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ABSTRACT

Reproduction of occlusions and opaque surfaces are the major chal-
lenges of additive optical see-through (OST) displays. This is be-
cause the user of an OST display sees a linear mixture of display
and environment light, which creates an impression of transparency
unless the displayed color is sufficiently bright. The primary goal
of this work is to determine how bright a displayed surface needs
to be in relation to environment light to be perceived as opaque.
We test multiple factors that could affect the perception of opacity:
background luminance, contrast, spatial frequency, and accommo-
dation depth in foveal vision. The subjective results, collected on a
high-dynamic-range multi-focal stereo display, indicate that a virtual
object needs to be, on average, 60 times brighter than the background
environment light to be perceived as opaque. A higher contrast of
the texture of the virtual object and a background that is out of focus
can reduce the required luminance ratio. We demonstrate that a
model of visual perception based on Weber’s law and accounting
for contrast masking and defocus blur can predict the experimental
data with an averaged prediction error of 8.29%. Existing perceptual
image difference metrics (PSNR, FovVideoVDP and HDR-VDP-3)
can also predict the effect of major factors, but with lower accuracy
(e.g. prediction error of 34% for PSNR with PU21 encoding).

Index Terms: Human-centered computing—HCI theory, concepts
and models

1 INTRODUCTION

One of the main challenges of optical see-through augmented re-
ality (OST-AR) is reproducing virtual objects that appear opaque
rather than transparent. OST-AR displays use beam splitters or
waveguides to add the light from the display to the light coming
from the environment, so the resulting color is always a mixture of
the displayed and environment light. Blocking a light field from the
environment in a spatially-varying manner is challenging and it is
not done in practice. However, it is possible to utilize the limitations
of visual perception and make virtual objects appear opaque. The
main mean of achieving that is by increasing the luminance of the
virtual object and reducing the luminance of the environment light
(for example, using neutral-density filters) [23]. It is also possible to
use high contrast textures to mask the background. It is, however,
unclear how large should the luminance ratio be (between the object
and the background) and what the texture contrast should be to make
the virtual objects opaque.

In this work, we measure how much brighter than the background
(in terms of luminance) a virtual object needs to be to appear opaque.
We also want to know how this value depends on the texture of the
object — its contrast and spatial frequency. Finally, we quantify the
effect of defocus blur on transparency. Defocus blur can be expected
in AR as the virtual object is likely to be displayed at a different

*e-mail: jing@fotonik.dtu.dk

focal depth than the background, which will result in blurring the
background and making it less visible. We conduct a subjective
study on an high-dynamic-range multi-focal stereo (HDR-MFS)
display [38] to measure the aforementioned effects. We added a
small angular velocity to our virtual stimuli to simulate head motion
in typical AR scenarios. However, we do not account for motion
in our visual model. The high dynamic range (HDR) displays let
us test a much larger luminance range, up to 4000 cd/m2. The two
focal planes of the display let us test for natural defocus blur. Our
findings should extend to stereoscopic displays in general, which are
typically used in OST-AR.

The secondary goal of this work is to model those effects in foveal
vision so that the findings can be generalized to different conditions.
We find that a simple visual model involving luminance masking,
contrast masking, and the modulation transfer function (MTF) of the
eye’s optics can well explain our data. The data can also be partially
explained by the image difference metrics that model relevant aspects
of visual perception, such as PU21 luminance coding [20], HDR-
VDP-3 [19], and FovVideoVDP [21].

The main contributions of our work include:

• The measurement of the smallest luminance required to
achieve perceptual opacity for a set of background luminance
levels contrasts and spatial frequency of virtual object texture,
and defocus blur.

• A model predicting the luminance required for a virtual object
to be perceived as opaque, depending on the background lu-
minance, the virtual object contrast, and the accommodation
depth. The model is derived from psychophysical contrast
detection and discrimination models and is calibrated on our
dataset.

• Demonstration how existing perceptual image difference met-
rics can be used to estimate the luminance required to make
virtual objects opaque.

All our experimental data and the source code of the model are
publicly available1.

2 RELATED WORK

The relevant previous work is organized in two parts. Firstly,
Sect. 2.1 introduces existing optical see-through (OST) display sys-
tems, laboratory prototypes, and commercial products, focusing
mainly on the approaches developed to achieve opacity of the virtual
object, either physically or perceptually. Then the key features of
the human visual system (HVS) at play for the perception of opacity
and the existing opacity models are presented in Sect. 2.2.

