Solutionsto the Exercises for Lecturel on

Bigraphs: aModel for Mobile Agents

S1

bigraph D : e —(3, {xz12223})
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(b)  With B1-B5 there are at least the following invariants:

the structure of buildings and rooms is unchanged;

each room contains a single computer, linked to the infuaitre of its building;
each computer is linked to at most one agent, who is in the saome;

there are exactly five agents;

there is at most one conference call in progress;

an agent who leaves a conference call never rejoins it.

(c) WhenB4 andB5 are replaced b6 all the above hold, and also:
an agent cannot unlink from a computer without leaving thoero

amb
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SA4 LetF:1— J,wherel = (m,X)andJ = (n,Y). To proveid, is a left identity:

idjoF = (idy,idy)o (FP, FL)
= (id, o FP,idy o FL)
— <FP7FL>
= F.

Proof thatid; is a right identity is similar. To prove composition asstive
Ho(GoF) = (HP,H“Yo(GPoFP G'oF")
_ <HPo(GPoFP),HLo(GLoFL)>
= ((HPoGP)oFP (H'oGY)oF")

S5 Any bigraphG : I — e has an empty place graph, since a non-empty place graph
implies at least one root. Also, in the link graph : X — () of G, every link is an edge.
But if G has empty support then it has no edgesXse ), I = ¢ andG = id..

S6  Alinking is just a map from inner names to outer names and ®dge a substi-
tutiono from X to Y is just a tensor product of elementary substitutions

def

o =Y%/Xo® - ®@Yn-1/X,_1, whereX = Xo W --- W X,y andY = {y} .

Now partitionY into Z = {yo - - - yx—1} andW = {yx - - - yn—1}. We get any linking
A by setting /W £ fy,, ® -+ @ fy,—1, and forming

AE (idy @ W)oo .

This use of composition is the only way to form a closed linkween at least two
points.

S7 The expressiol: can be specialised to the four quoted cases by setting:

(1) Ci=idandl =g,

(2) I=e¢andCy=id,

(3) 01:idK®IandCo:idJ®C(forF:J—>K),and
(4) 4 = VYK,I andCoz(idJ®C)ow7J.

To show thaty = C oa implies thata occurs ing, take ' = a, I = ¢, Cy = id.. For
the converse, assume that Co (a ® id7) o C’; we must findD such thayy = Doa.



Indeed, since is ground we havg = C o (a ® C'), and sincey is ground we have’
ground, sayC” = b; the result then follows by takin® = C'o (id ® b).
If E occurs inF' andF' occurs inG then we have

F = Clo(E®id1)oCoand
G = Dlo(F®idJ)oD0,

So one can deducé” occurs inG ', i.e. G = Byo(E ® idx)o By, by settingK =
I®J, By =D O(Cl X Id]) and BO = (CO X idJ)ODO.

S8 The formation ruled for stratified sorting constrains only place graphs, so we
can ignore link graphs when checking it. And since a placplyrs.a forest of trees, if
it is augmented with sorts then the forest satisfié§ each tree does.

To see that an identity satisfids note that a place interface augmented with
sorts is essentially a sequerte- - - 0,, 1 of sorts. So in an identitid; augmented
with sorts, each tree whose root has gbias just one child—i.e. a site—with sakt
This clearly satisfie®. A similar argument applies to symmetries.

Now suppose that each 6fandG, augmented with sorts, satisfi®s Each tree of
atensor product F' ® G is just a tree of eitheF’ or GG, so clearlyF’ ® G satisfiesd.
Each tree of aomposition G o F' is a tree ofG in which each sité : 0 is replaced by
some tree of’ whose root (with sorf) is removed. Now every place (@ o F' is either
a root or node ofy or a node ofF’; the appropriate condition ¢f can be checked in
these two cases separately.

Without sorts in interfaces, a compositiaho F' would be possible in which the
sort of a childv of a rooti of F' need bear no relation to the sort of the pareiof the
corresponding sitéin G. Butw is the parent ob in G o I, thus the composition may
violate d.

S9 Extend structural congruence by making the comma that ddesra system both
commutative and associative.

Extend the stratified sorting by adding a sortfor systems and a nullary control
cell : (sy,0), with the condition that the children ofsg-node have sortr. Also add a
unary controlthrow : (ch, 1), like send but for distributed communication.

For the translation, we need a third translation funcii[-] from systems to
e —(1:sy, X), with the definition

Sx[(P)] = cell.Ax[P]  and  Sx[S.T] = Sx[S]|Sx[T].
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S10 To allow ordinary reactions within a cell to occur in the sumding system we
need rules that allow cells and systems to propagate reactio

P— P S — 5’
(P) — (P) S, T — S".T

We also need axiom that allow ‘thrown’ reactions to occuneitwithin a cell or be-
tween cells:

(z.P+A)|(z.Q+B) — P|Q
(vz(@.P+A) | P)), (vW((z.Q+ B)[Q)) — (PP, (QQ)

where in the second case¢ Z U W, and eitherP’ or Q' or both may be absent.
The second axiom can be reduced to simpler ones, but only @& reactions to be

deduced from labelled transitions, rather than defineddeddently.

S11 R =alt.(send,.do|d1) | alt.(get,.do |ds) R =z|do|ds.
R:(papa,0)—(p,z) R :(pp,0)—(p,z)
d:e—(papa,Y) ror’ie—(p,zWY).

