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Solutions to the Exercises for Lecture I on

Bigraphs: a Model for Mobile Agents
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(b) With B1–B5 there are at least the following invariants:

the structure of buildings and rooms is unchanged;
each room contains a single computer, linked to the infrastructure of its building;
each computer is linked to at most one agent, who is in the sameroom;
there are exactly five agents;
there is at most one conference call in progress;
an agent who leaves a conference call never rejoins it.
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(c) WhenB4 andB5 are replaced byB6 all the above hold, and also:

an agent cannot unlink from a computer without leaving the room.
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Solutions to the Exercises for Lecture II on

Bigraphs: a Model for Mobile Agents

S4 Let F : I → J , whereI = 〈m,X〉 andJ = 〈n, Y 〉. To proveidJ is a left identity:

idJ ◦F = 〈idn, idY 〉 ◦ 〈FP, F L〉
= 〈idn ◦FP, idY ◦F L〉
= 〈FP, F L〉
= F .

Proof thatidI is a right identity is similar. To prove composition associative:

H ◦ (G ◦F ) = 〈HP,HL〉 ◦ 〈GP
◦FP, GL

◦F L〉
= 〈HP

◦ (GP
◦FP),HL

◦ (GL
◦F L)〉

= 〈(HP
◦GP) ◦FP, (HL

◦GL) ◦F L〉
. . . . . .

= (H ◦G) ◦F .

S5 Any bigraphG : I → ǫ has an empty place graph, since a non-empty place graph
implies at least one root. Also, in the link graphGL :X →∅ of G, every link is an edge.
But if G has empty support then it has no edges, soX = ∅, I = ǫ andG = idǫ.

S6 A linking is just a map from inner names to outer names and edges. So a substi-
tutionσ from X to Y is just a tensor product of elementary substitutions

σ
def
= y0/X0 ⊗ · · · ⊗ yn−1/Xn−1, whereX = X0 ⊎ · · · ⊎ Xn−1 andY = {~y} .

Now partitionY into Z = {y0 · · · yk−1} andW = {yk · · · yn−1}. We get any linking
λ by setting /W

def
= /yk ⊗ · · · ⊗ /yn−1, and forming

λ
def
= (idZ ⊗ /W ) ◦σ .

This use of composition is the only way to form a closed link between at least two
points.

S7 The expressionG can be specialised to the four quoted cases by setting:

(1) C1 = id andI = ǫ,
(2) I = ǫ andC0 = id,
(3) C1 = idK⊗I andC0 = idJ ⊗ C (for F :J →K), and
(4) C1 = γK,I andC0 = (idJ ⊗ C) ◦γI,J .

To show thatg = C ◦a implies thata occurs ing, takeF = a, I = ǫ, C0 = idǫ. For
the converse, assume thatg = C ◦ (a ⊗ idI) ◦C ′; we must findD such thatg = D ◦a.
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Indeed, sincea is ground we haveg = C ◦ (a⊗C ′), and sinceg is ground we haveC ′

ground, sayC ′ = b; the result then follows by takingD = C ◦ (id ⊗ b).
If E occurs inF andF occurs inG then we have

F = C1 ◦ (E ⊗ idI) ◦C0 and
G = D1 ◦ (F ⊗ idJ) ◦D0 ,

So one can deduce ‘E occurs inG ’, i.e. G = B1 ◦ (E ⊗ idK) ◦B0, by settingK =
I ⊗ J , B1 = D1 ◦ (C1 ⊗ idJ) and B0 = (C0 ⊗ idJ) ◦D0.

S8 The formation ruleΦ for stratified sorting constrains only place graphs, so we
can ignore link graphs when checking it. And since a place graph is a forest of trees, if
it is augmented with sorts then the forest satisfiesΦ iff each tree does.

To see that an identity satisfiesΦ, note that a place interfacem augmented with
sorts is essentially a sequenceθ0 · · · θm−1 of sorts. So in an identityidI augmented
with sorts, each tree whose root has sortθ has just one child—i.e. a site—with sortθ.
This clearly satisfiesΦ. A similar argument applies to symmetries.

Now suppose that each ofF andG, augmented with sorts, satisfiesΦ. Each tree of
a tensor product F ⊗ G is just a tree of eitherF or G, so clearlyF ⊗ G satisfiesΦ.
Each tree of acomposition G ◦F is a tree ofG in which each sitei : θ is replaced by
some tree ofF whose root (with sortθ) is removed. Now every place inG ◦F is either
a root or node ofG or a node ofF ; the appropriate condition ofΦ can be checked in
these two cases separately.

