the link of a shared pginh A, is closed and
unsharedthen its link inA; must be open, and further that any peegopin A; must
also be its peer inlg.

We shall find that the consistency conditions are necessatguficient for at least
one IPO to exist. Necessity is straightforward:

Proposition 5.13 (consistency in link graphs)If the spanff has a bound, then the
consistency conditions hold.

Before going further, it will be helpful to look at simple exales.

Example 5.14 (consistent link graphs)Figure 5.1 shows a spaﬁ bounded by a
cospanﬁ. Nodesvg, v; andv, are shared.

Another example is the spaﬁ: () — X with bound B as shown in Figure 5.3,
whereXy = {0, y0,20} andX; = {z1,y1}. Nodes and edges with subscript 2 are
shared; round nodes are unshared.

Controls are not shown in either example. O

EXERCISE 5.3 Prove Proposition 5.13, and check the consistency condifior A
in Figure 5.3. O

We shall now construct a distinguished IPO for any sﬁaﬂ;atisfying the consistency
conditions of Definition 5.12.

1t is not true in every precategory, or even every categdrgt & unique IPO is a pushout. But the
implication does hold in link graphs, and indeed in bigraphs

50 CHAPTER 5. BIGRAPHICAL STRUCTURE

By S
vy V) v
O(“\ /
Ty (1
AO Al

pe O
V1 v}
D DD
1!
’ " Vo vé vy

V2 'U2 Uz
w
© O
(% /
BO o Ao U1 = Bl o Al
€0 e el
"
(P vh U

Figure 5.3: A consistent spah of link graphs, with bound3

5.2. IPOS IN BIGRAPHS 51

Construction 5.15 (an IPO in link graphs) Assume the consistency conditions for
the spamd: W — X. We define an IP@': X — Y for A as follows.

nodes and edgesTake the nodes and edges@fto bel; \ V2 andE; \ Es.

interface: Fori =0, 1, defineX/ C X, the names to be mapped to the codoniéjn
by
X! Z{z; e X; |Vge WW Py Ai(q) = z; = A:(q) € Xz} .

Now on the disjoint sumX/, + X7/, define~ as the smallest equivalence such that
(0,20) ~ (1, 21) wheneverdy(q) = x¢o andA; (q) = x, for someg € W & P». Then
def

defineY” up to isomorphism by” = (X + X{)/~. For eachv € X we denote the
~-equivalence class df, z) by i, z.

links: Define the link map€’y : Xo — Y as follows (C} is similar):

Forx € X :
Colz) {o’z if £ € X},
A1(q) ifxe Xo\ X, forqge Ww P, with Ag(q) = =
Forpe P\ P :

Co(p) =

Tz ifA(p=zeX,
Ai(p) if Ai(p) ¢ X1 .
O

This is a distinguished IPO, but in general there are othlmra fyiven span. We shall
not need them, but it is interesting (and not obvious!) thal/tcan all be obtained
from the distinguished one, as follows. Supp(f’sis constructed as above for the span
A, and supposel, has an idle name. You can easily check that is open inCy,
i.e. Co(z) = y € Y. Suppose also thaf, has an edge. Then if instead we set
Co(z) = e, and removey from Y, it can be shown that we still have an IPO. This
variation is called thelisionof x into Cy. Elision can be performed independently for
eachidle name in Ap, choosing an arbitrary edgery; similarly in A, andC,. This
can yield a lot of IPOs! But the number is finite, and usuallgramall.

Indeed, there are two cases when the sﬁams a unique IPO. The first is when
both members are epi (no idle names). The second is when ombéene-sayA,—is
both epi and open. For then, as in the first case, there can bariadion for a name
of Ag. Also, sinceAy is open it follows that”; is also open (see below), so it has no
edges to permit elision of any idle name.f.

EXERCISE 5.4 If C'is an IPO forA and 4, is open, then prove that; is also open.
Hint: consider how any edgein C; arises from the IPO construction. O

After this brief tour of undistinguished IPOs, let us prokattour construction of
the distinguished one is valid.

Theorem 5.16 (characterising IPOs for link graphs) Assume thatl obeys the con-
sistency conditions. Then Construction 5.15 is sound agldyian IPO forA.

52 CHAPTER 5. BIGRAPHICAL STRUCTURE

Proof (outline) For soundness, in the second clause“igir) we must ensure that
q € W @ P, exists such thatly(¢) = z, and that each sucpyields the same value
A1(q) in Py \ P»; also in the first clause faf(¢) we must ensure that € X7{. The
consistency conditions do ensure this, and alsod@atA, = C1 0 A;.

Now recall that a boumﬁ for A is an IPO iff it forms the legs of an RPO relative
to some boundD. SinceC is such a bound, takd = C and apply Construction 5.5,
to construct the RPQB, B) relative toC. To complete the proof, show that = ¢
up to isomorphism. O

The reader may like to check the IPO construction by configntiirat the bound illus-
trated in Figure 5.3 is in fact an IPO.

Corollary 5.17 (consistency)The consistency conditions are necessary and sufficient
for consistency.

Proof Proposition 5.13 already ensured necessity; sufficientyas from the theo-
rem, since an IPO is a bound. O

We shall not give details of IPOs for place graphs. The coesittn of distin-
guished IPOs is entirely analogous. Also, elisions areagmals; just as in link graphs
we get other IPOs by eliding idle names into edges, so in pjaaphs we get other
IPOs by eliding idle roots into nodes.

We can now assert the result for bigraphs that we would expect

Proposition 5.18 (IPOs for b|graphs) A boundC for a spanA isan IPOIn"BG(K)
if and only ifCP is an IPO for AP in "Pc(K) andCl is an IPO forAL in "LG(K).

We end this section with five important properties of IPO4 tira shall need later.
The first is that several qualities of a span are inherited bgspan which is an IPO.
We omit the proof, which is by routine inspection of the IPGisuctions. We sayl
is ‘place-epi’ if its place graph is epi, etc.

Proposition 5.19 (IPOs inherit qualities) Let A have an IPOE. If A, is node-free,
or place-epi, or link-epi, or discrete, or open, théi has the same quality.

The second property is that tensor product preserves IPOs.
Proposition 5.20 (tensor IPO) In “BG(K), let C be an IPO for4 and D be an IPO
for B, with A # B. Then, provided the products exist, the cosf@n® Dy, C; ® Dy)
is an IPO for the spaidg ® By, A1 @ Ay).

An important corollary is:
Corollary 5.21 (tensor IPOs with identities) Let A: I’ — 1 and B:J' — J, where

A#B and also{I, I'}#{J, J'}. Then the cospafid; ® B, A®id;) is an IPO for the
span(4A ® idy,idr ® B). See diagranfl).

5.3. ABSTRACT BIGRAPHS LACK RPOS 53

(1) e @
I®J’&I®J T éld@b I®J
A®idT TA@id aT a®id
) d®B b
I'e —————=r'eJ e ——=]

In particular if I’ = J' = ethenA = a andB = b are ground, and the IPO is as in
diagram (2).

Our third property is that support equivalence preserves|F he proof s straight-
forward, capturing the idea that the definition of IPO exigl@io property of supports
except their disjointness.

Proposition 5.22 (support translation of IPOs) Let A and B be a span and cospan
whose supportis in the domain of a support translagioifhenp- B is an IPO forp- A
iff Bis an IPO forA.

The fourth property is:

Proposition 5.23 (unique IPOs are pushouts)in any bigraphical s-category, if a span
A has exactly one IPO up to isomorphism, then this IPO is a putsho

One might expect this property to hold in any precategoryijrbéact it does not. The
interested reader may enjoy trying to find a counter-examfiés is not so easy, and
fortunately we do not need that negative result.

EXERCISE 5.5 Show that(4, A) has an unique IPO up to isomorphism, and that it
takes the forn{id, id) if and only if A is epi. O

For our fifth property, first recall from Definition 2.19 thetian of leanness, and
the lean-support quotient functpf established in Theorem 2.20. To prepare for trans-
ferring transitions from concrete to abstract bigraphghigfunctor we assert a simple
relation between IPOs and leanness. Let us wiitefor the result of adding a st
of fresh idle edges to a bigraph Then

Proposition 5.24 (IPOs, idle edges and leannesgpr any spanff and cospan§ of
concrete bigraphs:

(1) If Bis an IPO forA, and 4, is lean, thenB, is lean.

(2) For any fresh sef= of edges,B is an IPO for A iff (B,, BE) is an IPO for
(Agv Al)'

5.3 Abstract bigraphs lack RPOs

We end this chapter by showing that we cannot rely on theendstof RPOs in abstract
bigraphs, where support is forgotten. We give here a cowexample for abstract link
graphs; it easily extends to bigraphs.

54 CHAPTER 5. BIGRAPHICAL STRUCTURE

Figure 5.4: A bounded span of abstract link graphs with no RPO

Example 5.25 (abstract link graphs lack RPOs)Figure 5.4 shows a spda, a) of
ground link graphs, bounded by a cosf@h G). Note thatG o a consists of twal-
nodes each joined by a closed link t&kanode. The diagram also shows two relative
bounds for the span relative to the cospan; thesé@re') and(D, D).

Ignoring the dashed arrows, the diagram is easily seen tarmegen It shows the
Iegsé of an assumed RPQ?, B) for the span relative to the cospaB s not shown).
For this RPO to exist there must be mediating arréwand D to the two relative
bounds. But these cannot both exist. FQDAiEE = D then theB; contain no nodes,
and in that case no value 6f can achieve o B = C, since theK-nodes in the”;
have different names. O

Thus, by takingd = (a, a) andG = (G, G) as in the example, we have proved:

Proposition 5.26 (abstract link graphs lack RPOs)In "LG(K) there exists asﬂpaﬁ
of abstract link graphs, and a bour for it, such that no RPO exists frorhto G.

EXERCISE 5.6 (1) Amplify the final sentence in the Example 5.25: why can aloie
of C achieve the equationso B = c?

(2) What goes wrong if we try to use this counter-example fotecthe existence
of RPOs inconcretdink graphs? O

Chapter 6

Sorting

Just as in universal algebra, different signatures will §edufor different applications

of bigraphs. So far our signatures are basic; they assignammérity to each control.

By analogy with the constructors ahany-sortedalgebra, we can also classify our
controls by means dforts But the analogy is not exact, because bigraphs have two
degrees of freedom: we can classify places or we can cldssify.

6.1 Place sorting and CCS

Let us begin with the classification of places.

Definition 6.1 (place sorting) A place sorting
Y =(0,K,P)

has a non-empty s€él of sorts and a signaturk place-sortecbver®, i.e. assigning a
sort to each control. An interface ¥s-sortedif each of its places is assigned a sort in
O.

Using K, a bigraph ovelE: may be augmented by sorts assigned to its nodes. The
third componentb of X, aformation rule is a property of such augmented bigraphs
that is satisfied by the identities and symmetries and preddoy composition and
product. The augmented bigraphs satisfyingre called:-sorted they constitute the
s-categoryBG(X) and the spm categoryd®Y) of, respectively, concrete and abstract
Y-sorted bigraphs. O

We write aX-sorted interface of width as (4, X), wheref = 6, - - - 6,,_; lists the
sortsh; assigned to eache n. WhenX is understood, th&-sorted bigraphs are often
calledplace-sorted Note that the cas® = {0}, a singleton, withP vacuous, exactly
represents the unsorted bigraphical s-category Kver

Let us now look at functors that relate sorted to unsortechpigs, and concrete to
abstract bigraphs. These remarks apply equally to linkreprivhich is the subject of

55

56 CHAPTER 6. SORTING

Section 6.2. Lek be the basic signature underlying a place sorting here is clearly
a forgetful functor
‘U :"BG(X) — BG(K)

which deletes place sorts from the places in both interfandshigraphs. In this book
we are only concerned with the case in whi&e(X) has RPOs. This will be ensured
by Proposition 4.7, provided that we can prove thas safe (Definition 4.6).
Now recall from Definition 2.19 and Theorem 2.20 the leanpsupquotient func-
tor
[[]:"BG(X)—BG(X%)

that forgets the identity of nodes and discards idle edgesigorted bigraphs. There
is clearly a similar quotient functor for sorted ones. Thigralso an obvious functor
U :BG(X) — BG(K) that forgets sorting for abstract bigraphs. Indeed, withhklp
of Definition 2.4 it can be shown that the following diagranfafictors commutes:

‘Bo(n) —4 = ‘Bo(K)

G
[[-w [[-w
U

BG(X) ———= BG(K)

Returning now to place sorting, there is a wide range of pdg#s for the forma-
tion rule ®. There are non-trivial sortings even wheénis a singleton (i.e. places are
effectively unsorted), becaudgemay restrict bigraphs to an arbitrary sub-(s-)category.
For this chapter we shall be concerned with abstract bigrapttept when we discuss
the safety of sortings.

There is one useful constraint thhtcan impose, even whed is a singleton:

Definition 6.2 (hardness) A sort# in a sortingX is hard if X requires that no root
with sortd is idle. An agent:: I is hard if all sorts in I are hard—and henaeehas no
idle roots. O

Hardness makes transition systems simpler, as we shablitezelt has been useful for
the modelling of process calculi in bigraphs.

The translation of CCS into bigraphs provides a non-trigiedmple of place sort-
ing. Let us first recall CCS processes:

Definition 6.3 (syntax for finite CCS) We shall letP, Q range overprocessesnd
A, B overalternations(sums); eaclalternate(or summand) of an alternation is a pro-
cess guarded by an actipiof the formz or z, wherexz names a channel. The syntax
is:

P = A|wvaP | P|P
A == 0| uP ’ A+A
n o= T T

The restriction va P definesP as the scope of the name a name-occurrence in a
process idreeiff it is not scoped byv. We sayP and(@ arealpha-equivalentwritten
P =, Q, if they differ only in a change of their restricted names. O

6.1. PLACE SORTING AND CCS 57

Our treatment of CCS here will be confined to finite procesb##ite processes are
typically introduced by a sefD; = P, | i e I} of process definitionswhere the
process identifier®; may appear in any of the defining expressiéhsThere is more
than one way to handle these in bigraphs; one proposal isideddn Section 11.2.

As usual, we define a structural congruence over CCS terms:

Definition 6.4 (structural congruence) Structural congruencever CCS terms is
the smallest equivalence preserved by all term constructions, and such that

(1) P=,QimpliesP =@, and A =, BimpliesA = B;

(2) ‘|’ and ‘4 are associative and commutative underandA 4+ 0 = A4;

(3) vavyP =vyvaP;

4) wvaP=P andvz(P|Q)= P|vzQ foranyz notfreeinP;

(5) wva(A+u.P)= A+ pwxP foranyz notfree inA or p. O

This is standard, except for two things. First, we do not hay® = P; but we shall
find that these two terms translate into bisimilar bigragdscond, equation (5) is not
standard for CCS structural congruence; but the processasitientical transitions,
and indeed we shall translate them into the same bigraph.

To prepare for translating CCS into bigraphs, we first deficlass of place sortings
suggested by the two-sorted syntax of CCS itself.

Definition 6.5 (stratified place sorting) A place sorting> = (©, K, @) is astrati-
fiedif, for some functionp: © — ©, the formation ruleb requires that

all children of a root-: 6 have sor? ;
all children of a node : § have sort() .

The CCS stratified sorting..s has® = {p,a} (for processes and alternations), with
¢(p) = a andg(a) = p; itis also hard for sorp. O

EXERCISE 6.1 Check that the formation rule for stratified sorting is presd by
composition and tensor product, and satisfied by identities O

We are now ready for the translation of CCS into the two-sbrtategory
BG(Xs). The idle primel:a has a special role; it will represent the empty alter-
nation. Then the atomil £ alt.1 will represent the null process. We shall map CCS
processes and alternations respectively into ground hismse(p, X') ande —(a, X).

For this purpose we define two families of translation mapg-] and Ax[-], each
indexed by finite name-sef§. These maps are defined for all arguments whose free
names are inX, so each process or alternation has an image in many unamdaro
homsets.

Definition 6.6 (translation of finite CCS) The translation$®x [-] for processes and
Ax -] for alternations are defined by mutual recursion:

Ax[0] = X|1
Px[A] = alt.Ax [A] Ax [TP] = send,.Px [P] (CC S X)
PxlvaP] = JyoPyux|{V/z}P] Ax[z.P] = get,.Px[P] (z€X)
Px[P|Q] = Px[P]|Px[Q] Ax[A+B] = Ax[A]| Ax[B]. 0

58 CHAPTER 6. SORTING

In translating the prefix forms for input and output we haveduthe nesting operator
Kz.G introduced in Chapter 3, permitting names to be shared leghaa ion and its
contents. The ternva P is first varied by alpha-equivalence, replacindpy some

y ¢ X. A substitution{¥/x} on CCS terms is metasyntactic, and not to be confused
with thebigraph¥/z.

Note that restriction and parallel composition are modiedleectly by closure and
merge product, and need no extra controls. It is perhapsisingpthat summation+’
of CCS is also expressed as merge product. But merge pradagburely structural
or static operation, with no commitment to any dynamic iptetation; the distinction
between parallel composition and summation in our bigregdténcoding of CCS is
achieved by its reaction rule, as we shall see in a Chapter 10.

Our translation maps are surjective on unary ground hom#eds is, our place
sorting excludes from B(X.) every bigraph that is not in the image of a translation
map. They are not injective; instead, they induce upon CC8caiivalence= that
corresponds exactly to our structural congruence, justifthe latter. We now express
these results precisely; the proofs are the subject of Seet®.1.

Theorem 6.7 (bijective translation)
(1) The translation®x[-] and.Ax[-] are surjective on unary ground homsets.
(2) P=Qiff Px[P] = Px[Q], and A = Biff Ax[A] = Ax[B].

We shall take up the dynamics of CCS when we have introduagdiiical reac-
tive systems (BRSs) in general. For now, we wish to confirnt thax sorting will
be amenable to that general theory, so we shall prove oungadd be safe. Let
U:"BG(Xws) — BG(Ks) be its forgetful functor. Recall from Definition 4.6 that
a sorting is safe if its forgetful functay is safe, i.e. in particular it creates RPOs and
reflects pushouts. Also recall from Proposition 4.10 taeflects pushouts if every
arrow in its domain is op-cartesian. So we first prove:

Lemma 6.8 If X is a stratified sorting with forgetful functar, then every bigraph in
"BG(X) is op-cartesian fotd.

Proof LetF:I—J andH:I— K beX-sorted, with/-imagesF':I' — J' and
H':I'— K’ such thatH’ = G’'oF’ for someG’:.J' — K'. (Refer to the diagram
of Definition 4.9.) There can exist only one sortéd .J — K such thatd oG = F,
since its interfaces are already sorted and the sorts obde10fG are determined by
those inH. It is routine to confirm tha is indeed well-sorted, with/(G) = G’ and
G o F = H. This completes the proof of the lemma. O

We now claim:
Proposition 6.9 ((safe stratified sorting) Every stratified sorting is safe.

Proof LetX be stratified, with underlying basic signatuceand forgetful functor
U. First we require that/ creates RPOs. So ld? be a bound ford in "BG(X),
with 4-imagesD’ and A’. Let (B’, B’) be an RPO ford’ to D’ in 'BG(K). We

6.1. PLACE SORTING AND CCS 59

seek first a pre-image3, B) which is a sorted bound fod to D. There is only one
possibility, since the sorts of the mediating interfaceha triple and of its nodes are
uniquely determined by stratified sorting, and it is eadilgven to be a relative bound.
Furthermore, by using the op-cartesian property of thetiegiarrows, we ensure a
unique mediating arrow to any other sorted relative bo(ﬁd(}), thus establishing
(B, B) as a sorted RPO.

Next, we require that reflects pushouts; this follows by Proposition 4.10. Finall
the remaining three safety conditions are easily estaddish O

EXERCISE 6.2 For the built environment of Chapter 1, design a place spitirat
excludes control nestings not already used in the bigfapHint: you probably need
disjunctive sorts, e.dr, allowing a building to contain both agents énd roomsi).
What are the sorted interfaces of the bigraphd) and E, and of the redexes in
rulesB1-B3? O

Before leaving place sorting, let us consider how it can leeltis introduce controls
of arbitraryrank k, a natural number. At present our atomic controls have raak@
the others have rank 1, i.e. their ions have a single site. id/eat introduce controls
with larger rank, since they can be encoded with the help dfrgp The diagram
indicates, in terms of ions, how to encode a conlfiolvith rank &, using controls of
rankl.

1 T9...Tp T T2 ... Tp

The encoding works by extending an existiig= (0, &, @) to ©.*, as follows:

e Add a special sortcell’ to ©. Then, for each finite ordingl, add toX a new
non-atomic controf with sort ‘cell’. Call a node with controj a j-cell.

e For each controM of rank &, extend/C by assigningV an arity, its rank, and a
sort from®. Then refined by requiring that ifM has rankk then eachiM-node
has exactlyk children, namely g-cell for eachj € {1,...,k}; conversely,
require that the parent of every cell is a node with rankedrotn

e Furtherrefineb by imposing any required relationship between the sortassi
to a cell’s parent and the sorts assigned to its children.

This characterize¥™ in terms ofX, allowing freedom for extra sorting constraints
on ranked controls. Note that the refined sorting conditiosuees that the sortell’
does not occur in interfaces; the encoding of a node withedmontrol is never split
by composition. We can see that the degenerate dases) andk = 1 correspond

60 CHAPTER 6. SORTING

accurately to our present atomic and non-atomic controle nvdly thus regard all
controls as ranked.

This concludes the presentation of place sorting. It coaletbeen done at first
for place graphs only, and then extended to bigraphs. We ledr® do it directly for
bigraphs because our example, CCS, requires linking asasglacing.

6.2 Link sorting, arithmetic nets and Petri nets

We now turn to the classification of links. We start with thegie example of arith-
metic nets, and continue by defining a particular class &f $iortings illustrated by
these nets. We then apply this class of sortings to Petri Weééstreat both examples
using link graphs alone; the extension to bigraphs is frivia

Since link graphs have no regions, their diagrams have ntosing rectangles;
port-blobs can also be omitted from these diagrams withskitaf confusion.

Definition 6.10 (link sorting) A link-sorting (discipline)is a tripleX = (0, C, D)
where© is a non-empty set a$orts and C is alink-sorted signaturea basic sig-
nature enriched with a sort assigned to each member of the afrieach control.
Thus each port in a (link)-sorted link graph gets a sort. lmhore, each link is
given a sort. For an open link, this appears in an interfadéctwtake the form
{20:00,...,7,_1:0,_1}, also each edge (closed link) in a bigraph is given a’sort.

Finally, @ is a rule on such enriched bigraphs that is satisfied by thitees and
symmetries and preserved by composition and product.

The s-category and category of, respectively, concreteahstract-sorted link
graphs are writteNLG(X) and Lc(X). WhenX is understood, these link graphs are
often calledwell-sorted O

Just as for place sorting, there is a forgetful functor fiok Iisorting; it deletes link sorts
from the pointa and links of both interfaces and bigraphsd Again, it commutes with
the lean-support quotient functor. We need not repeat ttelsle

We are now ready to illustrate link sorting.

Example 6.11 (arithmetic nets) Adopt the basic signature

def

Karith:{OIL 5227 —|—Z37 —>:2}

representingerg successarplusandforwarding Here are the corresponding atoms,
together with an example of an arithmetic net as a link gragha(/Cyitn):

LIn previous work sorts were not assigned to edges; thatéy, were assigned to open links but not to
closed links. In examples it seems that assigning sortsdess often redundant; nonetheless, it may be
necessary sometimes and it is also convenient for the theany grateful to Mikkel Bundgaard for pointing
this out.

6.2. LINK SORTING, ARITHMETIC NETS AND PETRI NETS 61

S NG
xG+Z i>j/ MS

The nets resemble Lafont’s interaction nets, but allowislgaf subexpressions. Their
dynamics can be defined naturally in bigraphs, but here wirmaurselves to sorting.
We can illustrate the need for sorting in terms of our examglee illustrated net
makes sense according to the interpretation suggestee Imptte-shapes: the ‘output’
of each constructor is fed into any number of other consbrs@s input. But some nets
in LG(K.iitn) make no sense; for example, there is nothing to excludeia mdtich an
input port receives input from no sources, or from two or nemerces. As a first step
towards a sorting to exclude such nets, we define the follgwiass of link sortings:

Definition 6.12 (many-one sorting) A many-one sortingz = (0, K, ®) has two
sorts, i.e© = {s, t}. The signaturdC assigns sorts to control arities in some arbitrary
way. The formation rul@ is as follows:

no link has more than orepoint;
a link has sort iff it has ans-point;
every closed link has sost

There is no constraint on the numbertgdoints in a link. O

It is helpful to think ofs andt as standing for ‘source’ and ‘target’. Many-one sortings
vary in their signature. Let us now defidg,;;, to be a many-one sorting whose link-
sorted signature iK i, extended by a sort-assignment as follows:

def

Karith = {0:s, S:ts, + :tts, —:ts},

i.e. arities are refined to sort-sequences, with the coromtiat the last in each se-
quence pertains to ‘output’ ports. Taking into account alsosorting of interfaces,
here are the sorts assigned to our illustrated net:

62 CHAPTER 6. SORTING

The sorts of edges are not shown; they are implied by the sbpisrts.

The reader can see that, in the link-sorted s-categ@{Lin), many senseless
nets have been excluded. It is an interesting exercise ttkalikether the sorting can
be extended to exclude other doubtful nets; for exampls,with certain cycles. (The
challenge is to find a sorting discipline that is preservethieycategorical operations.)
At the end of this chapter we consider safety of many-onéngprt O

Let us now turn to Petri nets. Recall that a Petri net has twdskof nodes, usually
called places and transitions, forming a directed bigagiaph. For each transitiagn
the places from which an arc entérare itspre-conditionsand the places entered by
an arc fromt are itspost-conditionsPlaces may holtbkensif all the pre-conditions
of t have a token thehcanfire—meaning that each of its pre-conditions loses a token
and each each of its post-conditions gains one. Thus thematins constant; only the
tokens move.

We look at a particular Petri net regime, calle@hdition-evennhets. Their places
are callecconditions and their transitions are calledents (This conveniently avoids
a clash with bigraph terminology, where the terms ’'placal dransition’ are already
in usel!) In these nets a condition may hold at most a singlertpthus we can represent
conditions by two controls, one (‘marked’) for holding a éwk the other (‘'unmarked’)
for holding no token. As with arithmetic nets, the dynami€®etri nets can be well
represented in bigraphs, and this has been studied in distaivhere. Here we consider
only the sorting of condition-event nets.

Example 6.13 (condition-event Petri nets)Adopt the basic signature

def

’Cpetri = {M 21, U: 1, Epg: h—i—k}

representing anarked conditionan unmarked conditionand aneventwith h pre-
conditions andk post-conditions/{, kK > 0). Here are the corresponding atoms, to-
gether with an example of a condition-event (c/e) net:

x x x Y
o, o o
M U U U U
E21 E12
Ty z U
&L—DJ E;F;

=% M Eir

©

We depict the only port of a condition node as lying at its oenthus the net has just
three closed links (edges) and two open links. The markedition node represent
the presence of tokenon the node, saying that this condition ‘holds’; an unmarked
condition node has no token, so it does not ‘hold’. Two cdodg have been made
accessible by the namesandy, allowing the environment to ‘observe’ the net.

6.2. LINK SORTING, ARITHMETIC NETS AND PETRI NETS 63

Our illustrated net makes sense; but, as with arithmetis, metrtain link graphs in
LG(Kpetri) make no sense. For example, two event nodes should notkeel vy an
edge that contains no condition. To exclude senselesswetsan again use a many-
one sorting¥petri. But when we modifyiC,ei to assign sorts to to control arities we
see a striking difference froi v

Kpetri = {M:s, U:s, Epp -t}

That is, we assign to all event ports and to all condition ports. Taking into account
also the sorting of interfaces, here are the sorts assigneurtllustrated net:

T:s y:s
S
P N\t S t D;J)t
U
E2 Ei2
t U S
ETe

t

M‘S ST
Again, the sorts of edges are not shown, but can be deducedredder may like to

identify which senseless configurations have been exclbgéle sorting. O

Having used two members of the family of many-one link s@ginve now estab-
lish that these sortings are all safe, in the sense of Definii6.

Lemma 6.14 Let i/ : LG(X) — LG(K) be the forgetful functor for link graphs with
a many-one sortin@:; similarly for bigraphs. Then every link graph inc(>2) and
bigraph inBG(X) is op-cartesian fot/.

Proof Consult the diagram of Definition 4.9, witli for 7, and use capital letters
for arrows (since we are dealing with link graphs). Assufhel — J andH : I — K
to be many-one sorted; assutfitandG’ unsorted such thdt(F) = F’ andU/(H) =
G’ o F'. We require uniqué& such that/(G) = G’ andH = Go F.

Since the interfaces faF are fixed, and sorts of ports are determined by the sorted
signature, there is exactly ore: J — K such that/(G) = G’. Itis then routine to
check that is well-sorted, and that’o ' = H. O

We are now ready to prove
Theorem 6.15 (many-one sorting is safefvery many-one link sorting is safe.

Proof It will be enough to prove this for link graphs. First, we dsish that the
forgetful functor/ : LG(X) — LG(K) of the sorting® creates RPOs. Ldd bound A

in Lc(K), and letD’ and A’ be their unsorted images. Consider the construction of an

64 CHAPTER 6. SORTING

unsorted RPQB’, B'), with mediating interface’, for A’ to D’. Assign sorts to its
ports and edges as dictated by the sorted signature kifcan then be found that sorts
can be assigned also to the name§'jicreating a sorted interfadefor a triple(ﬁ, B)
that make it a relative bound fof to D.

To establish this as an RPO, consider any other sorteduelatiund(C', C). Its
U-image(C", C") is a relative bound also fof’ to D’; so there is a unique mediating
arrow from(B’, B') to (C", C"). Now, by the lemma, use the op-cartesian property of
sorted link graphs such d$ o A, to ensure that a unique mediating arrow exists from
(B, B) to (C,C). This establishe&3, B) as an RPO, as required.

Next, we have to show théf reflects pushouts. But this is immediate from the
lemma combined with Proposition 4.10. Finally, as with ified sorting, it is easy to
establish the three remaining conditions of safety. O

Let us look briefly at another simple case of link sorting.

Definition 6.16 (plain sorting) Call a link sortingplain if its formation rule imposes
only one constraint: that all points in a link have the sanreéa®the link. O

For example, this provides a sorting to represent a verdiQTC&S with several sorts of
channel. Each channel may be shared by many senders and ecaisers. To make
communications respect the sorting, we represent the ehagra link of sortd, say,
and require all points in this link (e.gsend’ and ‘get’ nodes) also to have soft This
example gets more interesting in thecalculus, where such nodes have extra ports
used to pass links as messages.

EXERCISE 6.3 (1) Show that the forgetful funct@y for plain sorting is in general
not op-cartesiarHint: Consider two sort8, ¢’. In the notation of Definition 4.9, show
how f may have an idle name: § which prevents the existence of a suitafle

(2) In contrast, prove that every plain sorting is safe (seériition 4.6). Hint: If
Bis an IPO forA, then no name in the codomain Bfis idle in bothByandB;. O

6.3 The impact of sorting

To a considerable extent, the power of sorting lies in théewaof possible formation
rules. This is true even for place-sorting and link-sortimdependently, and doubly
true when they are combined. We illustrated this combimatihen we considered
adding plain link sorting to CCS, which is already placetsdr It is remarkable that
the notion ofbindingor locality of links can be expressed by such a combination; the
formation rule naturally involves both places and links. eGapproach to binding is
outlined in Section 11.3. It has been adopted to encode-ttadculus in bigraphs.
There is a price to pay; we must be sure that other featuresdmase with sorting.
We have already insisted that composition and tensor ptagspect sorting. Now
let us look briefly at the derived products and nesting. Ffstthe parallel product
Fy || F1 and merge produdty | Fy with F; : I; — J;, we insist that whenever a name
x is shared betweef, andI; then it has the same link sort in both; similarly fdéy
andJ;. In addition, for merge product we insist that all rootsFf and £} have the

6.3. THE IMPACT OF SORTING 65

same place sort. Next, for the nestiAgG with F': I —(m, X) andG:m —(n,Y),
we insist that each place in has the same place sort in the outer facé'as in the
inner face ofG, and that a name shared betweeX andY has the same sort in each.

Even when these conditions are met, the prodydt F; may violate the formation
rule. For example, with many-one sortinggif s is a shared outer name then the link
2 in the product may have twepoints, which is not allowed.

In what follows, whenever we use these derived operatorssagnae that the rele-
vant formation rule is indeed respected.

PART II: MOTION

Chapter 7

Reactions and transitions

In this chapter we study dynamics at the general level ofsgeaies. It is based upon
Section 2.2 and Chapter 4, and is independent of the intergevork on bigraphs.