S12 The dynamic signature must be extended to assign activesdtathe control
cell. Then we need just one rule for thrown communications:

R .
alt

B

alt. (thI’OWx.d() | dl) || alt. (getx.dz ’dg)

x| do || d

The only differences from the previous rule are tthabw replacesend, and that using
two distinct regions (expressed algebraically by usjnén place of |) we allow the
two factors of the rule to be placed in possibly distinct&elinlike the second axiom
in Solution S10, the rule need not mention the surrounditi(sde



S13 P and@ have the sam#&aces, i.e. they can both perform just two action se-
quencesy y andx z. But P is deterministic; it can only start by doing and then it
will do eithery or z according to whether the environment (or observer) dpesz.
On the other handy is non-deterministic; in doing an it will randomly choose the
first, or the second, alternative. If it chooses the first, it the environment offers
only z, then there is deadlock.

S14  Consider just one case (the others are similar or easiggpose;. = 7 and
P, |Q -~ R; occurs becaus®, —— P; andQ —— @', for someP] and@’, and
Ry = P/|Q'. Then, becaus®, ~ P,, there existsP; such thatP, — P}, with
P| ~ P,. But then, by then same inference rule, we deduceRhat) —— R,, where
Ry = P}| Q. SinceP; ~ Pj, the pair(Ry, R2) is in the relationS.

When we have found such a pair for every way the transitioR,dfQ) can occur,
then we have proved thétis a bisimulation.

S15 In the first case, let. be the shared left-hars@nd-node. If theget-nodes were
shared, say, thenv would be linked tou in Dor. But this is impossible inLoa
because the link to is closed.

In the second case, latdenotea’s left-handsend-node and-'s right-handsend-
node; them andr must also share their othesnd-node—call itu/. If the get-nodes
werenot shared then would be linked to two distincget-nodes inD o . But this is
impossible inL o a because the link te’ in « is closed.

A third possibility as that: andr share no nodes. Then we can achiéwen =

def

D or by defining the boundZ, D) = (id ® , a ® id).
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S16 One way is to add a new contrddigbud’; a bud in this state allows the coat
proteins to be shed before a bud becomes a fully fledged biidne.can be done by
extending the set of reaction rules as follows:

bud fission coat
(amended)

S17 These two rules are for migration of a particle into, and duadud.

particle migration (amended)

S18 The probability that all but thé'" reaction occur at or afteris [zie "
which can be expressed @', wherep, = > ., p;.

The probability that thé'" reaction occurs in the interved, t+4t) is — (L e ~*it)dt,
i.e.pe Pitét.

Multiplying these two and integrating frotto oo gives the required result:

/ Pie_plte_ﬁ’tdt _ / pie_ptdt _ Pz/p )
0 0
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S19

(a) It may be useful for a node to change its control througdaation. In membrane
budding, for example, we may like to say that the bud formed byembrane is
tracked to its parent membrane, and that the new membrareh itlgventually
becomes also has the same tag.

(b) We haver = R.(dy ® -+ @ dp—1) andr’ = R'.(d{ ® --- ® d),_,) where
dfj = d,;) for eachj € n. So we would extend the tracking map to

TU Id|dn(0)| U---u |C|‘d

n(n—1)\ :

(c) We have(g, ¢’) = (D.r, D.r’), and we can assume that everythingiin pre-
serves its identity. So we can extend the tracking map byirdmpld, .

(d) For a reaction sequenge—> gy —> -+---- —>g, = ¢’, we can naturally
compose the tracking maps of the individual reactions.

(e) Causal structure is often defined ernts, rather than on components. But it
makes some sense to say that an individual component owegigence to
certain past component(s). In this case it would be natoratrfcking maps to
be relations, not just partial maps.

S20 The RPO is as follows. Note that no links need be closed exnept

7 %

20 z1
20 Z1 20 21
; .ﬁ /KBI
o 1 T2 Yo Y1 Y2 Y3

S21  Let(C,C) be any bound for! relative toD. For a triple(3, B) to be an RPO
we must prove that there exists a unique bigrapsuch that

EoBizCi(i:(),l)andCoE:B. (*)
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For this purpose, first consider the place graph RIBB BP). We easily see that

(CP CP) is a bound forAP relative to DP; hence there exists a unique place graph
EP such thattP o BY = CP (i = 0,1) andC? o EP = BP. Now considering the link
graph RPQ(BL, BY), a unique link graptEL exists with an analogous property in the
link graphs.

Also EP and E' have the same node-set. To see this, note|thatw |EP| =
|BP|, and similarly|Ct| w |E'| = |B'|. We already know that the combinations
C = (CP,CY) andB = (BP, BY) exist. Hencel? £ (EP, EL) also exists.

It is easy to check thaE' has the propertyx). To see that it is unique with this
property, suppose that some bigraphhas the property. Then, by considering its
constituents and the given place graph and link graph RP®§na by the uniqueness
of EP andE" that P = EP andF' = E'; henceF = E. This completes the proof.

S22

(1) We haveb|, = Eyor(. Also, the result of the transition @, is a;, = Dgor{.
Sob{, = Eca(. Now the result of the transition @f isb] = Ejor] = Eoaj.
Thus, withaj, ~ a} and takingC” = E, we have what is required.

(2) We knowEy is active, by the assumed transition@# ay. HenceDy is active,
andF is active ati = width(Dy)(myg), wherem, is the width of the outer face
of ro. Now, from the existence of the transition @f we haveD; active. Also
7 = width(Dy)(m,), wherem, is the width of the outer face of;. Since also
E is active ati, we deduce thall; = F o D, is active, as required.