Without sorts in interfaces, a compositionG ◦F would be possible in which the
sort of a childv of a rooti of F need bear no relation to the sort of the parentu of the
corresponding sitei in G. But u is the parent ofv in G ◦F , thus the composition may
violateΦ.

S9 Extend structural congruence by making the comma that assembles a system both
commutative and associative.

Extend the stratified sorting by adding a sortsy for systems and a nullary control
cell : (sy, 0), with the condition that the children of asy-node have sortpr. Also add a
unary controlthrow : (ch, 1), like send but for distributed communication.

For the translation, we need a third translation functionSX [·] from systems to
ǫ→〈1:sy,X〉, with the definition

SX [(|P |)] = cell.AX [P ] and SX [S, T ] = SX [S] | SX [T ] .
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Solutions to the Exercises for Lecture III on

Bigraphs: a Model for Mobile Agents

S10 To allow ordinary reactions within a cell to occur in the surrounding system we
need rules that allow cells and systems to propagate reaction:

P −→ P ′

(|P |) −→ (|P ′|)

S −→ S′

S, T −→ S′, T

We also need axiom that allow ‘thrown’ reactions to occur either within a cell or be-
tween cells:

(x.P + A) | (x.Q + B) −→ P |Q

(|νZ((x.P + A) |P ′)|), (|νW ((x.Q + B) |Q′)|) −→ (|P |P ′|), (|Q |Q′|)

where in the second casex /∈ Z ∪ W , and eitherP ′ or Q′ or both may be absent.
The second axiom can be reduced to simpler ones, but only if weallow reactions to be

deduced from labelled transitions, rather than defined independently.

S11 R = alt.(sendx.d0 | d1) | alt.(getx.d2 | d3) R′ = x | d0 | d2.

R : 〈p a p a, ∅〉→〈p, x〉 R′ : 〈p p, ∅〉→〈p, x〉
d : ǫ→〈p a p a, Y 〉 r, r′ : ǫ→〈p, x ⊎ Y 〉 .

S12 The dynamic signature must be extended to assign active status to the control
cell. Then we need just one rule for thrown communications:

xR
′

x

alt alt
R

00

1

throw

2

3

get
1

alt. (throwx.d0 | d1) ‖ alt. (get
x
.d2 | d3)

x ‖ d0 ‖ d1

The only differences from the previous rule are thatthrow replacessend, and that using
two distinct regions (expressed algebraically by using‖ in place of | ) we allow the
two factors of the rule to be placed in possibly distinct cells. Unlike the second axiom
in Solution S10, the rule need not mention the surrounding cell(s).
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S13 P andQ have the sametraces, i.e. they can both perform just two action se-
quences,x y andx z. But P is deterministic; it can only start by doingx, and then it
will do eithery or z according to whether the environment (or observer) doesy or z.
On the other hand,Q is non-deterministic; in doing anx it will randomly choose the
first, or the second, alternative. If it chooses the first, andthen the environment offers
only z, then there is deadlock.

S14 Consider just one case (the others are similar or easier); supposeµ = τ and

P1 |Q
τ

−→ R1 occurs becauseP1
x

−→ P ′
1 andQ

x
−→ Q′, for someP ′

1 andQ′, and

R1 = P ′
1 |Q

′. Then, becauseP1 ∼ P2, there existsP ′
2 such thatP2

x
−→ P ′

2, with
P ′

1 ∼ P ′
2. But then, by then same inference rule, we deduce thatP2 |Q

τ
−→ R2, where

R2 = P ′
2 |Q

′. SinceP ′
1 ∼ P ′

2, the pair(R1, R2) is in the relationS.
When we have found such a pair for every way the transition ofP1 |Q can occur,

then we have proved thatS is a bisimulation.

S15 In the first case, letu be the shared left-handsend-node. If theget-nodes were
shared, sayv, thenv would be linked tou in D ◦ r. But this is impossible inL ◦a
because the link tov is closed.

In the second case, letu denotea’s left-handsend-node andr’s right-handsend-
node; thena andr must also share their othersend-node—call itu′. If the get-nodes
werenot shared thenu′ would be linked to two distinctget-nodes inD ◦ r. But this is
impossible inL ◦a because the link tou′ in a is closed.