Recall from Chapter 2 the distinction between concrete dstlact bigraphs; the
former have their nodes and edges as support, while the kete no support. In
s-categories, this distinction is less sharp; an spm cafdgqust an s-category with
empty supports. Much of the work of this chapter thereforgiap to both. However,
when we introduce behavioural equivalence in Section 7 firgt make sure it is
robust (i.e. that the equivalence is preserved by contets case where the s-category
possesses RPOs; we are then able to retain this robustyqubkin the s-category is
guotiented, or abstracted, in a certain way—even if RPOthareby lost.

We begin in Section 7.1 with a notion of a baséactive systembased upon an
s-category equipped witteaction rules This determines a basieaction relation
which describes how agents may reconfigure themselves. filie tkis definition to a
widereactive system, with a notion of locality based on the wiftbbjects in a wide
s-category, introduced in Definition 2.14. We are then ablddscribe where each
reaction occurs in an agent, and thus to definéide reaction relation that permits
reactions to occur only in certain places.

In Section 7.2 we introdudabelled transition systemsvhich refine reactive sys-
tems by describing the reactions that an agent may perfarssilply with assistance
from its environment. These potential reactions are cdlidatlled) transitions; the la-
bel of a transition indicates how the environment conteluo it. In terms of them we
definebisimilarity, a behavioural equivalence which captures the idea thattyents
behave the same if and only if they ‘react alike in all corg&xte. they have the same
transitions. In a basic reactive system, bisimilarity maylve acongruencei.e. it may
not be preserved by context; but we show that it is so in a wedetive system, for a
tractable notion of transition system based upon RPOs (@efirt.3). This prepares
for the dynamic theory of bigraphs in Chapter 8.

In Section 7.3 we introduce a natural notionsoib transition systepin which the
set of labels is reduced. Under certain conditions we shawtlttis can only increase
the bisimilarity relation between agents in the smalletesys We also recognise the
possibility that it preserves the relation exactly. Thideéed occurs, as we illustrate in

67

68 CHAPTER 7. REACTIONS AND TRANSITIONS

terms of CCS in a later chapter.

In Section 7.4, via a quotient functor, we transfer transisystems and their bisim-
ilarities to abstract reactive systems. Finally, on thisiawve outline the general pro-
cedure by which we shall derive a robust behavioural themrglbstract bigraphs from
concrete ones.

Notation We here revert to the convention of Section 2.2 and Chapter dsing
lower case letters to denote arrows in an s-category. Ribedkh ground arrow or agent
is one with domair, the origin. The lettera, b will always denote agents, amds will
always denote agents that are redexes or reacta of reaatem(Definition 7.1). We
often call an arrow: a contextif it is used in compositior o a with an agent. O

7.1 Reactive systems

In process calculi it is common to present the dynamics otgsses by means of
reactionsof the forma——> a’, wherea anda’ are agents. These reactions define all
the possible changes of state. We generalise this to serésgas follows:

Definition 7.1 (basic reactive system)A basic reactive systenwritten C("R), con-
sists of an s-categoryC equipped with a setR of reaction rules An arrowa : e — I
in “C with domaine is aground arrowor agent often writtena : 1.

Each reaction rule consists of a péir: I, ' : I) of ground arrows, aredexand a
reactum The set’R must be closed under support translation, i.€rjf') is a rule
then so igs, s') whenever = s andr’ = s'.

Thereaction relation—> over agents is the smallest such that— o’ whenever
a = cor anda’ = cor’ for some reaction rulér, ') and context for r andr’. O

In Chapter 8 we shall work with reactions in bigraphs, whidsgess a strong
notion ofplace allowing us to describ&herea reaction occurs. Basic reactive systems
have no notion of place. In Definition 2.14 we introduced ithwhe concept of width;
recall that an s-categoryg is wide if it is equipped with a functowidth : "C — NAT.

We now exploit that definition to define a notion of activityhieh describes the places
in a wide agent where reactions are permitted.

Definition 7.2 (wide reactive system (WRS)) A wide reactive system (WRE)('R)
is a wide s-categoryC equipped with a setR of reaction rules, and also activity
relation

act C "C(I — J) x width(I)

1A stricter requirement would be: {f-, ') is a rule then so i¢p+r, p*r’), for any support translatiop.
This prevents the redex and reactum from being supporsiaed independently; thus it allows us to track
the identity of nodes through reaction, and thereby get@amicausality in a bigraphical reactive system.
This stricter approach is examined in Section 11.1, and ismiging topic for further research. We have not
pursued it far in this book, since our more liberal approdithyselds enough control of identity to recover
theory for existing process models.

7.1. REACTIVE SYSTEMS 69

for each homset. If has domainf and(f,:) € act then we sayf is activeat; if
this holds for alli € width(I) thenf is active We impose conditions on activity as
follows, denoting the widths of the domains pandg by m andn:

the identities and symmetries are active

— go fisactive ati € m iff fis active at andg is active atwidth(f)(i) € n
f ® gis active at € m+n iff fis active ati € m or g is active ati—m € n
— if f = f"andf is active ati thenf’ is active ati .

Now define docationz of an object to be a subset afidth(I). The reaction relation
——>; between agents is defined as follows:—>;a’ whenevers = cor anda’ =
cor’ for some reaction rulér, r’) and active context: I — J such thatj C width(.J)
is the location given by = {width(c)(4) | 7 € width(I)}. O

Thusj records the regions afo r where the reaction occurs.

To test this definition, let us anticipate what activity willean in bigraphs. There
we shall designate certain controls as active, ghid ‘active at’ will mean that every
ancestor-node of the sitef f has an active control. With this interpretation, it is easy
to check that the four conditions hold.

EXERCISE 7.1 In bigraphs, a non-atomic control can be either active osigpasWe
say that a node is active iff its control is active. Check thath the above interpre-
tation, bigraphs satisfy the condition gn f stated in Definition 7.2. You need only
consider place graphs.

SupposéA is an active control an8 passive, both with arity 0. Thus B:1 —1
are ions, with onlyA active. Using these, give an example of two bigrajrend ¢
such thayo f is active buty is not active at every site. O

The notion of WRS, which enriches a basic reactive systerh aitvidth functor
and an activity relation, allows us to develop a dynamic thexd the general level of
s-categories. In general a WRcisncrete since s-categories have support. A special
case of a WRS is an abstract one based upon an spm categogythsig is just an
s-category with empty supports.

Definition 7.3 (abstract WRS) A WRS isabstractif its underlying s-category is an
spm category. O

We created an spm category of abstract bigraphs in Defini2@, by means of
the lean-support quotient functpil which forgets both supports and idle edges. This
functor was the quotient of a bigraphical s-category by 1sapport equivalence
(Definition 2.19), which includes support equivaleree

We wish similarly to quotient a concrete WRS to form an alestome. At this gen-
eral level we have no notion of leanness, so there is no leppest quotient functor.
We can indeed quotient by support equivalengbut we can do better, and find a fam-
ily of quotients of which lean-support equivalence is arnanse specific to bigraphs.

Definition 7.4 (structural congruence) An equivalence relatioa= on each homset
of a wide s-categoryC is astructural congruencd it is preserved by composition

70 CHAPTER 7. REACTIONS AND TRANSITIONS

and tensor product and preserves width, i.ef i ¢ thenwidth(f) = width(g). It
is called amabstractionif includes support equivalence. We denote thequivalence
class off by [f].

In a WRS C("R) an abstraction islynamicif in addition it respects reaction and
activity; that is,

— if f—; f"andg = f theng——; ¢’ for someg’ = f’;
— if fis active ati andf = g theng is active at. O

Structural congruences should not be confused with behealicongruences such as
bisimilarity; in particular, we define the latter only oveognd arrows, while structural
congruences apply to all arrows.

EXERCISE 7.2 Check that, in bigraphs, both and< are abstractions. O

Definition 7.5 (quotient wide s-category) Let "C be a wide s-category, and ketbe
an abstraction ofC. Then
cEc/=

is the wide spm category whose objects are thosg, @nd whose arrow§f]: I — J

are =-equivalence classes of the homget- J in C. Composition, tensor product,

identities and symmetries are defined just as for suppottientan Definition 2.15,
def

and inC we definewidth([f]) = width(f). O
To form an abstract WRS we can quotient a concrete WRS by antigrebstraction:

Definition 7.6 (quotient WRS) Let C("R) be a WRS, ane: a dynamic abstraction
on C. Then defineC(R), the quotient of C("R) by =, as follows:

- C="C/=andR = {([r[,["']) | (r,7") € "R}
— [f] is active ati iff f is active at. 0

An abstract WRS has its own reaction relatiern+ ; indexed by locations. How does
the reaction relation in a concrete WRS relate to that of listract quotient? The
answer is simple, and included in the following theorem hatifies the above con-
structions.

Theorem 7.7 (abstract WRS) The construction of Definitions 7.5 and 7.6, applied
to a concrete WR3C("R), yields an abstract WRS(R), whose underlying wide spm
categoryC is the codomain of a functor of wide s-categories

[]:°C—C.
Moreover the construction preserves the reaction relatiotthe following sense:
(1) if f—>7 f"in"C(R) then[f]—>: [f'] in C(R)
(2) if [f]—=>74" in C(R) then f—=; f"in "C("R) for somef’ with [f'] = ¢’

In this sense, abstraction of a WRS preserves its behavilarnow turn to a more
refined notion of behaviour, and we shall find that it, too,rsserved by abstraction.

7.2. TRANSITION SYSTEMS 71

7.2 Transition systems

As we have seen, neither the basic nor the wide reactioniaejate. neither—> nor
——;, takes account of the reactions arising from cooperatibwdsn an agent and its
environment. For this purpose we introduce labelled ttarssystems.

A labelled transitionbetween agents takes the foum— o/, where thdabel ¢ is
drawn from some vocabulary expressing the possible intierechbetween an agent and
its environment. This is more refined than a reactive sysge#nce/ can witness the
possibility thata contains only part of a redex, relying on the context or envinent to
supply the rest. Thus may have exactly the same unaided reactions as another agent
b, but may contain a part of a redex tibatoes not; then, when we place it in a context,
a may behave differently frorh.

Henceforward we shall use ‘transition’ to mean ‘labelleghgition’. In general,
transitions do not presuppose reaction rules; it is pasdibtiefinethe dynamics of
bigraphs by transitions, as indeed has been done for vgpimegss calculi. But later
we shall find that we can derive transitions from reactioesul

We seek notions of behavioural equivalence of agents swathwhenever, and
b are equivalent, they are also equivalent in all contextat ib, coa andcob are
equivalent for all contexts. Transitions are important for this purpose, since they
represent not only thactualbehaviour of agents, but also theibtentialbehaviour in
collaboration with a context.

We now define transition systems formally.

Definition 7.8 (transition system) A transition system (TSdr a wide s-category is
a quadruplé
L = (Agt, Lab, Apl, Tra)

whereAgt is a set of agents$,ab is a set ofabels Apl C Agt x Lab is theapplicability
relation, andTra C Apl x Agt is thetransition relation
When(a, f) € Apl we say that applies toa. A triple (a,¢,a’) € Trais called a

transition; we write ita——»a’. We sometimes calt the sourceanda’ the target of
the transition. Ifc is an arrow such that € Agt impliescoa € Agt whenever defined,
then we calk an £-context

A transition system isaw if its labels contain no graphical structure. O

Many behavioural equivalences or preorders can be builh tiamsition systems. For
example, two agents are said totkece equivalenif, starting from each one, the same
sequences of transition labels can be observed. Another@gas thefailures order-
ing of CSP; an agent is said torefineanotherp, if the ‘failures’ of a are included in
those ofb. The theory of these can be developed in the same way as thiatroflarity,
which we now define:

Definition 7.9 (bisimilarity, congruence) Let C be equipped with a transition sys-
tem L. A simulationfor £ is a binary relatiorS between agents such thatifb and

2This formulation of transition systems is due to O.-H. Jer[gé].

72 CHAPTER 7. REACTIONS AND TRANSITIONS

a—t+a’, and alsof applies tob, then there exists’ such thath——» b’ anda’/Sb’. A

bisimulationis a symmetric simulation.
Bisimilarity for £, denoted by~ ., is the largest bisimulation. It is@ngruencéf
a ~¢ bimpliescoa ~, cob for everyL-contextec. O

When the transition syste is understood we shall often write instead of~ .

The above definition is standard, except for the extra cmndihat/ applies tob.
Note that the largest bisimulation is well-defined; it is plynthe union of all bisim-
ulations. So another way to describe bisimilarity is to dagtt andb are bisimilar,
a ~r b, if there exists a bisimulation containing the pairb).

Our definition of a transition system constrains neithelaibels nor its transitions.
In particular, it leaves open whether these are raw or natekample, in ther-calculus
araw TS was defined first, and later a reactive system was defirteshown consistent
with it. The TS was also found to yield a congruential bisaritly.

Here, by contrast, we have two aims. First, we wisliléoivea TS from a given
set of reaction rules, since we wish to have only a singleonotif dynamics for a
reactive system. Second, we wish to prove the bisimilafitthis derived TS to be a
congruence. We first achieve these aims in a way that is siamglénformative, though
unsatisfactory. It relies on declaring the label of a traosito be a bigraphical context
for its source agent. Later we shall need to refine this ambroa

Definition 7.10 (full transition system) InaWRS with rulesR, a transition system
is full if each labelf is a bigraph, and’ applies to an agent iff it is a context fora.
Moreover, each transition—— a’ is such that, for some reaction rule r’) € “R and
active contextl for r andr”’, the following diagram commutes antl= dor’.

f

[A

a d
r
[—

Thefull transition systen¥T has all ground arrows as agents, all arrows as labels, and
/

all transitionsa > o’ that satisfy the above conditions for some riflg’) € "R. O
In the diagram we may think af containing part of a redex, and f/ supplying the
remainder of that redex.

We now give the simple proof that bisimilarity f®T is a congruence. This is
hardly surprising, because by allowing any context to beballave have allowed our
transitions to ‘observe’ an agent in any context.

Proposition 7.11 (congruence of full bisimilarity) In any WRS, bisimilarity forFT
is a congruence.

Proof Assuming thatz ~,. b, we wish to show thatoa ~,, cob, wherec is any
context fora andb. For this purpose, suppose thata L+ ¢'; then we seek’ such
thatcob—L+ b’ anda’ ~.. V.

7.2. TRANSITION SYSTEMS 73

W @, ®,, @
Ccoq d aT dT bT eT cob €
. _r . s 5

For some reaction rulé-, r') the diagram (1) commuted,is active andy’ = dor’.
Then (2) also commutes; hence there is a transiiie~<— a’. Sincea ~q b, for
someb’ we have the transitioh—2— » anda’ ~ b'. So, for some rulés, s’) and

active context, (3) commutes antf = eos’. Then (4) commutes, s b-L 1 and
we are done. O

This result is pleasant, but needs to be refined. The defeet & that it allows ar-
bitrary contexts as labels. Labels will be arbitrarily lergmuch larger than needed
to represent the cooperation between an agent and its anvérat in creating a redex.
Furthermore, sincé¢ oa = dor, the contextd may contain much of this environment;
it follows that the target’ = dor’ of the transition will also be large. If labels are to
be contexts, then we would like to restrict them to be smafldme sense. We shall
shortly define a notion of minimal label. But there is anottiifficulty, as follows.

A weakness of taking labels to be contexts is that such a IAbela transition
a1+ a’ does not recoravhere within foa, the redex of a possible reaction occurs.
It then turns out that, if we limit the class of contexts pdted as labels, we lose the
congruence of bisimilarity. This is best seen with the hdlaroexample, showing that
if we limit label contexts to those that are minimal (to be defl shortly) then two
agents that have the same transitions—and therefore ksigan be distinguished
by placing them in a larger context which only permits reatth certain places.

Example 7.12 (non-congruence)lhis example shows that bisimilarity based upon
unlocated transitions is not in general a congruence faapigs. Take the basic signa-
tureX = {K, L, M}, each with arity zero, and declaikeandL to beatomic andM to

be passive—i.e. it can contain no reaction. L&K, L) be the only reaction rule, where
K means the atori.1. It can then be shown that ~ b in the TS which has only
minimal contexts as labels, whete= K ® L andb = L ® K.

CoQ 7[/ cob

But for the context as shown we haveoa # cob. Forinb the redexK lies in an

active context, so there is a transitiembin>; but co a has noid-labelled transition,
since its redeX lies in a passive context, thé-ion. O

Returning now to WRSs with their wide reaction relations+;, we shall refine
the notion of contexts-as-labels to take account of locatiiothe underlying reaction,

74 CHAPTER 7. REACTIONS AND TRANSITIONS

and thus refine bisimilarity so as to make it a congruence.elfadd this quantum of
information to a transition, then we are able to limit thensitions of a TS to those that
are minimal in a precise sense.

Definition 7.13 (contextual transition) Ina WRS, a transition £+ ¢/ iscontextual
if its label ¢ takes the forn{ f, j), wheref : I — J is a context forw andj a location of

J. The label applies to an agentff foa is defined.

A contextual transitior{(a, (f,7),a’) is written al>j a’. It has an
——=

underlying reaction rulér, r") with width m such that for some active
d: I — J the diagram commute§,= {width(d)(i) | i € width(I)} aT Td
anda’ = dor’. A contextual transitiomi%~ a’ is minimal if its o

diagram is an IPO.

A transition system igontextualif its transitions are contextual, and its agents and
labels are closed under. It is minimalif its transitions are minimal. O

In the transitionaLDJ~ a’ we are justified in calling the labé€lf, j) contextual not

only because is a context for, but also becausgis the range ofvidth(d), where
d is the context in which the underlying redex lies. Note tlég tedex itself cannot
be recovered from the information recorded in the transjtibis opens the possibility
that two agents may be behaviourally equivalent even ththegjhtransitions are based
upon different reaction rules.

There are many minimal TSs. (The term ‘minimal’ applies ®titansitions, not to
th system.) We now distinguish a family of them.

Definition 7.14 (largest minimal TS) Given a WRS and a sét of its objects, the
minimal TSMTz = (Agt, Lab, Apl, Tra) is defined as follows:

— Agthasallagents: I for/ € Z
— Lab has all labels occurring ifira

Apl has all pairga, ¢) wherel = (f,7) is a transition label withf o a defined

— Tra has all minimal transitionsin>g a’ fora,a’ € Agt.

We shall writeMT for MT7 whenZ is understood. O

Thus we are mainly interested in two species of transitiatesy: raw and minimal.
Minimal TSs are the ones that we shall derive uniformly foy &4RS. But we shall
also consider raw TSs that are specific to particular prozassli, including some that
have been studied in depth, in order that the bisimilarttiey induce can be compared
with those induced by derived TSs.

To clarify the relationship between reactions and contxransitions, it is help-
ful to compare them with diagrams. Here are the reactien;a’ and the tran-

sition ail>j a’, both based upon a reaction rule). Like-named entities in the

two diagrams are unrelated. In each cdse active, andj C width(J) is given by

7 = {width(d)(?) | ¢ € width(I)}. The reaction can also be seen as a contextual
transitiona'd—"»j a’ whose label has an identity context. Conversely, undeglyte
transition there is a reactiofioa—=>; a’. The transition is minimal if its square is an

IPO.

7.2. TRANSITION SYSTEMS 75

r r

areactiona—j;a’ acontextual transitioru i>]~ a

Width plays two roles in Definition 7.13. It takes part in thesartion thatl is active,
i.e. active everywhere in the widtt of its domain; it also defines the locatigrn
terms ofm. Note that, sincg is a location in the codomain of, another transition
bL>J~ b’ may have the same labgf, 7), even if its underlying reaction rule has width
different fromm.

EXERCISE 7.3 Prove that in a concrete WRS the transition relation is ctest with
reaction, i.e. that L»; a’ implies f oa——; a’. Hint: Very easy! O

Let us revisit Example 7.12, to see why it does not contratlietcongruence of
bisimilarity for MT. The reason is that we no longer have b, since their transitions
have different locations; in fact,—<+; «’ andb—%-; b, wherei = {0} andj = {1}.

We are now ready for our main result that applies to all widetige systems: that
bisimilarity for MT is indeed a congruence. The importance of this is that theddadf
this TS are tractable, since each one is part of the cospamI&f@.

We begin by recalling the standard technique of ‘bisimolatip to ...". Itis well
knowr? that if an equivalences is included in bisimilarity, then to establish bisimilarit
itis enough to exhibit &isimulation up to=; that is, a symmetric relatiof such that
wheneverSb then each transition af is matched by in S=, the closure o under
=. Itis easy now to prove the following:

Proposition 7.15 (bisimulation up to support equivalence)

(1) Support equivalence is a bisimulation fomT.

(2) To provea ~,, b itis enough to show thal,b) € S for someS which is a
bisimulation up to=.

EXERCISE 7.4 Prove thisHint: For the first part, use Proposition 4.5(5), concerning
support translation of RPOs (and hence for IPOSs). O

We may now prove the congruence theorem.
Theorem 7.16 (congruence of minimal bisimilarity) In a wide reactive system with

RPOs, equipped witT, bisimilarity of agents is a congruence; that isaif ~ a;
thencoag ~ coay, Wherec is any context fory anda; .

3This property is valid fostrongbisimilarity, which is what concerns us here.
4There are many behavioural equivalences for transitiotesys other than bisimilarity. It has been
shown [54] that some of them, e.g. the failures equivaleddg pre also congruences for derived TSs.

76 CHAPTER 7. REACTIONS AND TRANSITIONS

Proof We establish the following as a bisimulation up+o

S E {(coap,coar) | ag ~ ay, cany contexy .

(1) 2 g) 4) g
g €o €1
co ¢ o _f _f
0 QOT doT G1T le a1T le
= 70 ™ 1

Suppose thaty ~ a1, and that o ag—=; b, for some label that applies teoa;. It
is enough to find} such thatoa; 23} and(b), b;) € S=.

There exist a ground reaction rule),) with codomainH,, and an active context
eo such thaty, = egor| andj = {width(eg)(h) | h € width(Hy)}, and moreover
diagram (1) is an IPO. There exists an RPQd,, ¢’) for (ao, ro) relative to the bound
(goc,ep), so by RPO theory each square in diagram (2) is an IPO, dyitictive , and
¢’ active ati = {width(do)(h) | h € width(Hy)}.

So the lower square underlies a transittcme ag, wherea, = dgory. Now
foay is defined (sincgocoa; is defined andjoc = ¢’ o f) andag ~ a1, Sso there is
a transitiona; ——; ay with aj, ~ af. But support translation af} preserves both of
these properties; so we may assume a fuler}) with codomainH; and an activel;
such that} = dyorf, || N |a)}| = 0 and? = {width(d1)(h) | h € width(H;)}, and
moreover diagram (3) is an IPO,

Now replace the lower square of (2) by diagram (3), obtaidiagram (4) in which,
by RPO theory, the large rectangle is an IPO. Moreayéf ¢’ o d, is active, since’ is
active ati. Hencecoa;, —2»; b, whereb| = e; o7 Finally (b, b}) € S= as required,
becausé(, = ¢’ ca(, andb} = ¢’ o a} with af, ~ df. O

Having understood how a contextual transition system cashebieed for a WRS,
and in particular how its bisimilarity may be a congruence, @an consider the TS
as weaned from the reaction rules that gave birth to it. Batréaction rules remain
important for many applications.

7.3 Sub transition systems

Consider a wide s-category equipped with a TS, either rawotextual. It can happen
that bisimilarity is unaffected if we reduce the transitgystem itself, i.e. discard some
of the transitions. To set the scene, let us define what it exe&reduce an arbitrary
transition system.

Definition 7.17 (sub transition system) A transition systemM is asub transition
systenof L, written M < L, if each of the four components @#1 is a subset of the
corresponding component &f O

7.4. ABSTRACT TRANSITION SYSTEMS 77

In general, the bisimilarity of the sub-T$1 is incomparable with that of. For
example, itM has no labels then all its agents are bisimilar; on the otaedlifa ~ b
in £, and each has transitions ify then by keeping inM the transitions ot but
omitting those ob we find thata # b in M.

Let us now consider a natural class of sub-TSs:

Definition 7.18 (definite sub transition system) Let M < L. ThenM is adefinite
sub transition system gt ,, andLab, define the other two components.®f, in
this sense: for alt, a’ € Agt,, and? € Lab

— if £ applies toa in £ then it applies ta in M
— if ai>5 a’ is a transition inC then it is a transition in\. O

Proposition 7.19 (definite sub-TS)Let M be a definite sub-TS df, and leta ~ b.
Then alsaz ~ , b.

Proof Itis easy to show that . is a bisimulation forM. O

So by restricting attention to a definite sub transition eystve can only increase its
bisimilarity relation. This raises an important questi@ne there situations in which
the relation remains unchanged? For now, let us only makéiritom:

Definition 7.20 (faithful sub transition system) M is afaithful sub transition sys-
tem of L if, restricted to the agents d¥1, we have~,, = ~, . O

Thus, by reducingC to a definite and faithful sub transition system, we show that
the omitted labels contribute nothing to distinguishingmtg by their behaviour. This
both clarifies our understanding and lightens the task afbdishing bisimilarity. In
Chapter 8 we shall achieve this for bigraphs under certaiilitions.

7.4 Abstract transition systems

We now wish to see how both raw and contextual transitioresystbehave under a
quotient of a wide s-category that yields a wide spm categquypped with an abstract
TS. We shall be interested in TSs that harmonise with a stralctongruence, in this
sense:

Definition 7.21 (respect) A dynamic abstractioa:= respectsa raw transition system
if, whenevern ——» o’ andb = a, thenb——> b’ for someb’ = a'.
It respectsa contextual transition systefif, whenevera L»; a’ andb = a and

g = f,where(g,7) € Lab, with gob defined, therb—Z—; b’ for somed’ = «'. O

There are many possible dynamic abstractions on bigragites; do not necessarily
respect by a transition system.

EXERCISE 7.5 Answer the following informally for bigraphs:

(1) LetA:1 andB: 1 be atomic controls. For two arbitrary bigrapRsandG in the
same homset, definé = G to mean that they are identical when evBmpode linked

78 CHAPTER 7. REACTIONS AND TRANSITIONS

to anA-node is deleted. LeF denote the result of deleting eveBynode linked to
anA-node. Is it true thaGo F' = Go F'? Is= a structural congruence, or even an
abstraction? Does it respaet ?

(2) Let A and B be non-atomic controls with equal arity. Defiié = G to mean
that they are identical when eveBynode is replaced by afs-node. Is= a structural
congruence, or even an abstraction? Does it respecprovided that no parametric
redex contains aA- or B-node ? O

Let us now return to the transition systems induced by qobti®iven a transition
system£ and an abstractios for a concrete WRS, the-quotient functor induces a
TS for the quotient abstract WRS by simply applying the fontd every bigraph in
each of the four components gf The main difference between raw and contextual
TSs is that, in the former, the labels are left unchanged €Tprbcise:

Definition 7.22 (transitions for a quotient) Let "C be a wide s-category equipped
with a raw or contextual transition systefh= (Agt, Lab, Apl, Tra), and let= be an
abstraction onC. Denote the=-quotient of 'C by C, an spm category. Then the
contextual transition systeffiC] = (Agt’, Lab’, Apl’, Tra") inducedby = on C has
components generated as follows:

For £ raw:
— if a € Agtthen[a] € Agt’
— Lab’ = Lab
— if (a,£) € Apl then([a], ¢) € Apl’
— if a—Y»a’ in Tra then[a] == [a] in Tra’ .
For £ contextual:
— if a € Agtthen[a] € Agt’
— if (f,7) € Labthen([f],7) € Lab’
— if (a, (f,7)) € Apl then([a], ([f],7)) € Apl'
— ifaLle;d/inTra then[a] S E) [a’] in Tra’ . O

This may not make bisimilarity a congruenceGneven if it is so in"C. However the
next theorem, proved in Appendix A.4, ensures this in thegmee of respect.

Theorem 7.23 (bisimilarity induced by quotient) Let C be a wide s-category that
is equipped with a raw or contextual transition systémlLet = be an abstraction on
“C that respectsC. Denote the=-quotient of C by C, an spm category. Then the
following hold for[£]:

(1) a ~bin Ciff [a] ~ [b] inC.
(2) If bisimilarity is a congruence inC then it is a congruence i@.

Thus, a transition system and its bisimilarity are treated tay a suitable quotient
of a wide s-category. We can harmonise this treatment withitalde quotient of a
WRS C("R) (Definition 7.6), as follows:

7.4. ABSTRACT TRANSITION SYSTEMS 79

Proposition 7.24 (quotient reaction and transition) Let 'C("R) be a concrete WRS
equipped with a contextual TS based uponR, and let= be a dynamic abstraction
for the WRS.

Then in the quotient WRS (Definition 7.6), equipped with riduesition system in-
duced fromL as in Definition 7.22, transition is consistent with reaatio

p—Lo;p impliesgop—>;p’ .
EXERCISE 7.6 Prove thisHint: You need Exercise 7.3 and Theorem 7.7. O

These results prepare for a uniform procedure that yielgshawoural congruence
for an abstract WRS. The procedure moves to a concrete WR®ahkdagain. It is
justified because support is necessary for deriving a toectaehaviour model based
upon a transition system. Given an abstract WIRR), the procedure has three steps:
Move to a concrete WRS; construct a concrete transitioresyshere; then bring it
back to the abstract WRS. Here are the steps in more detail:

(A) Define a concrete WRSC("R) such thatC andR are the quotients ofC and
"R by some dynamic abstractian;

(B) Derive a contextual transition systefrfor "C("R) with an associated behavioural
congruence-., and ensure that respects;

(C) Use Definition 7.22 to transfet to the abstract WRE(R), and Theorem 7.23
to ensure a behavioural congruenc€ifR).

In Chapter 8 we shall find that this can be done for any bigiheactive system
(BRS), as defined in Definition 8.6, satisfying very genexaiditions. In that case
the chosen abstractiaawill be lean-support equivalence, the transition systemaill
be derived using the RPOs of Chapter 4, and the behavioungrgence~ . will be
bisimilarity (though other behavioural congruences aelyi to work also).

Thus contextual reactive systems yield a generic behaalitheory. Its importance
is not only that it specialises to bigraphs, but also thatdves insight for reactive
systems in general. Indeed the special case of bigraplseisdeneric, since—as cited
in Chapter 12—many different process calculi can be faithencoded in bigraphs.
Our three-step procedure will be illustrated for a class efifmets in Chapter 9 and
for finite CCS in Chapter 10.

80

CHAPTER 7. REACTIONS AND TRANSITIONS

Chapter 8

Bigraphical reactive systems

As a first step in defining the dynamics of bigraphs, we refigentbtion of a reaction

rule to make ipparametric This leads to the formal definition of a bigraphical reaetiv

system (BRS), and then to a taxonomy of BRSs, followed by thehavioural theory.
We begin by illustrating the notion of parametric reaction:

Example 8.1 (CCS reaction in bigraphs)In Example 3.18 we gave the redex of the
usual CCS reaction rule as an example of a bigraphical edgebrpression; we now
look at the whole rule.

alt. (send;.dg | dy) | alt. (get,..d2 | d3) x| dy|de

The rule is parametric. The parametric redex= alt. (send,, | id) | alt. (get, | id) has
four sites, to be filled by arbitrary parameteks . .., ds. SitesO and2 are for pro-
cesses, and sitésand3 are for alternations (summations). The reactlm= z | id | id
has two sites, to be filled by parameters as indicated by tble-painting arrows. The
placing of parameters is also shown by the algebraic expreshis rule discards
parameters and3.

Recall that in CCS the input and output prefixes are guardimy; prevent internal
reaction. To capture this we have to defamivity for bigraphs, and to declare all CCS
controlspassivein the sense that we now define. O

Definition 8.2 (dynamic signature, activity) A signature isdynamicif it assigns to
each controK a statusin the set {atomic, passive, active}. We say that &-node is
atomic if its control is assigned the stattsmic, and so on.

81

82 CHAPTER 8. BIGRAPHICAL REACTIVE SYSTEMS

A bigraphG: (m, X) —(n,Y) is activeati € m if every ancestor node of siigs
active.G is activeif it is active at every site (see Definition 7.2). O

In the CCS signature we declare the contrals’, ‘ send’ and ‘get’ all to be passive,
ensuring that reaction only occurs at the top level. In @sttifor the calculus of mobile
ambients (see Figure 1.1) we declare the ambient contrddto be active, to allow
reactions inside an ambient.