2.1 OST displays and opacity
A notable side effect of OST-AR is the inability to darken the envi-
ronment using the additive OST displays. Depending on the trans-
parency setup and the properties of the optical combiner, the back-
ground always adds a certain amount of intensity to the light path

1https://github.com/gfxdisp/opaque-ar



(for example, the background always contributes 50% when the op-
tical combiner is 50R-50T). Nevertheless, the existing OST display
systems have experimented with different methods to improve the
opacity perception for the additive feature of OST-AR.

2.1.1 Background modulation approaches
The environment (background) light in an OST-AR headset can be
reduced globally by a fixed percentage using neutral density filters.
Such an approach is used in Microsoft Hololens 2 [22]. The global
reduction of background light can also be controlled to better adapt
to brighter or darker environments [23]. Global methods, however,
cannot be applied to individual objects. Without increasing the
luminance difference between the virtual and real environments,
the light must be blocked locally to make virtual objects opaque.
Cakmakci et al. [7] proposed one of the early local methods that can
modulate a part of the background in the final view with the help
of an LCoS spatial light modulator (SLM). Other reflective SLM
such as DMD can also modulate the background selectively [16].
Their solution utilized a binary image factorization to optimize the
result. This paper focuses on the approaches that do not involve
local background modulation.

2.1.2 Radiometric compensation
Without the help of modulation layers, the appearance of color in
OST displays can be improved using radiometric compensation tech-
niques. Hincapié-Ramo et al. [12] proposed a SmartColor system
that can enhance the contrast of the projected virtual object to pre-
serve as much of the original hue. Langlotz et al. [17] proposed a
method to neutralize the background based on a pixel-wise radio-
metric compensation. Zhang et al. [37] also make compensation in
the color space based on opponent color theory (maximization of the
color difference of virtual object color and background color with a
set of constraints). Unlike local or global modulation layers, radio-
metric compensation methods cannot create a physical opaqueness,
yet they attempt to trick our eyes to achieve perceived opaqueness.
In the next section, we will introduce opacity (or transparency)
perception based on the knowledge and features of HVS.

2.2 Opacity perception
In real scenes, the opacity of an object is defined by its capacity not
to transmit light. Objects that transmit light are either translucent
or transparent depending on whether they are composed of mate-
rials with a varying or uniform refraction index. However, those
physical properties do not directly translate into an impression of
transparency for a human observer. As neurons in the HVS do not
represent information as absolute luminance levels but rather as im-
age contrast. The contrast threshold can be defined as the minimum
contrast that can be resolved by an observer. Threshold contrast can
increase when another masker signal is superimposed on it due to
the phenomenon known as contrast masking [18]. Contrast masking
is an indicator in HVS that can be used to model if a signal would
be visible through a mask (perceived as transparent). A thorough
review of the perception of transparency can be found in [10]. To
characterize the perception of transparency, [5, 15, 25, 28] proposed
a set of experiments under different stimuli conditions, such as
lightness, contrast, and frequency, and derived models of perceived
transparency. Further, [9] proposed a chromatic-dependent model
based on a subtractive color mixture and concluded that the subjec-
tive results of transparent perception are closer to a subtractive than
an additive color mixture model.

Virtual objects have no actual volume or specific opacity in additive-
only OST-AR systems. The light entering the human eye is a linear
combination of the light coming from the real scene (background)
and the light from the virtual object. Because the background light
is always present in OST-AR, it is necessary to generate perceptual

opaqueness when it does not occur physically. Zhang et al. inves-
tigated the influence of background luminance and contrast on the
perception of transparency in OST-AR in [34]. They set-up a scaling
experiment in which they ask participants to rate the transparency of
a uniform virtual object. They present observers with combination
of background at various luminance and contrast levels and virtual
object at varied luminance levels (thus obtaining different contrast
levels within the virtual object + background area). They analyze
the obtained ratings as a function of the ratio between the contrast
within the virtual object + background area and the contrast of the
background. One of their finding is that the ratings of perceived
transparency depend on the contrast of the background and on the
ratio between the luminance of the background and that of the virtual
object.

