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ABSTRACT

New imaging and rendering systems commonly use physically accurate lighting information in the form of high-
dynamic range (HDR) images and video. HDR images contain actual colorimetric or physical values, which can
span 14 orders of magnitude, instead of 8-bit renderings, found in standard images. The additional precision and
quality retained in HDR visual data is necessary to display images on advanced HDR display devices, capable of
showing contrast of 50,000:1, as compared to the contrast of 700:1 for LCD displays. With the development of
high-dynamic range visual techniques comes a need for an automatic visual quality assessment of the resulting
images.

In this paper we propose several modifications to the Visual Difference Predicator (VDP). The modifications
improve the prediction of perceivable differences in the full visible range of luminance and under the adaptation
conditions corresponding to real scene observation. The proposed metric takes into account the aspects of high
contrast vision, like scattering of the light in the optics (OTF), nonlinear response to light for the full range of
luminance, and local adaptation. To calibrate our HDR VDP we perform experiments using an advanced HDR
display, capable of displaying the range of luminance that is close to that found in real scenes.

Keywords: Visual difference metric, high dynamic range, HDR, perception, VDP, contrast sensitivity, CSF,
OTF, PSF, local adaptation, tvi

1. INTRODUCTION

New imaging and rendering systems commonly use physically accurate lighting information in the form of High-
Dynamic Range (HDR) images, textures, environment maps, and light fields in order to capture accurate scene
appearance. Unlike their low-dynamic range counterparts, HDR images can contain the entire color gamut
and full range of luminance that is visible to a human observer. HDR data can be acquired even with a
consumer camera, using multi-exposure techniques,1 which involve taking several pictures of different exposures
and then combining them together into a single HDR image. Another source of HDR data is realistic image
synthesis software, which uses physical values of luminance or radiance to represent generated images. Because
HDR images can not be directly displayed on conventional LCD or CRT monitors due to their limited luminance
range and gamut, methods of luminance compression (tone mapping) and gamut mapping are required.2–4 Even
if traditional monitors cannot accurately display HDR data, new displays of extended contrast and maximum
luminance become available.5 To limit an additional storage overhead for HDR images, efficient encodings
formats for HDR images6–9 and video10 have been proposed.

When designing an image synthesis or processing application, it is desirable to measure the visual quality
of the resulting images. To avoid tedious subjective tests, where a group of people has to assess the quality
degradation, objective visual quality metrics can be used. The most successful objective metrics are based on
models of the Human Visual System (HVS) and can predict such effects as a non-linear response to luminance,
limited sensitivity to spatial and temporal frequencies, and visual masking.11

Most of the objective quality metrics have been designed to operate on images or video that is to be displayed
on CRT or LCD displays. While this assumption seems to be clearly justified in case of low-dynamic range images,

Further author information: (Send correspondence to R.M.)
R.M.: E-mail: mantiuk@mpi-sb.mpg.de, Telephone: +49 681 9325-427



it poses problems as new applications that operate on HDR data become more common. A perceptual HDR
quality metric could be used for the validation of the aforementioned HDR image and video encodings. Another
application may involve steering the computation in a realistic image synthesis algorithm, where the amount of
computation devoted to a particular region of the scene would depend on the visibility of potential artifacts.

In this paper we propose several modifications to the original Visual Difference Predictor. The modifications
improve a prediction of perceivable differences in the full visible range of luminance. This extends the applicability
of the original metric from a comparison of displayed images (compressed luminance) to a comparison of real
word scenes of measured luminance (HDR images). The proposed metric does not rely on the global state of eye
adaptation to luminance, but rather assumes local adaptation to each fragment of a scene. Such local adaptation
is essential for a good prediction of contrast visibility in High-Dynamic Range (HDR) images, as a single HDR
image can contain both dimly illuminated interior and strong sunlight. For such situations, the assumption of
global adaptation to luminance does not hold.

In the following sections we give a brief overview of the objective quality metrics (Section 2), describe
our modifications to the VDP (Section 3) and then calibrate the parameters of the proposed metric based on
psychophysical data collected in an experiment on a HDR display (Section 4).

2. PREVIOUS WORK

Several visual difference metrics for digital images have been proposed in the literature.12–19 They vary in
complexity and in the visual effects they can predict. However, no metric proposed so far was intended to
predict visible differences in High-Dynamic Range images. If a single metric can accurately predict differences
for either very dim or bright light conditions, it may fail on images that contain both very dark and very bright
areas.