The initial purpose of this chapter is to explain how paraie&eaction rules gen-
erate the reaction relation of a BRS, as the basis for therdymntheory of BRSs. We
then specialise to BRSs the theory of transition systemsbahdvioural equivalence
developed for WRSs in Chapter 7. That theory was first deweldpr a concrete WRS,
based upon an s-category, and transferred at the end twtigiuabstract WRSs based
upon an spm category. Similarly, much of the present chagptigvoted to answering
the question: What conditions on a concrete BRS allow ustaioh tractable minimal
TS whose behavioural equivalence is a congruence? Reatlhth minimal TS every
transition is based upon an IPO, and thatis the largest such TS, having all possible
agents and all possible minimal transitions between them.

In Section 8.1 we define parametric reaction formally, amrdh ttleduce from Chap-
ter 7 that, in asafeconcrete BRS equipped with the minimal transition system
bisimilarity is always a congruence; this is because saferasures that RPOs exist.
In Section 8.2 we identify conditions under whigtt can be reduced to more tractable
transition systems, while preserving the bisimilarity mglence—hence also preserv-
ing its congruence.

Finally, we transfer this transition system to the quotiebstract BRS, via the
lean-support quotient functor. It turns out that the samaditmns ensure that the
behavioural congruence is preserved for this abstract BRS.

Notation We now resume the convention that arbitrary bigraphs aretddrby up-
per case italic letters, and ground bigraphs by lower casaweier, I, J, K denote
interfaces, andX, Y, Z denote name-sets. We use sans-serif leieB C, K, L, M, N
for arbitrary controls. We us®, S for parametric redexes (Definition 8.5),s for
ground redexes, and, M for arbitrary contexts used as labels. O

8.1 Dynamics for a BRS

The CCS rule shown above illustrates how the parameter ofexi@ s instantiatedor
the reactun®’. In general we shall have a red&x m — J and reactun®’ : m’ — J,
both parametric, and the reaction rule will specify ingtantiation mapy: m’ — m
which determines, for eache m/’, which factor of the parameter & should occupy
the jt" site of R’. Care is needed to define instantiation precisely. Considemple
example that duplicates its parameter:

8.1. DYNAMICS FOR A BRS 83

“double

We might expect this rule to generate reactions of the fdsoble.c — a | a, where
a is any ground prime. So if has a closed link, say = /x o A, (with A atomic), there
would be a reaction

a—-> (/onm) | (/onm) .
But we havedouble.a = /x o (double.A,), so there exists also a reaction

a—> Jxo (A |AL) .

This shows that—since closure is not located—it is uncldaetiver or not the closed
link is itself duplicated.

To settle this issue, we shall defiimgstantiationof a parameter in terms of its
discrete normal form, established uniquely in Definitioh@. The effect is that all
replicated closed links will be shared, as in the secondredteve above. To avoid
sharing such a link, under a replicating reaction, one nwstass it instead astsound
link as explored in Section 11.3. This has already beenezanit in a translation of
the r-calculus into bigrapHs but it lies beyond the main scope of this book.

Definition 8.3 (instantiation) In a bigraphical s-categon\C = "BG(X), let (m, X)
and(n, X) be two sorted interfaces (sorts not shown), andtet — m be a map of
finite ordinals that preserves place sorts. Defindrikancefunction

7: C{m,X)—"C(n,X)

on agents as follows: Given an agentm, X), find its DNFg = Ao (dy®- - -®@dy—1)
(Proposition 3.9). Then

(9) = Ao (dy || -+ | df,_y),
whered; = d, ;) for eachj € n. The function is defined up te. O
We use the parallel produdf, || - -- || d,,_;, rather than the tensor product, because

any replicated factors in the product—as will occunpifs non-injective—uwill share
names. Note also thgtg) has the same outer nam&sasg.?

Linking commutes with instantiation. For if = Aod and we wish to instantiate
f = pog, then we first find the DNF = po Aod; SO we may apply: before or after
instantiation, with no difference of result. Formally:

Proposition 8.4 (linking an instance) Linking commutes with instantiation; that is,
pot(g) =T(pog) -
1see [47]

2This is implied by the convention stated at the start of ®ec8.2: forA:Y — X, the composition
Ao f still has outer nameX (though some may be idle) even whéias fewer outer names thah

84 CHAPTER 8. BIGRAPHICAL REACTIVE SYSTEMS

Proof Letg: (m,X), withn:m’ — m. Take the DNFy = Aod, whereX:Y — X.
Then7(g) = Aod', whered' = dy || --- || d},,,_, with eachd = d,,(;). So

N(pog) = N(po(Aed)) = N((koA)od)
= (poA)od = po(Aod’) = pom(yg). O

Before going further, we must take account of the fact thatanes working in
"BG(X), whereX is an arbitrary sorting. AlthoughBG(X) is required to be an s-
category (Definitions 6.1 and 6.10), it does not require atl@lements—in particular
join, substitution and closure—and the derived operators @lighand merge prod-
uct and nesting to exist at all sorts. For example, many-orteng demands that each
s-link contain exactly ona-point, and this excludes non-trivial substitution at sort
(though it admits them at sot}. This also means that some uses of parallel product
(]I) violate many-one sorting.

Since we are developing a dynamical theory based upon oeaatles we shall
make the following assumption: if, in a BRS, a reaction ruleves a parameter to
have a name of soft, then the BRS must admit substitutions and closures a#sort

From now on in this chapter we are involved with an arbitrawgting, possibly
under some constraints. To avoid heavy notation we contmugite an interface as
(m, X, even though the roots im and the names iiX’ may carry place sorts or link
sorts respectively.

We are now able to define the dynamics of bigraphs, relying efinion 7.1 for
the way the reaction relation is determined by a set of grogadtion rules.

Definition 8.5 (parametric reaction rules) A parametric reaction ruldor bigraphs
is a triple of the form
(R:m—J, R:m'—J, n)

whereR is theparametric redexR’ the parametric reactumandn : m’ — m a map of
finite ordinals. R and R’ must be lean, an& must have no idle roots or names. The
rule generates all ground reaction rulesr’), where

r=R.d, ' =R.7nd)

andd: (m,Y) is discrete. O

In Example 8.1 we may think aR either as taking a parameter of width 4, or as taking
four prime parameters. The definition of ground rules, usiesting, ensures that the
names of the parameter are exported to the context in whéctettex resides.

EXERCISE 8.1 Assume the place sorting for CCS introduced in Definition @rb
the parametef = dy ® - - - ® d3 shown in Example 8.1, assume tllahas outer names
Y; (¢ € 4) andY = 4, Y;. Write down the sorted interfaces & R’, r, " and eachi;.
O

3This question does not arise for our application of manysnTéng to Petri nets, since its reaction rules
are not parametric.

8.1. DYNAMICS FOR A BRS 85

Our present definition of parametric rules is rather simiplg the reader may think
of ways to vary it. Here are two features that could be varied:

e Why do we make parameters discrete? In fact the reactiotiaelavould be
unchanged if we allowed arbitrary agents as parameters Bistantiation of an
agent is defined in terms of its underlying discrete bigrdglit.discrete param-
eters simplify analysis, especially for transitions arslrhilarity.

e Can we track the identity of nodes through a reaction? Ounitiefa does not
allow this, but it would be useful in some applications. Laajain at the rules
B1-B3 for the built environmentin Chapter 1; we may well wish tpatate that
the agent involved is the same, before and after the reactias not difficult
to alter the definition to admit such tracking, by meansabport this allows
properties of a system’s history to be expressed, such astadas never visited
roomv’. Thus support has broader usage than ensuring the exéstdriRPOs
(and hence the derivation of transition systems). Tracldrexamined further in
Section 11.1.

We are now ready to define our central concept:

Definition 8.6 (bigraphical reactive system (BRS)) A (concrete) bigraphical reac-
tive system (BRS)ver X consists of BG(X) equipped with a setR of parametric
reaction rules closed under support equivalence; thdtis4 S andR’ = S’ and™R
containg R, R, n), then it also containgS, S’,). We denote the BRS bBG (X, "R).
It is safeif its sorting: is safe. O

Having seen how parametric rules generate ground rulese#sy to check that each
BRS is a reactive system. Moreover there is an obvious widitictbr for bigraphs;
for an interfacel = (m, X) definewidth(I) to bem, and for a bigraptG:I — .J
definewidth(G)(4), for all i € width(I), to be the unique € width(.J) such that
j = prntk (i) for somek. Without further proof we can now assert:

Proposition 8.7 (BRSs are wide) Every BRS is a wide reactive system.

Recall that in Chapter 7 we equipped a WRS only with groundtie@arules, not with
parametric rules. We could indeed have defined parametds far a WRS, but we
have more reason to do so for a BRS. This is because bigrapésimizh structure that
permits us to classify BRSs according to the structural @rigs of their parametric
rules, such as those mentioned at the end of Definition 8.6.

All the work in Chapter 7 on transition systems and bisinitjar-especially on
contextual transition systems—can be applied to BRSs,igeo\Mhey are safe (ensur-
ing RPOs). Most importantly, from Theorem 7.16 we deduce:

Corollary 8.8 (congruence of bisimilarity) In any safe concrete BRS equipped with
MT, the transition system with all minimal transitions, bigarity ~ is a congruence.

Now let us transfer this congruence to an abstract BR$*BR), where Bs(X)
and R are obtained by the lean-support quotient fundtfrof Definition 2.19 and
Theorem 2.20. We must first prove that the minimal transisigstemMT respects::

86 CHAPTER 8. BIGRAPHICAL REACTIVE SYSTEMS

Proposition 8.9 (abstraction respects transitions)in a concrete BRS withiT:

(1) Every label context is lean.

2) Lean-support equivalence respects the transitionat'ﬂnWheneveainﬁa’,
pp q p

if a < band L = M where(M,7) is a label withM o b defined, ther 22s; b/
for somey’ such that’ < b’

(3) Lean-support equivalence is a bisimulation.

Proof For (1), use Proposition 5.24(1) and the fact that everyréisagent is lean.
For (2), use Proposition 5.24(2); the fact that each redésais ensures that it cannot
share an idle edge with the agentThen (3) follows directly from (2). O

We are now ready to transfer the congruence results of Goydl.8 from concrete
to abstract BRSs. The following is immediate from Theore®87.

Corollary 8.10 (behavioural congruence in a safe abstract RS) Let "BG(X, R)
be a safe concrete BRS, and Bt (X,R) be its lean-support quotient. Let denote
bisimilarity both for the transition systemt in "BG(2, R) and for transition system
itinduces inBG(X,R). Then

(1) a ~ biff [a] ~ [b].
(2) Bisimilarity ~ is a congruence iBG(X,R).

Thus we have assured a congruential behavioural equivefena broad class of BRSs
characterised by only one condition: that they are safe.tiBtesults of this section
apply more widely; they apply to any BRS that has RPOs. As we Baen, safeness
is an easily-checked sufficient condition for RPOs to exist.

Let us now see how this enables us to specialise the thrpgsieedure defined at
the end of Chapter 7, in order to develop the behaviourahthefaa given safe abstract
BRS BG(X,R), as follows:

(A) Take the structural congrueneeto be lean-support equivalenee Equip the
(concrete) bigraphical s-catego®G(X) with concrete reaction rule®k which
consists of all lean preimages®Bfby the lean-support quotient functpf, yield-
ing the concrete BRBG(X, R). This automatically satisfies the sorting disci-
pline of 33, and also the constraints (no idle names or roots) on redexee
these conditions are unaffected by the lean-support quotie

(B) Since the concrete BRS is safe, it has RPOs; hence we cap ieqvith the
minimal transition systenmT, and this yields a congruential bisimilarityyr,
which is respected by:.

(C) Finally, taking the quotient of the transition system by [-], we arrive back
in the abstract BRS 8(3,R) equipped with a transition systefmT] having a
congruential bisimilarity.

8.2. DYNAMICS FOR A NICE BRS 87

We now turn to additional conditions that can make a BRS e#&sikandle. The
most prominent of these are conditions on the rulgsahey have the effect of further
reducing the transition systemm, making it more tractable. Apart from this, the three-
step procedure remains unchanged; the reader will findgtfletb bear this procedure
in mind as a background for understanding the behaviouealrtes of Petri nets and
CCS, developed in Section 9.2 and Chapter 10 respectively.

8.2 Dynamics for a nice BRS

The minimal transition system is quite tractable, sinceheagport element of a la-
bel lies either in the agent or in the underlying redex. As Wallsnow see, for cer-
tain classes of BRS our derived transition systems becoithensire tractable, and
indeed—for BRSs that encode known process models such asnBet—closer to
known semantic treatments. In Definition 8.18 we shall useatlijective ‘nice’ to de-
note a class of BRSs with several pleasant attributes, @amddtove a theorem to show
how this eases the theory of their transition systems.

We begin by asking: Having limitesiT to contain only minimal transitions, can
we even remove some of these without affecting bisimilarignd hence without los-
ing behavioural congruence? We may try including only thoesesitions whose agents
make a non-trivial contribution to the underlying reactigklso the agents that arise
in our applications are often prime—indeed this will be tfaeCCS—so we may try
restricting ourselves to prime agents. To be precise:

Definition 8.11 (engaged transition, prime transition) A transitiona ——; «’ based
on a reaction with parametric red&x is engagedf |a|N|R| # (). A transition isprime
if both ¢ anda’ are prime. O

We might expect a disengaged transitior™—; o’ to be redundant. If the agent
shares no node or edge with the parametric reRethen surely any other agent
should be able to make a transition with the same label, tesatable)’? If so, then
we could ignore such transitions without affecting therigarity. But this argument
needs to be made precise, and depends upon constraintstidatine below.
Another incentive to include only the engaged transitiarikat we are more likely
to be able to confine attention to prime transitions. For sgppthat an agentis prime,

and also that a parametric red®has prime outer face; then in an engaged transition

a-£+; a’ based onR, the ground redex will also be prime, with|a| N || # 0.

It follows that any IPO(L, D) for the span(a,r) will have prime outer face, hence
a’—and indeed the transition—will be prime. On the other hahthe transition is
disengaged then—by Corollary 5.21—even it primea’ will notbe so.

Note that if a transitiom —2—; a’ is prime then its locatiod must be the singleton
{0}; we therefore write simply—= a’.

It will turn out that we can often exclude disengaged tramsg without affecting
bisimilarity. We shall show this for any BRS that &mple unary, unambiguousnd
affine We now define the first three of these properties (we comdftnealater); they
are satisfied by a wide range of BRSs, including finite CCS.

88 CHAPTER 8. BIGRAPHICAL REACTIVE SYSTEMS

Recall that a link isopenif it is a name, otherwiselosed Also recall from Defini-
tion 8.5 that a parametric redex is lean and has no idle namests. We now submit
it to further constraints:

Definition 8.12 (simple, unary) A parametric redex isimpleif it is

— open every link is open
— guarding no site has a root as parent
— inner-injective no two sites are siblings.

A parametric redex isinary if its outer face is unary. A reaction rule gmple or
unary, if its redex is so. A BRS isimple orunary, if all its reaction rules are so. [J

Simpleness is not a severe constraint. For ‘guarding’ andefi-injective’ one can
argue convincingly that they only exclude redexes that gheleunnecessary because
their work can be done by other rules, or over-permissivabse they allow wild
reconfigurations. The ‘open’ constraint limits expresgiegver somewhat, but greatly
eases analysis; and it is remarkable that the rules reqtoretbdel CSP, CCSy-
calculus, Petri nets and mobile ambients are all open.

All the conditions in Definition 8.12 pertain to individuaaction rules. But there is
an important condition that pertains to a $8tof rules, and is concerned with how they
relate to each other. Recall that an engaged transitiéas; o’ based on a parametric
redexR is one in whichja| N |R| # 0. Thus ‘engaged’ is a property of a transition
together with its underlying redex. Indeed, a transitioryim@engaged if it arises from
a redexR, but disengaged if it arises from another redex

Definition 8.13 (ambiguity) A label of a transition systeni is ambiguousf it oc-
curs both in an engaged and in a disengaged transition. Aiti@msystem i@mbigu-
ousif it has an ambiguous label. O

EXERCISE 8.2 This exercise deals with place graphs. Take two con#oB : 0,
with B atomic. LetR = Ao(id;|B) and R" = B be the redex and reactum of a
parametric rule. Note that has one siteR’ has none.

Prove that the prime transition——«’ is ambiguous, where = «’ = BY and
L = A% o (id; | B*). (The superscripts on ions denote their nodes.) O

Under certain conditions, one of which excludes ambiguityshall be able to re-
duce the transition systemnt to one containing only engaged transitions. Our sub-TS
will be restricted to prime agents, and we constrain everglla in a prime transition
to be unambiguous, i.e. tHetransitions are either all engaged or all disengaged.

Recall from Definition 3.19 the notion of tight bigraph. Roughly speaking (the
definition is precise) a bigraph is tight if, when it occurs within some prime agent
andg is ‘split’ into two parts each containing a non-empty partiyfthen these two
parts must be non-trivially linked. The instance that consais is whery = Loa,
wherea andL are the source and label of a transition, &hid a parametric redex. The
following is proved in Appendix A.5:

8.2. DYNAMICS FOR A NICE BRS 89

Proposition 8.14 (unambiguous label)Let L. be the label of a prime transition in
MT, in a safe BRS where every redex is simple, unary and tightn Te labelL is
unambiguous.

We now define a sub transition systenmvaf with unambiguous labels and engaged
transitions:

Definition 8.15 (prime engaged transition system)In a safe concrete BRS, assume
that every parametric redex is simple, unary and tight. Reebe the sub-TS ofT
consisting of

Agt,. —all prime agents at certain interfaces

Labpe —the labels of all prime engaged transitions with' € Agt,.

Apl,c —the restriction ofApl,,; 10 Agt,. X Labpg

Trape —the restriction ofTrayr t0 Aplse X Agtp - O

The agent interfaces are typically determined in terms @ftirting of the BRS.

We now summarise as a theorem what we have established ddéamain result
is that, under certain conditions, tightness ensuresrtha definite? It appears that
tightness holds for a wide range of calculi, including CC&trimets and the calculus
of mobile ambient

Theorem 8.16 (prime engaged transitions are definite)n a safe concrete BRS where
every parametric redex is simple, unary and tight:

(1) Every label ofPEis unambiguous
(2) Every transition oPEis engaged
(3) pEis a definite sub transition systemmf

(4) ~ur C ~perestricted to prime agents.

Proof (1) follows from Proposition 8.14, since for evefy€ Labye there is some
engaged_-transition inTrape. (2) follows directly from the definition oPg, Defini-
tion 8.15. (3) follows from the definition of ‘definite’, Defition 7.18. (4) is a direct
corollary of Proposition 7.19. O

Clause (4) of the theorem prompts us to ask whetteers faithful to M7, i.e.
whether the bisimilarities coincide on the agenteef The following example, due to
Ole Jensen, shows that sometimes they do not:

4In [65], Corollary 9.14, it was wrongly stated that anothendition fulfils this purpose —namely that
the BRS should lackubsumptionin a precise sense. The theory was applied there only to @@Soaa
class of Petri nets, whose rules are in fact tight, so notfélsg was deduced.

It must be emphasized that tightness is just one conditiahekcludes ambiguity, and suffices for our
present purpose. Other conditions, possibly weaker, méyewist.

5See Jensen [46].

90 CHAPTER 8. BIGRAPHICAL REACTIVE SYSTEMS

Example 8.17 (unfaithful engaged transitions)LetL : 0 be a non-atomic control, and
let M:1 andN:0 be atomic. For the atomic controls, adopt the conventioh tha
meandM,..1 andN means\.1. Consider the following two reaction rules:

L.d — d|d
M, | M, —> M, .

This defines a BRS that is safe, simple and unary. Howeverawexhibit two agents
a andb such thata ~pe b buta #yr b. Leta = /xoM, andb = N. Neither has

an engaged transition, hen¢eo M, ~pe N. (The closure/xz prevents an engaged
transition bya.) But each can do a uniquetransition, distinguishing them as follows:

/,TOMI LD /.’L'o(Mm | MI) ib /xoMm
N-Lts NN 2.

ThusPE is not faithful tomT. O

The unfaithfulness in this example depends upon the inierabetween closure and
the replication caused by the ruled— d | d. We shall therefore be content to prove
faithfulness of prime engaged transitions for BRSs that taplication, i.e. the instan-
tiation mapn in every reaction rule is injective.

Definition 8.18 (affine, tight, nice) A reaction rule isaffineif its instantiation map,
is injective, andight if its redex is tight (see Definition 3.19).

Areaction rule iniceif it is safe, simple, unary, affine and tight. ABRBG(X, R)
is niceif all its reaction rules are nice. Similarly for an abstrB&S BG(X,R). O

We have adopted the term ‘nice’ to avoid repeated adjectiMes following results are
for nice BRSs, though they may well hold under more relaxedld@mns.

We now assert the faithfulness theorem. It depends on orkefucondition,
namely that the interfaces of prime agents are chosen sahbwptare allhard, as
defined in Definition 6.2. The full proof is in Appendix A.6.

Theorem 8.19 (engaged transitions are faithful)in a nice BRS, lePE be a prime
engaged transition system whose agents are hard. Then

(1) peis faithful to the minimal transition systexr.

(2) ~peis acongruence.

We are now ready to transfer the congruence results of Goydl8 to nice abstract
BRSs, just as we did for safe abstract BRSs in the previoumgsedote that niceness
is independent of the concrete/abstract distinction; &i&ia BRS is nice if and only
if its lean-support quotient is nice.

Corollary 8.20 (behavioural congruence in an nice abstracBRS) Let 'BG(X, R)

be a nice concrete BRS, aBa: (X, R) its lean-support quotient. Assume that the agents
of the prime engaged transition systemare hard. Let~p¢ denote bisimilarity both
for PEIn "BG(X, R) and for the corresponding bisimilarity induced@ Then

8.2. DYNAMICS FOR A NICE BRS 91

(1) a ~pg b iff IIG]] ~pE IIb]]
(2) Bisimilarity ~pg is a congruence iBG(X,R).

Proof Itisroutine to check thatErespects lean-support equivalence. The result then
follows from the faithfulness theorem, Theorem 8.19, thgetvith Theorem 7.23[]

The reader’s patience may be taxed by the various conditiensave imposed in
this chapter, to achieve reasonable properties of behavibe bigraph model may be
considered too permissive! But a broad framework has seemegssary, to embrace
a variety of existing process calculi; and something isfedifrom discovering, within
such a framework, properties which those calculi share anidhwexplain why they
work well. This knowledge will be useful for the inventionwéw specific calculi.

On a broader frontier, there are applications whose stre@nd reactions can be
formulated as BRSs, but where the concepts of labelled itirmmsystems and be-
havioural equivalence are less relevant. Such applicaitos likely to arise in biolog-
ical systems and in ubiquitous computing.

92

CHAPTER 8. BIGRAPHICAL REACTIVE SYSTEMS

Chapter 9

Behaviour in link graphs

In this chapter we explore the behaviour of our two exampidisk graphs: arithmetic
nets and Petri nets. These were both introduced in Chapésrdjplications of many-
one sorting. The simple algebraic manipulations of linkpipsin this chapter are
analogous to the algebra developed for bigraphs in Chagter 3

9.1 Arithmetic nets

In Example 6.11 we introduced arithemetic nets as a simpengle of link graphs.
With the many-one sorting discipline they constitute(E ,,i:n), with signature

Karith = {0:s, S:ts, +:tts, —:ts} .
Here again are the atoms, and the typical net, that were shoExample 6.11:

S NG
G}J xk>j, M S

The net represents the equatigns= S0 + (0 + z) andz = S0 + (S0 + (0 + z)),
with many shared subexpressions. Here we brigg>L,) to life with a setR i
of reaction rules, shown in the following diagrams. They tleeforwarder ‘-’ to
avoid links containing more than one outer name. The questiark 2’ denotes any
node (with one or more target ports). The rules define a li@dphical reactive system
LG(ZarithiRarith)-

1See [55] for work that covers both the theory of link graphd e applications treated here.

93

94 CHAPTER 9. BEHAVIOUR IN LINK GRAPHS

(1)

o 1 Yo y1 o 11

M@J

Zz Yo y1

As these pictures show, link graph diagrams are simplertthase for bigraphs. Since
there are no places, there is no role for dotted rectangpgesenting roots or sites. A
node is no longer a place, so the nodes can contain nothigrgftre links never cross
boundaries; this removes the need for blobs to represett, gince their purpose in
bigraphs is to distinguish ports from crossing-points.

EXERCISE 9.1 Apply the three rules as far as possible to the typical netiposly
shown. You should obtain a net which represents the equatioa S0 + = and
z = 850+ x. Propose some extra rules, besides rule (3), for tidying ngta O

If a net has cycles then our evaluation rules will not ‘soligin the sense that they
solve the typical net by ‘expressing’ and z in terms ofx. However, reaction is
well-behaved. To establish this, we shall first show thattiea for arithmetic nets
is strongly confluentthat is, if g——> go andg— g1 then there existg’ such that if
go—> ¢’ andg; —> ¢’. Giveng, define acritical pair to be a pair, r; of distinct
redexes occurring ig and sharing at least one node. For examglmay contain a
critical pair, represented bf, consisting of two redexes of rule (1) sharing&node.

@4
You may check that if either redex is applied first, then theeostill exists; moreover,

the resultf’ of applying both is the same, independently of the order.

Proposition 9.1 (confluence)With the rules (1), (2) and (3) as defined, arithmetic
nets are strongly confluent.

EXERCISE 9.2 Prove this.Hint: First show the confluence property for disjoint re-
dexes; then enumerate and examine every possible critigal p O

9.2. CONDITION-EVENT NETS 95

Let us now confine attention to what we may @dplicit nets those which have no
cycles (as defined in the next paragraph), no inner namegwadnames all with sort
s. The latter condition excludesin the typical net shown at the start of this section,
since it has sort. Itis clear that ifg—> ¢’ andg is a explicit net, then so ig’. Then
our rules will evaluate every explicit net to a unique norfieain—a net to which no
rule applies—representing equations that express eaeh maine as a numeral of the
form S - --S0.

To justify this claim we should define a well-founded measafrexplicit nets that
is is decreased by every reaction. This is not so easy; ittismaugh to measure a net
simply by its number of nodes, because rule (1) increassgthantity. The following
is helpful: Define gathto be a sequence), k1, v1, ko, v, . . . Of nodesy; and natural
numbersk;, where for each contiguous triple k£, v’ there is a link from the-port of
nodev to thek* t-port of nodev’. A path may be either infinite, or finite—of length
n—ending in some,,. A cycle is a path withy,, = vg; it generates an infinite path.
With the help of the notion of path one can prove

Proposition 9.2 (termination) Every reaction sequence of a explicit net is finite.

EXERCISE 9.3 Prove this.Hint: What quantity, in terms of paths, is decreased by
every reaction by rule (1)? Using this, construct a wellrided linear ordering that is
reduced by every reaction of a explicit net. O

From Propositions 9.1 and 9.2 we finally deduce

Theorem 9.3 (normalisation) Every reaction sequence for a explicit net with outer
namesg; terminates in a unique normal form, representing the exgioesof eachy; as
a numeral of the forny' - - - S0.

We leave the theory of arithmetic nets at this point. It canekiended to the
derivation of transition systems, but our main aim has beehbw that the graphical
representation is at least convenient, and even helpfalnalysing a reactive system
other than a process calculus.

9.2 Condition-event nets

In Example 6.13 we introduced a class of Petri nets caltedlition-evenhets, or c/e
nets. We defined a many-one sorting disciplifyg.; for them, and we now recall that
such sortings are always safe. Here again is our example saits, of a typical c/e
net:

96 CHAPTER 9. BEHAVIOUR IN LINK GRAPHS

y:s
S
o tH
U t U
Eio
t s
—— U
11 [t
t
E
M 1]t
Q-

These nets form a link-graphical s-categarys (X,etri), Where names have two roles.
First, they provide the interfaces through which nets aramused; second, they pro-
vide a means to observe the behaviour of nets. So we now pfdoegefine what
an observation is, and when two nets are behaviourally atgriv. Since c/e nets are
modelled in link graphs, our results depend on a behavidbeadry for link graphs
analogous to the theory for bigraphs. We shall not give thetdithis theory, which is
fully developed elsewhere. The reader can rest assuredaltitae relevant concepts
and properties are analogous to, though often simpler thase in bigraphs.

Several ways to compose nets have been defined in the Pelitersture, and they
typically lead to a notion of behavioural equivalence. liniteresting to see how such
notions compare with ours, which is based upon derived ittans. To make such
a comparison we here define behaviour in two independent.waie first is by a
raw transition system, whose bisimilarity requires no {griaph theory; the second is
by the derived system of engaged transitions, and on theacteaisation of derived
transitions in terms of RPOs.

We are able to prove that the two bisimilarites coincide.oltofvs that the raw
bisimilarity is a congruence, since the derived one is kntare so. We omit here two
important steps in the published préofirst that the engaged transitions are indeed
faithful to the minimal transition system, and second thatd¢ongruence of the result-
ing bisimilarity is transferred from concrete to abstrack lgraphs. The conditions for
these two results in link graphs—analogous to our Theord® &nd Corollary 8.20—
are simpler in link graphs than in bigraphs.

We shall therefore work in concrete link graphs; at the endshadl transfer our
results to abstract link graphs. As a first step we define ativeasystem CE =
"LG(Epetri, Rpetri), Dy adding reaction ruleR i 10 "LG(Zpetri). These rules must
be based upon the usual firing rule for c/e nets, namely:

an event with all pre-conditions and no post-conditionskadmay ‘fire’,
thus unmarking its pre-conditions and marking its posteions.

Since we have indexed our event controls by the number ot@nelitions and post-
conditions, Rti Will contain one reaction rule for each event contg),. Forh = 1
andk = 2the rule is drawn as follows (the diagram can be interpretbeeas concrete
or as abstract):

2See [55].

9.2. CONDITION-EVENT NETS 97

x n Y2 €1 Yy Y2

A reaction rule for condition-event nets

How may we conduct experiments, or observations, on a doneltvent net? To
simplify matters, let us assume that we are concerned ortly thhe behaviour o$-
nets—those nets whose interfaces contain antyames. Thus every outer name is the
name of a condition. We shall adopt the following form of esipeent: the observer
can detect and change the state (marked or unmarked) of amgcheondition. For
example, our illustrated net can do nothing by itself (nongév@n ‘fire’), but if the
observer gives it a token atthen thek,; event can fire, followed by either the middle
event or thek |, event; after the latter the observer can remove a tokgnaatd so on.

So we capture behaviour in the form of a raw transition sysfepwhose agents
are the ground-nets in"CE. lts transitions are of three kinds:

aXZsq add atoken at

a—=>a remove a token at
a——>a an event withim fires

A condition holds at most one token, so for each named camditexactly one of the
first two transitions can occdrThus the label$ in £, take the formt-z, —z or 7, and
they are applicable to all the agents. We denote the bigiityilaf £, by ~,.

We now turn to derived transitions. Because many-one gpisirsafe,”CE has
RPOS; hence the minimal transition system exists. Furthermore, the ruléR are
such that the engaged transitions are faithfud1g hence they generate the same bisim-
ilarity asmT. Let us denote the engaged transition systenfhyand its bisimilarity—
which is a congruence—by,. We now proceed to characteriZg; it corresponds
to the prime engaged TS in a WRS, but that notion of prime igmtis link graphs.
Thereafter we shall prove thai, coincides with~,.

Alabel L in L, takes two forms; up to isomorphism, either it is just an idgnor
it is the product of an identity with an opamet having exactly ongy,;-node, linked
to zero or moreM-nodes as pre-conditions atiinodes as post-conditions. Since
transitions are engaged, it contains strictly fewer thank such conditions (because
the agent must supply at least one). A labealpplies to an agent iff the composition
Loa exists. _

For the identity labels, we note thatds o’ iff a—>a’; an identity label signifies
a transition with no help from the context. A typical non+idigy label for the cas&o;
is shown here:

3A r-transition is not really an observation, as it occurs withihe observer’s participation. We have
defined what is called atrong bisimilarity. To avoid givingr-transitions the same status as others, it is
standard practice to adoptakbisimilarity instead.

98 CHAPTER 9. BEHAVIOUR IN LINK GRAPHS

A typical label inZ,

It lacks one pre-condition and one post-condition, to bepkagd by the agent. The
dashed link indicates an identity on zero or more names.

The diagram below shows the anatomy of a transitieh ’ with this label. Note
thata’ takes the fornl o @. In what follows we shall often write for as-net that differs
from a only by the marking or unmarking of some conditions; we dadl iesidualof
a. We see that a single transition may change the marking efabnamed conditions
of a. Any other agenb with the same interface aswill have a similar transition,
provided only that it has the same initial marking of its nanzenditions.

o
e

Anatomy of a transitiom = a’ in £,

The two TSsL, and L, are significantly different, so it is not clear that they will
induce the same bisimilarity. We shall now prove that theydoWe shall first show
that ~; C ~, in "CE. This asserts that if we can distinguish teoetsa andb by
using ‘experiments’ that are labels ih of the form+z, —z or 7, then we can also do
so using ‘experiments’ that are labelsfy, i.e. certain link graph contexts. So among
these contextual labels we look for those that can do the fdbeoexperiments-z,
—z andr.