A relevant aspect for transparency perception in OST-AR is that
the depth of the different elements seen can differ. If the depth
difference between a virtual object in focus and the background is
large enough, the background will appear blurred on the retina. The
defocus blur can be characterized by the circle of confusion (COC)
(radius of the disc corresponding to the projection of an out of focus
point on the retina). This can be accounted for when simulating the
MTF to model contrast gain for the perception of transparency.

3 EXPERIMENT

This section describes the experiment conducted to measure the
perception of opacity in an additive OST display.

3.1 Design
To set a clear goal for the participants, we define opaque threshold
as the threshold of luminance for a virtual object to appear opaque
over the real-scene background. The objective for the participants
was to adjust the luminance of the virtual object so that it started to
appear opaque.

3.2 Apparatus
We use a prototype of an HDR-MFS display explained elsewhere
[38]. Here, we give a brief overview of the relevant components of
the display. Fig. 1 illustrates the displays and a physical checker-
board background on which virtual objects were shown. A pair of
HDR displays (per eye) forms two planes at which the image is
shown in the 3D space in front of the observer (dashed purple and
green lines in Fig. 1). The far display plane shows images at a similar
distance as the background (814 mm or 1.23 D2), and the near plane
is in front of the background (519 mm or 1.93 D). We use those two
distances to measure the effect of defocus blur on the perception
of transparency. Each HDR display can produce luminance up to
4000 cd/m2 with the black level of less than 0.01 cd/m2, which let
us test a wide range of luminance levels for the target virtual object.
The HDR displays use a linear tone curve with no normalization.
The other details of the display setup can be found in the caption
of Fig. 1 and in [38].

To ensure that the scene is rendered from the correct eye position and
to account for each observer’s inter-ocular distance, we estimated
each eye’s position in a calibration procedure, illustrated in Fig. 2.
The participants were asked to align crosses displayed on each of
the four display planes with 4 LEDs of known positions located
near the background. The correspondences let us find the projection
matrices from the 3D word space to the pixel coordinates of each
display [11, 24].

3.3 Stimuli
The virtual object and the background in our experiment were shown
in grayscale. The virtual object was rendered on the near or far focal

2where D denotes Diopter
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Figure 1: The schematic of the high-dynamic-range stereo multi-
focal display, as seen from the top. The image for each eye is formed
by combining the light from two HDR displays using 50R-50T
beamsplitters (not shown). The real scene image is seen through
smaller beamsplitters (70R-30T) in front of the eyes (shown in
the diagram). The dashed lines represent virtual focal planes of
the corresponding displays (matching inline color) as seen by the
participant.

(a) (b) (c)

(d)

Figure 2: Calibration process. 2a shows a VR view-piece used
to view the displayed stimuli, 2b and 2c shows near and far focal
plane calibration markers. Participants need to align the virtual cross
with the real cross 2b and LEDs 2c. 2d is an overview illustration
depicting the relative position of the real scene box, calibration focal
planes, and observers’ eyes.

plane, with a fixed projected size of 6.67◦ × 6.67◦ (the object is
larger when shown on the far plane). Its texture contained a band-
limited white noise with a mean frequency of fv, contrast Cv, and
mean luminance Lv. The noise samples were drawn from the uniform
distribution and then filtered in the Fourier domain using the filter
formed by a Gaussian function of logarithmic frequency with the
standard deviation of one octave. The maximum amplitude of the
noise was scaled to correspond to contrast Cv. The background was
printed, attached to a foam board, and positioned at the distance
of ≈ 1.22D from the participants’ eyes (the value differed slightly
between participants due to the calibration for the eye position). The
background was rectangular with an angular size of 25.46◦×18.04◦.

The background texture was a checkerboard of a fixed contrast of 0.6
and a frequency of 1 cpd. The reported luminance of the background,
Lb, corresponds to the average luminance measured in the spot of
1 degrees diameter as seen through the display (measured with Jeti
Specbos 1211 spectroradiometer). The examples of the background
and virtual object can be found in Fig. 3.

In the experiment, the background was static while the virtual object
made a repetitive horizontal motion with an angular speed modulated
by a sinusoidal function of the frequency of 0.5 Hz and amplitude of
0.5◦. We added such a relative movement to simulate a more realistic
scenario — in a typical AR scenario, the background moves with
the head motion. We also noted that the transparency was easier to
detect when the object was in motion; therefore, the moving square
provides a more conservative estimate. However, the motion effect
is not accounted in our visual model.

