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Abstract
We model color contrast sensitivity for Gabor patches as

a function of spatial frequency, luminance and chromacity of
the background, modulation direction in the color space and
stimulus size. To fit the model parameters, we combine the
data from five independent datasets, which let us make predic-
tions for background luminance levels between 0.0002 cd/m2and
10 000 cd/m2, and for spatial frequencies between 0.06 cpd and
32 cpd. The data are well-explained by two models: a model
that encodes cone contrast and a model that encodes postrecep-
toral, opponent-color contrast. Our intention is to create practi-
cal models, which can well explain the detection performance for
natural viewing in a wide range of conditions. As our models are
fitted to the data spanning very large range of luminance, they
can find applications in modeling visual performance for high
dynamic range and augmented reality displays.

Introduction
Contrast sensitivity functions (CSFs) model how well a hu-

man observer can detect a simple visual stimulus, such as a
Gabor patch of certain spatial frequency, background color and
luminance, size and the modulation direction in a color space.
Such CSFs model the detection performance of visual system for
low contrast, barely noticeable stimuli, shown on uniform back-
grounds. CSFs are a critical component of many visual models,
such as those of modeling visibility (VDP [1], HDR-VDP [2]) or
color differences (sCIELab [3]).

The contrast sensitivity for achromatic (luminance-only)
stimuli have been well-studied, with a large number of mea-
surements, described by general models [4, 1]. However, little
work has been done to characterize contrast sensitivity for con-
trast modulation in arbitrary chromatic directions for large vari-
ations of background luminance, ranging from low scotopic to
bright photopic levels.

Here we model data from five independent datasets using
mean luminances from 0.002 to 10000 cd/m2. The focus on the
large range of luminance is motivated by applications in high
dynamic range imaging and augmented reality displays, where
the luminance can easily exceed 1000 cd/m2. Using the com-
bined dataset, we fit two models, the cone contrast model and the
postreceptoral model, which differ in how they encode chromatic
contrast. The goal is to provide a practical model that can pre-
dict contrast detection in real-life applications. We provide the
parameters and Matlab code for both models1.

1The code can be found at: https://www.cl.cam.ac.uk/
research/rainbow/projects/hdr-csf/

Related Work
In comparison to the extensive literature on achromatic

CSFs[4], much less is known about chromatic CSFs. Chromatic
CSFs are known to be low-pass as a function of spatial frequency
[5, 6], meaning that chromatic variations at low spatial frequen-
cies are easier to detect than those at higher spatial frequencies.
Similarly, slow changes in color are easier to detect than rapid
changes [7].

Much less is known about how chromatic CSFs vary with
other stimulus parameters, such as luminance and stimulus size.
Early work showed that chromatic variations are easier to detect
at higher luminance [6], a finding that was confirmed and ex-
tended to 10,000 cd/m2and for spatial frequencies between 0.5
and 6 cpd [8]. A review of other measurements of chromatic
contrast sensitivity can be found in Table 1 in [9].

Chromatic contrast sensitivity was modelled as low-pass
Gaussian functions in the sCIELab color-difference metric [3].
Such a simplified model accounted only for spatial-frequency.
Lucassen et al. [9] fitted two models to measurements for three
colored backgrounds selected along black-body locus and of
the same luminance. They concluded that the model encod-
ing postreceptoral contrast could better explain the data than the
model encoding cone-contrast. In our work we test similar mod-
els on a larger set of data, including multiple luminance levels
and stimulus sizes. We find that the the postreceptoral model, as
proposed in [9], poorly explains our combined dataset and, only
when modified to encode luminance-normalized contrast, it per-
forms on par with the cone-contrast model. Our work extends the
model of Wuerger et al. [8], who characterized the achromatic
and chromatic CSFs along red-green and yellow-violet opponent
color directions for arbitrary luminance and stimulus size, but
did not generalize the models to predict the detection for an arbi-
trary direction of chromatic modulation. The model is also much
more comprehensive, being fitted to an extensive dataset created
by combining data from 5 publications, including the work of
Wuerger and colleagues.