It turns out that the contextual label to mimic an experimentor —x need only
involve a singleE; event; it takes the forn® @ id, whereP is respectively ainput
or output probe The probes are denoted by, andout,., and are shown in the first
column of this diagram:

9.2. CONDITION-EVENT NETS 99

PROBE SPENT PROBE TWIG
T z T z T
INPUT) @ P2
ing Ny in,
x €T x
x z x VA X
OUTPUT b) \/‘
outy, out,, out,
X €T X

Probes for observing transitions irs-aet

The second column shows tepentprobesP, residuals of the probes that result from
firing their events. The third column shows the spent prokigstiveir post-conditions
closed; they are defined by, « [zoing., andout; &= /zoout,.. In these expressions
we have omitted identities; for exampleoin,. abbreviates/> ® id,)oin,.. We use
the term ‘twig’ for these closed spent probes, because, tipetequivalence-,, they
can be ‘broken off’. The intuition is simply that a twig occing anywhere in a net can

never fire. We express this formally as follows:
Lemma 9.4 For any agent: with = as an outer namein, oa ~g outjoa ~g a.

Again we have abbreviatedn, ® idy)oa to in, oca, whereY are the names aof.
We shall use such abbreviations in what follows, but only inomposition which
determines the omitted identity.

EXERCISE 9.4 Prove this lemmaHint: Prove that{(a,in, ca) | a any agen is a
bisimulation. O

Now to prove that~, C ~, itis enough to show that, is anL,-bisimulation.

For this, suppose that ~ b, and leta—— in £,. We must findb such thab =
anda ~g b. If £ = 7 this is easy, because then our assumption implies the oeacti

a—>a, and hence -4z in L; but then by bisimilarity inC, we haveh -9+ b ~, @,
and by reversing the reasoning fowe get thab b and we are done.

Now let¢ = +z (the case forz is similar), so thau-%>a. This means that
has an unmarked condition namegdso that in£; we have

ing,®id / — _
qRe=8d, o — iNg,oa .

100 CHAPTER 9. BEHAVIOUR IN LINK GRAPHS

Hence by bisimilarity inC; we have
be=Bs b =i, 0b

wherea’ ~; b’ andb is the residual ob under the transition. This residuabiffers
from b only in having a marked condition namedhat was unmarked ib, and hence
we also havé 2> in £,. It remains only to show that ~, b. We deduce this using
the congruence of, and Lemma 9.4:

a ~g in;oa = /Zoinmzoa = /Zoa/
/) e T _ T 7
~g [zobl = [zoingob = injob ~g b.

Therefore we have proved what we wished:
Lemma 9.5 ~; C ~,in CE.
It remains to prove the converse;, C ~; . It will be enough to prove that
S € {(Coa,Cob) |an~ b}

is a bisimulation up te=. We get the required result by considering the a@se id.*
So let us assume that~, b, and thatC o a 2+ "’ in Lg. (This includes the case
thatM = id.) Then there is a reaction ruteand contex?D such tha{ M, D) forms an
IPO for (Coa,r), as shown in the left-hand diagram, arfti= D o7’.
We now take the IPQL, A) for (a,r) relative to(M o C, D), and properties of
IPOs yield the right-hand diagram, in which the upper sqisatéso an IPO:

M M
_ =
CT Tc'
Coa D L D

IPOs underlying transitions @f - a anda

So there is a transition—— o/, wherea’ = Aor’; note also that” = C’od’. Up to
isomorphism, eithef, is an identity or it has a single event node.

If L =idthena——>ad/, hencen——>a’ in L,. Sincea ~, a’ we haveb— b’ with
a' ~, b'. Then alsd - ¥/, with underlying IPO as in the left-hand diagram below:

4The proof outlined here resembles that of Theorem 7.16,dhgraence theorem. The replacement of
one IPO by another relies, as in that proof, on the fact thapae translation preserves IPOs; here we omit
that argument. The present proof is simpler; there is n@ondaf either width or active control in link graphs,
so the location index in transitions and the argument abciitity can both be omitted here.

9.2. CONDITION-EVENT NETS 101

e
U

F—

IPOs underlying transitions éfandC o b

. We then proceed, as in the non-identity case below, to noetghe right-hand dia-
gram and to find” with C' o b2+ 5" and(a”,b") € S=.

If L has an event node then we consider the anatomy of the taamsitf— o/, as
exemplified in an earlier diagram. We know that the residudiffers froma only in
the changed marking of zero or more named conditions. bicdltherefore that i,
there is a sequence of transitions

aé—lbal ce bn

ba, =a (n>0)

wherel; € {+z;, —x;}; each transition marks or unmarks a single named condition.
Moreovera’ = Loa. Sincea ~, b there exists a similar sequence

blsp, . Loh, = b

with @ ~, b. This implies thab has the same initial marking agor the named condi-
tions involved in the transitions. But we know thiat b is defined (since we assumed
MoCob = C'oLob to be defined), so i, there is a transition ' = Lob.

Its underlying IPO is shown in the left-hand diagram abovisoAt has an underlying
reaction rulg(s, s’), with o’ = Bos’. Now we form the right-hand diagram by replac-
ing this IPO for the lower square in the previous right-haiadjchm. Since both small
squares are IPOs, so is the large square; therefore it igglan’,-transition

M def
Cob—+V"=FEos'.

To complete our proof we need only show that the e, v”) lies inS™=. We already
know thata” = C’oa’ = C' o L o@. We can now compute

V' =Fos' =C'oBos' = (C'ob = CIOZOB,

and hencéa”, b") € S= sincea ~, b. It follows that~, C ~.
So we have proved the coincidence of our two bisimilarities:

Theorem 9.6 (coincidence of concrete bisimilarities)n "CE the two bisimilarities
~g and~, for concretes-nets coincide. Hence, sineg; is a congruence, so alsos,
is a congruence.

We now transfer this result to abstraatets. We may regard the creation of an abstract
contextual TS, as an instance of the three-step procedure defined at the &nchp-

ter 7. The starting point is an abstract reactive sySBF LG(Rpetri), WhereR e

are the reaction rules depicted earlier, regarded as abstitas. The three steps are

102 CHAPTER 9. BEHAVIOUR IN LINK GRAPHS

(A) create the concrete reactive systeé@E, whose reaction ruleSR e are lean
preimages oR,eiri Under the lean-support quotient funcid,

(B) Derive the minimal transition systefy = MT in "CE, and use the analogue of
Proposition 8.9 to ensure that it respects lean-suppoitaience<;

(C) TransferZ, to CE by Definition 7.22, which applies the functpf to every link
graph in every concrete transition.

At the conclusion of the process, Theorem 7.23 ensuresthigta congruence iCE,
and characterized by ~, b in "CE iff [a] ~, [b] in CE.

Finally, it is clear that the raw transition systefi also respects-, so Theo-
rem 7.23 also ensures that~, b in "CE iff [a] ~¢ [b] in CE. Putting these facts
together with Theorem 9.6 we arrive at

Corollary 9.7 (coincidence of abstract bisimilarities) In CE the two bisimilarities
~g and~, for abstracts-nets coincide, and are congruences.

This result provides evidence that the general notion ofbieliral theory in bi-
graphs and link graphs is compatible with a notion specifa particular model: con-
dition/event nets. Further evidence is provided by oursafdCCS in Chapter 10.

This concludes our study of behaviour in link graphs.

Chapter 10

Behavioural theory for CCS

In this chapter we shall see how our dynamic theory for a nie& Ban be applied to
recover the standard dynamic theory of CCS.

Section 10.1 deals mainly with the translation of finite C&%® bigraphs, covering
both syntactic structure and the basic features of readtitmegins with a summary of
all work done on CCS in previous chapters, in order to gatienthole application of
bigraphs to CCS in one chapter. It then presents the tramslatto bigraphs, which
encodes each structural congruence class of CCS into & &iigghph. It ends with the
simple result that reaction as defined in CCS terms correperdctly to reaction as
defined by bigraphical rules.

Based upon this summary, Section 10.2 lays out the contexéuresition system
derived for finite CCS by the method of Chapter 8, recallingt tits bisimilarity is
guaranteed to be a congruence. This congruence is finerhibaniginal bisimilarity
of CCS. This is because the original is not preserved by gutish; on the other hand,
our derived contextual TS contains transitions that olestire effect of substitution on
an agent, and this yields a finer bisimilarity that is indeesbagruence. By omitting
the substitutional transitions from the contextual TS, hentobtain a bisimilarity that
coincides with the original.

This contextual TS is more complex than the original raw @igge its labels are
parametric. But we are able to reduce it to a smaller faittdatextual TS whose labels
are no longer parametric, and this corresponds almostlgxeith the original raw TS
for CCS.

Section 10.2 ends with a brief analysis of the strength ofcthregruence for the
derived system, including its substitutional transitions

10.1 Syntax and reactions for CCS in bigraphs

We begin this section with a summary of what has been done iv@ @CS in previous
chapters. The summary takes us as far as reaction for CCSortireg disciplin€
was given in Definition 6.5, and the rule-sRt.s consists of the single rule given in

103

104 CHAPTER 10. BEHAVIOURAL THEORY FOR CCS

Example 8.1. Together, these define the abstract BRS

def

BGccs - BG(Ecc57Rccs)-

We then amplify the summary, by proving that the translatib@CS into bigraphs as
completely accurate; in particular, that it respects $tnat congruence.

Syntax for finite CCS (Definition 6.3)

P, Q range oveprocesseand A, B overalternations(sums).

processes P == A | vaP | P|P
alternations A == 0 | u.P | A+A
actions p == T |z

Structural congruence (Definition 6.4)

Structural congruence is the largest equivaleag@eserved by all term constructions,
and such that

1) P=,QimpliesP =@, and A =, BimpliesA = B;
(2) | and+ are associative and commutative underandA + 0 = A;
(3) wvavyP = vyvaxP;
4) vaP=P andvz(P|Q) = P |vzQ foranyz notfreeinP;
(5) vax(A+p.P)= A+ pwvzP foranyz notfreeinA or pu.
Sorting discipline (Definition 6.5)
The CCS place-sorting..s has sort®.s = {p, a} and signature
Kes = {alt: (p,0), send: (a, 1), get: (a,1)}.
Yees is hard for sorp (Definition 6.2), and also requires that

all children of a root- : § have sort), and
all children of a node : 6 have sort opposite .

Translation to bigraphs (Definition 6.6)

The translation of finite CCS into ®.; maps processes and alternations respectively
into ground homsets with unary interfaces of the fapnX) and(a, X). The maps
Px|[-] andAx -] are defined for arguments whose free names are includ&d in

Axlo] = X1

Px[A] = a|t.Ax[A] AX[xP] = send, 'Px[](EX)

'Px[VxP] = /yopywx[{y/m}P] Ax[acP] = get 'Px[] (z EX)
Px[P|Q] = Px[P]|Px[Q] Ax[A+B] = Ax[A]| Ax[B].

10.1. SYNTAX AND REACTIONS FOR CCS IN BIGRAPHS 105

Bijection of the translation (Theorem 6.7)
(1) The translation®x[-] and.Ax -] are surjective on prime ground homsets.

(2) P=Qiff Px[P]=Px|[Q], and A = Biff Ax[A] = Ax|[B].

Safeness of CCS sorting (Proposition 6.9)

Yees iS a safe sorting.

Parametric reaction for CCS (Example 8.1)

R . ,
Calt (alt

alt. (send;.dg | dy) | alt. (get,..d2 | d3) x| dy|de

This parametric reaction rulgk, R’, n) is the only reaction rule for CCS in bigraphs.
The controlsilt’, ‘ send’ and ‘get’ are all declared to be passive. The parametric redex
R = alt. (send, | id) | alt. (get, | id) has four sites, to be filled by arbitrary parame-
tersdy, ..., ds. Sites0 and?2 are for processes, and sitesind3 are for alternations
(summations). The reactuf = z |id | id has two sites, to be filled by parameters as
dictated by the instantiation map represented by back-pointing arrows. The placing
of parameters is also shown by the algebraic expressioantederst and3 of R are
discarded by the rule.

This concludes our summary of work from previous chapters.naiv amplify it
by proving the structural accuracy of the CCS translatitaineed in Theorem 6.7.

Let us first give more detail of the proof of the theorem. Caontwy the structural
congruence laws note that clauses 4 and 5, taken in revélse,aarestrictionva to
be pulled outwards from any parallel component and any sumdmespectively. This
gives rise to the following:

Proposition 10.1 (CCS normal form) Every CCS process is structurally congruent
to anormal formvzy - - - vay P (k > 0), whereP is anopen process forraontaining
each name; free. Open process forms are defined recursively as follows:

e anopen process foris a process tern#, | - - - | P,, (m > 0), where eactP; is
an open sum form;

e anopen sum forms a summation termt; +- - -+ A,, (n > 0), where eachd,,
takes the formu. P for some open process forf

Normal forms are helpful in the following:

106 CHAPTER 10. BEHAVIOURAL THEORY FOR CCS

EXERCISE 10.1 (not needed for what follows) Prove Theorem 6.7. Here is @ ou
line, with suggestions on how to complete it.

(1) We have to prove that the translati®y [-] is surjective on the homset—(p, X),
and thatAx[] is surjective ore —(a, X'). Every well-sorted agent in these homsets
can be built from smaller ones. (For example, a non-basiotagfesorta is built either
from two others by merge product, or from an agent of pdsy nesting.) This allows
one to prove, by induction on the size (number of nodes) ofgenta that there is
always a CCS process or alternation that translates inMate specifically, one first
proves the following for albpenagents, by induction:

for all open agents : e —(p, X) there exists for whichPx [P] = g, and
for all open agentg : e —(a, X) there existsA for which Ax [A] = f.

The basis of the inductive proof is that there exists a CGSradtion (which one?) that
translates into the unit: e —(a, X). The inductive step is that, as you make a bigger
agent (of sorp or a) either by adding a single node or by forming a merge product,
you can each time find a CCS process or alternation that &@ssihto it.

Having done this proof for open agents, finish by showing #vatry agent with
closedlinks (formed by closure, of course) is also the translatiba CCS agent.

(2) The forward implication needs a lemma which can be prdwethduction on the
structure of process normal forms:

Lemma P =, Q impliesPx[P] = Px[Q], and
M =, N impliesAx[M] = Ax[N].

Then the main property can be proved by a similar inducticou May wish to prove
the main property first, assuming the Lemma (which is harder)

For the reverse implication the task can be reduced to pgothie property by
induction on the structure of ground bigraphs. An imporsdep is to show in bigraphs
that if a; (i € m) andb; (j € n) are ground molecules such that| --- |a, =
bi| - | by, thenm = n, anda; = b ;) for some permutation onm. O

Having established the structural accuracy of the traieslatve turn to dynamics.
Finite CCS has the single reaction rule

(z.P+A)|(z.Q+B)— P|Q,
which may be applied anywhere not under an action prefix. @other hand in B
we have the single reaction rule from Example 8.1. It is easleimonstrate that there

is an exact match between the reaction relations generate@$ and in B, in the
following sense:

Proposition 10.2 (comparing reaction) P — P’ iff Px[P]—>Px|[P'].

10.2. TRANSITIONS FOR CCS IN BIGRAPHS 107

10.2 Transitions for CCS in bigraphs

So far all our work has been done in the abstract BRg.B especially in characteriz-
ing its reactions. We are now ready to conduct the threegstegedure defined at the
end of Chapter 7, in order to develop the behavioural thebB/@ .

For step (A) we define the concrete BRS

def ~

‘BGccs = BG(ECCSa\RCCS) 5

this is just the s-categorBG(X..) equipped with the reaction rulé® s, which are
all lean preimages of the single abstract ruleRfs under the lean-support quotient
functor[-].

As step (B) of the procedure we definethe prime engaged contextual transition
system (Definition 8.15), and assert that:

Corollary 10.3 (concrete bigraphical bisimilarity for CCS) The bisimilarity~p¢in
"BGs IS a congruence.

Proof The result depends on the proof that the CCS redex is tightEgercise 3.4.
After that it is straightforward to check thaBG. is nice Definition 8.18, and that
the agents oPE are hard;X.s ensures the latter. The result then follows from the
faithfulness theorem, Theorem 8.19. O

This completes step (B). For the final step (C) we transfetréngsition systenre
to the abstract BRS &, as dictated by Definition 7.22. We would like to know that
this yields a transition system whose bisimilarity is againongruence. Let us use
the termpPE both for the concrete transition system and for its abstnaate under the
quotient by[-], and let~c denote the bisimilarity in both cases. Then, because of nice
ness, finally by Corollary 8.20 we deduce congruential hisirty in our bigraphical
representation of CCS:

Corollary 10.4 (abstract bigraphical congruence for CCS)

(1) Two processes are bisimilargg) in BG. iff their concrete pre-images are
bisimilar in "BGecs.

(2) ~pgis acongruence iBGgcs.

This completes our procedure for deriving a transitioneaysand behavioural con-
gruence for CCS. We devote the rest of the chapter to an asaliythis congruence.
This is necessary partly because the original bisimildatyCCS was a congruence in
a weaker sense than ours, and partly because we wish to refirteeigved transition
system, to make it more economical without losing its bitanity.

We begin with a structural analysis of the transitionsirecalling that —in their
concrete form inBG..s—they are engaged.

108 CHAPTER 10. BEHAVIOURAL THEORY FOR CCS

Notation Hitherto we have writtem\o G in applying a linking to a bigraph, thus
emphasizing that linkings are bigraphs in their own righiarf now on in this chapter

we shall abbreviate this composition }d<. For example, the reactum in case 4 of
Figure 10.1is/Zo¥/z0 ---. To save parentheses we also assume such compositions
bind more tightly than a product; thugs | F meang Ao G) | F. O

The transitions oPE are tabulated in Figure 10.1, and we now explain them. The
algebraic expressions can be interpreted either in thezabdRS or (with support
understood) in the concrete one. Every prime transitigh- p’ arises from a ground
rule (r, ") with redex

r = alt. (send;.d -) | alt. (get,.e - +)

where * .’ stands for any further factors in a discrete merge prodara,the pai(p,)
has(L, D) as an IPO, withD active. Alsop shares at least one of the nodes of the
underlying parametric redeR—the twoalt-nodes, theend-node and theget-node.
Sincep has sorp, if it shares theend-node then it must also share the pargtinode;
similarly if it shares theget-node. So there are two sharing possibilities:

e p shares both nodes in one factor®but none in the other;
e p shares all four nodes dt.

The former divides clearly into two symmetric cases. Theetatlso divides into two
cases; either the=nd- andget-ports are joined by a closed link or they belong to
different open links. This explains why the figure has fowsesa

p:1 L:I—J pJ condition
1| /Z(alt.(send,.a --)|b) | idr]alt.(get,.c -) /Z(a]b)|c x ¢ Z
2| /Z(alt.(get,.a --)|b) |idr|alt.(sendy.c =) | /Z(a|b)]|c ¢ 7
Z(alt. dg.ap - - .
3 / ?2;5[.((55;1.;0. .))|) idy /7 (ag | a1 |b) none
4 /Z(alt.(send,.ag - -) Y/ /ZY)z T #y;

|alt.(get,.a1 -) |b) (ao|a1|b) r,y ¢ 72

Figure 10.1: The four forms for a transitipn—> p’ in PE

We show the structure gf, L andp’ in each case, taking account of the fact that
any alt-node shared wittR must occur actively imp. In the tablea, b, ¢, . .. stand for
any processesg (discrete), and-*’ stands for zero or more factors in a merge product;
in the labels of cases 1 and 2 this product must be discreteadh rule, the factor
| b may also be absent. According to our convention for suligtiig, ¥/~ here is in

10.2. TRANSITIONS FOR CCS IN BIGRAPHS 109

the homsetp, X) —(p,Y), whereY = (X \ z) U y; its link map sends: to y and is
otherwise the identity.

The reader will note that the expressions for labels in doietareparametric For
example in case 1, even for fixed there is a family of labeld.,, according as and
the unspecified factors - vary. Moreoverc reappears in the reactuph whereas the
factors * - are discarded. Parametric labels arise naturally wheel$afire contexts.
But as we shall see shortly, in this case the transition systecan be further reduced
to a faithful one whose labels are not parametric.

We now embark on an analysis of these transitions. We shafl ie establish a

. def

promised property. Recall from Definition 6.5 thélt = alt.1.
Proposition 10.5 (unit for merge product) p ~pe p | nil .

Proof We shall prove the following relation to be a bisimulation:

S = {(p, p|nil) | pan agent .

Assume the transitiop—2—p’. Then the paifp, p’) matches the forms in one of the
four cases of the figure. In each case, if we replazgb | nil then we obtain a transition
p | nil—>p’ | nil, and we also hav&/’, p’ | nil) € S so we have matched the assumed
transition while remaining i®.

In the other direction, assume the transitjﬁ)|mili>p”. Then, in all four cases
of the figure, we find thai takes the formd’ | nil andp” takes the formp’ | nil. Then by

replacingb by & we find thatp—2—p’; again we have matched the assumed transition
while remaining inS. This completes the proof. O

We are now ready to compare our derived transition systeimtivé original CCS
transitions. They areaw transitions, using the non-contextual labels

o= T’ZC‘T

where the first two represent sending and receiving a mesaade represents a com-
munication within the agent. Rather than reverting to CQ8ay, we set up the transi-

tionsp N p’ of this raw system directly in B.; this will ease our comparison. The
agents and label of each transition are characterized mr&ig0.2. This raw system
determines a bisimilarity which we shall denotedy.

EXERCISE 10.2 Prove thatp ~s p|nil. Hint: As in Proposition 10.5, show that
S = {(p, p|nil) | pan agent is a bisimulation for the raw transition system. [J

It can be seen that the raw transitions of Figure 10.2 coomsplosely to the first
three forms shown in Figure 10.1; the notable differenchas, tin the first two forms,
the contextual label is composed with the agept, and the resulp’ of the transition
is therefore larger than for the raw transitions.

However, no raw transition corresponds to the fourth (stutsin) form of Fig-
ure 10.1. This relates to the fact that the original CCS blanity is not preserved by

110 CHAPTER 10. BEHAVIOURAL THEORY FOR CCS

P 14 P’ condition
1] /Z(alt.(send,.a --)[b) [Z| /Z(a|b) r¢Z

2| /Z(alt.(get,.a --)|b) |z /Z(a|b) x ¢ Z

Z(alt.(sendg.aq - -
/ |(a|t.((get ,alo.))|b) 7| /Z(ao | a1 |b) none

Figure 10.2: The three forms for a raw CCS transigi;ong—> P’

substitution. Let us defineg, to bePE (Figure 10.1) without the substitution labels.
The subscriptn stands for ‘mono’, because all the labels except the sulistitlabel
are mono. Call the weaker bisimilarity fee,, mono bisimilarity and denote it by,,.
The above remarks suggest that should coincide with the original CCS bisimilarity.
We now verify this claim; the proofis in Appendix A.7.

Theorem 10.6 (recovering CCS)Mono bisimilarity recovers CCS, i.8:y = ~cs-

The proof of this theorem can be interpreted either in thecmte "BG. or in the
abstract B.s. This is natural in view of Theorem 7.23, which relates thaarete
and abstract bisimilarities closely. The same is holds foedrem 10.7 below, which
asserts another coincidence of bisimilarities. In genaralhave worked in a concrete
BRS to establish behavioural equivalence as a congrueiinéehwe have transferred
to the abstract BRS by Theorem 7.23 under the stated conslitio

Let us examine the contextual transition systeemore closely. The raw CCS
transition system is simple by comparison; a raw label sschia much less cumber-
some than the corresponding contextual labge| alt.(get,,.c - -). The latter involves
categorical notation, but more seriously it is doubly pagio—bothc and-- are pa-
rameters. Can this parametric family of labels be replageal$ingle contextual label,
while remaining faithful topE?

This is indeed possible. We define the contextual transgjmtempPE as shown in
Figure 10.3. The only differences from Figure 10.1 are thepser labels in cases 1
and 2, and the corresponding omissiomr &fom p’. The corresponding system without
the fourth case i®E,,. Let us denote the bisimilarities f@e andPE,, by ~ and~,,
respectively.

We shall now show thagg,, is faithful to PE, i.e. that~,, = ~,. (The proof can
easily be extended to shorg,, faithful to PE). Although PE is faithful to mT, the
reduction of transitions in the two cases is different. Inving frommMT to PEwe omit
certain transitions (the disengaged ones) each of whigdisrdant in itself; in moving
from PEto PEwe replace a uniformly definddmily of transitions by a single one.

Theorem 10.7 (non-parametric transitions are faithful) ~,, = ~,.

Proof (outline) We know that-,, = ~s, SO it is enough (and simplest) to prove
that~,, = ~.. We leave this as an exercise.]

10.2. TRANSITIONS FOR CCS IN BIGRAPHS 111

p:1 L:I—J pJ condition
1| /Z(alt.(send.a --)|b) | id;]alt.get,.nil /Z(a|b]nil) x ¢ Z
2| /Z(alt.(get,.a --)|b) | idr|alt.send,.nil | /Z(a|b]nil) r¢ 7
/Z(alt.(send,.ag -) .
3 lalt.(get, a1)| b) ids /Z(ag a1 |b) none
4 /Z(alt.(send,.ag - -) Y/ VAYE: x #y;

(G0|G1|b) $,y¢Z

|alt.(get,.a1 -) |b)

Figure 10.3: The four forms for a transitipn—> p’ in PE

EXERCISE 10.3 Prove the theorem. ABE,, is almost identical with the raw CCS
system, the proof is simpler than the proof of Theorem 1@Ht: It may help to
prove first thap ~, p|nil. O

Having successfully matched mono bisimilarity, to original CCS, we naturally
ask the question: how well does our derived congruence agteeongruences previ-
ously proposed for CCS? The original proposed congruenzehwve shall calk-¢_,,

was defined simply as the largest congruence includeddn Since~ is preserved
by all CCS operationsy ¢, was characterized as follows:

CCs
P~ @Q A forall substitutionsr, o P ~¢s 0Q .
Another candidate ispen bisimilarity which is the smallest relatior?_ such that,
for all substitutionsr,

if P ~2, QandoP L. P/ theno@Q -5 Q' and P’ ~2. Q' for someQ’.

This is known to be strictly finer thar¢ .. How does it compare witk, our derived
congruence? Both are coinductively defined, so it is easydeepthat~ is at least as
fine as~2_, i.e.~ C ~2_. In fact this inclusion is again strict. A counter-exampe t

ccs? ccs”

equality is provided by the pair
P=vz(Z+2)|(y+2) Q=vx(@y+yzT+2)|2)

where we abbreviate.0 to ;. This pair illustrates an interesting point. When traresiat
into BG..s, P has a transition labelled)/y; this can be seen as an ‘observation’ by the
environment ofP that, by connecting the-link with the y-link, it enables a transition
of P that was previously impossible. On the other haRdas no such transition; so
P + Q. But the raw transition system lacks such precise ‘obsmenst and indeed
P NSCS Q'

This concludes our study of bigraphs applied to CCS, whichrkaealed consid-
erable agreement with its original theory.

112 CHAPTER 10. BEHAVIOURAL THEORY FOR CCS

PART Ill : DEVELOPMENT

Chapter 11

Further topics

In this chapter we suggest some natural lines of developfoehigraphs. These lines
have usually been explored to some extent, without reachimgquely best treatment.

11.1 Tracking

S-categories, with their notion of support, allow us to itifgrthe elements occurring
in a bigraph. This has enabled us to derive labelled tramsitiand thence to define
congruential behavioural relations. Hitherto we have usagbort only to identify
elements statically, not to track them through reactioncBging the reaction relation
g—=>¢’, and similarlyg——>; ¢/, under independent support translationg @ndg’,
we forget the history of the elementsgf e.g. its nodes; they could be inherited from
g or they could be newly created.

Let us now see how to track support along a sequenee—> go—> - -- of re-
actions. Suchracking' allows us to express historical properties of behaviour Fo
example, consider a reaction sequepee—*¢’; if a support element of’ can be
tracked back tg this may have significance. It means that an individual camepb(a
node or edge) of still exists ing’, and may be said to be part of the cause of a further
reactiong’— ¢”. Let us look at two reaction rules that might employ tracking

1The word ‘trace’ may be preferred to ‘track’, but it is alrgaoverloaded. In process theory, ‘trace’
means something like a sequence of elementary observatibile in category theory it refers to a kind of
loop-formation in spm categories.

115

116 CHAPTER 11. FURTHER TOPICS

Inrule (1), which appeared in Chapter 1, we may wish to trahekidentity (i.e. support
node) of both the aget and the roonR. This is necessary if we wish to express a
historical statement likethis agent has visitethis room”. We would also like to track
the parameter of the rule—i.e. whatever occupies the shsgigare in any particular
application of the rule.

In the redex of rule (2), acopy’ command refers to a memory registdr Provided
that the register contains &ratom, the effect of the command is to replace itself and
its current contents by a copy of the contents of the regibiehis case we ‘lose track’
of the copy command and all its contents (they vanish), buinag wish to track the
register, and also both copies of all its contents. This iaseavhere two later support
elements are tracked back to a single earlier one; this phenen is calledesiduation
in the A\-calculus and more generally in term-rewriting systems.

In these examples, the support of a node was always trackadtale with the
same control. But this is not always what we want. A simplengple is in Petri nets,
as modelled in Example 6.13; to express a historical prgserth as reachability, e.g.
“this marking is reachable frorthat one”, we have to track the support of each con-
dition node, whose control varies betwedn(marked) andJ (unmarked). Of course
every reaction in a Petri net leaves the net unchanged,iignorarking; so in that case
we expect the reaction rules to track each node in the reatiuire corresponding
node in the redex.

We propose a revision of the definition of reaction to exptessking. First we
adapt Definition 7.1 to admit ground tracking reaction rulesr an s-category:

Definition 11.1 (ground tracking) A basic tracking reactive systei€("R) is an s-
category C equipped with a sefR of ground reaction rules of the fortn: I, ' : I, 7),
where thetracking mapr : |/| — |r| is a partial map of supportsR is closed under
support translations on the supports of a redex and reaatuhe following sense: For
any rule of the given form, and any support relatiprendp’ onr andr’ respectively,
there is also a rulép+r, p'+1’', poro(p’)~1).

We define thetracking reaction relationa—>? o’ to mean thatt = Dor and
a’ = D'or’ for some tracking rulér, r’, 7), whereD = p=D’ ando = 7 W p. If o(s)
exists for a support elemente |a’| , then we calls aresidualof o (s). O

Note that the tracking map in a rule is many-one; this allows for the possibility
that factors of a redex may be replicated by the rule and other factors discarded.
Also, although we still allow arbitrary support translatiof » ands’, as in Chapter 7,
the definition takes care to vary the tracking map accorginginally, in defining
the tracking relation, we ensure that support in the contextacked by a support
translation fromD to D’.

We now adapt Definition 8.5 tparametrictracking reaction rules:

Definition 11.2 (parametric tracking) A parametric tracking reaction ruléor bi-
graphs is a quadruple of the form

R=(R:m—J, R:m'—J n 1),

11.2. GROWTH 117

as in Definition 8.5 but with fourth componentracking mapr : |R'| — |R|, a partial
map of supports. The rule generates all ground tracking mfli¢he form

(Rd, R.d',Two)

whered = dyp ® --- ® d,—1 is a discrete parametef, = dj || - || dp/—1 is the
instance ofi defined byp;+d’; = d,;) for eachj € m’, ando = po W - - - W pyr 1 .

A tracking BRSBG(X, R) has a setR of tracking rules closed under support
translation as in Definition 11.1. O

In connection with tracking, let us briefly examine a refinetnaf reaction rules
that has been studied for many years in the graph-rewritomgneunity, but has so
far been ignored in bigraphs. It consists in identifying at d a parametric redex
that remains unchanged in the passage from the redex toabwine. Let us call it a
contextualreaction rule, and represent the unchanged part by a cafitekjnoring
tracking, a simple form of contextual rule is

(C:J—K, Rem—J, R':m'—J, n).

In generating ground reaction rules the ddiro R, C'o R’) is treated just as previously
the pair(R, R’) was treated. Such explicit contexts allow a finer analysis@possible
conflict between two rule applications within an agentHitherto, two redexes that
overlap would be regarded as conflicting; but if the rulescargextual, and only their
contextual parts overlap, then they need not be regardezhdigcting, since one of the
reactions will not preclude the other.

Now, taking tracking into account, in a reaction by a rulehwgbntextC' we would
naturally track the support @f by a bijective tracking map, i.e. by a support translation.
We leave the details as an exercise.