Two of the most popular metrics that are based on models of the HVS are Visual Difference Predictor
(VDP)13 and Sarnoff Visual Discrimination Model.15 Their predictions were shown to be comparable and the
results depended on test images, therefore, on average, both metrics performed equally well.20 We chose the
VDP as a base of our HDR quality metric because of its modularity and thus good extensibility.

In this paper we extend our previous work on HDR VDP.21 We introduce the influence of the eye optics and
we calibrate the VDP parameters for the best prediction of distortions in complex images.

3. VISUAL DIFFERENCE PREDICTOR

In this section we describe our modifications to the original VDP, which enable the prediction of visible differences
in HDR images. In this paper we give only a brief overview of the original VDP and focus on the extension to
high-dynamic range images. For detailed description of the VDP, refer to.13

The data flow diagram of the VDP for high-dynamic range images (HDR VDP) is shown in Figure 1. The
HDR VDP receives a pair of images as an input (original and distorted, for example by image compression) and
generates a map of probability values, which indicates how likely the differences between those two images are
perceived. Both images should be scaled in the units of luminance. In case of low-dynamic range images, pixel
values should be inverse gamma corrected and calibrated according to the maximum luminance of the display
device. In case of HDR images no such processing is necessary, however luminance should be given in cd/m2.

The first three stages of HDR VDP model behavior of the optics and retina. The original image is filtered by
Optical Transfer Function (OTF), which simulates light scattering in the cornea, lens, and retina. To account
for the nonlinear response of photoreceptors to light, the amplitude of the signal is nonlinearly compressed and
expressed in the units of Just Noticeable Differences (JND). Because HVS is less sensitive to low and high
spatial frequencies, the image is then filtered by Contrast Sensitivity Function (CSF). Those three stages are
mostly responsible for contrast reduction in the HVS and are described in detail in the following Sections 3.1,
3.2, and 3.3. The next two computational blocks – the cortex transform and visual masking – decompose the
image into spatial and orientational channels and predict perceivable differences in each channel separately.
Phase uncertainty further refines the prediction of masking by removing dependence of masking on the phase
of the signal. Since the visual masking does not depend on luminance of a stimuli, this part of the VDP is left



Figure 1. Data flow diagram of the High Dynamic Range Visible Difference Predictor (HDR VDP)

unchanged, except for a minor modification in the normalization of units (details in Section 3.4). In the final
error pooling stage the probabilities of visible differences are summed up for all channels and a map of detection
probabilities is generated. This step is the same in both versions of the VDP.

3.1. Optical Transfer Function

Due to scattering of light in the cornea, lens and retina, the visibility of low contrast details is significantly
reduced in the presence of bright light sources. For example, it is very difficult to see the license plate number
at night if the head lamps of the car are on. While such dramatic contrast changes are uncommon for typical
LCD for CRT displays, they have significant influence on perception of real life scenes or images seen on HDR
displays. To account for this effect, the first stage of HDR VDP simulates light scattering in the human eye for
given view conditions.

Light scattering in the optics is usually modeled as Optical Transfer Function (OTF) in the Fourier domain
or as Point Spread Function (PSF) in spatial domain. The scattering depends on a number of parameters, such
as spatial frequency, wavelength, defocus, pupil size, iris pigmentation, and age of the subject. Because we would
like to limit the number of parameters to what is needed for our application, we choose the function of Deeley
et al.,22 which models OTF for monochromatic light and which takes into account luminance adaptation level.
The OTF of that model is given by:

OTF (ρ, d) = exp[−(
ρ

20.9 − 2.1d
)1.3−0.07d] (1)

where d is a pupil diameter in mm and ρ is spatial frequency in cycles per degree. Specifically, the luminance
level is taken into account via its effect on the Pupil diameter, calculated for particular adaptation luminance
using the formula of Moon and Spencer23:

d = 4.9 − 3 tanh [0.4 (log10(Yadapt) + 1)] (2)

where Yadapt is a global adaptation level in cd/m2. Figure 2 shows OTFs for several levels of adaptation. The
global adaptation level can be calculated as an average luminance of an image in log domain or supplied to the
VDP as an external parameter.