Detection Stimuli
Contrast threshold is the minimum contrast required to re-

liably see a target item against the background. A convenient
measure of contrast of chromatic stimuli is cone contrast, which
provides a device-independent definition of color contrast:
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where L0, M0, and S0 are the cone responses for the back-
ground, and ∆L, ∆M and ∆S are amplitudes of the chromatic
modulation. The LMS color space is typically constructed so
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Figure 1: A. Fixed-cycles Gabor stimuli, with σ = 0.5/ f . B.
Fixed-size Gabor stimuli, with σ set to the same constant.

that the sum of L and M cone responses corresponds to lumi-
nance, that is Y = L+M. Given that, cone contrast is equivalent
to Michelson contrast for an achromatic stimulus. Contrast sen-
sitivity is another measure of how well human observers detect
contrast, and is defined as the inverse of the contrast threshold,
S = 1/C.

The detection target is usually a pattern created by multi-
plying a 2D sinusoid with a Gaussian envelope, and is called a
Gabor. Gabors are characterized by the spatial frequency, phase,
and orientation of the sinusoid, as well as the width of the Gaus-
sian envelope. The amplitude of the sinusoid in the color space
corresponds to incremental cone responses ∆L, ∆M and ∆S.

In the present models, we ignore phase and orientation, fo-
cusing on the effects of spatial frequency (ρ), the standard de-
viation of the Gaussian envelope (σ ) and background color (L0,
M0, S0) on color contrast detection. A higher value of σ gives a
larger stimulus that shows more sinusoidal cycles, resulting in
a Gabor that is easier to detect. We define fixed-cycles stim-
uli as those whose σ is inversely proportional to frequency ρ ,
showing the same number of sinusoidal cycles (Fig. 1A). Fixed-
cycles stimuli are thus normalized for the number of visible cy-
cles. Typically, however, contrast detection experiments are con-
ducted with fixed-size stimuli, whose σ are fixed to occupy the
same visual area (Fig. 1B). We parameterize our models by the
size of a Gabor, which we define as a = πσ2.

Contrast sensitivity is typically measured in a contrast de-
tection experiment. In such an experiment, on each trial partic-
ipants are presented with n regions of equal area (simultaneous
presentation) or with n multiple intervals (sequential presenta-
tion). The stimulus is present in one of the n regions or intervals.
The task of the human participant is to indicate which region or
interval contains the target stimulus. Such a paradigm is called
an n-alternative-forced-choice, or n-AFC paradigm (e.g., 2-AFC
for two choices). For four of the five datasets that we used, the
data were collected in an n-AFC detection paradigm.

Figure 2: The postreceptoral opponent colorspace. The three car-
dinal axes correspond to the following cone modulations: achro-
matic along L+M axis, red-green along L−M, and yellow-
violet along S− (L+M) [10].

Datasets
We fitted the model on contrast detection thresholds from

five different studies, listed in Table 1. The datasets are com-
plementary in many respects: some provide data over a large
range of luminance ([2, 12, 8]), whereas others provide multi-
ple directions of chromatic modulation [11, 14] or background
chromaticities [14]. These datasets were selected because they
all contain data for natural viewing conditions: binocular view-
ing, non-dilated pupil, no correction for chromatic aberrations.
Such data collected for natural viewing are more relevant for
practical applications than the data found in some earlier stud-
ies, which employed monocular viewing and optical corrections
[5]. Those datasets also do not include corrections for individual
variations in isoluminance and aggregate measurements from 3–
20 observers for the same chromatic modulation directions.

To unify color specifications across the datasets, we con-
verted the background colors and color directions to LMS cone
responses, calculated using the CIE 2006 cone sensitivity func-
tions [15]. To do so, we either used the measured color spectra
of the monitor used in each experiment, or if the spectras were
not available, we assumed the spectra of a standard CRT or LCD
monitor.

Chromatic Detection Models
We present two models, the cone contrast model and the

postreceptoral model [9], which are inspired by the physiology
of the early visual system.

Many aspects of the early color vision system are well un-
derstood [7]. The first site of color processing consists of the
photoreceptors, the L, M, and S-cones, whose responses are
positive real values. The second, postreceptoral site of color
processing converts the cone responses into values in an oppo-
nent colorspace, called the DKL colorspace [10]. The DKL
colorspace consists of three cardinal directions, L+M (achro-
matic), L−M (red-green), and S− (L+M) (yellow-violet);
see Fig. 2. To detect color contrast, responses from postrecep-
toral mechanisms are combined.