EXERCISE 11.1 Adapt Definition 11.2 to contextual rules, ensuring thatdbetext
is tracked through reaction. Express rule (1) in the preggdiagram so that the room
R is treated as context. O

11.2 Growth

So far all sets of elements in a bigraph—its nodes, edgesgsiawots, and sites—are
assumed to be finite. In some cases there is good reason;doméx, RPOs do not
exist if an interface may have an infinity of names or placdserg is less reason for
the node-set or edge-set to be finite; but also, there is datyarn having it finitely
generated in some sense.

Consider structural congruence in CCS. A standard way teesemt recursive
definition in CCS has been to introduce a set—even infiniteprotess identifiers
A, B, ..., and to define their meaning by structural congruence axafitie form

A(z,y,...) = Pa

118 CHAPTER 11. FURTHER TOPICS

wherez, y, . .. are name parameters alld a process with free names amang,
P4 may also contain ‘recursive calls’ of the procesdes3, Thus process defini-
tions are treated as rules of structural congruence, anerstwbd as defining the way
a process expression mgsow, or unfold, ad infinitum.

In Chapter 10 we presented all the rules for structural cegigee in CCS, apart
from process definitions; under translation of finite CC$® inigraphs, these rules turn
into equalities. Taking the hint from CCS, can we then treatess definitions by im-
posing structural congruence upon bigraphs themselves?afmthere other uses for
the infinite bigraphs defined by unfolding these definitioll¥® now begin to investi-
gate this question. The theory appears elegant and conginehough to conjecture
that it will help to integrate the treatment of process clilcu

Definition 11.3 (germination) A germination ruleis a pair(Kz, gx) whereKz is a
discrete atom angk : (1, {#}) a lean epi ground bigraph. We c#llaseed

Given a concrete BREC, let A be a set of germination rules each with a distinct
seed not in the signature o€. We assum@\ to be closed under support equivalence.
Extend the signature ofC by the seeds, declaring them atomic. Denote the result by
"C(A); call it agrowing BRS. The same applies to an abstract BRS, omitting closure
under=,

Thegermination relation— A on bigraphs is determined as follows: — A G if
G =Co(id®Kz)andG = Co(id ® gk) for some(Kz, gk) € A and contexC. O

Thus germination replaces a sd€dccurring inG by gk to form G. We shall drop the
subscriptA from — when it is understood. The following depends on the facttthiat
germinations in either arise from the same rule or occur disjointly:

Lemma 11.4 If G — GogndG — (1, then eitherGy = G, or there existg such
thatGy — G andG; — G.

We now define an ordering and equivalence based upon gerarinat

Definition 11.5 (growth order, equivalence) Thegrowth order< andgrowth equiv-
alence=, are essentially the transitive reflexive closure, and timensgtric transitive
reflexive closure, of germination. To be precise:

(1) <a ¥ (—U=)
(2) =AZ (—U—U=)*, O

Again, we shall drop the subscript when understood.

In what follows a hat—as igl—uwill always mean a growth, while a prime as.r
will always mean the result of a reaction or transitidiy, Fi,...) < (Go,Gy,...)
meansk; < G, forall i, andF < G, H meansF’ < G andF < H.

The following properties ok are essential:

Proposition 11.6 (congruence, confluence, independence)

(1) Growth< is congruential: ifF’ < GthenFoH < GoH,HoF < HoG and
F® H < G® H. Similarly for the equivalence:.

11.2. GROWTH 119

(2) Growth is confluent: it7 < Gy, G then there existé such thatGy, G1 < G.

(3) The parts of a composition or product grow independeritlys o F* < G, then
G = Eo F forsomeFE, F such that(E, F') < (E, F'). Similarly for product.

We now begin to justify the claim that growth respects dyreamiVe shall therefore
be concerned mainly with ground bigraphs.

Assumptions In this development we shall relax the assumption adoptézkeiimi-
tion 8.5 that the parametdrof a parametric reaction is discrete. For in a ground redex
r = R.d, althoughR cannot contain seedg,may contain them; when one of them is
germinated we havé — e which may be non-discrete, Then— R.e, and we may
wish R.e to be a ground redex underlying a transition.

Instead, we make the weaker assumption that a paramsheuld be lean and epi;
if d — e thene will also be lean and epi, by our assumption on germinatid@stu
Since discreteness of parameters was useful in Chapterd@ifatynamic theory, we
leave it open how far that theory needs revision in the prasefgrowth.

We also assume that reaction rules are affine; this allow® ygdve Proposi-
tion 11.7, on which later results depehd.

We now assert that, under our assumptions, growth does ee¢pirreaction. This is
because no seed occurs in a parametric redex. Formally:

Proposition 11.7 (growth preserves reaction)in a growing BRS with affine rules, if
f—— fandf < g, theng——= ¢’ for someg’ such thatf’ < ¢'.

Moreover growth can enable reaction, since it can creat@exreTo reflect this we
define a more permissive reaction relation:

Definition 11.8 (growing reaction) Let us use—, with a double arrow head, to
denotegrowing reaction which we define as follows:

f— f'iff g—> ¢’ for someg, ¢’ such that f, f') < (g9,4’) . O

The idea is to allowf to grow in order to enable a reaction. Cleady O —->.
Growing reaction behaves well:

Proposition 11.9 (growing affine reaction)
(1) If f—> f" and D is active thenD o f —= D o f’ whenever defined.
(2) If f— f"andf < g, theng—» ¢’ for someg’ such thatf’ < ¢'.

EXERCISE 11.2 Prove thisHint: For (2) use confluence with Proposition 11.7]

2An alternative assumption would be that the regyltof a generation is open, i.e. contains no closed
links. In binding bigraphs, whergoundlinks are possible in an open bigraph, this assumption \eilldss
of a constraint.

120 CHAPTER 11. FURTHER TOPICS

A good way to think of growing reaction{—) is that it represents the ordinary
reaction relation but executed on fully grown bigraphs §italg infinite), which contain
no generators. Essentially, these represent the equosatdasses oEa .

An obvious question is whethgrowing transitiondehave well. We shall answer
this by showing that, when defined in a natural way, the mihonas do indeed induce
a congruential bisimilarity.

Definition 11.10 (growing transition) A quadruple(f, (L,7), f'), written f <-; f7,
is agrowingtransition if there exists a transitigns; ¢’ with (f,L, ") < (g9, M,q).
It is minimalif the transition ofg is minimal.

Denote by~ the bisimilarity induced by the minimal growing transitsn

How does growth relate to IPOs? It is rather easy to see thkif B then there may
be no IPO forA even if B has an IPO; indeed] may not even have a bound. However,
crucially, IPOs are preserved by growth. We now make thisipee

Lemma 11.11 In concrete bigraphs, assume thatis an IPO for 4, and that an open
atoma : I occurs in4y. Replace this atom in both and B with an epi ground bigraph
g: I whose support is fresh. Then the resultis an IF%), Bl)for (Ao,Al) such that
(Ao, A1, By) < (Ao, Ay, By).

G &
% w/

Proof Under the assumption there are two possibilities: eitheccurs inAy and
Ay, oritoccurs indy andB;. (Note that it cannot occur if3y.)

In the first case we havdy = Cpo(id ® a) and Ay = Cio(id ® a); in the
second casely = Co(id ® a) andB; = Do(id ® a). Sincea is epi, and hence
id ® a is epi, these decompositions are uniquely determined.eSing also open, by
Proposition 5.19 and Corollary 5.21 the main IPO can be vesbinto four and two
IPOs respectively, as in the diagrams. R R

Now, replacea by ¢ in these diagrams, forming,, A; and B;. Sinceg is epi,
the squares containingremain IPOs whem replaces:; so in each case the new full
diagram represents an IPO satisfying the required comditio O

EXERCISE 11.3 State where the assumption thais open and epi is needed, in
building these IPO diagrams. O

11.2. GROWTH 121

Proposition 11.12 (growth preserves idem-pushouts) et A have an IPOB Let
Ay < Ao and |A0|#|Bo| Then there eX|sl41,Bl such that(4, B;) < (Al,Bl)
such that(AO, Al) has IPO(By, Bl).

Proof We know this holds wher is replaced by=. So since< = (— U =)*, we
need only prove it for—. This is immediate by Lemma 11.11, since in applying the
lemma we take: to be a seed, i.e. a discrete atom, which is both open and epil]

We now apply these results. The following is immediate fraimgd@sition 11.12:

Corollary 11.13 (growth preserves transition) If f ——; f andf < g with|g|#|L|,
theng——; ¢ for somey’ such thatf’ < ¢'.

Let us now turn to the ‘growing bisimilarity*~. It turns out that the two bisimilar-
ities are incomparable, as the following shows:

Example 11.14 (incomparable bisimilarities) Consider an example in place graphs.
Let K andL be distinct atomic controls, ard a passive control. LetK, M.K) be a
germination rule andM, id) a reaction rule; thus we have

K— M.K and M.e——>e

for all parameterg. Then~ and~ are incomparable. For on the one hand we have
K ~ L butK # L; on the other hand we haveX M.K butK ~ M.K.

This can be understood as follows. In the first casallows no growth sd< andL
are indistinguishable, while allows growth ofK, enabling a distinction. In the second
case, the lack of growth irr means that the reaction rule can applyMadK but not to
K, while ~ allows growth and thus removes the distinction. O

EXERCISE 11.4 Prove these assertions, at least in terms of engaged toassivYou
may assume that non-engaged transitions play no part inrgoenent. O

Despite this disagreement, bisimilarity for growing triéinss seems the natural
way to represent the behavioural equivalence of infinitegdmgs. To reinforce the
intuition, we now show that this bisimilarity is preservegddll contexts.

Theorem 11.15 (congruence of growing bisimilarity)Letag ~ a;. ThenCoag ~
C o ay for all contextsC' with the compositions defined.

EXERCISE 11.5 Prove the theoremHint: Follow the proof of Theorem 7.16 as
closely as possible, but move back and forth between grotramgitions and standard
ones. For this purpose you need Definition 11.10 and alsooBitgn 11.12. O

It is worth noting that the proof of this theorem, just as theqgh of Theorem 7.16, uses
no special features of bigraphs; it therefore holds for wihetive systems in general.
A next step is to investigate parametric germination; thatvhen the seeld; is an
ion, and germination takes the fory.e — ¢ whereg may contain the parameter
If s0, it can represent not only recursive definition (e.gC@S), but also replication in
ther-calculus, which is often expressed as a structural comgel® = P |!P.
At this point we leave the study of growth for future work.

3Certain assumptions are needed; for example, that grovatltomposition”' o a occurs independently
in C and ina.

122 CHAPTER 11. FURTHER TOPICS

11.3 Binding

Hitherto we have studied onlyure bigraphs, in which placing and linking are inde-
pendent structures over a set of nodes. We have exploitedttependence in formal

definitions and in the development of theory. But we wish @lsoommodate useful

dependencies between placing and linking. In particulamag wish to assume, or to

enforce, that certain links are confined to certain placéss i exactly what is meant

by the scope of a name in programming or process calculi. Thus

we may wish to confine the use of a link to within a place.

This corresponds to what is usually called tiirding of names. Binding has indeed

been successfully treated in various ways for bigraphshasdeen applied to recover
the behaviour of the-calculus, just as the behaviour of CCS is recovered in @ndjit

of this book, and also to encode a version of Mealculus. These experiments have
revealed what appears to be a unified treatment, which we nopope.

Binding In the current notion of signature we define node controlsh @ath an arity
and an attribute in the séhctive, passive, atomic}. Let us now define a fourth value,
‘binding’, for this attribute. Controls with this attribute will betiedbinding controls
This enriches a signature to becomigirading signature

For nodes, ‘binding’ implies ‘atomic with arity 0’. For anyrigling controls we
shall call ag-node abinding But we shall also treat a binding node as a kind of link;
so itis a hybrid between a node and a link. To give it this stata extend the range of
a link map to include bindings. Thus, points can be bound.

For this purpose, we assume that bindings are drawn fromfimiténset’s, disjoint
from namesY, nodes) and edge§. A quasi-binding bigraplover a binding signature
K takes the form

G = (V,B, E, ctrl, prnt, link) : I — J

in which the extra compone® C B is a finite set of bindings. The control map is
extendedtatrl : VwB — I, assigning controls both to nodes and to bindings. Further,
let m, X andn,Y be the widths and names éfand.J, and letP be the ports of~.
Then the parent map and link map@ftake the form

prnt: mWVWB—=VWyn
link: XWP—-BWEWY .

In diagrams we shall draw bindings as little hollow circlds; is a point—i.e. an inner
name or port—andink(q) = b, with 5 = ctri(b), then we say that or b bindsq . We
can already distinguish bindings from closed links (edgas)llustrated here:

11.3. BINDING 123

an edge: has no locality binding has locality

In the left-hand diagrarais an edge linking two ports. It makes no difference how we
draw an edge, as long as it abuts on its ports, because antsdijénas no location.
But the right hand diagram shows a binding conttdlinding the same two ports, and
the location of3 matters. For if the3-binding lies inside thé/-node then it can only
link ports that lie within that node. This will be enforced byr binding discipline.

EXERCISE 11.6 Adaptthe definitions of place graphs and link graphs, Défing 2.1
and 2.2, to admit the addition of a binding-g¢&t Then adapt the Definition 2.5 which
defines composition for both place graphs and link graphgngaarticular attention
to the equations defining thent andiink maps for composite bigraphs. O

We now turn our attention to the binding discipline. For amyréphG (pure or
quasi-binding), let us write ing w’ to meanw’ = pratf,(w) for somek > 0, i.e. the
placew is adescendantf the placew’ in G. We writew in w’, omitting the subscript
G, when there is no ambiguity. Then for quasi-binding bigsaple defindocalities
for ports and bindings as follows.

Definition 11.16 (locality) Let G be quasi-binding, with nodel§ and bindingsB.
Recall that the port®, of a nodev € V take the formp = (v,) fori € ar(v). Then
thelocalitiesof ports and bindings are defined as follows:

def

locport = {(prnt(v),p) |veV,pe P,}
locbind £ {(prnt(b),b) | b€ B} . O

Thus withinG each port and binding has a unique place—a node or a root.cbpe s
discipline for binding controls will dictate that#éfbindsp then the place g must be a
descendant of the place @fBut this is not all we need for our scope discipline; it must
also be preserved by composition and product. This imphiasdur present notion of
interface is too weak, as shown by the following example.

Example 11.17 (bad binding) Let I be a quasi-binding bigraph, whose inner face is
(1, z) with 2 bound by a binding contrgl. Let G have outer facé2,), with x linked

to a port in each of the two regions 6f. Then the bigrapliF" ® id;) o G breaks our
discipline, as shown in the diagram. O

124 CHAPTER 11. FURTHER TOPICS

why locality is needed

To exclude such cases we enrich interfaces as follows.

Definition 11.18 (binding interface) A binding interfaceakes the form

I ={m,loc, X)
whereloc C m x X is a binary relation between places and name§, If) € loc we
say thatr is local (to ¢ in). Otherwiser is non-local(in 7). O
Itis sometimes easier to writen, loc, X) in the form((Xy), ..., (Xm-1), X), where

X, are the names local to the regigrthus(J, X; C X.

Before we define the scope discipline, let us describe treceif will have on
Example 11.17. Since theé-binding binds the inner name, it will require = to be
local to the inner face of’, so this inner face must bex), =) (where we omit curly
brackets around singleton sets). In diagrams, we shakwaiibcal name in parentheses
at each interface, sb will be drawn as follows:

Thus the inner face af' ® id; will be ((z), (0),), locatingz at only one site. But the
scope discipline will require the outer face @fto be ((x), (z), x), sincez is used in
both regions of7. This difference of interfaces prevents the compositiof'ab id;
with G, so it destroys our example.

We now state thacope disciplinavhich a quasi-binding bigraph must satisfy to
qualify as a binding bigraph. Given a bigraph, let us us® range over its places,
q over its points and over its links. Roughly, the scope discipline demands that
descendance and linking are compatible with binding. Tléams that if a link is local
to a placew, then every point in the link is local to a place belowMore formally:

Definition 11.19 (binding bigraph) Given a quasi-binding bigrapghi: I — J, define
the localities of its points and links as follows:

locpoint e locport , loclink E Jochind W loc, .

We say that the points ilvcpoint, and the links inoclink, arelocal (in G). ThenG' is
abinding bigraphif it obeys the followingscope discipline

11.3. BINDING 125

e Whenever! = link(q) and(w,?) € loclink, there existav’ such thatw’ in w
and(w’, q) € locpoint. O

loclink

14
link

§.
Bp--o->8

locpoint

Composition for binding bigraphs is just as we defined it foasj-binding bigraphs,
and the definitions of identities, unit, product and symiestare obvious. It can then
be proved that

Theorem 11.20 (binding bigraph categories)The concrete binding bigraphs over
any binding signature form an s-category, and the abstrax@soform an spm cate-

gory.

EXERCISE 11.7 Prove that in binding bigraphs the identities obey the satipe-
pline, and that both composition and tensor product presie disciplineHint: Pay
attention to your adapted definition of composition in Eixsgd 1.6. O

It has also been shown that if every name in an interfaee(m, loc, X') has at most
one location, i.eloc is a map fromX tom W { L} (whereloc(x) =L means that is
non-local) then RPOs exist in these s-categories; henedldaliransition systems can
be derived. By this means, for example, theory for the pildakhas been recovered.

Inward binding We have defined the scope oBebinding to be its parent place; we
may thus call3 anoutward bindingcontrol. But we may need binding nodes that bind
within themselvesBy a simple sorting discipline, as in Section 6.1, thisard binding
can be achieved by nesting a number of bindings inside ananglhode. These can be
ordered by using binding contra$), (2), If K has arityk and we equip &-node
with h binding controls, then we have turned taode into an inward binding control
with a double arityh — k. The diagram shows the cakek = 2, 3:

S @

Boyzwa)

Let us now illustrate binding in the encoding of the finitecalculus. The basic
signature differs slightly from the one for encoding CCScater for the passage of
names as data. The contradsrid’ and ‘get’ controls, previously both with arity 1, now

126 CHAPTER 11. FURTHER TOPICS

have dual arities writtegend : 0 — 2 andget: 1 — 1. Thus ‘get’ becomes an inward
binding control. Recall that the reaction rule in thealculus is written

(Ty.P+ A)| (x(2).Q + B) — P|{¥/2}Q .

The diagram below represents this in binding bigraphs. Note the meta-syntactic
substitution ofr-calculus is encoded by a substitution which is itself a ddy; it
substitutes a non-local namédor the local name in parametetls.

1Y

alt. (sendxy.do ’ dl) ‘ alt. (get .do ’ dg) —> T ‘ do ‘ Y/(2).do

T(2)

Operations The interfaces of binding bigraphs are more complex thamptwe bi-
graphs. This gives rise to a richer family of linkings, andmesv discuss briefly a few
of the new phenomena that arise. Recall that in pure bignaptabbreviate a prime in-
terface(1, X) to (X), and that we write a singletaki = {«} asz. In binding bigraphs
we also write{(X)) for the prime binding interface whose nam€sare all local.

Consider substitutions. The non-local substitutign: z — y is as before, but there
are now substitution®/(z) : {(z)) —(y) and®)/(z) : {(2)) —{()). The first of these has
already been used in the reactum of #iealculus rule above, and the second may be
required if a reaction rule has non-local outer names. Hewthe fourth possibility
W) /z:(z) —(y)) attempts to localise a non-local name, and this violatestiope
discipline.

So there is ndigraphwhich localises a non-local name; but we can define a partial
operationon bigraphs to do this. First, if is non-local in the interfacd, we define
(x)J to be the result of making thelocal to every place in/. We call this theocal-
isationof = in J. Now suppose that': I — .J where[is local, i.e. all its names are
local. In this case to make local in J does not violate the scope discipline, and we
obtain thdocalisationof x in G:

@)G:I— @J (Ilocal).

Clearly one can then define multiple localisatioh)G, where X is a finite set of
names. An especially useful case of localisation is whene, i.e. G is ground.

Substitution and localisation appear to represent the eféect of binding on the
bigraphical operations.

Reactions We also have to adjust reaction rules and the reaction oaelatror ex-
ample, we wish to define a reaction rule whose redex bindsaitarpeter, as in the
m-calculus. This raises three points:

11.4. STOCHASTICS 127

e As parametric reaction rules are defined in Definition 8. 3rametet! has to be
discrete meaning that there are no closed links and the link mapéstije. But
this notion must be qualified so that it does not constrairidbal names of/,
whichare to be bound by the parametric redexr he non-local names of d can
still be exported in a ground reaction whose redex is given by(idy ® R) o d.

e Discreteness aof should still require that it has no closed links. But it must b
permittedboundlinks. Then if a prime factor ofl—say dy—is replicated by
a reaction, each copy afy will have its own copy of any bound link. Thus,
for example, if we encode the-calculus with replication into bigraphs, each
m-calculus restrictioma P will be faithfully modelled by a bound link.

e Some or all of the outer names of a redexnay be non-local. But we may wish
to allow reactions in a context in which the links involvedieie local. This can
be achieved in two ways. We may simply defiRavith a local outer name, say
(2), and use a substitution lik€'(z) to make it non-local where required. Or we
may defineR with the outer name non-local, and modify the way we define the
reaction relation—> in Definition 7.1; define it now to be the smallest such that
a—=>a’ whenevern = Do (X)r anda’ = Do (X)r’ for some ground reaction
rule (r, ") and contextD, whereX are the non-local names of This use of
localisation respects the scope discipline becatisground.

Some of the points raised above, concerning both operatindseactions, have
already been addressed in existing work. But a definitivettnent of binding is still
lacking, and is an important topic for future research.

11.4 Stochastics

As mentioned in the prologue to this book, it is important épldy bigraphs in exper-
imental applications in order to assess their modellinggroMany applications, such
as ubiquitous computing, are inherently non-deterministi least in the sense that in
modelling them we are ignorant of precise details of timifgut to aid experiment
we must ensure that simulations are realistic; this ensaiteehow attaching relative
probabilities to reactions. Consider, for example, ourptarexample in Chapter 1 of
behaviour in a built environment; once we have defined enoulgh to express simple
behaviour of people we would like to experiment with the effief varying the relative
rates of their actions.

For this purpose we can attach a stochastic rate to eackinderule. Indeed, in bi-
ological applications this approach may be considerechéissto the model; typically
there is a large population of entities (e.g. of protein raoles), and if each entity can
perform a certain reaction then the speed of reactions neysjllly be computed as
the product of the population size and the stochastic raigraed to that reaction rule.
This approach is adopted, for example, in thealculus [27] for biological modelling.

Taking a hint from this work, stochastic bigraphs have régdreen defined [51].
In the context of bigraphs, what corresponds to populai@mmis the number of distinct
occurrences within an agentof a given ground redex; to get the reaction speed

128 CHAPTER 11. FURTHER TOPICS

this count is multiplied by the rate attached to the giverttiea rule. The count,
i.e. the number of distinct occurrencesiofis easily defined in terms support. (This
use of support is quite distinct from its role in deriving textual transition rules via
RPOs.) One detailed point: one must avoid double countirthéncase of support
automorphisms of the redex

Let us give a more precise idea of the approach, omitting adietails. Assume
that we have a famil{R of reaction rules, where each rikehas an associated raig.
Given agentg andg’, we may wish to compute the rate of the reactiep— ¢’. This
reaction may occur with different underlying rules, so wmswerR:

raterlg, g' £) raterlg, g']
RER

Now for a given ruleR, we defineugr[g, ¢'] to be the number of distinct ground rules
(r,7") generated bR such that, for some active contéxt Cor = gandCor’ = ¢'.
Then

def
raterlg, 9'] = pr - pR(9, 9] .

and this completes our definition of the rate of the reacgien ¢'.

In previous work [42, 71] associated with process calcaties have been attached
not only to reaction rules, but also to labelled transitiohsthat work, the speed of
communication depends on the rate attached independeritfye ttwo or more tran-
sitions that perform the communication. However, the thiexrbigraphs suggests a
different approach: since labelled transitions degivedfrom reaction rules, rather
than defined independently, one would expect to derive tieeofea transition from the
rate of its underlying reaction rule. This indeed can be doatber simply. It remains,
however, to find criteria that determine in what circumséio prefer one approach
to the other.

Thus work on a stochastic interpretation of bigraphs i¢ stiprogress. Much
will be learned by experiment, both in biology and in ubiguis computing. But it
is already clear that some such interpretation is a negesgt a luxury; it is also
encouraging that it can be done generically, not tailor-@fad each application.

Chapter 12

Background, development and
related work

In this chapter we place the bigraph model in the broaderinébic context.

The bigraph model attempts to bridge between two distinkttiees. On the one
hand is the adolescent culture of ubiquitous computingherother hand is the more
mature theory of concurrent processes. The first two sectbthis chapter describe
the two cultures in enough detail to show how the bigraph miitdento each of them,
and how together they demand the existence of some such nmindke third section
| describe how bigraphs evolved as a generic model of presedsinally | describe
ongoing work to create software tools that will bring bignapto life as a language for
programming and simulation, thus admitting experimenas till help to assess the
scientific value of this model.

Background in ubiquitous computing Let us first look at the vision of ubiquitous
computing. Mark Weiser [79] is generally credited with fongythis vision and inspir-
ing research that will bring it to reality; | quoted him brigih the Prologue. The vision
represents one of the most ambitious aspirations of comguaience, and has been
adopted as a Grand Challenge by the UK Computing Researcimtma (UKCRC).
The title of its manifesto [1], Ubiquitous computing: Experience, Design and Sci-
encé, reflects the insight that to realise the vision demandkbolration among three
distinct research communities: those concerned with theamicomputer interface
and human behaviour, those concerned with engineeringiplés and design patterns
for large systems, and those concerned with theoreticakbia@ohd the languages that
bring them to life. These three themes cannot be addresssalation.

The first theme, human involvement, is well represented bgcantly completed
six-year research project, the Equator project [2]. On welisite can be found cita-
tions of the work carried out. The role of humans in a ubiqusteystem is two-fold;
first as users of a massive software system, and second aissefarming part of the
system, and to be modelled as such. There is a close analtiyyheirole of humans
in an economic system. The Equator project performed eixeergperiments aiming

129

130 CHAPTER 12. BACKGROUND, DEVELOPMENT AND RELATED WORK

to link the human sciences with the role played in societyriigrimatic systems. Here
is a quotation from the final project report:

Equator aimed to forge a clearer understanding of what insi&alive in
an age when digital and physical activities not only codxigtcooperate.
This is the age we are now entering, and it promises radieaigéin how
we communicate, interact, work and play; that is, how we. i@t to
fulfil that promise requires more than new technology. Wednegually
new ways of thinking about technology, and thus also aborgaives.

One may add that, to support new thinking about how the tdolygaelates to society,
we also need accurate understanding of the technologyawitderms. This is exactly
how the first of the three themes depends upon the secondiathd th

The second theme, engineering principles and design, isgm@iesented by a wide
range of papers, both previous to the Grand Challengetin&iand arising from it. A
few examples will illustrate the breadth of the engineedhgllenge. Wooldridge [81]
puts forward the concept of an intelligent agent as a moddddding self-managing
and decision-taking systems. Jenniegial[46] advocate negotiation, underpinned by
game theory, as a principle underlying the interaction afraig/in a non-hierarchical
population. Slomaret al [77], in the context of health-care, propose a model of the
‘self-managed cell’, a generic design concept for ubigistsystems; notably, the
model offers an explanation of how two ubiquitous systerasfarming to this pattern,
may combine organically into a single system. Crowcroff [2&mines structural de-
sign criteria for systems to manage driverless vehiclederhighway. Dixet al [28]
explore informally how space and locality may be used in assgim model of mobile
systems.

Besides their engineering significance, such papers yisldht into how models—
formal or informal—of advanced software can provide systeémunderpin a highly
instrumented human society.

The third theme, then, is concerned with conceptual madglliThere remains a
question: given a variety of models for ubiquitous systehwsy will the models fit
together? Each one will deal with some concepts such as listese in the Prologue,
but a single model is unlikely to deal with all of them. So homndhey provide an
integrated scientific understanding of ubiquitous commRi In a recent paper [66]
| proposed aower of models The idea is that, just as some models are designed to
explain reality, so a model at a higher level may explain, ayine implemented by, a
lower-level model. For example, in the Prologue | suggektedthe complex concept
of trust (between informatic agents) can be implementedater level.

There is surely a precedent in natural science for thisliegedf models. It is cru-
cially significant in informatics, whose ultimate realgiare extraordinarily complex
artifacts, and can only be understood via many levels ofattsbn.

Background in mathematical models The history of informatics is rich with such
levelling of understanding, either formal or informal. Wewturn to models that
are formal, embodying some kind of mathematical theory.dmtiast with the recent
surge of interest in uniquitous systems, over the pastdwaifury there has been a

131

progression of mathematical models of computation, eaethath typically deals with
a well-delineated range of phenomena. Without going badkagic models such as
Turing machines and automata theory, let us confine atretdionodels of interactive
processes; these are the models that | have tried to drath&rge the present book.

An early theory of concurrent processes was Petri nets [ifbld 1960s; it was per-
haps the first that gave a significant mathematic structudéstrete events. In 1979,
with Milne, | explored certain aspects of algebraic struetior processes [59, 60]. A
tradition of self-contained algebraic calculi for con@nt systems began around that
time; early representatives are the Calculus of Communga&ystems (CCS) [61],
Communicating Sequential Processes (CSP) by Helaa¢[13, 44], and Process Al-
gebra by Bergstra, Klop, Baetemal [8, 3].

Bigraphs have also used ideas from many other sources: temiChl Abstract
machine (Cham) of Berry and Boudol [6], the bisimilarity @&rR [68], ther-calculus
of Milner, Parrow and Walker [67] with extended theory by §angi and Walker [73],
the interaction nets of Lafont [52], the mobile ambients afdzlli and Gordon [18],
the sharing graphs of Hasegawa [38], the distributexhlculus of Hennessy [39], the
explicit fusions of Gardner and Wischik [34] developed fribra fusion calculus of Par-
row and Victor [69], Nomadic Pict by Wojciechowski and SeM@0]. In each of these
cases my emphasis has been not to extend the work in its oms,tbut rather to use
its inspiration to find a framework that can embrace themRadlticularly helpful was
a wide-ranging survey by Castellani [19] of the notion ofdlity, and the many ways it
has been defined and deployed in process models. Partjcinifuential was the work
of Meseguer and Montanari [58] explaining Petri nets in mdabcategories [58].
More generally, the idea of using monoidal categories fongotational structure can
be traced back to Benson [5]. A good textbook for basic catetpeory is by Barr and
Wells [4].

Graphs and their transformation are often chosen as the avayotel spatially-
aware systems. There is a long traditiongimph-rewriting based upon thdouble
pushoutDPO) construction originated by Ehrig [29]. That work tygily uses a cat-
egory with graphs as objects and embeddings as arrows. trasgrour s-categories
have interfaces as objects and graphs as arrows. Thesdd#tiona can be linked, both
via cospans by Gadducci, Heckel and Llabrés [31] and via@amorphism between the
category of graph embeddings and a coslice of an s-categeeyis origin) by Cattani
et al[20]. Ehrig [30] investigated these links further, aftesalission with the author,
and we believe that useful cross-fertilisation is possiladduccit al [31] represent
graph-rewriting by 2-categories, whose 2-cells corregptonour reactions. Several
other formulations of graph-rewriting employ hypergrapAs example is by Hirsch
and Montanari [43]; their hypergraphs are not nested aspit are, but rewriting
rules may replace a hyperedge by an arbitrary graph.

Besides graph rewriting, there is a variety of other frammswdor modelling con-
current interactive behaviour; for example

e term rewritingby a group of authors led by Klop [78], which can accommodate
arbitrary equational axioms;

1We use the term ‘framework’ to mean not just a single proceksitus (e.g. CCS) but a method or style
for defining a family of such calculi.

132 CHAPTER 12. BACKGROUND, DEVELOPMENT AND RELATED WORK

e rewriting logicled by Meseguer [57, 22] which includesAdDE, an automated
logic for rewriting;

¢ the tile modeled by Montanari [32], whose tiles represent rewriting sudad
can be composed in two dimensions, one to yield longer regstand one to
yield compound rules;

e X-KLAIM, led by De Nicola[7], designed to program distributed systéhrough
multiple tuple spaces and mobile code.

Thus we are in the early days of the search for an agreed frarkdar the design and
analysis of spatially-aware systems. In the bigraph modstwf the effort hitherto has
been devoted to integrating pre-existing theories. From o, the emphasis is likely
to change towards case studies in different applicatioit$ppnd in the provision of
computer-assisted tools fopr their analysis.

Development of bigraphs The bigraph model arose froattion calculi[62], the au-
thor’s first attempt at a spatial framework unifying proceatculi. In action calculi
there was a technical difficulty, which was resolved by théndea of bigraphs: that
locality (placing) and connectivity (linking) should besaited independently. Gard-
ner [33] contributed significantly to the emergence of tldisa. This independence
also reflects a property of real-life systems; we need ornhktbf wireless networks.