The tested conditions for the stimuli included two levels of back-
ground luminance Lb, texture contrast of the virtual object Cv, texture
frequency of the virtual object fv, and the virtual object depth Dv.
The values used are listed in Table 1. The participants adjusted
the luminance of the virtual object (square), Lv, to make it appear
opaque. Lb, Cv, fv, Dv alternately become independent factor and
dependent factor throughout the experiment.

Table 1: Parameters of the tested conditions. Lb — background
luminance, Cv — texture contrast of the virtual object, fv — texture
frequency of the virtual object, Dv — the depth of the virtual object.

stimuli Lb(cd/m2) Cv fv(cpd) Dv(D) conditions

levels 2 0.1 1 1.93 1620 0.5 6 1.23

3.4 Procedure
The experiment was implemented in Matlab with the help of Psych-
Toolbox [6] and custom code controlling the display. In the test, the
participant’s task was to adjust the luminance of the moving virtual
object with a scroll wheel on the trackball until it appeared opaque.
The luminance was adjusted on the logarithmic scale to account
for Weber’s law. The exact wording used in the briefing form was:
”Make the adjustment to the smallest brightness at which the virtual
object is opaque so that the background does not show up on the
virtual object.” Note that the participants were asked to always look
at the virtual object during the experiment.

The experiment consisted of 80 trials. The stimuli for each trial were
randomly selected from the 16 conditions of factors listed in Table 1.
Each condition was measured five times. In each trial, the initial
value of Lv was randomized within a uniform distribution of the
range of [0.5 500] cd/m2 to motivate the participant to both increase
and decrease the luminance during the test. The whole procedure
took around 45 minutes, including individual calibration for each
participant.

3.5 Participants
We invited 11 participants for our experiment. The participants are
aged 24 to 41 years, with eight men and three women. All had self-
reported normal or corrected-to-normal vision acuity (with corrective
lenses for five of them). They were naive regarding the conditions
used in the experiment. During the experiment, every participant
was guided through the calibration. Fig. 4 shows a participant in the
experiment.

3.6 Results and ANOVA analysis
An outlier analysis was performed on the data points (using a log
scale for the luminance) using the Matlab toolbox LIBRA [30]. The



(a) Cropped picture of a virtual
object (Cv 0.5, fv 1 cpd, Dv 1.93
D) at luminance below opaque
threshold.

(b) Cropped picture of a virtual
object (Cv 0.5, fv 1 cpd, Dv 1.93
D) at luminance above opaque
threshold.

(c) Stimulus of a virtual object
generated with physically accu-
rate transparency at Lb 2 cd/m2,
Lv 3.7 cd/m2, Cv 0.5, fv 6 cpd,
Dv 1.23 D

(d) Stimulus of an opaque virtual
object generated at Lb 2 cd/m2,
Lv 3.7 cd/m2, Cv 0.5, fv 6 cpd,
Dv 1.23 D

Figure 3: Examples of the visual stimuli (virtual object + back-
ground) were presented in the experiment. The top row (3a and
3b) are photographs of the setup, while the bottom row (3c and 3d)
consists of simulations. As the photographs (top row - 3a and 3b)
are taken with the virtual object shown at Dv 1.93 D and in focus,
the background is out-of-focus and therefore presents blur.

Figure 4: A participant in the experiment

outlier analysis is applied with two variables — the opacity threshold
and subject. Hubert et al. [14] is the underlying algorithm applied
in the LIBRA for outlier analysis: The method calculates an outly-
ingness value for each data point with a skewness adjustment based
on robust measures of location and scale of the data points, assum-

ing the underlying distribution of the data points is not symmetric.
The data points whose skewness-adjusted outlyingness exceeds the
preset threshold are eliminated. After outlier removal, we get the
filtered data points for the follow-up analysis. The average threshold
luminance of the filtered data points for the 16 conditions we tested
is shown in Fig. 5.