The difference between the cone contrast model and the
postreceptoral model is in where and how the model normal-
izes to the background luminance and color to compute color
contrast. In the cone contrast model, the normalization with the
cone responses occurs prior to converting into the DKL space.
In the postreceptoral model, the normalization occurs after the
conversion.



Dataset Color modulation directions Frequencies Size
Background
luminance

Background
chromaticities

Wuerger et al. 2002 [11]

7: Black-White, Green-Red,
YellowGreen-Violet,
Greenish-Pink, Yellow-Blue,
DarkGreen-LightPink,
DarkYellow-LightBlue

1–32 cpd
0.5 deg, fixed
size

40 cd/m2 custom gray

Mantiuk et al. 2011 [2] 1: Black-White 0.125–32 cpd
0.15, 0.5, 1.5
deg, fixed size

0.0002–
150 cd/m2 D65

Kim et al. 2013 [12]

4: Green-Red,
YellowGreen-Violet,
DarkGreen-LightPink,
DarkYellow-LightBlue

0.25–16 cpd
1.5, 3 deg, fixed
size2 0.02–200 cd/m2 D65

Xu et al. 2020 [13, 14]
9 directions on the isoluminant
plane

0.06–3.84 cpd
9.3 deg, fixed
size

8.2–70 cd/m2 gray, red, green,
yellow and blue

Wuerger et al. 2020 [8]
3: Black-White, Green-Red,
YellowGreen-Violet

0.125–6 cpd
0.0417–4 deg,
fixed cycles

0.02–
10 000 cd/m2 D65

Table 1: Datasets used for model fitting.

Cone Contrast Model
In the cone contrast model, shown in Fig. 3a, the incre-

mental responses of L, M, and S-cones are encoded as con-
trast (∆L/L0, ∆M/M0, ∆S/S0), then combined to form achromatic
(∆CA) and two chromatic (∆CB, ∆CR) mechanism responses:

∆CA

∆CR

∆CB

=


1 m1,2 m1,3

1 −m2,2 m1,3

−m3,1 −m3,2 1

 ·


∆L
L0

∆M
M0

∆S
S0

 . (2)

L0, M0 and S0 are the chromatic coordinates of the background
color. The mi, j values are the parameters of the model, all con-
strained to be positive to preserve the sign in the matrix. This
was to ensure that the matrix models plausible directions of the
achromatic and chromatic mechanisms (L+M, L−M, and
S− (L+M)). Some of the elements were set to 1 to eliminate
the degrees of freedom that are controlled by other components
of the model.

The responses of the three postreceptoral mechanisms are
weighted by the sensitivity functions sA, sR, sB and pooled to-
gether using a p-norm:

E =

(
∑

c∈{A,R,B}
(sc(ρ,Y,a)∆Cc)

β

)1/β

, (3)

with exponent β . This is equivalent to probability summation
with a psychometric function defined as the cumulative Weibull
distribution function with a slope of β (Eq. 4). The model is cal-
ibrated so that the model response E is as close to 1 as possible
when the Gabor patch is at the detection threshold. The proba-
bility of detection Pdet can be computed as:

Pdet = 1− exp(ln(0.5)E) . (4)

The constant ln(0.5) ensures that Pdet = 0.5 when E = 1.
sA(·), sR(·), sB(·) are the sensitivity functions of spatial fre-

quency ρ (in cycles per degree), stimulus size a (in deg2) and
the background luminance Y (in cd/m2). We assume that the
background luminance is Y =L0+M0. We model each sensitiv-
ity function as a product of inverse log-parabola and a modified
stimulus size term, originally proposed by Rovamo et al. [16]:

Sc(ρ,Y,a) =
ŝc(Y )
pc(ρ)

√
aγc ρ2

kc(a)+aγc ρ2 , (5)

where c represents the mechanism (A, R or B). The modification
of original formula includes the exponent γc, which improved the
fit. The function kc(a) is given by:

kc(a) = âc +a f̂0 , (6)

where âc and f̂0 are the model parameters. f̂0 was fixed to 0.65,
following [16].