The technical difficulty with action calculi arose as follewOne criterion for their
success was that they should recover theory for existinggsocalculi, in particu-
lar their behavioural equivalences and pre-orders, whietofien based upon labelled
transition systems. This recovery depends upon treatinginecontexts as labels.
How to choose these contexts remained an open problem foy yeans. As a first
step, Sewell [76] was able uniformly to derive satisfactooptext-labelled transitions
for parametric term-rewriting systems with parallel corsiion and blocking, and
showed bisimilarity to be a congruence. It remained a proltie do it for reactive
systems dealing with connectivity, such asthealculus, and to do it uniformly across
bigraphical calculi.

This problem was solved by Leifer and Milner [55], who defimeishimal contex-
tual labels in terms of the categorical notionrefative pushoufRPO), also ensuring
that behavioural equivalence is a congruence. These sageit extended and refined
in Leifer's PhD Dissertation [54], and applied by Cattaial [20] to action graphs
with rich connectivity. Leifer and Milner [55] showed how tterive these transition
systems in any categorical model possessing relative pishdhe demonstration by
Leifer [54] that action calculi possess them was hard, bbtgnaphs the independence
of placing and linking rendered it tractable, as expoundeddmsen and Milner [48].
This allowed those three authors [47, 48, 56, 65, 46] and Baadl and Sassone [17]
to recover a significant amount of the theory of several dalzia their embedding in
bigraphs.

S-categories appear to be well-suited to the work of thikbétowever, they can
be recast in the context of enriched category theory [50, F&lchnically, they are
equivalent to categories enriched over the category ofisped structures [49] with

133

respect to the multiplication monoidal structdrd&he notion of relative pushout has
been generalised to groupoidal 2-categories by Sassonaatinski [74, 75], thus
again re-casting bigraphs within a standard categoriaatéwork.

As abstract bigraphs form a symmetric partial monoidalgag it has been im-
portant to examine their equational theory. Milner [64]\yided a sound and complete
axiomatisation of the structure of pure bigraphs; it is eatsimple, due to the inde-
pendence of placing and linking. This axiomatisation haanhefined by Damgaard
and Birkedal [26] for a version of the binding bigraphs malil in Section 11.3; it re-
mains sound and complete. | conjecture that this result isarbe adapted to concrete
bigraphs.

Hennessy and Milner [40] demonstrated in 1985 that procaksiic are closely
associated with modal logics; for example, two processedaimilar if and only if
they satisfy the same sentences in such a logic. A first stepden taken for bigraphs
in this direction by Conforti, Macedonio and Sassone [23, Bdr a spatial model such
as bigraphs, an attractive goal is a logic that expressesepies such as “Mary has
not visited this room before”, which depend upon tracking ithentity of individuals
through time, as briefly discussed in Section 11.1.

Grohmann and Miculan have generalised bigraphgiected bigraphg35, 36],
whose link graphs are self-dual; that is, their link graphgeha symmetric structure
with regard to composition. Importantly, RPOs still exi$he mild extra complexity
of directed bigraphs adds expressive power; indeed, tH®eishow how to encode
the fusion calculus of Parrow and Victor [69], which cannethmndled directly in
bigraphs.

Implementation and Application The modelling of large-scale informatic systems
is still at an experimental stage. Moreover, as with prognamg languages, the useful
experiments are those carried out with real applicatiamslving real users and an
assessment of their experience. With this in mind, a grolifefPby Birkedal at the
IT University (ITU) of Copenhagen has embarked on the deaighimplementation
of a bigraphical language for specification and programmamgl its implementation
as a simulator. As with many languages, the workhorse forirtigementation is
a matching algorithm, in this case for bigraphs; the impleteé algorithm is based
upon specification by an inference system [12]. The first Brpents with the lan-
guage are now (2007) being carried out in the (ITU) labosaton topics including
ubiquitous computing [10], context-aware systems [11]biteoresources [16], and
business processes [41]; the authors include Birkedald8aard, Damgaard, Debois,
Elsborg, Glenstrup, Hildebrandt, Niss and Olsen.

It is worth giving a little detail about one such experimeintolving location-
awarenessa special case of context-awareness. A location-awateray®aintains a
record of the physical location of agents via events frontdvare sensors; it is then
able to answer queries from agents such as “where is devitelkiz can be regarded
as a refinement of the simple example of a built environmesd isExample 1.2. The
model used, called BRlato-graphical mode[11], combines three BRSs into one; the
first W (‘world’) models the built environment, the secorhd(‘locality’) models the

2] am grateful to Marcelo Fiore for making me aware of this.

134 CHAPTER 12. BACKGROUND, DEVELOPMENT AND RELATED WORK

information about location reported by sensor$lin and the thirdd models an appli-
cation that querieg aboutl¥. A large class of real location systems and applications,
such as the Lancaster tour guide [21], can be representesimanthted. Experiments
are continuing.

As explained in Chapter 6, most applications of bigraphslirernot only a signa-
ture KC, but also a sorting discipline that determines the adms$lgraphs overC.
Sorting disciplines for process calculi are given in théioe papers already cited [48,
56, 65], and have also been studied for polyadic pi-calcbhjuB8undgaard and Sas-
sone [17] and reactive systems by Bundgaard, Debois anelbtdaidt [14].

Finally, inspired by pioneering work [72] on applying presecalculi to biology,
a stochastic treatment of the behaviour of bigraphs is megby Krivine, Milner and
Troina [51], in the spirit of the stochasticcalculus by Danost al[27]; it associates a
stochastic rate to each reaction rule. This work shows htes far labelled transitions
can be derived uniformly, and applies the model to cell beha(membrane budding)
in biology. Many applications of bigraphs, including biglg are non-deterministic;
thus the stochastic treatment has special relevance teimgpitation, in order to yield
useful simulation.

Conclusion It can be seen from this work that the bigraph model is beingldped
through a combination of mathematical intuition and expert. The experiment in-
volves real interactive systems—both natural, as in biplagd artificial as in ubiqui-
tous computing and business systems. The model tests tloghiagis that the simple
ideas ofplacing andlinking, both physical and metaphorical, unite the mathematical
foundation of interactive systems with their applications

APPENDICES

136 CHAPTER 12. BACKGROUND, DEVELOPMENT AND RELATED WORK

Appendix A

Technical detall

A.1 Support translation

Recall thatS is an infinite repertoire of support elements. This appendirplements
Definition 2.13 by axiomatizing the notion of support traat&ln introduced there.

Definition A.1 (support translation) For any arrowf: I —.J in an s-categoryC
and any partial injective map: S — S whose domain includdg|, there is an arrow
pf: I — J called asupport translatiorof f. Support translations satisfy the following
equations when both sides are defined:

(T1) prid; =ids (T5) pf=(pllfD-f
(T2) pr(gef)=prgop-f (T6) |p-f|=p(|f])
(T3) Mg f=7f (T7) p(f®g)=pfRpyg.

(T4) (p'op)-f=p"(p-f)

Two arrowsf andg aresupport-equivalentvritten f = ¢, if p= f = g for some support
translationp. O

Readers familiar with category theory will recognise thegems as closely related
to the conditions governing 2-cells in a 2-category. Moejsely, support translations
correspond to the isomorphisms between arro@supoidal2-categories (where all
2-cells are isomorphisms) have been proposed as an alterbasis for bigraphs, and
that work continues. They differ from our s-categoriescsitthe latter associate a
support set with each arrow. At the same time, s-categoresanvenient for many
proofs, and support provides a direct means of trackingitery of individual agents
(Section 11.1); it plays a role similar to labels and resiatuain the A\-calculus.

A.2 Public versus private names

In this appendix we explain the decision to represent nafpéshetically, drawn from
an infinite alphabet’, rather than by ordinals. Let us calll the public names

137

138 APPENDIX A. TECHNICAL DETAIL

The alternative to public names is to use interfates (k, m) wherek indexes
places as before, and = {0,...,m—1} is a finite ordinal indexing names, instead
of a finite setX C X of public names. These ordinal names are no longer public. Le
us call thenmprivate namesthey are private to an interfade and therefore private to
each bigraph having as its inner or outer face.

The immediate consequence of adopting private names ithinégnsor product of
two interfaces, and therefore of two abstract bigraphsiways defined. For such a
pair of F; : (k;, m;) —(¢;, n;), the tensor product becomes

Fo@F : I—J,
wherel = <k0+/€1,m0+m1> andJ = <€0+€1,n0+n1> .

This alternative has two advantages. First, there is saitpiin using the same regime
for indexing names as for indexing regions. But the majoraatiage is that, by con-
forming exactly to the standard notion of symmetric monbaddegory, it allows the

theory of the latter to be applied to bigraphs without anypaaiéon.

Why then should we adopt our present regime of a reper®icé public names?
First, the partial definedness of tensor product complécate theory only slightly.
For example the proof that our axiomatisation of bigraphsteucture is sound and
complete [64], as asserted in Theorem 3.6, is rendered ne ownplex. Second—
a pragmatic advantage—the use of different indexing regifoenames and regions
adds notational clarity in technical manipulations.

Third, public names yield a major advantage in deriving apjens that are stan-
dard in process calculi, especially the parallel and mergduyrts ‘||’ and ‘|’ and the
nesting operation.” as detailed in Chapter 3. For example, to juxtapose in fe&ral
setaq,...,a, Of agents sharing certain channels for interaction, onaires|only a
single derived product||’ that is commutative and associative, and one writes

avll -+ [lan .
On the other hand, if names are private then such a juxtamositust be written
ogola1 ® - ®ay),

whereo is a specific substitution (a map of finite ordinals). To dlistte o over this
product requires a hierarchy of smaller substitutions. Careavoid explicit mention
of substitutions, but only by deriving a family of parallalgducts, each composing
different substitutions with a tensor product.

Thus, although the embedding of process calculi in bigragars probably be
achieved using private names, it will be less direct and maygumbersome. It is
remarkable that, though process calculi differ in othersyélyey appear to agree in the
efficacy of public names. Therefore, by adopting these asbifjraphs, we lower the
barrier between it and the existing process theories. Tériges two main purposes:
first, to investigate what is fundamental to those theoerd,second, to serve as a tool
based upon those theories for design, analysis and progragmm

For purposes closer to categorical mathematics, it shatldenhard to reformulate
bigraph theory in terms of private names.

A.3. RPOS FOR LINK GRAPHS 139

A.3 RPOs for link graphs

In this appendix we prove the validity of the constructiorREfOs for link graphs.

Lemma 5.7 As defined in Construction 5.63, B) is a bound forA relative toD.

Proof To proveByo Ay = By o A;, by symmetry it will be enough to consider cases
forp € W Py, and for the value ofiy(p).

Case p € Po \ Pg, Ao(p) = e c Eo. Then(Bl oAl)(p) = Bl(p) = Dl(p) =
(D10 A1)(p) = (DooAg)(p) = Ao(p) = (BooAo)(p).

Casep € I\ P2, Ao(p) = zo € Xo. Then(Bi 0 A1)(p) = Bi(p) = To = Bo(wo) =
(BooAg)(p)-

Case g € WW P, Ao(q) = e € Ey \ Es. Then(ByoAp)(q) = Ao(gq) = e. Also

(D10A41)(q) = (DgoAp)(q) = e, so for somer; € X; we haved;(¢) = =1 and
Dl(Il) =€, hencelfl ¢ X{ Then(B1 OAl)(q) = Bl(xl) = Dl(ZCl) =

Caseq € WW Py, Ag(q) = e € Ey. Then(D10A1)(q) = (Dgo Ao)(q) = e, so also
Ai(q) = e. Hence(By 0 A1) (q) = e = (Bo o Ao)(q).

Caseq € WWP,, Ap(q) = o € X{;. ThenDy(zo) € EswZ, and sa(D10 A41)(q) =
(Do Ao)(q) € EsW Z; hence for some; € X{ we haved,(¢) = x1 andD;(z1) =
Do(Io). Hence(Bovo)(q) = Bo(Io) = Do(Io) = Dl(Il) = Bl(Il) = (Bl OAl)(q).

Case g € W Pa, Ag(q) = o € Xo \ X{. ThenDy(zo) = e € F;1 \ Eo; hence
(D10A1)(q) = (DooAo)(q) =e,50A1(q) = e. SO(B10A1)(q) = e = Do(rg) =
By(20) = (BooAo)(q).-

We now proveB o By = Dy by case analysis.
Case z € X/. Then(Bo By)(z) = B(0,z) = Do(z).
Casez € Xy \ X{. ThenBy(z) = Do(z) € Ey \ E2, hence(Bo By)(x) = Doy(x).

Casep € P, \ P2, Do(p) € Ey\ Fa. SinceDyo Ay = D10 Ay we haved, (p) ¢ X1,
S0 By(p) = Do(p) € E1 \ E2; hence(Bo By)(p) = Bo(p) = Do(p).

Casep € P, \ P2, Dy(p) € Es W Z. SinceDgo Ay = D0 A; there exists € X3
with A;(p) = x; moreover we readily deduce € X{, soBy(p) = 1,z. Hence
(BoBo)(p) = B(1,z) = D1(z) = (D10 A1)(p) = (Do o Ao)(p) = Do(p).

Case p € Ps. Then(Bo By)(p) = B(p) = Do(p). O

Theorem 5.8 (RPOs in link graphs) LG(K) has RPOs; that is, whenever a span
A of link graphs has a bound, there exists an RPQB, B) for A to D. Moreover
Construction 5.5 yields such an RPO.

Proof We have already proved that the trigl§, B) built in Construction 5.5 is an
RPO candidate. Now consider any other candidéteC’) with intervening interface

140 APPENDIX A. TECHNICAL DETAIL

Y. C; has noded; \ V> WV, (i = 0,1) andC has node¥s, whereV, W Vs = V3. We
have to construct a unique mediating arr@zvas shown in the diagram.

We defineC’ with nodesV, as follows:
fori =i,xe X: C&) ZCia)

forp e Py Clp) = Cilp) -

Note that the equatioréoBi =C;(i=0,1) determineC’ uniquely, since they force
the above definition. We now prove the equations (consigéria 0):

Case z € X. Then(C o By)(z) = C(0,z) = Co(x).

Casex € X, \ X}, ThenDy(z) € E; \ Es, s0By(z) = Do(z), hence(C o By)(z) =
Dy(z). Also sinceC' oCy = Dy € F; \ E; we haveCy(z) = Do(x).

Casep e b \PQ, Do(p) EAEl \EQ SinceDovo = D;0A; we haveAd; (p) ¢ X1,
s0By(p) = Do(p), hence(C'o By)(p) = Do(p). Also Co(p) = (CoCo)(p) = Do(p).

Casep € P, \ P, DO() € EsWZ. ThenAl() =z € X{ with Dy(x) = Do(p),
andBy(p) = 1,2 So(C'o By)(p) = C(I,x) = Ci(z) = (Coo Ag)(p) = Co(p).

Case p € Py. Then(C o By)(p) = C(p) = Co(p).
It remains to prove that' o C = B. The following cases sulffice:

Case & = 0,z € X, B() € E4. Then(CoC)(2) = C(&) = Co(zx) = Do(z) =
B(#).

Case # = 0,2 € X, B(2) € Es W Z. ThenDy(z) = B(2) € E; W Z, so for
somey € Y we haveCy(z) = y andC(y) = B(&). But by definitionC(z) = y, so
(CoC)(2) = Cly) = (CoCo)(x) = Do(x) = B(%).

Casep € Py, B(v) € Ey. Then(C'oC)(p) = C(p) = Co(p) = Do(p) = B(p).

Casep € Py, B(p) € E5 & Z. ThenB(p) = Do(p) = C(y), whereCy(p) =y € Y,
and by definitior” (p) = Cy(p), s0(CoC)(p) = C(y) = B(p).

Casep € Ps. Then(CoC)(p) = C(p) = Do(p) = B(p).
HenceC is the required unique mediator; 6B, B) is an RPO. O

A.4. QUOTIENT OF A TRANSITION SYSTEM 141

A.4 Quotient of a transition system

In this appendix we prove Theorem 7.23, justifying the tfanef a transition system
and its bisimilarity from a concrete WRS to its quotient abst WRS.

Theorem 7.23 (bisimilarity induced by quotient) Let C be equipped with a raw
or contextual transition systeif) that respects a structural congruenee Denote the
quotient C/= by C. Then the following hold fof£]:

(1) a ~bin"Ciff [a] ~ [b] inC.
(2) If bisimilarity is a congruence inC then it is a congruence i€.

Proof We treat only the contextual case; the raw case is simpler.

(1)= We establish irC the bisimulation

R = {([al. [6]) [@ ~ b} .

Leta ~ bin "C, and letp = [a], ¢ = [b] andp—Z—+;p’ in C. By definition of the
induced transition system, the trif{le, g, p’) has ar|-]-preimag€gas, f1, a}) such that
ay L»; ay in "C. Now, since the labels in a TS are closed undethere exists a label
(f,7) with f = f; and bothf ca and f ob defined. Hence by respect, sinfe~ f;
implies f = f1, there exista’ = a} such thatu—L-»; a'.

Sincea ~ b and f o b is defined, there existg such that) L»; v anda’ ~ V. It
follows thatg—2—; ¢’ in C, whereg’ = [0'] and(p’, ¢') € R, so we are done.

(1)< We establish inC the bisimulation
S ={(a,b) | [a] ~ b} -

Let[a] ~ [b] in C, and letp = [a], ¢ = [b] wherea—L+; ¢’ in “C with f o b defined.
Thenp-Z—; p’ in C, whereg = [f] andp’ = [a’]. So for some;’ we haveg—2—; ¢’
withp’ ~ ¢'.

This transition must arise from a transitibnlw by in "C, whereq = [b1], g =
[f1] andq’ = [bi]. But thenb; = b andf; = f; we also havef ob defined, andC
respects=, so we can find’ for which b i/ andby = b'. But(a’,b') € S, sowe
are done.

(2) Assume that bisimilarity inC is a congruence. I€, letp ~ ¢ with p,¢: I, and
letr: I — J be a context with-op androq defined. Then sinc] is surjective on
each homset, there existb: I andc: I — J in "C with p = [a], ¢ = [b] andr = [¢];
moreover, since = ¢’ = [c] = [¢/], ¢ can be chosen so that a andco b are defined.
From (1x= we havez ~ b, hence by assumptiana ~ cob. Applying the functor
[-] we have from (13 thatrop ~ roq in C, as required. O

142 APPENDIX A. TECHNICAL DETAIL

A.5 Unambiguity of labels

In this appendix we prove that, under certain conditionsnertransition labels are
unambiguous, i.e. a label cannot belong to both an engagkal@disengaged transition.
We first need a lemma that characterises prime disengagesitioas.

LemmaA.2 Leta—+a’ be a prime disengaged transition, based on a parametric
redexR that is simple and unary. Let: (X), andletr = R.(dy ® - - - ® dy,—1) be the
underlying ground redex. Then

(1) The outer nodes df are those ofR;

(2) The node-set af is non-empty and included in that @f for somei € n;
(3) The single site of. is guarded;

(4) Nozx € X is linked to any port in_.

Proof For (1), uséR| C |L| C |r|, with R guarding. For (2), recall thatj&|N|r| =
() then the IPO would be tensorial, hencenon-prime, contra hypothesis.

For (3), use (2) and the fact thatis guarding. For (4), appeal to the IPO construc-
tion and each; discrete. O

Now, using the notions afplit andtight redexfrom Definition 3.19, we prove:

Proposition 8.14 (unambiguous label) Let L be the label of a prime transition in
MT, in a safe BRS where every redex is simple, unary and tightn Te labell is
unambiguous.

Proof Suppose to the contrary that sofransition is disengaged, but that— b’
is engaged with underlying ground redex S.d such thaib, s) has IPO(L, E). We
shall derive a contradiction.

Letb: (X). Becausd is the label of some prime disengaged transition, it sasisfie
the conditions in Lemma A.2; thus its node-set is non-emityw each node of. is
a node ofs; in particular each outermost node bfmust be an outermost node 8f
sinceLob = EosandS is guarding. SAS| N |L| # 0. Also, |S| N |b] # 0 since the
transition is engaged.

Thus(L, b) is a unary split forS. By assumption this splitis tight, hence some node
of bis linked viaX to some node of.. But this contradicts Lemma A.2(4), completing
our proof that the transition dfis disengaged. O

A.6 Faithfulness of engaged transitions

This appendix proves Theorem 8.19, asserting the faiteidof engaged transitions
for prime agents in a nice concrete BRBG(X,R). Thus, in an interface the re-
gions and names may have place sorts and link sorts resplgcti&s in Chapter 8,
we avoid heavy notation by leaving these implicit. Occaallynwe need to pull

A.6. FAITHFULNESS OF ENGAGED TRANSITIONS 143

results from the unsorted BRS to the sorted one, back aloadatyetful functor
U:"BG(X) — BG(K), where is the basic signature underlying

We first show that, for prima, if we apply an affine instantiation to G oa then
the result has a form independentof

Proposition A.3 (affine instantiation) In "‘BG(X) let G: (X) —(m, Z) be a context,
and letn : n — m an injective map preserving place sorts. Then:

either there exist§': (X) —(n, Z) such that 77(Goa) = Coa forall a;
or there exists a ground: (n, Z) such that 77(Goa) < ¢ forall a .

Proof SinceG has unary inner face, by Proposition 3.9 we can express it as
G=po(ldx®do® -+ dp—1 @D Q@dpy1-+ @dm—_1)
for somek € m and some linking:: X WY — Z, whered, : (Y;) (i # k) are all
discrete,D : 1 —(Y}) is discrete and” = 4, ,, .
Now anya: (X) can be expressed as= \od for some linking\: W — X and
discreted : (IW). Then we can express the composit@®na as follows:

Goa=po(A®idy)o(doy® - dp—1 @ di, @dpg1-+ @ dm—1)

whered,, £ (idw ® D)od; its names arél” W Yy,. Sinced, is discrete this expression
for G oa is a DNF, and therefore by Definition 8.3 its instancejig

N(Goa) = po(A®idy)o(dyo) @+ @ dy—1)) -

Sincen is injective thed, ;) have disjoint name sets, so may be combinedhather
than by || as in Definition 8.3. Since may not be surjective there are two cases:

(1) n(¢) = k for somel € n. Then we may rewrite the instance as

N(Goa) = po(A®idy)o(dy) ® @dp @+ @ dyp-1))
= po(A® idy)o(dn(o) ® - @ ((idw ® D)od) ®"'®dn(n_1))
= Coa

whereC = pio (dy) ®@ -+ ® (idx ® D) ® -+ ® d,,_1)) is independent of.

(2) n(¢) # kforall ¢ € n. Thenthe inner namé§” of \: W — X are not among the
names ofl,, o) ® - - - @ d,)(,—1). Butitis easily seen thato W < X; hence

N(Goa) = po(A®idy)o(dyo) @+ @ dyn-1))
def .
T ¢ = ,u,o(X & Idy)o(dn(o) K& dn(n,l))
which is independent af as required. O

We continue with a lemma that lifts an IPO property from utsito sorted bi-
graphs; it is that certain spans whose members have disjoptort have an IPO that
is tensorial.

144 APPENDIX A. TECHNICAL DETAIL

Lemma A.4 In 'BG(X), with X safe, letA: I’ — I and B : J' — .J be both hard, with
disjoint supports, and leB be open with no idle names. Let the spaiwid ;- ,id; ® B)
have an IPO(C, D). Then, up to an iso at their common outer fake we have
C=idi@BandD = A®id;.

Proof We use many safety properties from Definition 4.6.etBG(X) — "'BG(K)

be the sorting functor. Sindé preserves RPOs and identities, it also preserves IPOs.
Sol(C, D) is an IPO for the spall (A ® id;-, id; @ B). AlsolU preserves the prop-
erties assumed fot andB. Since botti/(A) andi/(B) are hard, no other IPO for the
span can arise from place elisions, and si#¢®) is open with no idle names, none
can arise from link elisions either. Hence, up to isomonphithe IPO is unique, and
must be the tensorial IPO defined in Corollary 5.21; thusstone isa’ we have

Jol(C) =id®@U(B) and oU(D) = U(A) ®id .

Now ./ has inner facé/(K), and sincé/ creates isos there exists an iswith inner
faceK such that/(:) = /. We deduce

U(LoC)=idU(B) andU(toD) =U(A) ®id .
But/ reflects products, soo C' = id ® Bandio D = A ® id as required. O

We next consider the IPO underlying a minimal transitiof—; o’ with redexR.
It can be decomposed into an IPO pair, as shown in the diagram R simple andi
discrete.

[par Lred

a Drar D
d idyy ® R

From now on we shall call a transiti@mplewhen its underlying redex is simple. We
need three lemmas about simple minimal transitions thadiaengaged.

Lemma A.5 Let the diagram underlie a disengaged simple minimal tiémsi Then
DP" = D’ ®id,, for someD’, up to iso, wheren is the inner face of?.

Proof Since|DP?"| C |a| we also havéDP*| N |R| = (). Let K be the outer face of
Drar. Itis enough to prove, for each sites m, that (1) DP?(i) = k is a root inK,
and (2); has no siblings irDr2".

(1) SinceR is guarding,R(i) = v for some node, hence(L™ o DP*")(i) = v. But
v is not in DP?" by assumption, s®&P?" (i) = k and L"*d(k) = v for some root.

(2) Now suppose has a sibling, i.eDP?" (w) = k for some site or node # i. Then
we have(L™ o DP¥r)(w) = v, whence alsd?(w) = v. If w is a site this contradicts
R inner-injective; if it is a node then it contradidt®®*'| N |R| = (. Hence no suchy
can exist. This completes the proof. O

A.6. FAITHFULNESS OF ENGAGED TRANSITIONS 145

Lemma A.6 Let the diagram underlie a disengaged simple minimal trémsibased
upon(R, R',n), whereqa is prime and hard witHa| N |d| # 0. ThenD anda’ take the
following form up to iso, wherg : W — W' is a linking:

L™ =idys ® R, D=A\®id; and d = (idys ® R)o7j(LP" ca) .

Proof From Lemma A.5 we find thabP®" takes the formDP* = D’ ® id,, up to
iso, whereD’ has domairi¥ andm is the inner width ofRz.

First we claim thatD’ has no nodes. For sinckis discrete there exists a node
u € |a| N |d|. If there exists also a nodec |D’| thenv € |a|, hence (since is prime)
u, v would be in the same region &P o ¢ but different regions oDP?" o d, contra the
commutation of the left-hand square.

Now any root inD’ would be idle, contradicting hard (since the left square is an
IPO). HenceD’ has no roots, s®’ = \: W — W', a linking, andDP¥" = \ ® id,),.

Now consider the right-hand IPQJ)P*" is hard, sincex is hard, andR is hard
and open since it is a parametric redex. Thus we may apply L@, and this
immediately yields the first two equations. For the third:

a = Do(idy ® R")o7(d)
= (idw @ R))o(A@idp)o7(d)
(x) = (idw ®R)oq((A@idr)od)

(idw' ® R")oT(LP" 0 a)
where at(x) we commute an instantiation with a linking, by Propositio#.8 O

Lemma A.7 Let the spar{a, d) have a boundD, A ® id,,,), wherea is hard andd, D
are discrete. Then the bound is an IPO.

Proof The properties assumed for the span and the bound are prddeyvthe
sorting functoi/, so we shall first prove the lemma in the unsorted BR§(K). The
result can then be lifted tdBG(X) using Proposition 4.8 asserting that a safe functor
creates IPOs.

D
a A®id,,
N

d

In "Ba(K) let (B, C, F) be an RPO fofa, d) relative to(D, A ® id,,). Then(B,C) is
an IPO for(a, d), so it will be enough to prové& to be an iso.

Consider place graphg:® has no idle roots sinceis hard; alsat” o C? = id, so
EP is a place iso. Now consider link graphB is discrete sincd" is so, and has the
same nodes aB'; henceE" is a link iso.

It follows that F is an iso, completing the proof. O

We can now prove the faithfulness theorem.

146 APPENDIX A. TECHNICAL DETAIL

Theorem 8.19 (engaged transitions are faithful) In a nice BRS, lePE be a prime
engaged transition system whose agents are hard. Then

(1) Peis faithful to the minimal wide transition systewT.

(2) ~peis acongruence.

Proof Since faithfulness means thate = ~yr when restricted to the agentsw#,
(2) follows from (1) together with the congruence-of;;. It remains to prove (1).

We know from Theorem 8.16 th&E is definite, and hence thaty,; C ~pg ON
prime agents. For the converse,: C ~yr, we shall show that

S = {(Coao,COal) | ag ~pe al} U<

is a bisimulation fomT up to support equivalence. We then obtain the main result by
takingC' = id.
Suppose thaty ~pe a1. Let Coag Lo b)) be a transition of1T with Mo Coay

defined. We must findl;, such thatC o a; 22+ b, and(b), b}) € S=.

There exists a ground reaction rule, () and an IPO—the large square in dia-
gram (a) below—underlying the given transition@f ay. MoreoverEj is active, and
if width(cod(rg)) = m thenwidth(Ey)(m) = 7andbj = Ejor(. By taking an RPO
for (ap,ro) relative to(M o C, Ey) we get two IPOs as shown in the diagram. Note
thatag is prime, butC o a¢ andbj, may not be.

Now Dy is active, so the lower IPO underlies a transitign-=—; aj, < Dy o7},
where? = width(Dy)(mo). Again, af, may not be prime. Alsd is active ati, and
by = Eoaj. SinceMoCoa; is defined we deduce thdtoa, is defined, and we
proceed to show in three separate cases the existence ofs#itnaa, L, a’, with
underlying IPO as in diagram (b). (We cannot always infehsatransition for which
ay, ~pe af, even thoughiy ~pe ay, since the transition ofy may not be engaged.)
Substituting this IPO for the lower square in (a) then yieldsansition

M def
Coal—bjb/l = anll .

In each case we shall verify th@,, b}) € S, completing the proof of the theorem.

e o
QOTLJD alT:TDI

Case 1 The transition ofiy is engaged.
Then sincer, is prime, by considering the IPQ_, D) and the outer face ab, we

find thataj, is prime, so the transition may be writtep - af, and lies inPE. Since

A.6. FAITHFULNESS OF ENGAGED TRANSITIONS 147

ao ~pe a1, there exists a transitiom, -~ a/, with a}, ~pe a}. This readily yields the
required transition of’ o a;.

Case 2 |ag| # |ro].
Consider the lower IPO of (a). Sineg is hard, and-, both hard and open (since it is
a ground redex), we may apply Lemma A.4 to obtain that up to iso

L=id®ry andDO:ao®id.

Thena), = (id @ 1) o ag. TakingC’ = Eo (id @ r{)) we havehy = C’ o ay.

Now, sinceLoa; is defined,|a;| # |ro]. So, takingr; = ro andDy = a; ® id,
we obtain again by Lemma A.4 that the diagram (b) is an IPO stulte it for the
lower square in (a), yielding a transiti@o a; £l>j Y, £ Eod). Thent| = C'oay,
so(bg, b)) € ST as required.

Case 3 The transition ofiq is not engaged, buig| N |rg| # 0.
Then there is a ruléR, R’,7) with |ao| # |R|, and a discrete parametéy such that
ro = (idVV0 (9 R) odg and 7‘6 = (idWo ® R/) oﬁ(do) .

AssumeR: m — J. Sinceay is prime, from Lemma A.6 we find that, up to isomor-
phism, the IPO pair underlying the transitionmgftakes the form of diagram (c) below,
and moreover that, = (idy @ R') oT(LP oay) .

c d
© par Lred = idpy QR @ par Lred — idpy QR
agp Ao®idy ai A ®id,, A1 ®idy
do idyw, @R dq idyw, ®R

We seek a similar transition far;. First we claim that, since support equivalence
respects transition, we may assume that# |R|. For we may translate the support
of R, and hence of., M andC, in the diagram underlying the assumed transition
Coao 5 b), without affecting its resulb), since the latter is defined only up te.
Moreover this support translation can achi@ve # | R| while retainingag| # | R| and
ol # |RJ.

Now considerLP* o a;. By Proposition 3.9 there is a linking; : W; — W’ and
discreted; : Wi ® m such thatl.’* o a; = (A ® id,,) o dy. Also, sinced, is discrete,
we know by Proposition 5.19 th@?" is discrete; hencelLP?", \; ®id,,) is an IPO for
(a1,d1) by Lemma A.7. This is the left-hand square in diagram (d).

By Lemma A.4 the right-hand square of (d) is also an IPO. Sjfi¢& | # | L]
and|d; | # | R|, we may paste the squares together to form a larger IPO. fEnerdy
manipulations as in Lemma A.6,

a2 € (A ®idy)o(idw, ® R')o7(dy)
= (idw @ R)om(LP"oay) .