Fig. 6 presents the measurements (outlier removed) for each of the
factors. The background luminance has the largest effect on the
threshold luminance, followed by the contrast of the virtual object.
The frequency and depth have much smaller effects. The virtual
object with a low-contrast texture appears opaque when its lumi-
nance is around 60 times higher than that of the in-focus background.
The luminance can be reduced to 40 times that of the background
luminance if we use a higher contrast texture for the virtual object
and when the background is out-of-focus.
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Figure 5: Average and standard deviation across all participants
of the luminance threshold of opacity for the virtual object (on
the filtered data points). The threshold is highly correlated with
background luminance, followed by contrast and accommodation
depth. In contrast, the effect of frequency does not show a consistent
trend (for the configurations pairs 0.5-1.93-1-20/ 0.5-1.93-6-20 and
0.5-1.23-1-20/ 0.5-1.23-6-20, the effect of frequency is inverse of
other frequency stimuli pairs).
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Figure 6: Effects of the four factors tested in the experiment. Each
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across all participants. The circles show mean luminance averaged
across dependent factors. The background luminance has the most
substantial effect, followed by contrast, accommodation depth, and
frequency.



Table 2: Results of N-way ANOVA on the main effects and inter-
actions for factors with a significant effect (threshold p < 0.05).
Columns correspond to degree of freedom (d.f.), F-score, p-value
and size of effect. All factors are fixed except the subjects who are
considered drawn randomly. Factors are ordered based on their size
of effect. The greyed factors (above the double horizontal line) are
those selected to be modeled in Sect. 4.1.

Factor d.f. F p Size of effect

Lb 1 1687,35 1,75E-12 8,59E-01
Cv 1 183,48 9,28E-08 5,28E-02
Subj. 10 5,05 6,52E-04 5,12E-02
Dv 1 50,26 3,34E-05 9,34E-03

Lb*Subj. 10 6,68 4,10E-08 5,09E-03
fv 1 14,27 3,62E-03 3,72E-03
Cv*Subj. 10 3,78 2,03E-04 2,88E-03
fv*Subj. 10 3,42 5,92E-04 2,61E-03
Dv*Subj. 10 2,44 1,13E-02 1,86E-03
Lb* fv 1 12,08 7,19E-04 9,21E-04
Dv* fv 1 10,39 1,65E-03 7,92E-04
Cv* fv 1 7,98 5,58E-03 6,08E-04

Error 115 Sum Sq. 4,16E-01
Total 175 Sum Sq. 4,74E+01

The results are then analyzed using an ANOVA to evaluate which
independent variables influence the opacity threshold chosen by the
participants [13]. The analysis is conducted using a logarithmic
scale for the luminance relating to Weber’s law. The independence,
normality, and homoscedasticity assumptions necessary for the va-
lidity of ANOVA, were evaluated. The independence assumption is
fulfilled by participant selection and experiment procedure control.
The normality assumption was validated through Anderson-Darling
test [1], with an averaged p-value over all the 16 configuration of
0.5339. The homogeneity of variances was verified with a Bartlett
test [4].

Two ANOVA models were used: a repeated measures ANOVA
applied to all repetitions and an N-way ANOVA applied on results
averaged over all repetitions. As the repetition factor is not found
significant and significant factors are identical in both cases, the
repeated measure ANOVA does not present additional information
and is not presented here.

The statistically significant (p < 0.05) factors of an N-way ANOVA
on the main effects and second-order interactions are presented
in Table 2. The size of effects indicates the relative importance
of those factors on the dependent variable (threshold of perceived
opaqueness). Based on this, the three most significant factors are
considered for modeling the perceived opacity in Sect. 4.1: Lb, Cv,
and Dv. As indicated by the variation among their size of effect,
their respective impacts on the opacity threshold differ significantly.
The Sub j and Sub j.∗Lb factors are disregarded as the focus of this
study is not to model personal preferences but a standard observer.

4 MODEL

The measured luminance threshold for opacity can be predicted by
either a simple visual model or perceptual image quality/ differ-
ence metrics. We demonstrate both approaches in the following
subsections.