3.2. Amplitude Nonlinearity

The original VDP utilizes a model of the photoreceptor to account for non-linear response of HVS to luminance.
Perceivable differences in bright regions of a scene would be overestimated without taking into account this
non-linearity. The drawback of using the model of the photoreceptor is that it gives arbitrary units of response,
which are loosely related to the threshold values of contrast sensitivity studies. The Contrast Sensitivity Function
(CSF), which is responsible for the normalization of contrast values to JND units in the original VDP, is scaled in
physical units of luminance contrast. Therefore using a physical threshold contrast to normalize response values
of the photoreceptor may give an inaccurate estimate of the visibility threshold. Note that the response values
are non-linearly related to luminance. Moreover, the model of photoreceptor, which is a sigmoidal response
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Figure 2. Optical MTFs from the model of Deeley et al.22 for different levels of adaptation to luminance and pupil
diameters (given in parenthesis).

function (see Figure 3), assumes equal loss of sensitivity for low and high luminance levels, while it is known
that the loss of sensitivity is generally observed only for low luminance levels∗ (see Figure 4). Even if the above
simplifications are acceptable for low-dynamic range images, they may lead to significant inaccuracies in case of
HDR data.

Instead of modeling the photoreceptor response, we propose converting luminance values to a non-linear space
that is scaled in JND units.10, 24 Such space should have the following property: adding or subtracting a value
of 1 in this space results in a just perceivable change of relative contrast. To find a proper transformation from
luminance to such JND-scaled space, we follow a similar approach as in.10 Let the threshold contrast be given
by the threshold versus intensity (tvi) function.25 If y = ψ(l) is a function that converts values in JND-scaled
space to luminance, we can rewrite our property as:

ψ(l + 1) − ψ(l) = tvi(yadapt) (3)

where tvi is a threshold versus intensity function and yadapt is adaptation luminance. A value of the tvi function
is a minimum difference of luminance that is visible to a human observer. From the first-order Taylor series
expansion of the above equation, we get:

dψ(l)

dl
= tvi(yadapt) (4)

Assuming that the eye can adapt to a single pixel of luminance y as in,13 that is yadapt = y = ψ(l), the equation
can be rewritten as:

dψ(l)

dl
= tvi(ψ(l)) (5)

∗The loss of sensitivity is generally not observed for higher levels of luminance if the eye is adapted to those levels.
However, drop of sensitivity can be expected if the eye is adapted to significantly lower luminance than the stimuli. For
example there is significant loss of sensitivity for specular highlights in natural images, as the eye is usually adapted to
the luminance of an object instead of highlight.
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dicts the minimum distinguishable contrast at a partic-
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nance levels indicate the loss of sensitivity of the human
eye for low light conditions. The cvi curve shown in this
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Finally, the function ψ(l) can be found by solving the above differential equation. In the VDP for HDR images
we have to find a value of l for each pixel of luminance y, thus we do not need function ψ, but its inverse ψ−1.
This can be easily found since the function ψ is strictly monotonic.

The inverse function l = ψ−1(y) is plotted in Figure 3 together with the original model of photoreceptor.
The function properly simulates the loss of sensitivity for scotopic levels of luminance (compare with Figure 4).
For the photopic luminance, the function has logarithmic response, which corresponds to Weber’s law. A con-
ceptually similar functions were proposed in the literature in the context of tone mapping (capacity function)24

and standardized description of grayscale levels for monitors and hard-copies (Grayscale Standard Display Func-
tion).26

The actual shape of the threshold versus intensity (tvi) function has been extensively studied and several
models have been proposed.27, 28 To be consistent with the original VDP, we derive a tvi function from the
CSF used there. We find values of the tvi function for each adaptation luminance yadapt by looking for the peak
sensitivity of the CSF at each yadapt:

tvi(yadapt) = P ·
yadapt

maxρCSF (ρ, yadapt)
(6)

where ρ denotes spatial frequency. Similarly as in the the original VDP, parameter P is used to adjust the absolute
peak contrast threshold. The optimal value of the parameter P for HDR VDP is calibrated to psychophysical
data in Section 4. A function of relative contrast – contrast versus intensity (cvi = tvi/yadapt) – is often used
instead of tvi for a better data presentation. The cvi function for tvi derived by us is plotted in Figure 4.

In our HDR VDP we use a numerical solution of Equation 5 and a binary search on this discrete solution
to convert luminance values y to l in JND-scaled space. The subsequent parts of the HDR VDP operate on l
values.



