
Visibility Metric for Visually Lossless
Image Compression
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Abstract—Encoding images in a visually lossless manner helps
to achieve the best trade-off between image compression perfor-
mance and quality and so that compression artifacts are invisible
to the majority of users. Visually lossless encoding can often
be achieved by manually adjusting compression quality param-
eters of existing lossy compression methods, such as JPEG or
WebP. But the required compression quality parameter can also
be determined automatically using visibility metrics. However,
creating an accurate visibility metric is challenging because of the
complexity of the human visual system and the effort needed to
collect the required data. In this paper, we investigate how to train
an accurate visibility metric for visually lossless compression from
a relatively small dataset. Our experiments show that prediction
error can be reduced by 40% compared with the state-of-the-
art, and that our proposed method can save between 25%-75%
of storage space compared with the default quality parameter
used in commercial software. We demonstrate how the visibility
metric can be used for visually lossless image compression and
for benchmarking image compression encoders.

Index Terms—Visually lossless image compression, visibility
metric, deep learning, transfer learning

I. INTRODUCTION

The enormous amount of image and video data on the
Internet poses a significant challenge for data transmission and
storage. While significant effort has been invested in better
image and video coding methods, improving these methods
according to the human visual system’s perception of visual
quality.

Image and video compression methods can be categorized
as lossy or lossless. While lossless methods retain origi-
nal information up to the bit-precision of the digital rep-
resentation, they are several times less efficient than lossy
methods. Visually lossless methods lie in between lossy and
lossless compression: they introduce compression distortions,
but ensure that those distortions are unlikely to be visible.
Visually lossless compression was first introduced to compress
medical images and handle the increasing amount of data in
clinics’ picture archiving [1]. By selecting a fixed compression
parameter or modifying the compression encoders, visually
lossless compression has been shown effective for medical
images in the gray-scale domain [2]. However, previous re-
search on visually lossless compression is largely content and
encoder dependent, which means we cannot apply medical

compression methods to the compression of general image
content using popular compression methods, such as JPEG.
The goal of this paper is to devise a content and encoder
independent visually lossless compression method for natural
images.

While image quality metrics (IQMs) are meant to predict
the perceived magnitude of impairment [3], visibility metrics
predict the probability of noticing the impairment. IQMs are
thus well suited for predicting strong, suprathreshold distor-
tions. However, visibility metrics tend to be more accurate
when predicting barely noticeable artifacts. Eckert et al. found
that objective quality scores produced by IQMs (e.g. mean
squared error), are correlated with compression quality setting
[4]. However, simple IQMs have been found inaccurate [5].

The visually lossless threshold (VLT) is the encoder’s
parameter setting that produces the smallest image file while
ensuring visually lossless quality. In this paper, we propose to
train a visibility metric to determine the VLT. The proposed
flow is shown in Figure 1. The original image is compressed
at several quality levels by a lossy compression method, such
as JPEG or WebP. Then, decoded and original images are
compared by the visibility metric to determine the quality level
at which the probability of detecting the difference (pdet) is
below a predetermined threshold.

This paper extends our previous work on a general-purpose
visibility metric [5] and focuses on visually lossless compres-
sion. The novel contributions are:

1) We present a new dataset of 50 images in which JPEG
and WebP images are manually adjusted to be encoded
at the VLT.

2) We significantly improve the predictive performance of
the CNN-based visibility metric using pre-training.

3) We demonstrate the method utility in visually lossless
compression and for comparing compression methods.

II. QUALITY VS. VISIBILITY METRICS

In this section we clarify the difference between full-
reference IQMs and visibility metrics, as these are often
confused. IQMs predict a single quality score (mean opinion
score, MOS) for a pair of reference and test images [6].
Such a score should be correlated with mean opinion scores
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Fig. 1. Proposed flow of our method for visually lossless compression based
on visibility metrics.

collected in subjective image quality assessment experiments.
An extensive review of IQMs, including SSIM, VSI, FSIM,
can be found in the survey [3].