The log parabola function is:

pc(ρ)=

1 if c∈{R,B} and ρ < ρp

10
(log10(ρ)−log10(ρ̂c(Y )))2

2bc−1 otherwise
(7)

The log parabola is truncated (low-pass) for chromatic channels
(R and B) and band-pass for the achromatic channel (A). bc rep-
resents the bandwidth of the parabola. Some parameters of the
model vary with luminance. This includes the base-sensitivity:

ŝc(Y ) =

sA1

(
1+sA2

Y

)sA3
(

1− 1+sA4
Y

)sA5
if c = A

sc1

(
1+sc2

Y

)sc3
if c ∈ {R,B}

(8)

and the peak-frequency for the achromatic channel:

ρ̂c(Y ) =

ρA1

(
1+ρA2

Y

)ρA3
if c = A

ρc if c ∈ {R,B}
(9)

The remaining constants are the parameters of the model.

Postreceptoral Contrast Model
The postreceptoral model, shown in Fig. 3b, shares most of

the computation with the cone contrast model, except that the
contrast is encoded after computing opponent-color responses:

∆C′A

∆C′R

∆C′B

=


1 m1,2 m1,3

1 −m2,2 m1,3

−m3,1 −m3,2 1

 ·


∆L

∆M

∆S

 (10)

and the responses are normalized by the background luminance:

∆CA =
∆C′A

Y
, ∆CR =

∆C′R
Y

, ∆CB =
∆C′B

Y
. (11)

We also considered normalizing mechanism increment responses
by the response of the opponent color mechanism (∆CA =



ΔL ΔM ΔSL0 M0 S0

ΔCA ΔCR ΔCB

MLMS→ARB

A. Cone Contrast

sB(ρ,Y,a)sR(ρ,Y,a)sA(ρ,Y,a)

Y

E(Σ( ‧ )β)1/β
Summation

1-exp(ln(0.5)E)
Psych. Func. Pdet

ΔL
L0

ΔS
S0

ΔM
M0

B. Postreceptoral Contrast

ΔL ΔM ΔSL0 M0

ΔCA ΔCR ΔCB

MLMS→ARB

sB(ρ,Y,a)sR(ρ,Y,a)sA(ρ,Y,a)

Y

E(Σ( ‧ )β)1/β
Summation

1-exp(ln(0.5)E)
Psych. Func. Pdet

Y
ΔCA

Y
ΔCR

Y
ΔCB

Figure 3: Processing diagrams for both models.

∆C′A/CA), as proposed in [9], or the mixture of both (∆CA =
∆C′A/α CA+(1−α)Y) as proposed in [17], but the model fits were
much worse. The remaining steps of the postreceptoral contrast
model are identical to those of the cone contrast model and fol-
low equations 3–9.

Sensitivity Predictions
The presented models allow us to compute the responses

(eq. 3), or probability of detection (eq. 4). However, to match
psychophysical data, we need to predict contrast sensitivity. For-
tunately, model responses (E in eq. 3) are linearly related to the
incremental cone responses (∆L, ∆M, ∆S), which allow us to
calculate predicted sensitivity. Let us introduce a scaling factor t
and new cone increments:

∆L′ = t ∆L , ∆M′ = t ∆M , ∆S′ = t ∆S . (12)

We want to find the value of t for which the model response in-
dicates the detection threshold. After introducing the new incre-
ments to eq. 2 or eq. 10, we can show that the scaling factor t can
be factored in front of the energy term:

E ′ = t

(
∑

c∈{A,R,B}
(sc(ρ,Y,a)∆Cc)

β

)1/β

= t E . (13)

The detection threshold is found when E ′ = 1, therefore t = 1/E,
where E is the original energy from eq. 3. Then, the sensitivity
is given as the inverse of cone contrast for the new increments:

S̃ =

 1√
3

√(
t ∆L

L0

)2
+

(
t ∆M

M0

)2
+

(
t ∆S

S0

)2
−1

(14)

Model Fitting
The datasets were collected using different tasks (e.g., 2-

AFC vs. 4-AFC, detection vs. discrimination between horizon-
tal and vertical Gabors) and different participant samples. We
assume that such methodological differences lead to differences
in overall sensitivity, which we compensate by introducing fac-
tors fd that scale the sensitivity of each dataset. We want such
scaling factors to be close to 1 to avoid degenerate fits. There-
fore, the loss function is:

L =
1
N ∑

d
∑

i

(
log10( fd Si,d)− log10(S̃i,d)

)2
+α

1
D ∑

d
ln2( fd) ,

(15)

where S̃i,d is the predicted sensitivity for stimulus i in the dataset
d, and N is the total number of stimuli in all datasets. The con-
stant α controls the influence of the regularization term (α =
0.005) and D is the number of datasets. We fix the scale factor
for the first dataset to be 1 ( f1 = 1). We report fitting error in
intuitive units of decibels. Those are computed by multiplying
the square root of the first (data-loss) term of eq. 15 by 20.