A third possibility as thata andr share no nodes. Then we can achieveL ◦a =

D ◦ r by defining the bound(L,D)
def
= (id ⊗ r, a ⊗ id).
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Solutions to the Exercises for Lecture IV on

Bigraphs: a Model for Mobile Agents

S16 One way is to add a new control ‘bigbud’; a bud in this state allows the coat
proteins to be shed before a bud becomes a fully fledged brane.This can be done by
extending the set of reaction rules as follows:

bud fission
(amended)

gate

branebigbud

coat

bigbud

gate

coat

n

coat

bud

n

bigbud

coat

coat

bigbud

coat

S17 These two rules are for migration of a particle into, and out of, a bud.

particle migration (amended)

brane

gate

brane

gate
gate

particle
particle

brane

gate

particle
brane

gate

particle
gate

gate gate

S18 The probability that all but theith reaction occur at or aftert is
∏

j 6=i e−ρjt,
which can be expressed ase−ρit, whereρi =

∑
j 6=i ρj .

The probability that theith reaction occurs in the interval(t, t+δt) is−( d
dt

e−ρit)δt,
i.e.ρie

−ρitδt.
Multiplying these two and integrating from0 to∞ gives the required result:

∫ ∞

0

ρie
−ρite−ρitdt =

∫ ∞

0

ρie
−ρtdt = ρi/ρ .
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Solutions to the Exercises for Lecture V on

Bigraphs: a Model for Mobile Agents

S19

(a) It may be useful for a node to change its control through a reaction. In membrane
budding, for example, we may like to say that the bud formed bya membrane is
tracked to its parent membrane, and that the new membrane which it eventually
becomes also has the same tag.

(b) We haver = R.(d0 ⊗ · · · ⊗ dm−1) and r′ = R′.(d′0 ⊗ · · · ⊗ d′n−1) where
d′j = dη(j) for eachj ∈ n. So we would extend the tracking map to

τ ∪ Id|dη(0)| ∪ · · · ∪ Id|dη(n−1)| .

(c) We have(g, g′) = (D.r,D.r′), and we can assume that everything in|D| pre-
serves its identity. So we can extend the tracking map by adjoining Id|D|.

(d) For a reaction sequenceg ⊲ g1 ⊲ · · · · · · ⊲ gn = g′, we can naturally
compose the tracking maps of the individual reactions.

(e) Causal structure is often defined onevents, rather than on components. But it
makes some sense to say that an individual component owes itsexistence to
certain past component(s). In this case it would be natural for tracking maps to
be relations, not just partial maps.

S20 The RPO is as follows. Note that no links need be closed exceptby B.

v0

v2

z0 z1z1z0

z1z0

B

y0x1 x2 y1x0 y2 y3

B1B0

S21 Let 〈~C,C〉 be any bound for~A relative to~D. For a triple〈 ~B,B〉 to be an RPO
we must prove that there exists a unique bigraphE such that

E ◦Bi = Ci (i = 0, 1) andC ◦E = B . (∗)
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For this purpose, first consider the place graph RPO( ~BP, BP). We easily see that

( ~CP, CP) is a bound for ~AP relative to ~DP; hence there exists a unique place graph
EP such thatEP

◦BP
i = CP

i (i = 0, 1) andCP
◦EP = BP. Now considering the link

graph RPO( ~BL, BL), a unique link graphEL exists with an analogous property in the
link graphs.

Also EP andEL have the same node-set. To see this, note that|CP| ⊎ |EP| =
|BP|, and similarly |CL| ⊎ |EL| = |BL|. We already know that the combinations
C = 〈CP, CL〉 andB = 〈BP, BL〉 exist. HenceE

def
= 〈EP, EL〉 also exists.

It is easy to check thatE has the property(∗). To see that it is unique with this
property, suppose that some bigraphF has the property. Then, by considering its
constituents and the given place graph and link graph RPOs, we find by the uniqueness
of EP andEL thatFP = EP andF L = EL; henceF = E. This completes the proof.

S22

(1) We haveb′0 = E0 ◦ r′0. Also, the result of the transition ofa0 is a′
0 = D0 ◦ r′0.

Sob′0 = E ◦a′
0. Now the result of the transition ofb1 is b′1 = E1 ◦ r′1 = E ◦a′

1.
Thus, witha′

0 ∼ a′
1 and takingC ′ = E, we have what is required.

(2) We knowE0 is active, by the assumed transition ofC ◦a0. HenceD0 is active,
andE is active at̃ı = width(D0)(m0), wherem0 is the width of the outer face
of r0. Now, from the existence of the transition ofa1 we haveD1 active. Also
ı̃ = width(D1)(m1), wherem1 is the width of the outer face ofr1. Since also
E is active at̃ı, we deduce thatE1 = E ◦D1 is active, as required.