However, it is challenging to estimate VLT accurately from
traditional subjective assessment experiments, since mean
opinion scores only capture overall image quality and do not
explain where the distortions are visible in an image. This will
be demonstrated with experiments in Section IV.

Visibility metrics predict the probability that the average
observer [7] or a percentage of the population [5] will notice
the difference between a pair of images. This probability is
predicted locally, for pixels or image patches. The maximum
value from such a probability map is computed to obtain
a conservative estimate of the overall detection probability.
Visibility metrics are either based on models of low-level
human vision [7], [8] or rely on machine learning, trained
using locally labeled images [5]. This paper improves on the
CNN-based metric from [5] with the help of a newly collected
dataset and a new pre-training approach.

III. VISUALLY LOSSLESS IMAGE COMPRESSION DATASET

With the aim of validating visibility metrics, we collect a vi-
sually lossless image compression (VLIC) dataset, containing
images encoded with JPEG and WebP1 codecs.

A. Stimuli

The VLIC dataset consists of 50 reference scenes coming
from previous image compression and image quality studies.
The stimuli are taken from the Rawzor’s free dataset (14
images)2, CSIQ dataset (30 images) [9] and the subjective
quality dataset in [10] (where we randomly selected 6 images
from the 10 images in the dataset). For Rawzor’s dataset,
images were cropped to 960x600 pixels to fit on our screen.
These images provide a variety of contents, including por-
traits, landscapes, daylight and night scenes. The images were
selected to be a representative sample of Internet content.
For JPEG compression, we use the standard JPEG codec
(libjpeg3). For WebP compression, we use the WebP codec

1https://developers.google.com/speed/webp/
2http://imagecompression.info/test images/
3https://github.com/LuaDist/libjpeg

(libwebp4). Half of the reference scenes is compressed with
JPEG and the other half with WebP, each into 50 different
compression levels.

B. Experiment Procedure

The experimental task was to find the compression level
at which observers cannot distinguish between the reference
image and the compressed image.

1) Experiment stages: The experiment consisted of two
stages. In the first stage, observers were presented with ref-
erence and compressed images side-by-side, and asked to
adjust the compression level of the compressed image until
they could not see the difference (method-of-adjustment).
Compression levels found in the first stage were used as the
initial guess for a more accurate 4-alternative-force-choice pro-
cedure (4AFC), used in the second stage. In this second stage,
observers were shown 3 reference and 1 distorted images in
random order and asked to select the distorted one. QUEST
method [11] was used for adaptive sampling of compression
levels and for fitting a psychometric function. Between 20
and 30 4AFC trials were collected per participant for each
image. We decided to use side-by-side presentation rather than
flicker technique from IEC 29170-2 standard [12] because the
latter leads to overly conservative VLT as visual system is very
sensitive to flicker. The side-by-side presentation is also closer
to the scenario that users are likely to use in practice when
assessing compression quality. On average, it took between 2
and 5 minutes for each observer to complete measurements
for a single image.

2) Viewing Condition: The experiments were conducted in
a dark room. Observers sat 90 cm from a 24 inch, 1920x1200
resolution NEC MultiSync PA241W display, which corre-
sponds to the angular resolution of 60 pixels per visual degree.
The viewing distance was controlled with a chinrest.

3) Observers: Observers were students and university staff
with normal or corrected to normal vision. We collected data
from 19 observers aged between 20 and 30 years. Around 10
measurements were collected for each image.

IV. QUALITY METRICS FOR VISUALLY LOSSLESS IMAGE
COMPRESSION

In this section, we demonstrate the weakness of a state-
of-the-art image quality metric in visually lossless image
compression. We use the Feature SIMilarity index metric
(FSIM, [13]) and Butteraugli [14] to predict quality at different
compression levels on the images from our VLIC dataset.
For better clarity, we present results for 5 randomly select
images. The results, shown in Figure 2, indicate that FSIM can
reflect the changes in the visual quality but it is impossible
to select a single value that would reliably predict the VLT
(the dashed vertical lines). Butteraugli, which was specifically
designed for finding VLT, gives slightly better prediction,
but still not good enough. This demonstrates that the typical
quality metrics are not accurate enough to predict VLT. We

4https://github.com/webmproject/libwebp



made a similar observation when testing other quality metrics,
both full-reference and non-reference.
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Fig. 2. The predictions of FSIM (top) and Butteraugli (bottom) for images
compressed with increasing compression quality. The vertical dashed lines
denote the visually lossless threshold (VLT) from the experiment with the
same color denoting the same image. The predictions of existing metrics are
not good indicators of VLT.