Due to the scarcity of the data, we cannot partition the data
into training and testing sets. Random partitioning is likely to
leave important degrees of freedom of the model unconstrained,
and any structured partitioning approach is unlikely to provide a
robust test for overfitting. We plan to collect a testing dataset in
the future.

Results
The two models resulted in equally good fits, with no clear

winner. The fitting errors suggest that the cone contrast model
is marginally better at predicting the thresholds (Table 2). How-
ever, the difference is small (0.13 dB) and observed in only two
datasets. Part of the reason is that experimentally separating the
predictions of the cone contrast and the postreceptoral contrast
is quite difficult, and even our combined dataset is insufficient to
do so. Indeed, whether the cone contrast model or the postrecep-
toral model is more accurate remains an open debate in vision
science.

Further insights can be found by inspecting model predic-
tions and data, shown in Fig. 4–8. In all plots, circles are used to
denote the data points, continuous lines represent predictions for
the cone contrast model and dashed lines for the postreceptoral
contrast model.

Despite the different structure of both models, the predic-
tions are very similar. The largest differences occur for the lower
frequencies (Figs. 4, 5 and 8). Both models predict an asym-
metric drop in sensitivity for achromatic stimuli in log-log space,
with a shallower drop-off at low frequencies. An ablation study
of both models (not shown) indicated that this effect is caused
by one of the chromatic mechanisms (R or B) detecting achro-
matic contrast modulations. Since the chromatic tuning of the
opponent-color responses (Eq. 2 and 10) is optimised, we al-
low some achromatic signal to leak into chromatic response and
vice versa. The leaking causes chromatic mechanisms to detect
low-frequency modulations, for which chromatic mechanisms
are more sensitive than the achromatic mechanism.

When comparing figs. 6 and 8, it can be observed that
Green-Red and YellowGreen-Violet chromatic modulations pro-
duce a band-pass sensitivity shape for Kim et al. 2013 dataset,
but low-pass shape for Wuerger et al. 2020 dataset. This is be-
cause stimuli in Kim et al. 2013 dataset maintained the same
size across frequencies, while the stimuli in Wuerger et al. 2020
varied in size with frequencies (the stimuli maintained the same
number of cycles). Therefore, it is essential to model the effect
of size when explaining the data coming from different datasets.

It is worth noting that the data in Fig. 8 shows a drop in sen-
sitivity for achromatic contrast above 200 cd/m2. Most models
and measurements predict constant sensitivity at high photopic
luminance levels [4]. Our models predict a loss of sensitivity at
high luminance, which is relevant for applications in high dy-
namic range imaging.

The detection ellipses shown in Fig. 7 can be reasonably
well predicted by both models. It is worth noting that the chro-
matic tuning of the opponent-color responses assumed in both
models (Eq. 2 and 10) is different for the cone-contrast and



2-20.5 1 2 4 8 1632

Frequency [cpd]

   1

  10

 100

S
en

si
tiv

ity

Black-White

2-20.5 1 2 4 8 16 32

Frequency [cpd]

   1

  10

 100

Green-Red

2-20.5 1 2 4 8 16 32

Frequency [cpd]

   1

  10

 100

YellowGreen-Violet

2-20.5 1 2 4 8 16 32

Frequency [cpd]

   1

  10

 100

Greenish-Pink

2-20.5 1 2 4 8 16 32

Frequency [cpd]

   1

  10

 100

Yellow-Blue

2-20.5 1 2 4 8 16 32

Frequency [cpd]

   1

  10

 100

DarkGreen-LightPink

2-20.5 1 2 4 8 16 32

Frequency [cpd]

   1

  10

 100

DarkYellow-LightBlue

Data
Cone contrast
Postreceptoral contrast

Figure 4: Model predictions for Wuerger et al. 2002 dataset. Each panel corresponds to different chromatic modulation direction.
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postreceptoral contrast models (thin blue and red lines). While
the qualitative features are well captured by both models (e.g.
elongation of the ellipses in the direction of the background color
change), the cone contrast model overestimates the threshold for
the blue background.