4.1 Model of perceived opacity
A virtual object shown on the OST display is judged as transparent
if one can see a pattern (contrast) of the background through that
object. Using Weber’s definition of contrast, the contrast of the

background pattern can be expressed as

cb =
mb

Lb
(1)

where mb is the amplitude of luminance variations (modulation) and
Lb is the mean luminance of the background. When the background
is mixed with a virtual object of the mean luminance Lt, its contrast
is reduced to:

cb =
mb

Lb +Lt
(2)

We can assume that the background will be detected if its contrast
exceeds a certain threshold (noise of the visual system). We can
model the signal (contrast of the background) to noise ratio as:

S =
cb

cdet +act
(3)

where cdet is the minimum detectable contrast (typically around 1%),
ct is the contrast of the target virtual object (masker), and a is the
multiplier of the contrast of the virtual object. Both cdet and a are
the parameters of the model. We assume that the background is
detected and the target object is seen as transparent when S is above
1. The equation above is similar to models of contrast masking of the
visual system [8, 19, 32], which contain a signal-independent (cdet)
and a signal-dependent (act) component. Here, however, we do not
consider the frequency of the masker as we found the frequency-
dependent effect to be small (refer to Fig. 6 and Table 2).

Defocus Blur We can observe in Fig. 6 that the threshold lumi-
nance is lower when the virtual object is shown at a different depth
than the background (at 1.93 D). The defocus blur can explain this
effect — the eye was accommodated to a different distance than
the background pattern, making the pattern appear blurry. To take
defocus blur into consideration for our model, we first need to find
the diameter of the COC — the convolution kernel used to simulate
blur due to the finite pupil size. The diameter of the kernel can be
approximated (in degrees) as [26]:

dCOC =
180
π

10−3 pe |F −Do| (4)

where F is the depth of the focal plane in diopters and Do is the depth
of the object out-of-focus, also in diopters [26]. As the virtual object
was always in focus in our experiment, F was set to 1/Dv m−1. Do
was the same for all tested conditions (1.23 D). pe is the diameter of
the observer’s pupil in mm, which depends on the size and luminance
of the adapting field. We use the unified formula from [33], assuming
the field size of 1 deg2 and the luminance of the virtual object.

We want to find how much the contrast of the background pattern is
reduced because of the defocus blur. To find the contrast reduction,
we transform the COC kernel into the frequency domain to obtain
an MTF of the eye. Because COC is radially symmetric, its 1D
projection is a rectangular function. The Fourier transform of the
rectangular function is a sinc function:

MTF(ω) = |sinc(ω dCOC)| (5)

where ω is the spatial frequency and dCOC is given in Equation 4.

To model our data, we consider only the fundamental frequency,
which is 1 cpd for the checkerboard background. Therefore, the
defocus blur will cause the drop of contrast equal to MTF(1), so that
the signal-to-noise ratio becomes:

S =
cb ·MTF(1)
cdet +act

(6)

For more complex background patterns, the modulated contrast can
be computed numerically using Fourier transformation.



Figure 7: Block diagram for our visual model. We apply MTF based on diopter distance to simulate defocus blur on the real-scene background.
The blurred background and the noise signal of the virtual object are then taken into the contrast coding. We conduct a contrast masking
algorithm and define whether the model output takes a virtual object as opaque based on the detection function.

Model fitting We fit the parameters of the model to the measure-
ments. The loss function for fitting is:

L =

√
∑

8
i=1(lgdi − lgmi)2

8
(7)

where di and mi are the subjective data and model predictions for Lv
in different stimuli configuration respectively. lg stands for log10.
We drop the spatial frequency factor f and only perform fitting over
remaining 3 factors Lb, Cv, Dv (8 conditions in total) as frequency
has little effect on threshold luminance (Sect. 3) The model predic-
tions for the range of factors used in our experiment can be found
in Fig. 8. To find the detection threshold for each condition, we
assume S = 1 and solve Equation 6 for Lb. Note that Lb is a part of
cb in Equation 6 defined by Equation 2. The model can explain the
data well, especially considering the variability in subjective mea-
surements shown in Fig. 5. The fitted parameters of the model with a
smallest value of the loss function are a = 0.0122, and cdet = 0.0057.
We measured the fitting by the averaged prediction error in the same
form of Equation 7 (i.e. RMSE on lgLv). The result is 0.0346 or
8.29% in percentage. We also measure the goodness of fit over all
16 conditions through reduced chi squared analysis on lgLv:

χν =
16

∑
i=1

(lgdi − lgmi)
2

ν ·σ2
i

(8)

where ν is the degree of freedom of the measurement. In our analysis
ν is 14 (16 stimuli configurations minus 2 parameters, a and cdet, in
the prediction model). σ2

i is the variance of each observation lgdi.
We got a χν of 0.15 for the fitting of the model, which indicates
an over-fitting (χν < 1). However, according to [2] the reduced chi
squared analysis may have limitation in testing a non-linear model
like ours with respect to fitted parameters, because the degree of
freedom is not well-defined.