V. DEEP NEURAL NETWORK FOR VISUALLY LOSSLESS
COMPRESSION

In this section, we summarize the architecture from our
previous work [5] and explore pre-training strategies to achieve
an accurate metric even when only using a small dataset.

A. Architecture of the visibility metric

The DNN visibility metric’s architecture is the same as in
our previous work [5] (Figure 3), which is a convolutional-
deconvolutional neural network. For VLT, we use the visibility
threshold of 0.5, corresponding to 50% of the population not
being able to tell the difference between the pristine and
compressed images. Note that different thresholds could be
used if more/less conservative VLT is needed.

B. Training and validation

We trained our network on the local visibility dataset
(LocVis)5, which consisted of test, reference images and maps
with the probability of detection experimentally determined for
image pixels. The network was trained using a probabilistic
loss function, accounting for measurement noise, as explained
in [5]. For training, we used a batch size of 48 with 50000
iterations and the Adam optimizer with a learning rate of
0.0001. We implemented our experiments in Tensorflow 1.8.

To find VLT for a particular image, the prediction of pdet
was computed for 50 quality levels from 2-98. The prediction,
shown as a blue line in in Figure 4 (for big building image),

5LocVis dataset: https://doi.org/10.17863/CAM.21484

TABLE I
PRE-TRAINING CROSS-FOLD VALIDATION RESULT (RESULTS THAT DO NOT

HAVE STATISTICALLY SIGNIFICANT DIFFERENCES ARE UNDERLINED)

RMSE of VLT Prediction
No-pretraining Butteraugli-pretraining HDR-VDP-2-pretraining
24.82 ± 5.42 22.48 ± 3.35 12.62 ± 0.56

often results in non-monotonic function. Instead of using
binary search, we searched from high to low quality to find the
quality level (q1) at which pdet raised above the predetermined
threshold (0.5 for us). Then, we searched from low to high
quality to find the quality level (q2) at which pdet dropped
below the threshold. The mean of these two levels was taken
as the metric’s prediction of VLT for this image.

Kim et al. demonstrated that PSNR scores could be used
to pre-train DNN quality metrics, which is later fine-tuned
on a smaller, human-labeled dataset [15]. Inspired by this
idea, we used existing visibility metrics, HDR-VDP-2 and
Butteraugli, to generate the additional set of 3000 images with
local visibility marking, which greatly increases the amount of
training data. The images were taken from TID2013 dataset
[16], which consisted of 25 scenes affected by 24 different
distortions at several distortion levels. We first pre-trained
visibility metric on the newly generated dataset and then fine-
tuned the CNN weights on the LocVis dataset with accurate
human markings.

We compare the performance of three training strategies: 1)
without pre-training; 2) pre-trainng on images labelled with
Butteraugli; 3) pre-training on images labelled with HDR-
VDP-2. For that, we divide the LocVis dataset into 5 equal
parts and train CNN visibility metric on the 4 parts using
leave-one-out approach, which gives us 5 different trained
versions of the metric. For each or those, we compute RMSE
of VLTs against our VLIC dataset. The results, shown in
Table I, are reported as the mean and standard deviation of
the 5 trained versions for each training strategy. This validation
procedure allows us to reduce random effects.

The validation results are shown in Table I. We compare
the performance of the metric trained without pre-training, pre-
trained using the dataset generated with HDR-VDP-2, and with
Butteraugli. From Table I, we find that pre-training reduces
both the mean and standard deviation of RMSE. This suggests
that pre-training enhances the generalization ability of the
neural network. We observe a much larger improvement for
HDR-VDP-2 pre-training. The statistical significance of the
difference is confirmed by a two-sample t-test, illustrated as
an underline in Table I.