148 APPENDIX A. TECHNICAL DETAIL

As in the previous case, this yields a transit®na, ;b < Eoa). We now have

(b, 1) = (Fon(LP oag), Fom(LP 0ay))

for a certain context’, whereay ~pe a; (both prime). Sincej is affine, we can appeal
to Proposition A.3 to find two cases. In the first case theredsraextC' such that
7(LP" oa) = Coa foranya, and hencéb, b)) € S=. In the second case there is a
ground arrowe such thatj(LP* oa) < ¢ for anya, henceb < b}, so (b, b)) € S.
Thus the bisimulation up to support equivalence is estabtls

This completes the proof of the theorem. O

As we have seen in case 1 of the proof, when a simple transitiéa-; o’ is engaged,
anda is prime, then so ig’. Thus, in proving the bisimilarity of prime agents, we can
indeed confine attention to bisimulations containing onlyng agents.

A.7 Recovering bisimilarity for CCS

Theorem 10.6 (recovering CCS) Mono bisimilarity recovers CCS, i.8:y, = ~cs-

Proof (D) To show~,, D ~ it will suffice to prove that

S Z{(p1lg, p219) | p1 ~ees P2}

is a bisimulation foPE,,; the result follows from Proposition 10.5 by takigg= nil.
ASSUMEP; ~ccs pa, and letp; | g—=—uy, whereL is not a substitution label. We seek

a transitionps, | qLD us such thafu,,us) € S. We consider the cases for we need
only consider cases 1 and 3 of Figure 10.1, since case 2 ithkk#rst.

Case 1 L = id|alt.(get,c - -). Then, from Figure 10.3y, | ¢ contains an unguarded
moleculealt.(send,a - -), in whichz is free. There are two subcases:
If the molecule lies iny, then from Figure 10.1

/Z(alt.(send a - -) | b)
pil/Z(alb)|e

wherez ¢ Z and we can assume no free namegpfies in Z. Then, from Figure 10.1,

pa| gL uy = pa| /Z(a|b) | . But(ur,us) € S, S0 we are done.
On the other hand, if the molecule liespnthen

P11 = /Zl(alt.(sendzal .) |b1)

ur = [Zi(a1|b1)]q|c
wherex ¢ Z; and we can assume no free name bés in Z,. Then from Figure 10.2
there is a raw transitiop; — p| = /Z1(a1 |b1), SOu; = p} | q|c. Butpy ~ces po,

so for somey, we havep, — ply ~c P}, and from Figure 10.2 we find

P2 = /ZQ(aIt.(sendzag .) | b2)
Py = [Z2(az|b2)

q
uy

A.7. RECOVERING BISIMILARITY FOR CCS 149

wherez ¢ Z,, and we can assume no free nameyair c lies in Z,. Then from
Figure 10.1 we finghy | g5 us = pb | ¢ | c. But (u;, uz) € S, so we are done.

Case 3L = id. Thenp, | ¢ has an unguarded pair of molecules, together corresponding
to a redex. There are four cases, depending on whether edehuteolies inp; or in
q. If both lie in p; or both ing the argument is easy; we therefore consider just one of
the remaining (symmetric) pair of cases.

Suppose then, consulting Figure 10.1, that

p1 = JZi(alt.(sendg.a1 - +)|b1)
g = /Z(alt.(get,.a--)|b)
v = /Zi(ax|br)|/Z(a]b)

where we can assume that no freg name of one is closed in the atttlz ¢ 71 W Z.
Then we have a raw transitign — P &= /Z1(a1 |b1). BUtp; ~ces p2, SO there
existsp’, with py SN ph ~ees P}, and by Figure 10.2 this takes the form

P2 = /Z2(a|t.(sendm.a2 .) | bg)

Py = [Z2(az]b2).
Then from Figure 10.1 we deduge | g—2us £ p), | /Z(a|b), and(uy, us) € S, SO
we are done.

(©) To show~,, C ~s We shall prove that-, is a bisimulation for~.s. Assume
p ~m q andp — p’; we seek a matching transitign— ¢’ such thap’ ~n, ¢'.

If « = 7 then the structure gf andp’ is dictated by case 1 of Figure 10.2. Now,
choosingL = alt.(get,.nil), we find from case 1 of Figure 10.1 that=—p' | nil.
Sincep ~m ¢ We have;—— ¢’ with p/ | nil ~, ¢ By case 1 of both Figures 10.1 and

10.2 there existg’ such thay” = ¢ | nil andqg -~ ¢'. Appealing to Proposition 10.5,
we then findp’ ~, ¢’ as required.

The argument forr = x is similar. The argument far = 7 is even simpler, using
case 3 of both Figures 10.1 and 10.2. This completes the pfdbé theorem. [

150 APPENDIX A. TECHNICAL DETAIL

Appendix B

Solutions to exercises

Solutions for Chapter 1

1.1
@)

bare bigraphD bigraph D : e —(3, {wxyz})

(2) Choose interfac€, 0); the diagram fot¥ is similar to that forFs.

bigraphC : (3, {zyzw}) —(2,0)

1.2

151

152 APPENDIX B. SOLUTIONS TO EXERCISES

(1) With B1-B5 there are at least the following invariants:

the structure of buildings and rooms is unchanged,;

each room contains a single computer, linked to the infuaire of its building;
each computer is linked to at most one agent, who is in the saams;

there are exactly five agents;

there is at most one conference call in progress;

an agent who leaves a conference call never rejoins it.

(2) WhenB4 andBS5 are replaced b6 all the above hold, and also:
an agent cannot unlink from a computer without leaving thero

When you have read Definition 8.5 and the remarks followingau will see that some
of these invariants make sense only when the identity of antage. its support) can
be tracked through a reaction.

13

throw,,.dy || amb,.dy — 1 || ambx.(do | dl)

Solutions for Chapter 2

2.1 Forlinkgraphs, supposethat X —Y,B:Y — Z,C: Z — W. Letlinkg, link,
be the link graphs of’ o (Bo A) and(C o B) o A respectively. They both take points
peXWPyWPgWPotolinksinEpWEgW Ec W Z.

153

Consider the six possible cases.

e p € X W Py. Thenlink(p) liesinE4, orin Eg,orin Ec W W.
e p € Pp. Thenlinky(p) liesin Eg orin Ec W W.

e p € Po. Thenlinky(p) liesin Ec W W.

In each case proviénk, (p) = linko(p). Itis just a matter of unpacking the definition
of composition.
The argument for place graphs is similar.

2.2 For the inductive basis, with = [], take f = id.

For the inductive step, first suppade= ¢ ® C (the cas€’ = C ® ¢ is similar), and
assume there exisgssuch thatf oa = Cla] for all grounda. Then takef’ = g ® f,
and provef’ oa = C'[a] as follows:

floa = (9®f)oa
= (g® f)o(ide ®a) byM2
= (goid)) ® (foa) byM3
= g®(foa) by C3
= g®Cld]
= ('[a].

Now suppos€’ = hoC;then takef’ = ho f, and justify it as follows:

f/oa = (hof)oa
ho(foa) byC2
hoCla)

= ('[d].

2.3 Any bigraphG : I — ¢ has an empty place graph, since a non-empty place graph
implies at least one root. Also, in the link gragh : X — () of G, every link is an edge.
But if G has empty support then it has no edgesXse: (), I = ¢ andG = id..

Solutions for Chapter 3

3.1 Alinking is just a map from inner names to outer names and £dge a substi-
tutiono from X to Y is just a tensor product of elementary substitutions

o ZY/Xo® - @Yn-1/X, ;, whereX = Xo & - & X,,_; andY = {7} .
Now partitionY into Z = {yo---yx—1} andW = {yx---yn—1}. We get any link

map by setting /W = fyx @ --- ® Jyn_1, and forming A = (idz ® /W)oo . This
use of composition is the only way to close a substitution.

154 APPENDIX B. SOLUTIONS TO EXERCISES

3.2 The expressiolr can be specialised to the four quoted cases by setting(H
idandl =¢, (2)I =eandCy =id, (3)C; =idandCy =id; ® C (for F': J — K),
and (4)01 = YK,I andCy = (ldJ X C)o’)/],].

To show thay = C o a implies thatz occurs ing, takeF' = a, I = ¢, Cy = id.. For
the converse, assume that Co(a ® idI) C’; we must findD such thaty = Doa.
Indeed, since: is ground we havgg = Co(a ® C’); the result follows by taking
D=Co(d®C").

If ' occursinF andF occurs inG then we have

F = Clo(E(X)id])OCQand
G = Dlo(F(X)idJ)oDo,

So one can deducé” occurs inG’, i.e. G = Byo(F ® idk)o By, by settingK =
I®J, By = Dlo(cl ®|dJ) and By = (Co@idJ)oDo.

3.3

H.(G.F) IdXUy ||H (IdX ||G)OF
idx [lidy || H)o(idx || G)o F

(
(

= E(udxondX)H(udyHH) G)oF
(H

idx || (H.G))oF
-G).F

3.4 Recall thatR is open, so has no edges. Consider any spliB for R. Let
(up, u1) be thesend-node andset-node ofR, and letvy, v; be their respective parents,
thealt-nodes. Sincel must have at least one nodeRf at least one ofug, 1) must
be in A.

If both (ug,u1) are in A then, sinceB must have at least one node Bf A can
contain at most one dfy, v) If it contains neither, then tha-parents of ug, u;) must
be distinct roots of4, since their parent&y, v1) in Bo A are distinct. IfA contains
exactly one ofvg, v1), saywvg, then by a similar argument the parentgaf, u;) must
be distinct roots ofd. In both these cases the split is non-unary.

ThereforeA contains exactly one dfu, u1) andB contains the other. So the split
is tight, since these two nodes are linked.

The redexes oA1-A3 andB1 are tight (in the case d@1 there is no split); those
of B2 andB3 are not tight.

Solutions for Chapter 4

4.1 Assume tha(ﬁ, h) is an RPO forfrelative tog. We have to prove thdt is an

IPO. So, for an arbitrary bour(d_f ¢) for frelative tog, we seek a uniqug such that
yoﬁ = [andéoy =id.

First, we know that’ o/ = h, and also tha([, hot) is a bound forf relative tog,
whence there exists uniquesuch that

xoﬁ:iandhoﬁox =h.

155

Now, as in the proof of Proposition 4.5(1), we can show that = id; thusy = «
satisfies the required equations forBut anyy satisfying these equations also satisfies
the equations for. This assures unicity fay, and we are done.

4.2 Assume thatk, k) is an RPO. Sincé is an IPO,(k, h) is a bound forf relative
to (hohg, hohy); so there exists uniquesuch that

IOE: ﬁandhox =k.

Hence(k, z) is a bound forf relative tok, which is an IPO, so iff is the codomain of
h there exists uniqug such that

yoh =kandzoy = idy .

Now since(E, k) is an RPO, it follows from Proposition 4.5(2) thiats an IPO. Since
(h,y) is a bound forf relative tok, we deduce that there exists uniqusuch that

Zok = ﬁandyoz =idg .

Fromzoy = idg andyoz = idg we deducer = z. It follows thatx: K — H
is an iso with inversg,. So since(k, k) is an RPO, from the equations farand
Proposition 4.5(1) we deduce that %) is also an RPO, as required.

4.3 LetF:A—B,andassumgboundsf in A. So, denotingF-images by a prime,
q boundsf’ in 'B. Assume that this is a pushout; then we want to prove ghata
pushout forf in ‘A.

Let boundfin ‘A. Denote the arrowjpo fo = g10f1 by g, and the arrow
hoo fo = h1o f1 by h. We require uniqué such thatcog = h. ltis enough to find
somek satisfying these equations; uniqueness follows from twtsfa

e ' will be the unique arrow inB such that’ - § = &', and
e g is op-cartesian, sh is the unique preimage @&f such thatco g = h.

Now, for eachi € {0, 1}, sinceg; is op-cartesian there exists a preimagef £’ such
thatk;og; = h;. But these equations imply th&tog = h, SOky = ky sinceg is

op-cartesian, and our required arrowti& ko = k;. This completes the proof.

Solutions for Chapter 5

5.1 We prove the epi case for link graphs. (The other cases aias)m

Assumel’: X — Y is epi; we prove that it has no idle names. Suppose y ¥ Z
wherey is idle in F. pick G = G ®idz andH = H ® idz as shown. The' # H
butGo F = H o F, contradictingF epi.

156 APPENDIX B. SOLUTIONS TO EXERCISES

H

o0 "ok

Now assumé& has no idle names; we prove it to be epi. L&t F' = H o F'. ThenG
and H have the same nodes, edges and control map; so to pfevd{ it remains to
prove thatiinks = link . For this, lety be any point ol (and hence oH). If gis a
port, then it is a port o7 o F', and we have

linkc(q) = linkgor(q) = linkgor(q) = linkg(q) .

On the other hand, if is an inner name, say = y € Y, theny is not idle in F' so
y = link r(p) for some poinp of F. But then

linkc(y) = linkgo rp(p) = linkg o p(p) = linky(y) .

This completes the proof thét is epi.

5.2 The namey should not be merged with, in By; instead we adg to the outer
face of By, defininglink g, (y) = y andlinkp(y) = «. Then alsay; should not be
merged withe, in By; instead, definéink g, (y1) = y (thus keeping the outer faces of
By and B; equal).

5.3 cLO: If v € V5 then it is a node ofByo Ay = BjoAj, hencectrly(v) =
ctrlp, o A, (V) = ctrip, o 4, (v) = ctrly (v).

CcLl: Takei = 0. SinceAy(p) = e € Ey we havep € W w Py. Also
(BooAp)(p) = e,s0(B1oA1)(p) = e. Bute € E; by assumption, hencé, (p) =
e = Ao(p) as required, hence algoc W & P, hencep € W & P» as required.

cL2: Takei = 0. SinceAy(p2) = e € Ey we have(Byo Ag)(p2) = e, hence
(B1oA1)(p2) = e. Butpy € Ej, so for somer € X; we haveA;(ps) = z as
required, andB; (z) = e. If also A;(p) = = thenp € W W Py; so(ByoAo)(p) =
(B10A1)(p) = B1(z) = e. But thenp is a point of Ap, S0 Ay(p) = e as required.

5.4 In Construction 5.15 the edges®©f are defined to b&, \ F». This holds for all
IPOs, since elisions change no edges. Byt= (}, henceC; has no edges.

5.5 The distinguished IP@id, id) is the unique IPO fof A, A) up to iso, because
has no nodes or edges, hence permits no elisions. Busihot epi it has an idle name
or idle root; this gives rise to an idle name or root in the IRSEanN.

157

5.6 (1) We have shown that there can beivmode inBQ; soto achievéoBo =Cyh
we needC' to contain aK-node linked toz. But thenC'oB; = C, fails, sinceC,
contains no sucK-node.

(2) In concrete link graphs, nodes have support. There avectses for thé<
nodes inAy and A;. If they have the same support, i.49 and A; share a-node,
then the RPO construction would requifeto have no nodes; hen¢é’ (') would not
be an RPO. On the other hand of they have different suppbﬁeﬂ would not even
be a bound ford; hence(D, D) would not be an RPO. In either case exactly one of
(C,C) and(D, D) would be a relative bound—and it would be the required RPO.

Solutions for Chapter 6

6.1 The formation ruled for stratified sorting constrains only place graphs, so we
can ignore link graphs when checking it. And since a placplyigia forest of trees, if
it is augmented with sorts then the forest satisfidff each tree does.

A place interfacen augmented with sorts is a sequeidge - - 6,,_; of sorts. So
in an identityid; augmented with sorts, each tree whose root has#sbats just one
child with sortf. This clearly satisfie®.

Now suppose that each éf and G, augmented with sorts, satisfiés Each tree
of a tensor product ® G is just a tree of eitheF' or G, so clearlyF’ ® G satisfies
®. Each tree of a compositiog@ o F' is a tree ofG in which each sité : § is replaced
by some tree o’ whose root (with sor) is removed. Now every place iio F' is
either a root of& or a node of or a node off’; the appropriate condition @ can be
checked for each case separately.

6.2 ©={a,b,c,r,ac,ar}, K={A:a, B:b, C:c, R:r}. @ requires:
An a-node orc-node has no children (i.& andC are atomic);
all children of ab-node orac-root have sorg, c or ac;
all children of ar-node orar-root have sorg, r or ar;
all children of ad-root have sor#, whered € {a,b,c,r}.
The interfaces are
E:e— JwhereJ = (bb, 0);
D:e—1wherel = (aaa, {zyzw}) ;
C:I1—J.
Alternatively, replace by acin I.
The redex of ruldB1 can have sor or ac; the redex oB2 must have sordc; the redex
of B3 must have sordr.

6.3 (1)Ifz:0,itmay bethatirink, (z) = e (say) where : 0 in h; thenlink,(z) : 0’
is forced, preventing the well-sorting of

(2) Let A be bounded by§ in a plain-sorted s-category, and let the unsottedhage
(A’, B') of this diagram be a pushout. We argue that 3) is also a pushout.

158 APPENDIX B. SOLUTIONS TO EXERCISES

Let D boundA; then its imagd3’ boundsA’. We require a unigue mediating arr@w
in the left-hand diagram. A unique such arréWexists in the right-hand diagram; so
define its preimagé€’ by ascribing to all its ports and edges the sorts that theg rav
Dy and inD;. If this makesC well-sorted, then it is the unique arrow required.

If alink of C' contains no inner name ihthen the link and its points are sorted as in
Dy and D1, so they obey the plain-sorting formation rule. Thus, toatede thatC' is
well-sorted, we need only show thatif ¢ is an arbitrary name if thenlinkc(x) : 6.

Now B’ is a pushout, hence an IPO, sds not idle in bothB}, and B]. Without
loss of generalityx has a poinp in B, and hence inB,. SinceB, is well-sorted,
p:0in By and also inDy. SinceDj is well-sorted/ink p, (p) has sor$). But this link
(outer name or edge) is ifi too; hence, by our constructiotipk ¢ (x) : 6 as required.

A similar argument shows that the functor creates RPOs.

Solutions for Chapter 7

7.1 Inbigraphs, to say& o F'is active at’ means that all ancestor nodesiaf G o F
are active. This is true iff all ancestor nodesiaf F' are active, and that all ancestor
nodes ofj in G are active, wherg is the ancestor root afin F'. But this is the same
statement asF’ is active ati andG is active atwidth(F) (i)’ .

Recall thatl:0—1 is the place graph with no sites and one root. Take=
A®1:1—2andG = joino (A®B):2—1. ThenG o F is active, buiG is not active
at its second site.

7.2 Trivially both = and= include support equivalence=J. To see that= is pre-
served byo (for example), suppose = G andF’ = G’. ThenG, G’ are obtained
from F, F’ by support translations, p’ respectively. But ifF' o F” andG o G’ are both
defined therp W p’ is also a support translation, and takés F’ to GoG’; hence
FoF' = GoG".

Now let F~ meanF' with idle edges removed. To cheekis preserved by (for
example), note thak’ = G means that’~ = G~. The rest follows from the fact that
(FoF")y~ =(F o(F)7)".

7.3 From the commutation of the second diagram, prove that teiediagram com-
mutes wher is replaced byf o a.

159

7.4 For the first part, IenLD; a’ anda = b with fob defined. Then there is a
reaction rule(r, ') and an IPO(f, d) for (a,r), such thats’ = dor’. Let p be the
support translation such thata = b. Apply p, extended by the identity map, to the
whole IPO; then Proposition 4.5 yields an IRQ ¢) for (b, s), with e = d ands = r-.
Pick s’ = r’ so thate o s’ is defined; theris,) is also a reaction rule (since these are

def

closed under:), so ifb’ = eos’ thenb—Ls; b with o’ = ¥/, as required.
For the second part, we must show thaf ifs a bisimulation up te= thenS C ~.
For this, we show tha$= is a bisimulation, for the&= C ~, which impliesS C ~.
For this purpose, suppose thaf=b, i.e. thata = a,Sb; = b, and leta—Ls; o
Then, since= is a bisimulation, there exisgt;,], andb’ such thab—L»; b anda’ =
ai STy = ¥'. butS is closed under, soa’S™V'. This completes the proof th&t™ is
a bisimulation, and hence th&tC ~, as required.

7.5 (1) G F can differ fromG o F; in the latter, aB-node inG can still be linked to
anA-node inF'. But the equivalence is a structural congruence: this cagrdeed by
showing that ifF, = F; then they have the same normal form, the result of removing
everyB-node linked to arA-node. It is not an abstraction; we may have~ G, but

F #+ G, if neither has & node linked to a\-node thent” £ G.

The equivalence does not necessarily respagtfor the redex of a reaction rule
may contain @&-node; then if we drop 8-node from an agent we may lose a transi-
tion.

(2) As in (1) the equivalence is a structural congruencenbtiin abstraction. It may
not respecwT, even if no redex containsB or A-node. For we may havé passive
andB active; then replacing by A may prevent a reaction—and hence a transition—
by turning an active context into a passive one.

7.6 By the definition of induced transitions there existf anda’ in C such that

p = [a], g = [f], P = [&'], with a-L+;a’. By Exercise 7.3 it follows that
foa—v>;a’. So from Theorem 7.7 we deduce tHdto a] —; [@’]. Since[] is a
functor, we immediately deduge p—>ip’.

Solutions for Chapter 8

8.1 Forthe CCSrule:

R:({papa,0) —(p,z) R':(pp,0)—(p,)

rr’ (p,zWY)

d: <p apa, Y) d;: <91, Y;> Whereb’o, 91, 6‘2, 93 =p,a,p,a.
For the ruleB3, » = A.1|R.d andr’ = R.(A.1|d). (By convention, one can write
A.1 asA sinceA atomic.) For the interface see the solution to Exercise 6.2.

8.2 For an engaged transition take= A" o (id; | BY) , d = B ; for a disengaged
transition takeR = A% o (id; |B*) , d = B" .

160 APPENDIX B. SOLUTIONS TO EXERCISES

Solutions for Chapter 9

9.1 The final net should be as on the left below. A clean-up rulads on the right,
where ‘?” may be any control.

N
@4}H ,bﬂ

9.2 If two redexes are disjoint then one reaction cannot desithner the nodes or
the linkage of the other. No critical pair can be formed fromistance of (1) with
an instance of (2). A critical pair of instances of (1) musirehtheS-node; a critical
pair of instances of (2) must share ®xode; in both cases—as already seen for (1)—
confluence holds. A critical pair of (3) with any of (1)—(3)rcanly share th&-node
and is clearly confluent.

9.3 LettheS-measurefany net be the number of distinct finite paths leading from a
S-node to at-node. For explicit nets this measure is finite. For eachieixplet, let its
measurebe the triplem = (ms,m., m-) of its S-measure, its number ef-nodes,
and its number of--nodes. Prove the following (the first being crucial):

e Rule (1) decreasess, while rules (2) and (3) do not increase it.
e Rule (2) decreases__, while rule (3) does not increase fit.
e Rule (3) decreases ..

So the lexicographic ordering on measure is well-foundetidetreased by reaction.

Solutions for Chapter 10

10.1 For (1), following the hint, in the inductive step we assurhe property for
agents with less tham nodes and prove it for any agent wittnodes.

One such agent has the foum= send,.p: (p, X), wherep hasn — 1 nodes. So
by inductive assumption there is a CCS procBsaich thatPx [P] = p; hence for the
CCS alternatiorr. P we haveAdx [z.P] = a.

To complete the inductive proof, apply a similar argumenntdib ways (there are
four or five ways) of building larger agents from smaller anes

For (2) follow the hint. We omit the proof of the Lemma herdsihot very instructive.

161

10.2 For example, suppose thatnil —— p”. Then the paifp | nil, p"’) matches the
forms in case 2 of the figure. It follows thiatakes the fornd’ | nil, so thapy” takes the
form p’ | nil, wherep andp’ also match that case within place ofb.

We have therefore shown that the assumed transition is extayp —— p’ such
that(p, p’) € S. The same can be done for the other lakeis place ofz.

In the other direction, starting with an assumed transitief~ p/, it is even easier
to deduce | nil - p’ | nil.

10.3 Having provedr ~, p|nil, use this together with Exercise 10.2, to prove that
each of~,, and~ is a bisimulation for the other.

Solutions for Chapter 11
11.1 The contextual rule is
(C:J—-K,Sm—J S m —Jmn 1)

wherer:|S|" — |S| is a tracking map. (We us§, S’ in place of R, R’ to avoid
confusion with the room contrd®®.) Given a parametet, defined’ ando as before.
Then the ground rules generated take the form

((CoS).d7 (C/OSI).dI, pLﬂTH—JU)

whereC = p-C".
For rule (1) we construct the contextual rule (with the abowegation) as fol-
lows. LetK = (l,zy) andJ = 1 ® K = (2,zy). Then the agent is the atom

aZ Azy.1:e— K, and theroomioni&:1— 1. Then for the contextual rule we take

C:idle, S =a®id; andS’:1®(a|id1)

whereC': J — K andS, S :1—J. Alson = {1+ 1}, andr = {u+—u} if we assume
a has supporfu} in both.S ands’.

11.2 (1) Sincef —» f’ there exisly, ¢’ with g—> ¢’ and(f, 1) < (g,¢’). Hence
by congruencéCo f,Co ') < (Cog,Cog’). ButCog——>Cog'; hence by defini-
tion Co f — C o f’. Similarly for tensor product.

(2) Since f —= f’, we haveh—> 1’ where(f, f') < (h,h'). By confluence,
there exists: with g, h < k. By Proposition 11.7 There exisis such thatc —» ¢’
andh’ < ¢'. Therefore by definitiog —» ¢’; alsof’ < b’ < ¢/, so we are done.

11.3 The first step in creating the left-hand diagram is to takeRR® for (id ®
a,id ® a) relative to(ByoCy, B1oCy). The bottom square is then an IPO, and its
upper members are identities (up to iso) becatisepi (see Exercise 5.5). The second
step is to take an RPO fg€), id) relative to(By, By o Cy), and a matching IPO on the
other side. (The resulting IPOs are unique up to iso sincaeamtity is both epi and
open.)

162 APPENDIX B. SOLUTIONS TO EXERCISES

The right-hand diagram results from taking the RPO (idr® a, A;) relative to
(BooC, By). Since the lower square is an IPO, we know it is unique (updphiscause
a is epi and open; hence it takes the form of the IPO defined inl@oy 5.21.

11.4 On the one han& ~ L since~ does not allow growth, bukK 2 L since
K—» K andL 4. On the other han& % M.K sinceM.K—K andK /—>,
butK ~ M.K sinceK — M.K.

11.5 As in the proof of Theorem 7.16, we establish the followingaassimulation
for ~, upto=:

S E{(Coag,Coay) | ag ~ a1, C any contex} .

(Here we omit mention of activeness; it is handled just akéncited theorem.)
Letag ~ a1, and suppose there is a grown transitidnag ﬁwj b. We have to
find b, such thatC o a; 25 b} and (b}, b)) € S=.

STAGE 1: By definition there is a standard transitioh a2 b)), where
(C,ag, M, b)) < (C,do, M, b)) .

This depends on Proposition 11.6(3), ensuring indepengientth in Coag. The
transition is based on an underlying IPO, and on a ground (mler|) such that
by = Epor(y. Take an RPO, yielding a pair of IPOs as shown in diagram (a).

o~ =

(@ M (b) () M
GT C’T ~ ET ~ C’T by
L L L
R —_— —_— Fy

STAGE 2: The lower IPO underlies a standard transiigr™—; a/, & Dgor}. Ob-
serve thab), = (’oaj,. By definition, we then have a grown transitiap—=-+>;).

Sinceay ~ ay, there is a grown transitiom Lo, ay with af, ~ af. Then, by defini-
tion, there exists a standard transit?ﬂni>5 a) such that

(a1, L,d}) < (@1, L, @) ,
where the transition is based on a ground fule ;) and an IPO as shown in diagram

(b), witha’ = D, or}. Moreover, since reaction rules and growth are closed under
this triple may be chosen with support disjoint frarhi

163

STAGE 3: We now turn attention to the upper IPO in diagram (a). Sihce L and
|L| N|C’| = 0, by Proposition 11.12 there exiét M such that

(C, M) < (C,M)

and(]T/f, C")isalPO for(@, f). We may paste this IPO onto diagram (b), and define
v, £ E) o}, whereE; = C’ o D;. Thus diagram (c) represents the standard transition

Cody o0, Alsob), = C’ 0@}, so we defing, & ¢’ a}. So finally, since
(Coar, M,b;) < (Codr, M, b))

we have a grown transitiofi o a; ~L»; b). Recalling thabj, = C’oaj, we have that
(bp, b)) € 8=, and the proof is complete.

11.6 In the definitions of both place graphs and link graphs, Déding 2.1 and 2.2:
(1) add to the tuple representiigan extra componer8z, a finite set of bindings: (2)
extendctrlig : Ve — K to ctrip : Ve W Br — K; (3) in forming G o F' give it bindings
B = Br ¥ Bg. In Definition 2.5, adapt the defining equations as follows:

e Letwrange ovekwVr WV, W BrW B, and replace the conditionse kW Vg
andw € Vg by the conditionsy € kW Vr W Br andw € Vg W Bg.

e Replace the conditiotink r(¢) € Er by the conditionink r(¢) € Er & Bp.

11.7 ltis easy to prove that the identities satisfy the scopisgigiine, and that tensor
product preserves it. Here we confine ourselves to proviapagbmposition preserves
the scoping discipline.

Let F: I — J andG: J — K satisfy the scope discipline, and defife] — K £
GoF. Letl = linky(q) in H, with (w,¢) € loclink . We must findw’ such that
w'ing wand(w’, q) € locpoint ;. Sincel is local it cannot be an edge iy, so it is
either a name ik’ or a bindingb € By. We divide the argument into two cases:

Case 1/ =0b € Br. Theng € X W Pr whereX are the names of. We easily
verify that (w, b) € loclink . Sinceb = linky (q) in H andbis in F, it follows that

b = linkr(q) in F, hence by the scope discipline fér we deduce that there exists
w’ inpw with (w', q) € locpoint . Composition withG preserves these properties,
i.e.w ing wwith (v, q) € locpoint ;;, and we are done.

Case 2 (€ Bg W Z, whereZ are the names ak. Now since(w,) € loclink y,
we also havéw, ¢) € loclinkq. Furthermore; € X W Pr W Pg, SO We treat the two
possible subcases for

(@) ¢ € X W Pp. Then for some namg in J we havel! = links(y) andy =
link(q). Now by the scope discipline fo& there exists a site in J with
sing wand(s,y) € loc;. Butthen(s,y) € loclink r, S0 by the scope discipline
for F' there existsw' inp s with (w',q) € locpoint . It readily follows that
w’ ing w with (w', ¢) € locpoint ;;, and we are done.

164 APPENDIX B. SOLUTIONS TO EXERCISES

(b) ¢ € Ps. Then by the scope discipline fo¥ we havew’ ing w with (v’ q) €
locpoint . It follows immediately that’ in g w with (w', ¢) € locpoint 5, and
we are done.

Bibliography

[1]

(2]

[3]

[4]

[5]

[6]

[7]

(8]

[9]

(10]

Ubiquitous computing:experience, design and sciedc&rand Challenge of
UKCRC, the UK Computing Research Committa#p://www-dse.doc.
ic.ac.uk/Projects/UbiNet/GC/Manifesto/manifesto.pdf

Equator. A 6-year Interdisciplinary Research Colladimn funded by the UK En-
gineering and Physical Sciences Research Coumttl://www.equator.
ac.uk

Baeten, J. and Weijland, W. (199®rocess Algebra&Cambridge Tracts in Theo-
retical Computer Science 18, Cambridge University Press.

Barr, C. and Wells, M. (1990);ategory Theory for Computing Scieng&entice
Hall.

Benson, D. (1975), The basic algebraic structures ieg@ies of derivations.
Information and Control 28, pp1-29.

Berry, G. and Boudol, G. (1992), The chemical abstracatinirze. Journal of The-
oretical Computer Science 96, pp217-248.

Bettini, L. and De Nicola, R. (2005), Mobile distributggtogramming in X-
Klaim. In: SFM-05:Moby, 5th International School on Formal Methodstfe
design of Computer, Communication and Software Systemsilgl€omputing
Lecture Notes in Computer Science 3465, Springer-Verlpg9p68.

Bergstra, J. and Klop, J.-W. (1985), Algebra of commatiiog processes with
abstraction, Theoretical Computer Science 37, pp77-121.

Birkedal, L. and Hildebrandt, T. (2004), Bigraphicalogramming languages.
Laboratory for Context-Dependent Mobile CommunicatidnJniversity, Den-
mark. http://www.itu.dk/research/bpl/

Birkedal, L.., Bundgaard, M., Damgaard, T., Debois,Bsborg, E., Glenstrup,
A., Hildebrandt, T., Milner, R. and Niss, H. (2006), Bigragdl programming
languages for pervasive computing. IRroc. International Workshop on Com-
bining Theory and Systems Building in Pervasive Computip$53—658.