4.2 Perceptual image difference metrics
Perceptual image difference metrics can also be used to predict the
luminance required for opacity. Two of those metrics are photo-
metric, i.e., they can take input pixel values in SI units (cd/m2):
HDR-VDP-3 [19] and FovVideoVDP [21]. Both metrics model the
early stages of human vision (optical and retinal pathways, spatio-
temporal contrast sensitivity, cortical magnification, and contrast
masking) to predict visual perception. FovVideoVDP is an extension
of HDR-VDP3 toward displays with a large field of view (particu-
larly used for AR/VR) that models the variation of spatio-temporal
sensitivity of the HVS across the visual field and extends the metric
to the temporal dimension. The other metrics applied are PSNR,
SSIM, MS-SSIM [31], VSI [35], and FSIM [36]. Since the met-
rics were all designed for standard dynamic range (SDR) images,
they require a mapping from high dynamic range (HDR) physical

luminance to perceptually uniform units [3]. The PU21 mapping
described in [20] is applied to the stimuli.

All those metrics are full reference ones, and in this context, they
evaluate the difference between the visual stimuli (background +
virtual object) synthesized to be physically identical to what was pre-
sented to the participants of the experiment (Sect. 3) and a reference
that is identical except for an opaque virtual object. When simulating
the reference with an opaque virtual object, the brightness of the
virtual object is increased by the median value of the background to
obtain a virtual object with similar luminance in both transparent and
opaque cases, as depicted for Lb=2 cd/m2, Lv=3.7 cd/m2, Cv=0.5,
fv=6 cpd, Dv=1.23 D in Fig. 3c and Fig. 3d respectively. We assume
the in-focus condition as none of the metrics can model defocus blur
(Dv=1.23 D).

Examples of the metric predictions are depicted in Fig. 9. To predict
the luminance threshold for opacity with each metric, we find an
optimal metric value, OptM, for which the luminance of the virtual
object is the closest to the subjective measurement. OptM represents
the metric value above which stimuli are evaluated as opaque. It was
computed as the average over all configurations of the metric values
for the stimuli at the subjective luminance threshold:

OptM = Metric(lgdi)
∣∣∣8
1

(9)

where i is the configuration index. As in Equation 7 di is subjective
data for Lv. For the simulation with metrics, we do not consider the
depth factor Dv since the metrics we applied do no model defocus
blur; Thus the average of the OptM is over the 8 configurations
of Lb, Cv, and f . The prediction error is then computed as the
RMSE between the predicted and measured lgLv luminance for
all conditions. The prediction errors for the objective metrics and
the perceptual model from Sect. 4.1 are presented in Table 3. The
table shows that our custom model from Sect. 4.1 results in the
smallest prediction error of 8.29%, but the effect can also be well
predicted by the PU21 transform used in PSNR (error of 34%). The
more complex metrics, such as HDR-VDP-3 and FovVideoVDP,
account for many more effects, but they do not improve prediction
performance. We have also tested the combination of PU21 with
SSIM, MS-SSIM, VSI, and FSIM, but we found all those metrics to
be too sensitive to predict the luminance threshold of opacity (OptM
was 1 for all those metrics).

5 DISCUSSION

During the setting up of the experiment described in Sect. 3, both
band-limited noise and checkerboard were tried as background pat-
terns. Preliminary results indicated stronger inter-observer agree-
ment when using the checkerboard pattern, and it was selected for
the final set-up. The likely reason is that the sharp edges due to the
harmonics with higher frequencies act as a stronger transparency cue.



Figure 8: The threshold luminance required for the object to appear opaque, as predicted by the proposed model. The data marks represent the
measurements, and the dashed lines are the model predictions. Refer to Table 1 for the explanation of the variables.
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Figure 9: Examples of objective measures evaluations for the configuration Lb 2 cd/m2, Cv 0.1, Fv 1cpd and Fv of 1.23 D. The red dash curve
indicates the subjective threshold (Subj. Thr.) for opacity from the experiment. The average metric value over all configurations for a virtual
object at the subjective threshold is indicated in dark blue. The luminance of the virtual object (Lum. VO) yields that value in light blue.