C. Comparison with other methods

In this section, we compare the VLT predictions of our
method with other visibility metrics [5]. We use the best
performing version of our metric: with HDR-VDP-2 pre-
training, followed by fine-tuning on the LocVis dataset. The
results are shown in Table II. We test all the metrics on the
newly collected VLIC dataset (Section III), which was not
used in training. The proposed method reduces RMSE by 40%
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Fig. 3. The CNN architecture. We use the non-Siamese fully-convolutional neural network to predict visibility maps.
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Fig. 4. Illustration of the procedure used to determine the visually lossless
threshold using the visibility metric.

TABLE II
EXPERIMENT RESULTS ON THE VISUALLY LOSSLESS IMAGE

COMPRESSION DATASET

RMSE of VLT Prediction
Proposed CNN [5] Butteraugli [14] HDR-VDP-2 [7]

12.38 20.33 20.91 43.33

compared with the best-performing CNN-based metric from
our previous work.

To illustrate visually lossless compression, we show ran-
domly selected examples of pristine and visually lossless com-
pressed images in Figure 5. The compressed images appear
identical to the reference since they are compressed at the
VLT level, but provide substantial saving as compared to the
default encoder setting of 90.

VI. APPLICATIONS

We demonstrate the utility of our metric in two appli-
cations: visually lossless compression and benchmarking of
lossy image compression. For this, we randomly selected 1000
high quality images from the Flicker8K dataset6, which were
encoded with JPEG quality of 96.

A. Visually lossless image compression

For visually lossless compression, we used the procedure
from Section V-B to find the VLT with the probability of detec-
tion 0.25. This ensured that only 25% of the population had a
chance of spotting the difference between the compressed and

6http://nlp.cs.illinois.edu/HockenmaierGroup/8k-pictures.html

Reference JPEG(71%) Reference JPEG(55%)

Reference WebP(71%) Reference WebP(71%)

Reference JPEG(70%) Reference JPEG(69%)

Reference WebP(69%) Reference WebP(74%)

Fig. 5. The pairs of reference and compressed images in which the
compression quality was adjusted using the proposed metric to be at the
visually lossless level. The values in parenthesis denote saving as compared
to JPEG and WebP with the fixed quality of 90. (Better viewed in zoom-in
mode)

original images. The threshold was found separately for JPEG
or WebP. Then, we computed the decrease in file size between
our visually lossless coding and JPEG or WebP, both set to
quality 90. We choose the quality of 90 as many applications
often use it as a default setting. We plot the histogram of
per-image file size saving in Figure 6. The figure shows that
our metric can save between 25% to 75% of file size for most
images in the dataset for both compression methods. Note that
the negative number in the plots indicate that some images
need to be compressed with higher quality than quality 90.

B. Benchmarking lossy image compression encoders

To demonstrate that our metric can be utilized for bench-
marking lossy image compression methods, we encoded im-
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Fig. 6. Histogram of per-image storage saving as compared to quality 90
setting.

ages from Flicker8K dataset at different bit-rates with JPEG
and WebP. Then, for each decoded images, we used our metric
to predict the probability of detection and plot the results in
Figure 7. The figure shows that WebP can encode low bit-rate
images with less noticeable artifacts than JPEG. However, the
advantage of WebP is lost at higher bit-rates. Compared to
quality metrics, our visibility metric can express the difference
in terms of probability of detecting artifacts, rather than in
terms of an arbitrary scaled quality value.
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Fig. 7. Relationship between probability of detection and file size. We use
bits-per-pixel because of different size of images in the dataset. The shaded
region marks the 95% confidence interval.

VII. CONCLUSIONS

In this paper, we proposed a visibility metric trained for
visually lossless image compression and showed the benefits
of pretraining such network with previously proposed image
quality metrics. We have shown that when combined with
lossy image compression methods, we can save significant
amount of storage and transmission space. We also shown

that the metric can be applied to benchmarking of image
compression methods.
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