165

166

(11]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

BIBLIOGRAPHY

Birkedal, L., Debois, S., Elsborg, E., Hildebrandt,and Niss, H. (2006), Bi-
graphical models of context-aware systems. Anoc. 9th International Confer-
ence on Foundations of Software Science and Computatiact8te Lecture
Notes in Computer Science 3921, pp187-201.

Birkedal, L. Damgaard, T., Glenstrup, A. and Milner, 007), Matching of
bigraphs. In:Proc. Workshop on Graph Transformation for Verification &uwah-
currency Electronic Notes in Theoretical Computer Science 175%\Eds, pp3—
19.

Brookes, S., Hoare, C. and Roscoe, W. (1984), A theorgooAmunicating se-
quential processes. J. ACM 31, pp560-599.

Birkedal, L., Debois, S. and Hildebrandt, T. (2008), tha construction of sorted
reactive systems. IrProc. 19th International Conference on Concurrency Theory
(CONCUR) Lecture Notes in Computer Science 5201, pp218-232.

Bundgaard, M., Glenstrup, A., Hildebrandt, T., Hajagh E. and Niss, H. (2008),
Formalising higher-order mobile embedded business psesawith binding bi-
graphs. In:Proc. 10th International Conference on Coordination L agggL ec-
ture Notes in Computer Science 5052, pp83-99.

Bundgaard, M. and Hildebrandt, T. (2006), Bigraph&ainantics of higher-order
mobile embedded resources with local names. Rroc. Workshop on Graph
Transformation for Verification and Concurren@tectronic Notes in Theoret-
ical Computer Science 154, pp7-29.

Bundgaard, M. and Sassone, V. (2006), Typed polyadizafiiulus in bigraphs.
In: Proc. 8th ACM SIGPLAN International Conference on Prinegénd Practice
of Declarative Programming@pl—12.

Cardelli, L. and Gordon, A.D. (2000), Mobile ambient$heoretical Computer
Science 240, ppl77-213.

Castellani, I. (2001), Process algebras with loagditiin: Handbook of Process
Algebra eds Bergstra, J., Ponse, A. and Smolka, S., Elsevier, pi®45.

Cattani, G.L., Leifer, J.J. and Milner, R. (2000), Cexts and embeddings for
closed shallow action graphs. University of Cambridge CotapLaboratory,
Technical Report 496.

Cheverst, K., Davies, N., Mitchell, K. and Friday, A.0@0), Experiences of
developing and deploying a context-aware tourist guide:GlJIDE project. In:
Proc. MobicomBoston, Massachusetts, pp20-31.

Clavel, M., Eker, S., Lincoln, P. and Meseguer, J. ()9%8inciples of Maude.
In: J. Meseguer (edProc. First International Workshop on Rewriting Logic and
ite Applications Electronic Notes in Theoretical Computer Science 4, Eé¢sev
ppl1-25.

BIBLIOGRAPHY 167

[23] Conforti, G., Macedonio, D. and Sassone, V. (2005) ti@pkgics for bigraphs.
In: International Conference on Automata, Languages and &muging Lecture
Notes in Computer Science 3580, Springer-Verlag, pp768-77

[24] Conforti, G., Macedonio, D. and Sassone, V. (2005),r8pical Logics for
XML. In: Proc. 13th Italian Symposium on Advanced Datebase Syst8EBID)
pp392-399.

[25] Crowcroft, J. (2006), The privacy and safety impact efltnology choices for
command, communications and control of the public high@8@&COMM Com-
put. Commun. Rev. 36(1), pp53-58.

[26] Damgaard, T. and Birkedal, L. (2006), Axiomatizing @ing bigraphs. Nordic
Journal of Computing 13(1-2), pp58-77.

[27] Danos, V., Feret, J., Fontana, W. and Krivine, J. (20@&Calable modelling of
biological pathways. In: Z. Shao (edPBroceedings of APLASA807, ppl39—
157.

[28] Dix, A. et al. (2000), Exploiting space and location as a design framlevicr
interactive mobile systems. ACM Trans. Comput. Human bgr7(3), pp285—
321.

[29] Ehrig, H. (1979), Introduction to the algebraic theafygraph grammars. In:
Graph Grammars and their Application to Computer ScienceRialogy, Lec-
ture Notes in Computer Science 73, Springer Verlag, pp1-69.

[30] Ehrig, H. (2002), Bigraphs meet double pushouts. EABISetin 78, October
2002, pp72-85.

[31] Gadducci, F., Heckel, R. and Llabrés, M. (1999), A btegorical axiomatisation
of concurrent graph rewriting. InProc. 8th Conference on Category Theory in
Computer Science (CTCSElectronic Notes in Theoretical Computer Science
29, Elsevier Science.

[32] Gadducci, F. and Montanari, U. (2000), The tile model.Plotkin, G., Stirling,
C. and Tofte, M. (edsProof, Language and interactidIT Press, pp133-166.

[33] Gardner, P. (2000), From process calculi to processdrmorks. In: Proc. 11th
International Conference on Concurrency Theory (CONGUWRgture Notes in
Computer Science 1877, Springer-Verlag, pp69-88.

[34] Gardner, P. and Wischik, L. (2000), Explicit fusions: IProc. Mathematical
Foundations of Computer Sciendeecture Notes in Computer Science 1893,
Springer-Verlag, pp373-382.

[35] Grohmann, D., and and Miculan, M. (2007), Directed bjgus. In:Proceedings
of 23rd MFPS Conferen¢é&lectronic Notes in Computer Science 173, ppl21-
137.

168 BIBLIOGRAPHY

[36] Grohmann, D., and and Miculan, M. (2007), Reactive exyst over directed bi-
graphs. In:Proceedings of 18th Conference on Concurrency Theory (CAR)C
Lecture Notes in Computer Science 4703, Springer-Verlpg8p—394.

[37] Grohmann, D., and and Miculan, M. (2008), An algebradoected bigraphs.
In:Proc. 4th International Workshop in Computing with Terand Graphs, Elec-
tronic Notes in Theoretical Computer Science 203(1), pp&9—

[38] Hasegawa, M. (1999), Models of sharing graphs. PhDdbdiation, Division of
Informatics, University of Ednburgh. Available as TechaliReport ECS-LFCS—
97-360. Also in Springer Series of Distinguished Dissantetin Computer Sci-
ence.

[39] Hennessy, M. (20074 Distributed Pi CalculusCambridge University Press.

[40] Hennessy, M. and Milner, R. (1985), Algebraic laws famrdeterminism and
concurrency. Journal of ACM 32, pp137-161.

[41] Hildebrandt, T., Niss, H. and Olsen M. (2006), Formalisbusiness process ex-
ecution with bigraphs and Reactive XML. IRroc. 8th International Conference
on Coordination Models and Languagéscture Notes in Computer Science
4038, Springer Verlag, pp113-129.

[42] Hillston, J. (1996)A Compositional Approach to Performance Modelligam-
bridge University Press.

[43] Hirsch, D. and Montanari, U. (2001), Synchronised hgpolge replacement with
name mobility. In: Proc. 12th International Conference on Concurrency Theory
(CONCUR) Lecture Notes in Computer Science 2154, Springer-Vedptj21—
136.

[44] Hoare, C.A.R. (1985)Communicating Sequential Procesd@®entice Hall.

[45] Dash, R., Parkes, D. and Jennings, N. (2003), Commutatimechanism design:
a call to arms. IEEE Intell. Syst. 18(6), pp40-47.

[46] Jensen,O.H. (2006)Jobile Processes in Bigraphgonograph available at
http://www.cl.cam.ac.uk/ ~rm135/Jensen-monograph.html

[47] Jensen, O.H. and Milner, R. (2003), Bigraphs and ttanss. In: 30th SIGPLAN-
SIGACT Symposium on Principles of Programming LanguagésM Press,
pp38-49.

[48] Jensen, O.H. and Milner, R. (2004), Bigraphs and mopilecesses (revised).
Technical Report UCAM-CL-TR-580, University of CambridGemputer Lab-
oratory.

[49] Joyal, A. (1986), Foncteurs analytiques et especestdectures. In: Proc.
Colloque de combinatoire énumératiieecture Notes in Mathematics 1234,
Springer Verlag, pp126-159.

BIBLIOGRAPHY 169

[50] Kelly, G.M. (1982),Basic Concepts of Enriched Category Thebmscture Notes
in Mathematics 64, Cambridge University Press. RepubligR605) inTheory
and Applications of Categorig$0, pp1-136.

[51] Krivine, J., Milner, R. and Troina, A. (2008), Stochiadbigraphs. In:Proc. 24th
International Conference on Mathematical Foundations rogfRamming Sys-
tems to appear in Electronic Notes in Theoretical Computer Bme

[52] Lafont, Y. (1990), Interaction nets. Iferoc. 17th ACM Symposium on Principles
of Programming Language&CM Press, pp95-108.

[53] Lawvere, F.W. (1973), Metric spaces, generalizeddpgnd closed categories.
Rendiconti del Seminario Matematico e Fisico di Milano XLpp135-166. Re-
published (2002) iReprints in Theory and Applications of Categorigsppl—
37.

[54] Leifer, J.J. (2001), Operational congruences for tigasystems. PhD Disserta-
tion, University of Cambridge Computer Laboratory. Distried in revised form
as Technical Report 521. Available frohtp://pauillac.inria.fr/
~ leifer

[55] Leifer, J.J. and Milner, R. (2000), Deriving bisimutat congruences for reactive
systems. In:Proc. CONCUR 2000, 11th International Conference on Coencur
rency TheorylLecture Notes in Computer Science 1877, Springer-Veppg43—
258. Available ahttp://pauillac.inria.fr/ ~leifer

[56] Leifer, J.J. and Milner, R. (2006), Transition systetitsk graphs and Petri nets.
Mathematical Structures in Computer Science 16, pp989~104

[57] Meseguer, J. (1992), Conditional rewriting logic asrafied model of concur-
rency. Theoretical Computer Science 96, pp73—-155.

[58] Meseguer, J. and Montanari, U. (1990), Petri nets areaits. Information and
Computation 88, pp105-155.

[59] Milne, G. and Milner, R. (1979), Concurrent processed their syntax. J. ACM
26, pp302-321.

[60] Milner, R. (1979), Flow graphs and flow algebras. J. AC8) gp794-818.

[61] Milner, R. (1980) A calculus of communicating systemscture Notes in Com-
puter Science 92, Springer Verlag.

[62] Milner, R. (1996), Calculi for interaction. Acta Inforatica 33, pp707-737.

[63] Milner, R. (2001), Bigraphical reactive systems. |Rroc. 12th International
Conference on Concurrency Thephecture Notes in Computer Science 2154,
Springer-Verlag, pp16-35.

[64] Milner, R. (2005), Axioms for bigraphical structure.dvhematical Structures in
Computer Science 15, pp1005-1032.

170 BIBLIOGRAPHY

[65] Milner, R. (2006), Pure bigraphs: Structure and dyr@minformation and Com-
putation 204, pp60-122.

[66] Milner, R. (2006), Ubiquitous computing: Shall we umstand it? The Computer
Journal 49, pp383-389. (The filSomputer Journal Lecture)

[67] Milner, R., Parrow, J. and Walker D. (1992), A calculdsmbile processes, Parts
I and Il. Journal of Information and Computation 100, ppla#d pp41-77.

[68] Park, D. (1981), Concurrency and automata on infinitjusaces. In:Proc. 5th
GI-Conference Conference on Theoretical Computer Scjdrexgture Notes in
Computer Science 104, Springer-Verlag, pp167-183.

[69] Parrow, J. and Victor, B. (1998), The fusion calculugpmessiveness and sym-
metry in mobile processes. IRroceedings of Logics in Computer Science 1,998
IEEE Computer Society Press, pp176-185.

[70] Petri, C. (1962) Kommunikation mit Automaterinstitut fur Instrumentelle In-
formatik, Schriften des IIM 2, 1962.

[71] Priami, C. (1995), Stochastie-calculus. The Computer Journal 38(6), pp578—
589.

[72] Regev, A., Silverman, W. and Shapiro, E. (2001), Repméstion and simulation
of biochemical processes using thecalculus process algebra. IRroc. Pacific
Symposium of Biocomputing 2001 (PSB200\¥@| 6, pp459-470.

[73] Sangiorgi, D. and Walker, D. (2001Ther-calculus: A Theory of Mobile Pro-
cessesCambridge University Press.

[74] Sassone, V. and Sobocinski, P. (2002), Deriving bisation congruences: a 2-
categorical approach. Electronic Notes in Theoretical Pater Science 68 (2),
ppl105-123.

[75] Sassone, V. and Sobocinski, P. (2005), Locating readtiith 2-categories. The-
oretical Computer Science 333, pp297-327.

[76] Sewell, P. (2002), From rewrite rules to bisimulatioongruences. Theoretical
Computer Science 274, pp183-230.

[77] Sloman, M.et al (2007), AMUSE: Autonomic management of ubiquitous e-
health systems. InConcurrency and Computation: Practice and Experigluden
Wiley & Sons.

[78] Terese (2003Jerm Rewriting System&ambridge University Press.

[79] Weiser, M. (1991), The computer for the 21st century. 8m. 265(3), pp94—
104.

[80] Wojciechowski, P.T. and Sewell, P. (1999), NomadiaPi@anguage and infras-
tructure design for mobile agents. IRroc. ASA/MA Palm Springs, California.

BIBLIOGRAPHY 171

[81] Wooldridge, M. (1999), Intelligent agents. IMulti-Agent SystemsMIT Press.

[82] , Zzhang, M., Shi, L., Zhu, L., Wang, Y., Feng, L. and Pu(Z008), A bigraphical
model of WSBPEL. In2nd Joint |EEE/IFIP Symposium on Theoretical Aspects
of Software EngineerindEEE Computer Society, pp117-120.

172 BIBLIOGRAPHY

Index

quotient behaviour
lean-support, 53 CCs, 96
behaviour of CCSseeCCS
abstract, 37, 55 behavioural congruenceeecongruence
abstract bigraplseebigraph behavioural equivalencegeequivalence
abstract BRSseeBRS bigraph, 3,5
abstraction, 70 abstract, 20, 24-26, 43, 53
dynamic, 70, 77, 79 bare, 3
active, 69, 81, 108 binding, 122, 124
active contextseecontext operations for, 126
activity, 68, 81 concrete, 16, 20, 24, 40, 43
acyclic, 16 contextual, 4
affine, 87, 90, 119 discrete, 30
agent, 7, 68 ground, 27
prime, 89 infinite, 121
algebra, 27 place-sorted, 55
many-sorted, 55 prime, 30
process, 27 pure, xiv, 122
algebraic term, 37 quasi-binding, 122
alpha-equivalent, 56 sorted, 55
alternation, 56 bigraphical reactive system
alternation in CCSseeCCS abstract, 85, 86, 90
ambiguous, 88 concrete, 85, 86
applicability, 71 growing, 118
arithmetic netseenet, 60 nice, 87, 90
arity, 7 safe, 82, 85, 86
arrow, 4, 20 binder, 122
associative, 29, 57, 104 binding, 121, 122
atom, 29, 57, 60, 62 inward, 125
discrete, 29 outward, 125
atomic, 73, 81 binding bigraphseebigraph
axiom, 29 binding control, 122
spm, 29 binding interfaceseeinterface
bisimilarity, xii, 57, 67, 70, 71, 77
bare bigraphseebigraph for CCS,seeCCS
bare signatureseesignature growing, 120, 121
basic signatureseesignature mono, 110, 111

173

174

open, 111
weak, 97
bisimulation, 72, 109
up to, 75
bound, 38
least, 38
minimal, 35, 38
relative, 35, 38, 47, 139
BRS, seebigraphical reactive system
built environment, 7

c/e netseenet, condition-event
category, 19, 20
partial monoidal, 21
symmetric partial monoidal, 20, 21
CCs, 34,56, 79, 88
alternation, 104
behaviour, 103
bijective translation, 104
bisimilarity, 110, 148
congruence, 107
finite, 104
normal form, 105
observation, 111
parameter, 105
processes, 104
reaction relation, 106
reaction rule, 106
reactum, 105
redex, 105
safe sorting, 105
sorting, 103, 104

INDEX

composition, 5, 6, 17, 20
of bigraphs, 18
of link graphs, 17
of Petri nets, 96
of place graphs, 17
computer, 7
concrete, 37, 55
arrow,seearrow
bigraph,seebigraph
link graph,seelink graph
condition
consistency, 49
marked, in Petri net, 62
unmarked, in Petri net, 62
condition-event neseePetri net
conflict, 37
confluence, 118
strong, 94
congruence, xii, 40, 67, 75, 90
behavioural, 70, 71, 79, 86
for CCS,seeCCS
non-, 73
of growing bisimilarity, 121
of minimal bisimilarity, 75
of wide bisimilarity, 85
structural,seestructural congruence,
69
for bigraphs, 118
for CCS,seeCCS
connected normal fornseenormal form
connected splitseesplit
connectivity,seelinking

structural congruence, 57, 58, 104consistency, 49

117

syntax, 104

transition, 107

translation to bigraphs, 104
child, 3, 57, 104
closed, 27, 88
closed link,seelink
closure, 28, 31, 58
codomain, 20
combination

of sortings,seesorting
commutative, 29, 57, 104
complete, 29, 31

consistent, 38

consistent sparseespan

constituent, 5, 15

constraint, 87

context, 5, 20, 71, 117
active, 108

context expression, 22

contextual
bigraph,seebigraph
label,seelabel
transition systemseetransition sys-

tem
control, 7, 55, 60, 61

INDEX

control mapseemap, 16
cospan, 38, 44

create, 40, 58

critical pair, 94

CSP, 88

decomposition, 118
definite, 77, 89, 146
derived transitions
for CCS,seeCCS
for Petri netsseePetri net
descendant, 123
diagram, 6
discrete, 30, 142
atom,seeatom
bigraph,seebigraph
ion, seeion
merge producteeproduct
molecule seemolecule
normal form,seenormal form
parameterseeparameter
disengaged transitiosgetransition
disjoint, 15
bigraphs, 18
DNF, seenormal form, discrete
domain, 20
dynamic, 81
dynamic signatureseesignature
dynamic theory, 37
dynamics, 29, 58, 67

edge, 3, 27
idle, 25, 28, 86
edge-identifier, 15
elision, 51
engaged, 88
epimorphism (epi), 43, 119
equivalence, 57, 58
behavioural, 40
lean-support, 26, 86
equivalence class, 44
equivalence relation, 44
event
in Petri net, 62
explicit net,seenet

face,seeinterface, 25

175

factorisation
prime, 31
unique, 31
failures ordering, 71
faithful, 89-91, 107, 110
faithful sub transition systengeetransi-
tion system
finite CCS,seeCCS
finite ordinal,seeordinal
forest, 3
forgetful functor,seefunctor, 40
formation rule seesorting
forwarding in arithmetic net, 60
free name, 56
functions
pushout for, 44
functor, 20, 21, 42
forgetful, 63
lean-support quotient, 26, 53, 56
of s-categories, 23
support quotient, 24

generative, 118
germination, 118
ground
bigraph,seebigraph
ground arrow, 68
ground bigraph, 27
growing reactionseereaction
grown
bigraphical reactive systerageBRS
bisimilarity, seebisimilarity
transition,seetransition
growth, 117
growth equivalence, 118
growth order, 118
guarding, 88, 142

hard, 56, 90, 107, 145
homset, 20

ground, 57, 58
hypergraph, 3

idem pushout, 39, 48, 76, 120
family of, 48
distinguished, 51

176

preserved by growth, 120
preserved by product, 52

INDEX

link, 5, 6, 16, 27
bound, 83

preserved by support equivalence, 53 closed, 5, 108

support translation of, 53
tensorial, 142
unique, is pushout, 53
identifier, 7
identity, 17, 18, 20
reflecting, 41
idle, 27, 43,57, 88
edge seeedge
infinite bigraph seebigraph
inner nameseename
inner-injective, 88
instance function, 83
instantiation, 82, 83
interaction, 66
interface, 4, 16, 25, 44, 60
binding, 124
inner, 4
outer, 4
place-sorted, 55
invariant, 9
inward binding,seebinding
ion, 29, 32,58, 121
discrete, 29
IPO, seeidem pushout
iso, seeisomorphism
isomorphism, 28, 41

join, 28
juxtaposition, 18, 21

label, 71
contextual, 73, 109, 110
minimal, 73
mono, 110
parametric, 109
unambiguous, 88, 142
labelled transitionseetransition

labelled transition systenseetransition

system
lean, 26, 53, 84, 86, 88, 119

open, 5, 108
link axiom, 29
link elision, seeelision
link graph, 4, 43
concrete, 16
link map,seemap
link sorting (discipline), 60
link-sorted signatureseesignature
linking, ix, 28

localisation in binding bigraphs, 126

locality, seeplacing, 67, 123, 124
of interface, 124
location, 69

many-sorted algebragealgebra
map

control, 16

link, 16

parent, 16
merge, 28, 30, 40
merge producteeproduct
minimal boundseebound
minimal transition seetransition
mobile ambients, 88
molecule, 29

discrete, 29
mono bisimilarity,seebisimilarity
monomorphism (mono), 43
movement, 7
multiary, 16

name, 4
inner, 4, 6, 27, 43
local, 124
outer, 4, 27,43
private, 138
public, 137
shared, 31

name-set, 4

nesting, 3, 32, 40, 58

lean-support equivalerdgeequivalence net

lean-support quotienseefunctor
least boundseebound

arithmetic, 93
condition-event, 95

INDEX

explicit, 95
Petri,seePetri net
nice, 87, 90, 107
node, 3, 16
node axiom, 29
node shape, 7
node-free, 28
node-identifier, 15
normal form, 95
connected, 33
discrete, 31, 83
for CCS,seeCCS
ground discrete, 31
nullary, 16

object, 4, 20
observation, 97
Petri net, 96
occurrence, 4, 22, 30, 37, 115
op-cartesian, 42, 58, 59, 63, 64
open, 27, 88
bisimilarity, seebisimilarity
link, seelink
ordinal
finite, 4, 15
origin, 5, 21
outer nameseename
outward bindingseebinding

parallel composition, 31, 34, 58
parallel product, 31
parameter, 34, 84
CCs, 81
discrete, 35,119
for CCS,seeCCS
parametric
label,seelabel
reaction ruleseereaction rule
parent, 4, 6, 27
parent mapseemap
partial monoidal categorgeecategory
passive, 73, 81
permutation, 28
Petri net, 79, 88, 95
condition-event, 62
derived transitions, 97

177

sorting, 63
pi-calculus, 88, 122, 125
place, 27
place axiom, 29
place elisionseeelision
place graph, 4, 43
concrete, 16
place sorting, 55
place-sorted, 55
place-sorted bigraplseebigraph
place-sorted interfacegeinterface
place-sorted signaturseesignature
placing, ix, 28
plus in arithmetic net, 60
point, 16, 27
port, 4, 16, 27
post-condition in Petri net, 62
pre-condition in Petri net, 62
precategory, 4, 22, 40
prefix, 58
prefixing, 33
prime, 30, 57, 87
agentseeagent
bigraph,seebigraph
factorisation seefactorisation
split, seesplit
process, 56
algebraseealgebra
process definition, 57
processes in CCSegeCCS
product
discrete merge, 108
merge, 33, 40, 58
parallel, 31, 40
tensor, 21
public nameseename
pure bigraphseebigraph
pushout, 38, 44
idem,seeidem pushout
reflecting, 41, 42, 59, 64

quality
inherited in IPOs, 52
guotient
lean-support, 26, 85, 90
support, 24

178

WRS, 78

raw transition systemseetransition sys-
tem
reaction, 37, 68
growing, 119
potential, 38
underlying, 87
reaction relation, 68
basic, 67
for CCS,seeCCS
tracking, 116
wide, 67
reaction rule, 8, 25, 67, 68
affine, 90
CCsS, 34,81
contextual, 117
for CCS,seeCCS
ground, 76, 85
nice, 90
parametric, 81, 84, 85
tracking, 116
reactive system, 23, 58
basic, 67, 68
tracking, 116
wide, 24, 67, 68
reactum, 8, 25, 68
CCs, 81
for CCS,seeCCS
parametric, 84
recursion, 117, 121
recursive call, 118
redex, 8, 25, 34, 37, 68
CCs, 81
for CCS,seeCCS
ground, 34
parametric, 84, 87
split, 142
tight, 142
reflect, 40
reflecting,seepushout
reflective, 10
region, 5
relative boundseebound
relative pushout, 38, 43, 67, 76
construction of, 46, 47

INDEX

creating, 41, 63
in bigraphs, 48, 54
in binding bigraphs, 125
in link graphs, 47, 139
in place graphs, 48
lacking in abstract bigraphs, 53
preserving, 41
renaming, 28, 31
replication, 90, 121
residual, 116
residuation, 116
respect, 77, 78, 85, 141
restriction, 56, 58
room, 7
root, 6, 16, 27, 43,57, 104
RPO,seerelative pushout
rule-set, 9

s-category, 20, 23
graphical, 24
wide, 23, 67, 68
s-net, 97
safe, 40, 56, 63
safe sorting, 41, 58, 85
scope, 56
scope discipline, 124
seed, 118
shared nameeename
sharing
of nodes, 108
of nodes and sites, 47
of points, 44
sibling, 27, 43
signature
arithmetic, 93
basic, 7, 40, 55, 60, 62
binding, 122
dynamic, 81
link-sorted, 60, 61, 63
place-sorted, 55
simple, 87
simulation, 71
site, 5, 16, 27, 43
sort, 55, 60
sorted
bigraph,seebigraph

INDEX

sorting, 85, 93, 95
for CCS,seeCCS
for Petri netsseePetri net
formation rule, 55
link, 60
many-one, 61, 63
place, 55, 57, 58, 60
plain, 64
safe, 41, 56
stratified, 57
sorting (discipline), 40, 54
sorting discipline, 41
sound, 29
soundness
of IPO construction, 51
of RPO construction, 47, 48
source, 61
space, viii, 1
span, 38, 40, 44
consistent, 49
split, 35
tight, 35, 142
unary, 35

179

support quotientseefunctor

support translation, 23, 24, 39, 137
for bigraphs, 17

symmetric seecategory

symmetry, 21, 23, 25, 28, 29

syntax of CCSseeCCS

target, 61
tensor product, 21, 23, 31
tensorial IPOseeidem pushout
termination, 95
tight, 35, 88
token in Petri net, 62
trace equivalence, 71
tracking, 85, 115
map, 116
parametric, 116
reaction ruleseereaction rule
reactive systengseereactive system
transition, 71
contextual, 74
disengaged, 87, 110
engaged, 87, 88, 108, 121

spm,seecategory, symmetric partial monoidal for CCS,seeCCS

state, 9
status, 81
structural analysis, 37

structural congruenceeecongruence, struc-

tural, 77
for CCS,seeCCS
structure, 29
sub transition systenseetransition sys-
tem
substitution, 28, 31, 40, 58
in binding bigraphs, 126
transition,seetransition
subsystem, 7
successor in arithmetic net, 60
sum,seealternation
summation, 34
support, 16, 23, 85
empty, 23
for bigraphs, 17
support element, 23, 137
support equivalence, 23, 75, 85, 118
support equivalent, 17

growing, 120
labelled, 71
minimal, 74, 120
prime, 87, 108
prime disengaged, 142
prime engaged, 89
raw, 109
substitution, 109
transition relation, 71
transition system, 41, 71
abstract, 77
contextual, 74, 77,110
definite sub, 77, 89
derived, 109
faithful sub, 77, 90, 110
full, 72
induced, 141
labelled, 67
minimal, 74, 87, 97
prime engaged, 89, 107
raw, 71, 96, 110
sub, 67, 76

180

translation of CCSseeCCS

unambiguous, 87
unary, 16, 35, 57, 87
unfolding, 118
unit, 21, 23, 29
for merge product, 109
up to bisimulationseebisimulation

weak bisimilarity,seebisimilarity

well-sorted, 60, 63

wide reactive system, 85
abstract, 69

wide s-categorysees-category

width, 16, 67, 68

WRS, seewide reactive system

zero in arithmetic net, 60

INDEX

INDEX 181

Glossary of terms and symbols

Each entry refers to the definition or constructiom which introduces it, except that
§ refers to chapten or sectionn.m.

BIGRAPHS CATEGORIES, SETS

F.G bare bigraph §1 AB,... category 2.8
A,B,... bigraph §1 ‘A,B,... precategory 2.12
I,J,... interface 61 F functor 2.8
m,n,... finite ordinal §1 dom(I) domain 2.8
2,y,... hame 61 cod(I) codomain 2.8

v node §1 (I—J) homset 2.8

e edge §1 I1,J,... object 2.8
X,Y,... name-set 61 f,g9,... arrow 2.8
(m, X) interface §1 id identity (arrow) 2.8
AP place constituent §1 o composition 2.8
AL link constituent 61 ® tensor product 2.10
(AP, ALY combination §1 € unit, origin 2.10
X all names §2.1 ¥ symmetry 2.11
V all nodes §2.1 S support elements 2.13
£ all edges §2.1 |- support 2.13
B all bindings §11.3 P support translation 2.13
\% node-set 2.1 = support equivalence 2.13
E edge-set 2.2 Id identity (function) 2.1

B binding-set §11.3| # disjointness §2.1
w place 2.1 S union of disjoint sets §2.1
D port 2.2 \ subtraction of sets 5.5
q point 2.2

14 link 2.2 CATEGORIES FOR BIGRAPHS

K,L,M control 1.1 PG concrete place graphs 2.1
I} binding control §11.3 LG concrete link graphs 2.2
K signature 1.1 ‘Be concrete bigraphs 2.3
ar arity (of control) 1.1 < lean-support

ctrl control map 2.1 equivalence 2.19
prot parent map 2.1 -1 lean-support quotient 2.19
in descendance relation §11.3| PG abstract place graphs 2.19
link link map 2.2 LG abstract link graphs 2.19
by sorting discipline 6.1 BG abstract bigraphs 2.19
0,0 sort, set of sorts 6.1

® sorting formationrule 6.1 OPERATIONS

'BG(X) concretet-bigraphs 6.1 ¢ placing 3.1
BGc(X) abstract:-bigraphs 6.1 T permutation 31
U functor forgets sorts §6.1 join join two sites 3.1

s, t many-one sorts 6.12| merge merge sites 3.1

182

X T T~ L 9 »+=

8|

idle prime bigraph
linking
substitution
renaming
substitution
closure
isomorphism
ion

parallel product
prime product
nesting

GENERAL DYNAMICS

R

concrete reaction rules
ground redex

ground reactum
reaction relation
activity relation
transition system
transition label
transition agents
transition labels

label applies to agent
transition-set

transition relation
bisimilarity

full transition system
location

wide transition relation
minimal transition system
sub transition system
abstract reaction rules

BIGRAPH DYNAMICS

n
7
R
R/
PE

instantiation map
instance function
parametric redex
parametric reactum
prime engaged
transition system
tracking map

3.1
3.2
3.2
3.2
3.2
3.2
§3.1
3.4
3.11
3.15
3.13

7.1
7.1
7.1
7.1

7.2
7.8
7.8
7.8
7.8

7.8
7.8

7.8
7.9
7.10Q
7.13
7.13
7.14
7.1
7.6

8.3
8.3
8.5
8.5

8.15
111

~

INDEX
A germination rules
<A germination
<A growth order
— grown reaction
Lo, grown transition

1

grown bisimilarity

APPLICATION TO CCS

v, | process syntax

0,+ alternation syntax

1y T, T actions

=, alpha equivalence

= structural congruence

p,a sorts of bigraphs

alt alternation control

send, get action controls

nil empty process

Kees CCS signature

Yees CCS sorting

P[] translation of
processes

Al translation of
alternations

~ees raw bisimilarity

T raw transition label

PEmn mono prime engaged
transition system

~m mono bisimilarity

~Ces raw congruence

~2 open bisimilarity

OTHER APPLICATIONS

in, out ambient controls
amb, open ambient controls
0,S arithmetic controls
+,— arithmetic controls
Karith arithmetic signature
M, U, E Petri-net controls
Kpetri Petri net signature
+x,—x,7 raw Petri-net labels
~y raw Petri-net

bisimilarity

11.3
11.3
115
11.8

11.10
11.10

6.3
6.3
6.3
6.3
6.4
6.5
6.5
6.5
6.5
6.5
6.5

6.6

6.6
§10.2
§10.2

§10.2
§10.2
§10.2
§10.2

61

61

§6.2
§6.2
§6.2
§6.2
§6.2
§9.2

§9.2