Table 3: Prediction error for objective metrics and the model pro-
posed in Sect. 4.1

Metric / model
Avg. metric

value of subj.
thresholds

RMSE on lgLv /
%

HDR-VDP-3 C max 3.600 0.26862 / 85%
FovVideoVDP Q JOD 9.893 0.1983 / 58%

PU21 + PSNR 64.6 dB 0.1276 / 34%

Our model from
Sect. 4.1

— 0.0346 / 8.29%

However, the agreement among observers still presented variability
in the final set-up. The screening for outliers yielded a higher con-
centration of outlying data points for two of the eleven participants.
As those outliers are located towards higher luminance values than
the average, it indicates a more conservative understanding of what
constitutes opacity for those participants.

The effect of defocus blur in our prediction model is smaller than

the subjective data. The reason can be that we simplified the MTF
in accounting for the effect of defocus blur as a sinc function. Ap-
plying a comprehensive multi-factor MTF parameterized by Zernike
polynomial [27, 29] can increase the precision of the modeling and
consider the difference among individuals of the population.

The performance comparison in Sect. 4.2 between the perceptual
model from Sect. 4.1 and objective metrics shows that the objective
metrics achieve higher prediction errors. When fitting the prediction
model to the subjective data, there are two parameters, a and cdet,
tuned in Equation 6. While for objective metrics, OptM is the only
parameter adapted to the data. Most likely, the additional degree of
freedom allows for a better fit.

Extending the scope of our results towards more realistic stimuli is
necessary for a straightforward application. The two main directions
are: an increased range of characteristics for the background and
virtual objects and a more complex 3D real scene. Our model was
derived with a limited level of factors in general. However, since
we rely on principled models, contrast detection and MTF, there is a
good chance that the predictions can generalize outside the measured
parameter space. One possible direction for future work is to set
up a more comprehensive test that takes more levels of factors and



a broader range of factors into consideration, which will enable us
to develop a prediction model with more complex psychophysical
models such as the ones introduced in [25]. Another direction is
introducing a 3D virtual object into the experiment with a more
complex background scene that provides a more realistic scenario
with other visual cues for opacity perception, such as occlusion
concerning disparity for the stereoscopic display.

As for the applications of our work, our model can help in setting
display design guidelines for AR hardware developers. The findings
are independent of an AR display or technology used. We report the
results in terms of physical units ( cd/m2, visual degrees) so that they
can generalize to any OST display. It can also be used in real-time
graphics to optimize the opacity of the rendered content w.r.t. the
parameters of our model (virtual content luminance and contrast,
background luminance, and distance to background).

6 CONCLUSION

Making virtual objects appear opaque on an OST-AR display is an
important and challenging problem. Our results show that an opaque
appearance can be achieved mainly by increasing the luminance
of the virtual object and, to a lesser degree, by using high contrast
textures, which could mask the background. Defocus blur can also
improve opacity, depending on the content, the background, and
depth separation between the virtual object and real background.
While those findings are not surprising, it was important to quantify
the strength of these effects. We found that the virtual object’s
luminance needs to be 40 to 60 times higher than the luminance of
the real environment to avoid a transparent appearance. The high
luminance requirement imposes a significant limitation for OST AR
displays — they cannot reproduce virtual opaque objects that match
the brightness of a real scene, making them unsuitable for practical
AR applications, in which virtual objects should seamlessly blend
with the environment.

We proposed a simple model to explain our experimental data and
predict the luminance required to achieve opacity. It relies on We-
ber’s law for luminance, a simple masking model, and the model of
defocus blur. Because the model was fitted to limited data, it may
not account for the full range of conditions, such as much lower
luminance levels (at which Weber’s law does not hold). More com-
plex visual metrics can be accounted for, such as PU21 encoding,
FovVideoVDP, and HDR-VDP-3, but at the cost of much higher
complexity and less accurate predictions for the range of factors
tested in our experiment. Those metrics also do not account for
defocus blur, which must be modeled separately.

We hope that our findings and the proposed model can help make
better decisions regarding the luminance levels used in OST-AR
displays. For example, the model could be used to control the peak
luminance of the display, and if that is possible, the transmittance
of the filter is used to dim the real environment [23]. To achieve
that, an AR headset would need to measure the luminance of the real
environment and use our model to control the display and dimming
parameters.
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