3.3. Contrast Sensitivity Function

The Contrast Sensitivity Function (CSF) describes the loss of sensitivity of the eye as a function of spatial
frequency and adaptation luminance. It was used in the previous section to derive the tvi function. In the
original VDP, the CSF is responsible for both modeling the loss of sensitivity and normalizing contrast to JND
units. In our HDR VDP, normalization to units of JND at the CSF filtering stage is no longer necessary as
the non-linearity step has already scaled the image to JND units (refer to the previous section). Therefore the
CSF should predict only the loss of sensitivity for low and high spatial frequencies. The loss of sensitivity in
JND-scaled space can be modeled by a CSF that is normalized by peak sensitivity for particular adaptation
luminance:

CSFnorm(ρ, yadapt) =
CSF (ρ, yadapt)

maxρCSF (ρ, yadapt)
(7)

Unfortunately, in case of HDR images, a single CSF can not be used for filtering an entire image since
the shape of the CSF significantly changes with adaptation luminance. As can be seen in Figure 5, the peak
sensitivity shifts from about 2 cycles/degree to 7 cycles/degree as adaptation luminance changes from scotopic
to photopic. To normalize an image by CSF function taking into account different shapes of CSF for different
adaptation levels, a separate convolution kernel should be used for each pixel. Because the support of such
convolution kernel can be rather large, we use a computationally more effective approach: we filter an image in
the Fourier domain several times, each time using CSF for different adaptation luminance. Then, we convert all
of the filtered images to the spatial domain and use them to linearly interpolate pixel values. We use luminance
values from the original image to determine the adaptation luminance for each pixel (assuming adaptation to a
single pixel) and thus to choose filtered images that should be used for interpolation. A more accurate approach
would be to compute the adaptation map,29 which would consider the fact that the eye can not adapt to a single
pixel. A similar approach to non-linear filtering, in case of a bilateral filter, was proposed in.30 The process of
filtering using multiple CSFs is shown in Figure 6.

As can be seen in Figure 5, the CSF changes its shape significantly for scotopic and mesopic adaptation
luminance and remains constant above 1, 000 cd/m2. Therefore it is usually enough to filter the image using a
CSF for yadapt = {0.0001, 0.01, ..., 1, 000} cd/m2. The number of filters can be further limited if the image has a
lower range of luminance.

CSF predicts the behavior of the complete visual system, including optical and neuronal part. The optical
part is however already simulated in HDR VDP pipeline as OTF filtering (see Section 3.1). Therefore, only
neural part should play role at this stage of the HDR VDP. To extract neural part from the overall CSF, the
CSF can be divided by the OTF.

3.4. Other Modifications

An important difference between the original VDP and the proposed extension for HDR images is that the
first one operates on CSF normalized values and the latter one represents channel data in JND-scaled space.
Therefore, in case of the VDP for HDR images, original and distorted images can be compared without any
additional normalization and scaling. This is possible because a difference between the images that equals one
unit in JND-scaled space gives a probability of detection equal to one JND, which is exactly what this step of
the VDP assumes. Therefore the contrast difference in the original VDP:

∆Ck,l(i, j) =
B1k,l(i, j)

BK

−
B2k,l(i, j)

BK

(8)

in case of the VDP for HDR images becomes:

∆Ck,l(i, j) = B1k,l(i, j) −B2k,l(i, j) (9)

where k, l are channel indices, i, j pixel coordinates and B1, B2 are corresponding contrast values of the channel
for the target and mask images.
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4. CALIBRATION

In our previous work we compared the predictions of the extended HDR VDP with the original VDP.21 In
this work we focus on calibrating HDR VDP for the best prediction of visible differences in complex images.
To achieve this we conducted a psychophysical experiment that assessed the detection of differences in complex
images. Then we used the collected data to find the best set of HDR VDP parameters that would give its
response that is the closest to the result of the subjective tests.

Eight subjects took part in the experiment, which involved detecting visible differences in images shown on a
projector based HDR display.5 The luminance of the HDR images was reproduced on HDR display without any
tone compression and was clamped between 0.05 and 2, 700cd/m2 (the minimum and maximum luminance that
could be achieved on the display). The images were observed from 0.5m and each image span about 20 visual
degrees. All participants had normal or corrected to normal vision and were experienced in digital imaging.

For each pair of images (original and distorted image), a subject was to mark areas where differences between
the images were visible. The marking was done using square blocks of one visual degree edge. Figure 7 shows
the screen capture of a testing program. The result of each test was a matrix of 1 and 0 values, where value
1 denoted visible differences in the block and 0 no visible differences. Each subject was to mark eleven image
pairs, which contained natural scenes (HDR photographs), computer graphics rendering, and one simple stimuli
(luminance ramp). The second image of each pair was distorted with a simple pattern noise, like a narrow band
sinusoidal grating, blur, or random noise.