Dataset Cone contrast
[dB]

Postreceptoral
contrast [dB]

Wuerger et al. 2002 1.08 1.32
Mantiuk et al. 2011a 2.05 2.07
Kim et al. 2013 1.69 1.67
Xu et al. 2020 1.85 2.08
Wuerger et al. 2020 2.76 2.76
All datasets 2.00 2.13

Table 2: Model fitting errors.

The fitted parameters (Table 3) show that the estimated
mechanism matrices (MLMS→ARB) resemble the mechanisms de-
rived from neurophysiology: L+M, L−M, S− (L+M).
Lucassen et al. [9] also estimated the chromatic tuning of the
mechanisms for both a cone contrast and a postreceptoral con-
trast model, but their best-fitting matrices did not correspond to
known opponent-color mechanisms, likely because they did not
constrain their matrices and their dataset did not span a large
range of stimulus parameters.
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lines – postreceptoral contrast model.

Parameters Cone contrast Postreceptoral contrast

MLMS→ARB

 1.000 0.788 0.000
1.000 −1.052 0.007
−0.001 −1.448 1.000

  1.000 3.014 0.000
1.000 −2.620 1.361
−0.025 −0.023 1.000


sA1, ..., sA5 387.748, 5.27734, 0.261885,

170801, 0.14182
429.088, 3.99169, 0.249356,
43538.6, 0.514345

sR1, ..., sR3 518.699, 8.79325, 0.518274 1096.06, 28.7702, 0.470414
sB1, ..., sB3 580.489, 67.1851, 0.381272 37092.6, 66.2461, 0.410266
ρA1, ..., ρA3 1.96508, 1510.9, 0.176528 1.95966, 1427.43, 0.183791
ρR, ρB 0.0394374, 0.000345872 0.0370431, 0.0011757
bA, bR, bB 0.925443, 3.26818, 4.24973 0.931471, 3.36043, 3.92109
γA, γR, γB 1.12405, 1.57275, 1.51226 1.1431, 1.59041, 1.47724
âA, âR, âB 83.6647, 3.09886, 0.188934 65.992, 2.28102, 0.272143

Table 3: Model parameters.

Conclusions
We propose two contrast sensitivity models that can account

for a wide range of contrast detection thresholds, obtained for
different mean luminance levels, spatial frequencies, stimulus
size and directions in color space. Both models can predict data
from five different datasets, confirming the ability of the models
to generalize across a range of conditions. We want to emphasize
in this work the need to consolidate existing datasets to create ro-
bust visual models.

We hope that modeling datasets obtained under a wide range
of experimental conditions can help us better understand low-
level color vision. For example, a simple cone contrast model
can account for detection thresholds obtained under steady-state
adaptation to chromatic backgrounds as well as for backgrounds
encompassing a wide range of luminance variations. If a postre-
ceptoral model is adopted, the only relevant postreceptoral adap-
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Figure 7: Model predictions for Xu et al. 2020 dataset. Each
panel corresponds to a different spatial frequency. The axes cor-
respond to two chromatic directions in BML colorspace. Dif-
ferent colors represent different background chromaticities. The
direction of the two chromatic mechanisms (∆CR and ∆CB) are
shown as two lines for the red background. The threshold has
been magnified 10 times for better illustration.

tation is captured by adaptation to the mean luminance (Eq. 11)
without any need to postulate an additional chromatic adapta-
tion factor. However, more data need to be collected with col-
ored backgrounds that allow us to discriminate between these
two models.

We hope that the proposed models can be used for con-
structing detection/discrimination models for more complex
stimuli, as banding artifacts [17] or differences between color
patches. We also need to acknowledge several limitations of the
proposed models. At the very low mesopic light levels, it is likely
that rods contributed to the detection performance. Our data are
too limited to model rod intrusion. The models are intended to
be functional and may not account for some aspects of low-level
vision.
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