For the data collected from all subjects and for all images, we try to find the best set of HDR VDP parameters,
that would give the VDP response, which is the closest to the subjective data. Because the resolution of VDP
probability map is one pixel and the resolution of subjective response is a square block of about 30×30 pixels, we
have to integrate VDP response, so that the data can be compared (see Figure 8). The natural choice of operator
for integration is a maximum probability value (a subject marks the block if any distortion is visible). The VDP
probability map however may contain single stray pixels of high probability value, which would cause the high
probability of detection for the whole surrounding area. Since it is quite unlikely that a subject will notice the
differences in single pixels, we choose percentile, rather than maximum, for integrating over the square block
areas. Because we don’t know which percentile is the best for integration, we leave it as one of the parameters
of the optimization procedure.
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The fitting function of the optimization procedure has three parameters: a percentile used for integration
k, peak contrast sensitivity P , and slope of the masking threshold elevation function s. The peak contrast
sensitivity P is the minimum contrast that is visible to a human observer (the inverse of the maximum value of
the CSF) and was discussed in Section 3.3. Refer to13 for the discussion on the slope of the masking function.
The fitting function is:

f(k, P, s) =
∑

images

∑

blocks

(Int[V DP (p, s), k] −M)2 · w (10)

where the first sum denotes summation over all images, the second over all rectangular blocks, Int is integration
over a block using k’th percentile, V DP is the probability map produced by VDP, M is an averaged subjective
response and w is the weighting factor for each block. Because for some blocks the visibility of distortions varied
for different subjects, the average of subjective response M can contain any value between 0 and 1. For the
same reason, the importance of each block is weighted by factor w, which denotes how much trust we can put
in subjective data. If some subjects reported distortions in a particular block visible and the other subjects not
visible, we can not make solid statement what should be the correct answer. Therefore we use the weighting
factor:

w = exp(−
D2

0.04
) (11)

where D is a standard deviation of subjective responses across the subjects. This way the blocks that have
standard deviation greater than 0.5 are practically not taken into account in optimization procedure.

We numerically minimalize the fitting function f using several random starting points to find a global mini-
mum. We achieved the best fitting for the parameters: k = 82, P = 0.006, s = 1. The value of 0.6% for the peak



Figure 7. Screen capture of the program used in the experiment. Visible differences between two simultaneously displayed
images (original on the left and distorted on the right) were marked with semi-transparent blue square blocks.

(a) Distorted image (b) VDP prob. map (c) int. prob. map (d) avg subjective resp.

Figure 8. Given the distorted image (a) and its not distorted version, HDR VDP produces a probability map (b). The
probability map must be integrated in rectangular blocks (c) before it can be compared with the subjective response (d).

contrast sensitivity P is more conservative than 1% commonly presumed in video and image processing applica-
tions, but it also assumes lower sensitivity than the original VDP (0.25%). The slope of the masking threshold
elevation function s may vary between 0.65 and 1.0 and can be explained by the learning effect13 (subjects
are more likely to notice differences when the mask is a pattern that is predictable or they are familiar with).
Although we let the slope in the optimization procedure be any value in the range of 0.5–1.5, the best fitting
was found for the value 1.0, which indicated low learning level. This result was according to our expectations,
since complex images form complex masking patterns, which are difficult to learn.

5. CONCLUSION

In this paper we derive several extensions to the original Visual Difference Predictor. The extensions enable the
comparison of High-Dynamic Range images. Local contrast reduction is modeled in the extended HDR VDP
using three-tier processing: linear shift invariant OTF for light scattering, nonlinear shift invariant conversion
to JND-scaled space for the response of the photoreceptor, and the last linear and shift variant CSF for lower
sensitivity to low and high spatial frequencies. Such model allows separate processing of high and low contrast
information in HDR images. The predictor is then calibrated to the psychophysical data collected in the detection
experiment on the HDR display.

In future work we would like to further extend the VDP to handle color images in a similar way as it was done
in,31 but also take into consideration extended color gamut and the influence of chromatic aberration on the
OTF.32 A more extensive validation of HDR VDP predictions is necessary to confirm good correlation between
the predicted distortions and the actual quality degradation as perceived by a human observer.
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